
Discovering invariants via Simple Component Analysis

Gianluca Amato, Maurizio Parton, Francesca Scozzari

Dipartimento di Scienze
Università degli Studi “G. d’Annunzio” di Chieti-Pescara

viale Pindaro 42, 65127 Pescara, Italy

Abstract

We propose a new technique combining dynamic and static analysis of pro-
grams to find linear invariants. We use a statistical tool, called simple component
analysis, to analyze partial execution traces of a given program. We get a new
coordinate system in the vector space of program variables, which is used to
specialize numerical abstract domains. As an application, we instantiate our
technique to interval analysis of simple imperative programs and show some
experimental evaluations.

Key words: Static analysis, abstract interpretation, simple component
analysis, intervals, interval arithmetic.

1. Introduction

Analyzing programs to prove numerical properties is a very rich research
field, which has received much attention. Typical numerical properties range
from basic requirements, such as “all the array indexes are within the correct
bounds” or “division by zero cannot happen”, to complex loop invariants. More-
over, numerical properties may help other kind of analyses, such as termination
analyses (Colóon and Sipma, 2001), timing analyses (Gulavani and Gulwani,
2008), shape analyses (Chang and Rival, 2008), string cleanness analyses (Dor
et al., 2001) and so on.

Most of the work in this subject uses either the dynamic or the static ap-
proach. In the first case, candidate invariants are “guessed” from a (possibly
symbolic) execution of the program (Ernst et al., 2001; Gulwani and Necula,
2005). In the latter case, invariants are proved or derived from an approxi-
mated, formal model of the program. Both approaches have drawbacks. In
the dynamic approach, it is possible to explore only a finite set of bounded,
partial execution traces. Thus, we may only find candidate invariants, but we
cannot prove that they are actually invariants. On the other hand, in the static

Email addresses: amato@sci.unich.it (Gianluca Amato), parton@sci.unich.it
(Maurizio Parton), scozzari@sci.unich.it (Francesca Scozzari)

Preprint submitted to Journal of Symbolic Computation January 11, 2012

approach, invariants hold for any possible execution of the program in any pos-
sible environment, but feasible solutions are often very approximate. The more
precise a static analysis is, the more the computational complexity grows, and
very precise analyses are infeasible in practice.

We believe that combining the two approaches, we can overcome the draw-
backs of both. In the literature, it is very common to find specific static analysis
helping dynamic analysis (for instance, in the field of runtime verification), but
we propose the opposite, that is to help static analysis by means of dynamic
information. We first observe the dynamic behavior of the program and ana-
lyze it with statistical methods, and then we use the collected information to
drive a subsequent static analysis based on the abstract interpretation frame-
work (Cousot and Cousot, 1979, 1992). In particular, we focus on invariants in
the form of linear inequalities.

1.1. The static side

The idea of abstract interpretation is to replace the (concrete) semantics
of a program with an abstract semantics, computed over a domain of abstract
objects. The concrete semantics is specified by means of a concrete domain C
and some basic operators. Typical operators for imperative programs include
assignment, test and union operators, which are used in the semantics for treat-
ing, respectively, the basic statements for variable assignment, if-then-else and
loops.

An abstract interpretation is specified by a set A of abstract objects. Ab-
stract objects describe the properties of the system we are interested in. The
relationship between concrete and abstract objects is formalized by an abstrac-
tion map α : C → A which, given a concrete state c ∈ C, yields the most precise
property a ∈ A which holds in the state c. An abstract domain is given by the
set A of the abstract objects and the abstraction map α.

For instance, consider the concrete domain ℘(Z) and the abstract domain
IntZ = {[a, b] | a, b ∈ Z ∪ {−∞,+∞}} of (possibly unbounded) intervals. The
intuition is that an abstract object [3, 8] represents the set of integer numbers
{3, 4, 5, 6, 7, 8}. This may be formalized by defining the abstraction map α(X) =
[inf X, supX], so that, for example, we have α({3, 4, 5, 8}) = [3, 8].

The goal of any abstract interpretation is to compute an abstract semantics
formally derived from the concrete semantics, by replacing each basic operator
with an abstract, sound operator, working with abstract objects. Consider the
operator inc : ℘(Z) → ℘(Z) such that inc(X) = {n + 1 | n ∈ X}, which
intuitively corresponds to the program statement x = x+1. The best correct
approximation of inc is incα([a, b]) = [a+1, b+1] where we assume that−∞+1 =
−∞ and +∞+ 1 = +∞.

The theory of abstract interpretation ensures us that the abstract semantics
correctly approximates the concrete semantics, so that properties proved on the
abstract side hold also on the concrete side. Moreover, given an abstract domain
A and a concrete operator f : C → C, it is always possible to design a best
correct abstract operator corresponding to f , which is uniquely identified by the

2

abstract domain A. Thus, the abstract domain is the key notion in the choice
of any abstract interpretation.

1.2. Numerical abstract domains

In the literature, we find many abstract domains for numerical properties.
The simplest one is the interval domain (Cousot and Cousot, 1976). Here,
each set of real (rational, integer) numbers is approximated by a (possibly un-
bounded) interval [a, b]. The expressive power of the domain is very limited,
since we can only find invariants of the form a ≤ x ≤ b where x is a pro-
gram variable. For this reason, analysis with the interval domain are often very
imprecise, but enjoy a low computational complexity.

A very rich domain is that of convex polyhedra (Cousot and Halbwachs,
1978), where we can express any linear inequality such as a1x1 + . . .+anxn ≤ b.
Unfortunately, the computational complexity of the domain is, in most cases,
prohibitive.

Many other numerical abstract domains strive to trade the accuracy of con-
vex polyhedra for higher speed, by considering only convex polyhedra of fixed
shapes, such as octagons (Miné, 2006), weighted hexagons (Fulara et al., 2010)
and two variables per inequality (Simon et al., 2003). This reduces both the
complexity and the expressive power of the domains.

The precision of the analyses may often be improved with the use of special-
purpose abstract domains, such as the domains for the analysis of digital filters
(Feret, 2004), or the arithmetic-geometric progression abstract domain (Feret,
2005). This idea may be pushed further by devising domains not just for a class
of applications, but for a single program, following the intuition that, if we know
the general form of the while-loop invariants which occur in a program, domains
able to express these invariants should reach a higher precision than others. This
idea is developed in the template polyhedra approach (Sankaranarayanan et al.,
2005), where the analysis is performed by using a (finite) number of convex
polyhedra (e.g., one for each program point) whose shape is fixed a priori. This
amounts to saying that we fix a priori a finite set of linear forms ā1x1+. . .+ānxn
(the template) for each program point, and the analyzer finds out the correct
bound b such that ā1x1 + . . . + ānxn ≤ b. The idea is appealing, but it lacks
an effective method to choose the template and, due to the general form of the
polyhedra, linear programming is needed to compute the abstract operators.

1.3. The dynamic side

We strongly believe that many drawbacks of the numerical abstract domains
could be offset by first performing a dynamic analysis of the program behavior.
Consider the program in Figure 1 where the parameter x is the input and y is
a local variable, and its partial execution trace for the input x = 10. Collecting
the values for the variables x and y at program point ¬ for the first 6 iterations
of the while-statement, we obtain Figure 2. If we abstract this set of values in

3

xyline = function(x)

{

assume(x>=0)

y = -x

while(x>y) {

¬ x = x-1

y = y+1

}

}

Figure 1: The example pro-
gram xyline.

x y
10 −10
9 −9
8 −8
7 −7
6 −6
5 −5

Figure 2: A partial execution
trace of the example program.

•
•
•
•
•
•

x

y

Figure 3: Interval ab-
straction of a partial ex-
ecution trace, observed
at program point ¬.

•
•
•
•
•
•

x

y

x′

y′

Figure 4: Abstraction with boxes
rotated by 30 degrees

•
•
•
•
•
•

x

y

x′′

y′′

Figure 5: Abstraction with
boxes rotated by 45 degrees

the interval domain, we get the shaded area in Figure 3, given by{
5 ≤ x ≤ 10 ,

−10 ≤ y ≤ −5 .

The key point is that the abstraction in the interval domain depends on the
coordinate system we choose to draw the boxes. With the standard choice of
(x, y) as a coordinate system, the box in Figure 3 is a very rough approximation
of the partial trace, but we can improve the precision by conveniently changing
the axes. For instance, consider a different coordinate system whose axes (x′, y′)
are clockwise rotated by 30 degrees. The abstraction in this “rotated interval
domain” is depicted in Figure 4. The two boxes in Figure 4 are incomparable
as sets of points, nonetheless the rotated box seems to fit better: for example,
it has a smaller area. The issue is how to find a “best rotation”.

1.4. The statistical methods

We apply to the sample data a statistical technique called orthogonal sim-
ple component analysis (OSCA), recently proposed by Anaya-Izquierdo et al.
(2011), which is a variant of principal component analysis (PCA). Given an ob-
served sample of data (points in Rn), the intuitive idea of PCA is to find a new
orthonormal coordinate system maximizing the variance of the collected values.

4

More explicitly, PCA finds new pairwise orthogonal axes, called principal com-
ponents, such that the variance of the projection of the data on the first axis is
the maximum among all possible directions, the variance of the projection of the
data on the second axis is the maximum among all possible directions which are
orthogonal to the first axis, and so on. In our example, the greatest variance is
obtained by projecting the data (the values in Figure 2) along the line y = −x.
Therefore, the first component found by PCA is the vector (1√

2
,− 1√

2
) (which

corresponds to the line y = −x) and the second one is (1√
2
, 1√

2
).

The vectors computed by the PCA cannot be directly used in the static
analysis, due to approximation errors which may cause a great loss of accuracy
(see Example 10 at page 22). Thus we apply OSCA, which returns pairwise
orthogonal vectors approximating PCA, but having small integer coefficients.
This property also helps the correct implementation of the rotated interval do-
mains. For the program in Figure 1, OSCA finds the vectors (1,−1) and (1, 1)
which correspond to the axes (x′′, y′′) in Figure 5, that is a clockwise rotation
of 45 degrees. The values in the partial trace are approximated by the box{

5 ≤ x′′ ≤ 10 ,

0 ≤ y′′ ≤ 0 ,

which may be interpreted in the original coordinates (x, y) as{
10 ≤ x− y ≤ 20 ,

0 ≤ x+ y ≤ 0 .

It is worth noting that, in our example, the while invariant at the program
point ¬ is x+ y = 0, x− y ≥ 0, and it may be expressed with boxes only when
they are rotated by 45 degrees. Thus, an abstract interpretation-based analyzer
using rotated boxes as abstract objects, could infer this invariant.

More generally, this suggests that, if we consider well-known numerical ab-
stract domains and adapt them to work with non-standard coordinate systems,
we can improve the precision of the analysis without much degradation of per-
formance. In this paper we develop the theoretical foundation and the im-
plementation to validate this intuition, using the interval domain as a case
study. In Section 8, we will show that our analysis actually infers the invariant
x+ y = 0, x− y ≥ 0.

The paper is structured as follows. Section 2 introduces some notation.
Section 3 defines the concrete domain and its operators, while in Section 4 we
recall the abstract domain of intervals. The new rotated interval domains are
presented in Section 5. Section 6 introduces OSCA, used to automatically infer
the best rotated interval domain for the given program, and we discuss in Section
7 a number of possible optimizations and extensions. Section 8 presents the
implementation and shows some experimental results. In Section 9 we discuss
related work in the literature and Section 10 concludes the paper presenting
possible directions for future work. This paper is a revised and extended version
of (Amato et al., 2010a).

5

2. Notation

2.1. Linear algebra

We denote by R̄ the ordered field of real numbers extended with −∞ and
+∞, and we use boldface for elements of Rn and R̄n. Given u,v ∈ R̄n and
a relation ./ ∈ {<,>,≤,≥}, we write u ./ v if and only if ui ./ vi for each

i ∈ {1, . . . , n}. We denote the scalar product on Rn by u ·v def
= u1v1+ · · ·+unvn,

and the length of v ∈ Rn by |v| def=
√
v · v.

If A = (aij) is any matrix, we denote by AT its transpose. If A is invertible,
A−1 denotes its inverse, and GL(n) is the group of n × n invertible matrices.
The identity matrix in GL(n) is denoted by In, and any A ∈ GL(n) such that
AAT = In is called an orthogonal matrix. Looking at vectors as n× 1 matrices,
and vice versa, we denote by (v1| . . . |vn) the matrix whose columns are the
vectors v1, . . . ,vn. Moreover, we denote by Aj∗ the 1× n matrix given by the
j-th row of A, and by A∗j the n× 1 matrix given by the j-th column of A. We
have u · v = uTv, whereas uvT is a n× n matrix.

A matrix A = (v1| . . . |vn) is orthogonal if and only if v1, . . . ,vn are or-
thonormal, namely, they have length 1 and are pairwise orthogonal. The stan-
dard orthonormal basis of Rn is denoted by {e1, . . . , en}, and any matrix A ∈
GL(n) can be viewed as a change of basis, mapping ei to the i-th column of A,
that is, (e1, . . . , en) 7→ (Ae1, . . . , Aen). If (x1, . . . , xn) ∈ Rn are coordinates of a
vector with respect to {Ae1, . . . , Aen}, then A(x1, . . . , xn)T are the coordinates
of the same vector with respect to {e1, . . . , en}.

2.2. Abstract interpretation

Given complete lattices (C,≤C) and (A,≤A), respectively called the con-
crete domain and the abstract domain, a Galois connection is a pair (α, γ) of
monotone maps α : C → A, γ : A → C such that αγ ≤A idA and γα ≥C idC .
If αγ = idA, then (α, γ) is called a Galois insertion. Given a monotone map
f : C → C, the map f̃ : A→ A is a correct approximation of f if αf ≤ f̃α. The
best correct approximation of f is the smallest correct approximation fα of f .
It is well-known that fα = αfγ. When fαα = αf then f is called α-complete.
See Cousot and Cousot (1992) for further details.

3. Analysis of numerical properties: the concrete domain

In this paper we are faced with the problem of discovering, for each program
point, a property of the value of numerical variables which is guaranteed to
hold for all the executions of the program and for any possible input. Since any
numerical property involving n variables may be represented as a subset of Rn,
a very precise analysis may be obtained, at least conceptually, by manipulating
these subsets through a limited collection of basic operators, corresponding to
syntactic constructs such as assignments, conditionals, loops, etc. . . . Every
other analysis may be obtained as an abstract interpretation of ℘(Rn).

6

We start by presenting, in this section, the basic concrete operators needed
to design static analyses of imperative programs. In the next two sections, we
will define the corresponding abstract operators for two abstractions of ℘(Rn).
For details on how to build an abstract interpreter from the basic operators, the
reader may refer to Cousot and Cousot (1976) and Cousot (1999).

3.1. Lattice-theoretic operators

The set of concrete properties ℘(Rn) is a complete lattice with the standard
set-theoretic operations of union and intersection, and with ordering given by
the subset relationship. The least element is ∅ and the greatest element is Rn. In
the following, x = (x1, . . . , xn) ∈ Rn denotes the vector of program variables, for
a fixed n ∈ N, and a ∈ Rn, b ∈ R denote parameters defining linear constraints.

3.2. Linear assignment

The linear assignment operator is used to analyze the behavior of the state-
ment xi = expr + b where expr is a linear expression on the variables of the
program and b is a constant. The linear assignment operator assign(i,a, b) :
℘(Rn)→ ℘(Rn) is the pointwise extension of:

assign(i,a, b)(x)
def
= y where yj =

{
xj if j 6= i ,

a · x+ b if j = i .
(1)

3.3. Forget

The forget operator forget(i) : ℘(Rn) → ℘(Rn) models non-deterministic
assignment to the variable xi. It loses all the information regarding the i-th
variable, while keeping all the information for the remaining variables. It is
formally defined as:

forget(i)(X)
def
= {(x1, . . . , xi−1, y, xi+1, . . . , xn) | x ∈ X, y ∈ R} . (2)

The forget operator is quite useful as a fall-back assignment in all those cases
where we cannot (or we do not want to) analyze more precisely, such as for
non-linear assignments or calls to unknown functions.

3.4. Test

The test operator test(a, b, ./) : ℘(Rn) → ℘(Rn) corresponds to the then-
branch of the if-statement “if (a · x ./ b)”, where ./∈ {<,>,≤,≥,=, 6=}. It
is defined as

test(a, b, ./)(X)
def
= {x ∈ X | a · x ./ b} .

Every conditional statement, even if it contains Boolean operations, may be
analyzed using only test together with lattice-theoretic operators.

3.5. Other basic operators

We briefly discuss other operators which may be useful for the static analysis
of numerical properties.

7

Backward assignment. It is used for backward abstract interpretation and, in
some settings, for refining the analysis of conditional statements (Miné, 2004).
We do not consider backward abstract interpretation in this paper, and the ab-
stract operators for test(a, b, ./) will be precise enough not to require backward
assignment.

Non-linear assignments and tests. These are generally handled with a variety
of techniques such as linearization (Miné, 2006), approximation with interval
arithmetic or with the forget operator (Miné, 2006; Cousot and Halbwachs,
1978), and special-purpose assignment operators for particular kinds of non-
linear assignments (Feret, 2004, 2005). It is a problem which is orthogonal to
the development of the abstract domain, and any of these techniques can be
applied to our domains as well.

4. The interval domain

In this section we recall the basic definitions and operators of the interval
domain (Cousot and Cousot, 1976) as an abstraction of ℘(Rn). The analysis
using this domain is generally called range analysis, and abstract elements are
called boxes.

4.1. Abstract domain

A set B ⊆ Rn is called a (closed) box if there are bounds m,M ∈ R̄n such
that

B = {x ∈ Rn |m ≤ x ≤M} . (3)

Each box B determines a pair 〈m,M〉 of vectors in R̄n. Conversely, each pair
〈m,M〉 determines a box B according to (3). This correspondence is not one-
to-one since different choices of m and M represent the empty box. We fix

⊥ def
= 〈+∞,−∞〉 as the unique representation for the empty box, where +∞

(resp. −∞) is the vector whose elements are all +∞ (resp. −∞). This allows
us to define the interval domain as

Int
def
= {〈m,M〉 ∈ R̄n× R̄n |m ≤M ,∀i. mi 6= +∞,Mi 6= −∞}∪{⊥} . (4)

With an abuse of terminology, we use the term box for elements of Int. The
domain Int may be ordered with respect to set inclusion:

〈m,M〉 ≤ 〈m′,M ′〉 ⇔m ≥m′ ∧M ≤M ′ . (5)

This gives rise to a Galois insertion (αInt, γInt) : ℘(Rn)
 Int defined as follows:

γInt(〈m,M〉) def
= {x ∈ Rn |m ≤ x ≤M} , (6)

αInt(X)
def
= 〈m′,M ′〉 , (7)

8

where, for each i ∈ {1, . . . , n},

m′i
def
= inf

x∈X
xi , M ′i

def
= sup

x∈X
xi .

Range analysis has its roots in earlier work on interval arithmetic, originated
in the field of numerical analysis. Therefore, we briefly recall the relevant notions
on interval arithmetic which will be used throughout the paper.

4.2. Interval arithmetic

Rounding errors and measurement errors in mathematical computations can
be bounded by using interval arithmetic. The idea is to replace an unknown
real number x with an interval [a, b] such that x ∈ [a, b]. The key point is the
ability to use floating point numbers as bounds of intervals. The reader may
consult (Hickey et al., 2001) for a rigorous presentation of interval arithmetic
and (Kearfott, 1996) for a survey on its applications.

Given a, b ∈ R̄, we denote by [a, b] the interval [a, b] = {x ∈ R | a ≤ x ≤ b}.
If a > b then [a, b] = ∅. We use I for the set of intervals and the variable δ to
vary over I. We denote with δ the lower bound of δ and with δ its upper bound.
Therefore, δ = [δ, δ].

It turns out that most arithmetic operations, when extended pointwise to
sets, map intervals to intervals. This holds, in particular, for addition, sub-
traction and multiplication. Moreover, the bounds of the results may be easily
computed from the bounds of the arguments. For non-empty bounded intervals
we have that:

[a, b] + [c, d] = [a+ c, b+ d] , (8)

[a, b]− [c, d] = [a− d, b− c] , (9)

[a, b] ∗ [c, d] = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)] . (10)

All interval operations are strict, i.e., the result is ∅ as soon as one of its argu-
ments is ∅. The cases for unbounded intervals may be found in Hickey et al.
(2001).

Interval vectors and interval matrices are the counterparts of real vectors
and matrices, when elements are intervals instead of real numbers. Formally,
an interval vector is an element of In for some n, while an interval matrix is an
element of In×m. We use δ to denote interval vectors and ∆ to denote interval
matrices. Given two vectors m,M ∈ R̄n , we denote by [m,M] the interval
vector δ such that δi = [mi,Mi]. We denote by δ (resp. δ) the vector of the
lower bounds (resp. upper bounds) of δ, so that δ = [δ, δ]. Finally, we use
x ∈ δ as a short form of δ ≤ x ≤ δ. The notation extends naturally to interval
matrices.

Standard operations for vectors and matrices such as sum, row-by-column
product, scalar product, may be performed on interval vectors and matrices
just replacing standard arithmetic operations with their interval counterparts.
In the context of an interval expression, a real number x, a vector x or a matrix

9

A should be considered as a short form for [x, x], [x,x] or [A,A] respectively.
Operations on interval vectors and matrices are safe. For example, if δ is an
interval vector, ∆ an interval matrix, x ∈ δ and A ∈ ∆, then Ax ∈ ∆δ. Note,
however, that standard properties of linear algebra do not necessarily hold.

Observe that boxes and interval vectors are two different representations of
the same mathematical object: the box 〈m,M〉 corresponds to the interval
vector [m,M]. Again, the correspondence may be made one-to-one with ap-
propriate restrictions to m and M . Therefore, in the following we view boxes
either as pairs of vectors of extended reals, or as interval vectors.

4.3. Lattice-theoretic operators
The best correct approximation of set union δ ∪Int δ′ yields the smallest box

containing both δ and δ′. It is given by

δ ∪Int δ′ def= δ′′ , (11)

where

δ′′i
def
= min(δi, δ

′
i) δ

′′
i

def
= max(δi, δ

′
i) .

The abstract intersection operator δ ∩Int δ′ may be computed as for ∪Int,
swapping the minimum and maximum operations. Abstract union and intersec-
tion are actually the lowest upper bound and greatest lower bound of Int. The
computation complexity of both operators is O(n).

4.4. Linear assignment, forget and test
Since all abstract operators are strict, we will provide explicit definitions

only for a non-empty input argument δ 6= ⊥.

Linear assignment. The best correct approximation of assign(i,a, b) is given by

assignInt(i,a, b)(δ)
def
= δ′ ,

where

δ′j
def
=

{
δj if i 6= j ,

a · δ + b if i = j .
(12)

Note that a · δ+ b is computed according to interval arithmetic. The computa-
tional complexity is O(n).

Forget. The best correct approximation of forget(i) is given by

forgetInt(i)(δ)
def
= δ′ ,

where

δ′j
def
=

{
δj if i 6= j ,

[−∞,+∞] otherwise .
(13)

The computational complexity is O(n) if implemented by creating a new box
object, O(1) if in-place replacement is used.

10

Test. We first consider the case when ./ is ≤. The best correct approximation
of test(a, b,≤) is given by

testInt(a, b,≤)(δ)
def
= δ′ ,

where

δ′i
def
=

[δi,min(ci, δi)] if ai > 0 ,

[max(Ci, δi), δi] if ai < 0 ,

δi if ai = 0 ,

(14)

and

[ci, Ci]
def
=
(
b−

∑
j 6=i

ajδj

)
/ai .

This procedure has complexity O(n), since we may compute [c, C]
def
= b − a · δ

only once, and obtain [ci, Ci] by removing the effect of aiδi in [c, C].
The case for ≥ is symmetric, while the result for = may be obtained as

the intersection of the results for ≤ and ≥. The result of testInt(a, b, <)(δ) is
either ⊥ if γInt(δ) ⊆ {x ∈ Rn | a · x ≥ b}, or the input box δ otherwise. To
test whether γInt(δ) ⊆ {x ∈ Rn | a · x ≥ b}, it is enough to check by interval
arithmetic that a ·δ ≤ [b,+∞]. The case for > is symmetric. Finally, the result
for 6= may be obtained as the abstract union of the results for < and >.

4.5. Ensuring termination of the analysis

Since the interval domain has infinite ascending chains, and the analysis
requires a fixpoint computation, the standard tools of widening/narrowing are
used to ensure the termination of the analysis (Cousot and Cousot, 1976, 1992).
The intuitive idea is to compare the result of the previous iteration to the
current one. Whenever the current iteration enlarges a bound, then the widening
immediately sets it to +∞ (resp. −∞). For instance, if the result of the previous
iteration is the interval [3, 4] and the result of the current iteration is [3, 5],
then the widening yields [3,+∞]. When a fixpoint is reached, this is generally
not the least fixpoint. A descending iteration with narrowing may be used to
improve the result. During a descending iteration, the narrowing only improves
infinite bounds. For instance, if the result of the previous iteration is the interval
[−1,+∞] and the the result of the current iteration is [0, 10], then the narrowing
yields [−1, 10].

5. The parallelotope domains

Analyses using the abstract domain of intervals are generally very inaccurate,
due to the limited expressive power of the abstract objects, but in contrast they
are very fast. Our proposal is to use boxes as abstract objects, but interpreted
in a different coordinate system, in order to fit the original data with a higher

11

precision than with standard boxes. Every choice of a matrix A ∈ GL(n) gives
a new coordinate system in Rn, and boxes with respect to this transformed
coordinates are called parallelotopes. Remark that we are not restricting to
orthogonal changes of basis: this means that we consider any invertible linear
transformation, such as rotation, reflection, stretching, compression, shear or
any combination of these.

Example 1. Consider the set X = {(u,−u) | u ≥ 0} ⊆ R2 corresponding to the
invariant x+y = 0, x−y ≥ 0 of the program in Figure 1. If we directly abstract
X in the interval domain, we get αInt(X) = 〈(0,−∞), (+∞, 0)〉 = R+×R−, with
a sensible loss of precision. Let us consider a clockwise rotation of 45 degrees,
centered on the origin, of the standard coordinate system. The matrix

A =

[
cos(−π4) sin(−π4)
− sin(−π4) cos(−π4)

]
=

[
1√
2
− 1√

2
1√
2

1√
2

]

transforms the standard coordinates into the rotated coordinates.
We want to abstract X with boxes on the rotated coordinate system. To

this aim, we first compute the rotated coordinates of the points in X, and then
compute the smallest enclosing box. Since the rotated coordinates are given by
A(x, y)T , we obtain:

αInt(AX) = αInt({Av | v ∈ X})

= αInt

({[
1√
2
− 1√

2
1√
2

1√
2

] [
u
−u

]
| u ∈ R+

})

= αInt

({[
u
√

2
0

]
| u ∈ R+

})
= 〈(0, 0), (+∞, 0)〉 .

The box 〈(0, 0), (+∞, 0)〉 computed above may be represented algebraically in
the standard coordinate system as

(0, 0) ≤ A(x, y)T ≤ (+∞, 0)

or, more explicitly, as {
0 ≤ x√

2
− y√

2
≤ +∞ ,

0 ≤ x√
2

+ y√
2
≤ 0 .

More in general, using the matrix A, we may represent all the parallelotopes of
the form {

m1 ≤ x√
2
− y√

2
≤M1 ,

m2 ≤ x√
2

+ y√
2
≤M2 ,

or, equivalently, {
m1 ≤ x− y ≤M1 ,

m2 ≤ x+ y ≤M2 .

12

Thus, we have transformed a non-relational analysis into a relational one,
where the form of the relationships is given by the matrix A. If we concretize
the box by applying γInt and using the matrix A to convert the result to the
standard coordinate system, we obtain A−1γIntαInt(AX) = X. Thus, we get
much better precision than using standard boxes. We stress out that we need
to choose A cleverly, on the base of the specific data set, otherwise we may lose
precision: for example, if X ′ = {(u, 0) | u ∈ R}, then γInt(αInt(X ′)) = X ′ but
A−1γIntαInt(AX ′) = R2.

It is worth noting that, if we prefer not to deal with irrational numbers, we
may choose the transformation matrix

A′ =
√

2 A =

[
1 1
−1 1

]
.

This corresponds to a 45-degree clockwise rotation followed by a
√

2 scaling in
all directions. �

5.1. Abstract domains of parallelotopes

We define the abstract domains of parallelotopes by using the same complete
lattice Int of the interval domain, but equipped with a different abstraction
function, and different abstract operators.

Definition 2 (The parallelotope domains). Given A ∈ GL(n), we define
the maps γA : Int→ ℘(Rn) and αA : ℘(Rn)→ Int as

γA(δ)
def
= A−1γInt(δ) ,

αA(X)
def
= αInt(AX) .

It is easy to check that it yields a Galois insertion (αA, γA) : ℘(Rn)
 Int.
Intuitively, the abstraction αA first projects the points into the new coordinate
system, then computes the standard box abstraction. The concretization map
γA performs the opposite process. Remark that, as a particular case, we have
αIn = αInt and γIn = γInt.

In the rest of this section we present the abstract operators for the paral-
lelotope domains. In most cases, they can be easily recovered from the corre-
sponding operators on the interval domain.

In the computational complexity of all the abstract operators, we always ig-
nore the cost for inverting A. If A is orthogonal, it may be considered constant
since A−1 = AT and we can perform transposition “on the fly” when needed.
If A is not orthogonal, the inverse can be computed with standard algorithms
whose complexity is between quadratic and cubic. However, A−1 needs to be
computed only once for the entire execution of the abstract interpretation pro-
cedure, hence its computational cost is much less relevant then the cost of the
abstract operators.

The issues regarding the correct implementation of these operators with
machine arithmetic will be considered in Section 5.6.

13

5.2. Lattice-theoretic operators

We denote by ∪A and ∩A the best correct approximation of concrete union
and intersection respectively.

Theorem 3 (Union and intersection). Given δ, δ′ ∈ Int, we have that:

δ ∪A δ′ = δ ∪Int δ′ , δ ∩A δ′ = δ ∩Int δ′ .

The computational complexity of both operators is O(n).

Proof. We recall that

δ ∪A δ′ def= αA(γA(δ) ∪ γA(δ′)) .

By replacing αA and γA with their definitions, A and A−1 cancel out and we
have that ∪A is the same as ∪Int. The same holds for intersection. �

Since parallelotopes use the same abstract domain as boxes with the same
ordering, we may also reuse the same widening/narrowing operators.

5.3. Linear assignment

We denote by assignA(i,a, b) the best correct approximation of the concrete
linear assignment assign(i,a, b). Since the concrete assignment is strict, we have
that assignA(i,a, b)(⊥) = ⊥. The same holds for the forget and test operators.
In the following we will provide explicit definition for the non-empty cases only.

Theorem 4 (Assignment). Given ⊥ 6= δ ∈ Int, we have that

assignA(i,a, b)(δ) = Hi,aδ +Abei ,

where
Hi,a

def
= In +Aei(aT − eiT)A−1 .

The computational complexity is O(n2).

Proof. Note that assign(i,a, b) may be rewritten as

assign(i,a, b)(x) = Zi,ax+ bei ,

where

Zi,a
def
= In − eiei

T
+ eiaT

= In + ei(aT − eiT) .

Accordingly, we may rewrite the abstract operator assignA(i,a, b) as:

αA(assign(i,a, b)(γA(δ))) = αInt(A assign(i,a, b)(A−1γInt(δ)))

= αInt(AZi,aA
−1γInt(δ) +Abei)

= αInt(Hi,aγ
Int(δ) +Abei) ,

(15)

14

where Hi,a
def
= AZi,aA

−1 = In +Aei(aT − eiT)A−1.
We need to remove αInt and γInt from the last line in (15), and prove that it

is equal to Hi,aδ+Abei. First of all, note that addition on boxes is α-complete.
Therefore, it is enough to prove that for any matrix B, αInt(BγInt(δ)) = Bδ. Let
δ′ = αInt(BγInt(δ)). We have to prove that for each j ∈ {1, . . . , n}, δ′j = Bj∗δ.

By definition of αInt, we get

δ′j = [inf Bj∗γ
Int(δ), supBj∗γ

Int(δ)] .

Note that γInt(δ) is the Cartesian product δ1 × · · · × δn, hence Bj∗γInt(δ) is
a linear combination of intervals. Thus, Bj∗γInt(δ) = Bj∗δ and this yields
δ′j = [inf Bj∗δ, supBj∗δ] = Bj∗δ.

It is easy to check that the computational complexity is O(n2 + t), where t

is the time required to compute Hi,a. We have that aT −eiT is O(n) and yields
a vector of n elements. The result is multiplied by A−1, which requires O(n2)
operations and yields a row matrix of length n. The product Aei simply selects
the i-th column of A, hence requires at most O(n) copy operations. Finally,

the product of the column Aei and the row (aT − eiT)A−1 requires O(n2)
operations. At the end, the time required to compute Hi,a is O(n2), which is
also the total computational complexity of assignA(i,a, b). �

Note that the matrix Hi,a may be computed only once for each program
point, although this does not change the theoretical complexity of the procedure.

5.4. Forget

We denote with forgetA(i) the best correct approximation of forget(i). Intu-
itively, the effect of an unbounded non-deterministic assignment to the variable
xi is that we lose information on every linear form containing xi.

Theorem 5 (Forget). Given ⊥ 6= δ ∈ Int, we have that

forgetA(i)(δ) = δ′ ,

where

δ′j =

{
δj if Aji = 0 ,

[−∞,+∞] otherwise .

The computational complexity is O(n).

Proof. Note that we may rewrite the concrete forget operator as

forget(i)(X) = {x+ yei | x ∈ X, y ∈ R}
= X + γInt([−∞,+∞]ei) .

(16)

Accordingly, we may rewrite the abstract forget operator as follows:

αA(forget(i)(γA(δ))) = αInt(A forget(i)(A−1γInt(δ)))

= αInt(γInt(δ) +AγInt([−∞,+∞]ei))

= δ +A([−∞,+∞]ei) ,

15

where the last step follows from α-completeness of addition. Note that δ′ =
A([−∞,+∞]ei) is an interval vector such that δ′j = 0 if Aji = 0, δ′j = [−∞,+∞]
otherwise. The result follows from the definition of interval sum. �

5.5. Test

We denote by testA(a, b, ./) the best correct approximation of test(a, b, ./).
In the following theorem we show that for the abstract test on parallelotopes
we may reuse the well known algorithm for abstract test on intervals.

Theorem 6 (Test). Given a ∈ Rn and b ∈ R, we have

testA(a, b, ./) = testInt(A−Ta, b, ./) ,

where A−T
def
= (A−1)T . The computational complexity is O(n2).

Proof. Given δ ∈ Int, we have that

αA(test(a, b, ./)(γA(δ))) = αInt(A test(a, b, ./)(A−1γInt(δ)))

= αInt(A(A−1γInt(δ) ∩ {x ∈ Rn | a · x ./ b}))
= αInt(γInt(δ) ∩ {Ax ∈ Rn | a · x ./ b})
= αInt(γInt(δ) ∩ {y ∈ Rn | a · (A−1y) ./ b})
= αInt(γInt(δ) ∩ {y ∈ Rn | ((A−T)a) · y ./ b})
= αInt(test(A−Ta, b, ./)(γInt(δ)))

= testInt(A−Ta, b, ./)(δ) .

The complexity of the algorithm for computing testInt is O(n). Thus, the com-
plexity for computing testA(a, b, ./) is O(n2), since we need to add the cost for
computing A−Ta. �

Note that A−Ta might be computed only once (for each program point) in
the analysis, and then subsequent calls to testA(a, b, ./) would only cost O(n).

5.6. On the correct implementation of abstract operators

The previous operators on parallelotopes can be correctly implemented under
two assumptions:

1. the concrete operations on the target language (the language we want to
analyze) are free from rounding errors;

2. the analyzer is able to represent interval vectors and compute abstract
operators without rounding errors.

The first assumption means that, if the target language uses floating point arith-
metic, abstract operators should be changed accordingly. Miné (2004) shows
that a correct algorithm for real numbers may be easily adapted to floating
point numbers.

16

Operator Intervals Parallelotopes
Octagons

w/o closure with closure

∩ n n n2 n2

∪ n n n2 n3

forget n n n n
assign n n2 n n2

test n n2 (n) n2 [1] n3 [n2]
widening n n n2 n3

narrowing n n n2 n3

Figure 6: Theoretical costs for the basic operators, where n is the number of variables. The
value in parenthesis (n) is the cost for subsequent calls, after the first one. The values in square
brackets [1] and [n2] are the costs for the exact variant, which only works when conditions
are of the kind ±xi ± xj ≤ c or ±xi ≤ c.

Regarding the second assumption, the simplest way to ensure that the ana-
lyzer performs exact computations is using multi-precision rational arithmetic.
However, this has a deep impact on performance. Note that, if we were able to
compute the exact floating point representation of A−1, we could work entirely
with floating point numbers by cleverly choosing the IEEE rounding mode. In
the general case, A−1 is not representable exactly in floating point arithmetic
and, in any case, the algorithm used for inverting the matrix also introduces
rounding errors. We may overcome this problem by computing an interval
inverse (Rohn, 2010) of A, i.e., a floating point interval matrix ∆ such that
A−1 ∈ ∆. Simple adaptations of the above algorithms make it possible to use
∆ instead of A−1 and get correct results.

5.7. Comparing the parallelotope domain

Figure 6 summarizes and compares the costs of the abstract operators on
parallelotopes with the costs of the corresponding operators on the interval and
octagon domains. The cost of the test operator on parallelotopes n2 (n) means
that the first call to the test operator is n2, while subsequent calls cost only n
when memoization is used to improve performance.

Comparing parallelotopes with octagons is difficult since some operators in
the octagon domain require the constraints to be in closed form, and some
operators produce a result which is not in closed form. The cost for computing
the closed form is at most O(n3) for the real and rational cases, but in some
cases (after specific operators) an incremental algorithm may be used which
only requires O(n2). Therefore, we have two columns for octagons: the first one
shows the cost of the operators without closures, assuming the input argument is
closed when needed. The second one shows the cost enforcing closures after each
operator. The real cost of the analysis with octagons is in-between, since some
closures may be avoided, depending on the order of execution of the abstract
operators.

Several different implementations are known for octagon operators, which
differ in precision and speed. Here, we provide the costs for the rel case, which

17

works for interval linear forms, i.e., linear forms whose coefficients are not con-
stants but intervals. Our algorithms may also be adapted to work with interval
linear forms without increasing the theoretical computational cost (see Sec-
tion 7.4). Only for the test operators, we show in square brackets [1] and [n2]
the costs for the exact variant, which only works when conditions are of the
kind ±xi ± xj ≤ c and ±xi ≤ c. In this comparison we do not consider the
cost of the polyhedral implementation, which is exponential and rarely (if ever)
used.

The comparison shows that the parallelotope domain is more costly than the
interval domain, but not too much. If we compare it with octagons without clo-
sure, some operators are faster with octagons, other with parallelotopes. How-
ever, when considering closures, parallelotopes are definitely faster. Finally, we
think that parallelotopes may be implemented faster than octagons, especially
considering that parallelotope operators are mostly linear algebra operations
which are widely studied and for which highly optimized implementations are
available.

With respect to the precision of basic operators, all our abstract operators
are the best correct approximations of the concrete ones. This also holds for
the interval domain but not for the octagon domain.

From the point of view of domain precision, it is immediate to see that, in
most cases, parallelotopes are incomparable to both intervals and octagons. If
the change of basis matrix is badly chosen, the analysis may be much less precise
than interval analysis. On the other side, parallelotopes may encode constraints
which neither interval nor octagons may represent. The choice of the change of
basis matrix is therefore crucial to reach a good precision, and this will be the
topic of the next section.

6. A statistical tool to choose suitable parallelotopes

The aim of this section is to propose a method to choose the best parallelo-
tope domain for a given program. This amounts to choosing a particular matrix
A ∈ GL(n).

If we look at partial traces as random variables describing the concrete se-
mantics, we may use multivariate analysis to better understand the correlations
in the data. A standard statistical technique consists in finding a suitable linear
transformation such that the transformed variables (called components) are or-
dered by decreasing “importance”. The criteria of importance that statisticians
adopt vary according to the problem. The first approach, from an historical
point of view, was to look for components that have the largest variance and
are uncorrelated (Pearson, 1901). The two conditions ensure that the loss of in-
formation is minimized when the last components are discarded, and that each
component can be analyzed separately. The outcome of this approach is what
is nowadays called principal component analysis (PCA).

Other transformations of the original variables focus on different criteria of
importance, at the expense of optimality. In particular, starting from Hausman

18

−10 −5 0 5 10

−1
0

−5
0

5
10

Figure 7: Points randomly chosen from a bivariate normal distribution and the corresponding
principal components.

(1982), the focus moved to having integer or rational coefficients in the compo-
nents, preserving as much variance and as little correlation as possible. A very
nice description of the motivations of this choice can be found in Rousson and
Gasser (2004, Introduction). Any technique aiming at having integer or rational
coefficients is called simple component analysis (SCA).

In the next section we explain how to find the principal components, and
we show that using PCA to describe partial traces of programs looks promising
(Example 8), but it suffers from a serious problem of instability (Example 10).
In Section 6.2 we describe a particular simple component analysis, called OSCA,
which in turn solves the instability problem (Example 12).

6.1. PCA

Consider an m × n real matrix D containing a dataset: each row is a rep-
etition of an experiment and columns are the attributes. Given any 1-length
vector v ∈ Rn, the vector of the orthogonal projections of the dataset D onto
the line specified by v is Dv. The aim of PCA is to find a new basis of 1-length
vectors v1, . . . ,vn ∈ Rn, such that:

1. the variance of Dvi is maximal on the subspace generated by vi, . . . ,vn;

2. the correlation between Dvi and Dvj is 0 when i 6= j.

Consider, for instance, the dataset whose points are depicted in Figure 7.
The points roughly resemble an ellipse, and the first principal component v1 is
oriented in the direction of the main axis of the ellipse. The second principal
component, which must be orthogonal to the first one, lies on the secondary
axis of the ellipse.

It can be proven that conditions 1 and 2 are satisfied by an orthogonal ba-
sis v1, . . . ,vn of eigenvectors of the n× n covariance matrix cov(D), chosen in
decreasing order of eigenvalue. Recall that the element ci,j in the covariance
matrix cov(D) is the covariance between the i-th and j-th columns of D. Since

19

cov(D) is a symmetric matrix, the basis always exists. Geometrically, condi-
tion 2 means that the vectors vi and vj must be orthogonal. With respect to
condition 1, note that maximizing the projection of the variance along a line is
equivalent to minimize the squared distance of the data points from the same
line. According to Section 5, we denote by A the matrix (v1| . . . |vn)−1, trans-
forming standard coordinates to new coordinates. Note that A is an orthogonal
n× n matrix, that is, A−1 = AT .

From the point of view of implementation, principal components might be
computed with several techniques, for instance using singular value decomposi-
tion.

Example 7. Consider a dataset D with two attributes representing height (in
centimeters) and weight (in kilograms) of 8 eleven year old girls (The Open
University, 1983):

D
def
=

135 26
153 55
154 50
139 32
131 25
149 44
137 31
143 36

.

The covariance matrix results in the symmetric matrix

Cov(D) =

[
73.6964 93.4464
93.4464 123.982

]
.

A calculation gives the eigenvectors v1 = (0.608350, 0.793669) and v2 =
(−0.793669, 0.608350), so that the transformation from the standard to the new
coordinate system is given by the matrix

A
def
=

[
0.608350 0.793669
−0.793669 0.608350

]
.

Figure 8 shows the eight points in the standard and in the rotated coordinates.
The principal component v1 being (0.608350, 0.793669) means that, to a

first approximation, an increase of 1 centimeter in height corresponds to an
increase of a little less than 1 kilogram in weight. The vector v2 is what is
called a contrast factor. Although height and weight are positively correlated,
some girls are thinner than others: this difference in the body constitution is
represented by the second principal component. �

6.1.1. PCA for static analysis

Example 1 at page 12 can now be explained in terms of PCA.

20

height
130 140 150 160

width

20

30

40

50

•

•
•

•
•

•

•
•

•
•

••• •• •

PC1
90 100 110 120 130 140

PC2

-100

-90

-80

Figure 8: Points in the girl dataset depicted with standard coordinates (on the left) and
rotated coordinates (on the right).

Example 8. Consider the partial execution trace in Figure 2 at page 4 as a
data matrix D. The principal components of D are (1√

2
,− 1√

2
) and (1√

2
, 1√

2
),

corresponding to the change of basis matrix

A =

[
1√
2

1√
2

− 1√
2

1√
2

]−1
=

[
1√
2

− 1√
2

1√
2

1√
2

]

given in Example 1. �

Note that, for the purposes of static analysis, the most important compo-
nents are not the ones with maximum variance, but the ones with minimum
variance. In the optimal case, when the variance along v is 0, it is very likely
that v1x1 + · · ·+ vnxn = c is an invariant of our program (where x1, . . . , xn are
the program variables).

Example 9. Consider the partial execution trace in Figure 2. We have seen
that using the matrix A given in Example 8 with the parallelotope domains, we
are able to represent the invariants x + y = 0 and x − y ≥ 0 of the program
in Figure 1. However, we may replace the first line of the matrix A with other
vectors without loosing accuracy. For example, if we replace the first line of
A with (1, 0), we may represent the invariants x ≥ 0 and x + y = 0, which
subsume x− y ≥ 0. However, as soon as we try to replace the second line of A,
corresponding to the second principal component, the invariant x+ y = 0 is no
more representable.

Unfortunately, PCA suffers from a serious problem of stability when used in
static analysis: small changes in the data cause small changes in the principal
components, but these small changes may cause a big loss in precision. This
depends on the interaction between the PCA and the parallelotope abstraction
function: If X is an unbounded set of points (in Rn), the bounds (in R̄) of
the minimum enclosing box of X are not continuous with respect to A, as the
following example shows.

21

Figure 9: Bad precision with PCA

Example 10. Consider a small perturbation Aθ of A given by

Aθ
def
=

√ 1
2 −

√
1
2√

1
2

√
1
2

[cos θ − sin θ
sin θ cos θ

]

=

√ 1
2 (cos θ − sin θ) −

√
1
2 (cos θ + sin θ)√

1
2 (cos θ + sin θ)

√
1
2 (cos θ − sin θ)

 ,

mapping standard coordinates to coordinates with respect to axes rotated clock-
wise by 45 + θ degrees.

Following Example 1, if we abstract the set X (corresponding to the invariant
x+ y = 0, x− y ≥ 0) in the parallelotope domain associated to Aθ, we get:

αAθ (X)

= αInt(AθX) = αInt({Aθv | v ∈ X})

= αInt

√ 1

2 (cos θ − sin θ) −
√

1
2 (cos θ + sin θ)√

1
2 (cos θ + sin θ)

√
1
2 (cos θ − sin θ)

[u
−u

]
| u ∈ R+

= αInt

({[√
2u cos θ√
2u sin θ

]
| u ∈ R+

})
= 〈(0, 0), (+∞,+∞)〉 ,

where in the last equivalence we have assumed θ > 0.
The concretization γAθ 〈(0, 0), (+∞,+∞)〉 is R+ × R+ (the shaded area in

Figure 9). This causes a serious loss of accuracy, for any θ > 0. �

In order to overcome the difficulties outlined in Section 6.1, we need to
stabilize the result of the PCA, so that it is less sensible to small changes in the
data. Our idea is that, in many cases, we expect that optimal parallelotopes
abstracting program states should contain only linear constraints with integer
coefficients. This is obvious for programs with integer variables only (such as
the program in Figure 1), or when we are interested in properties described by
integer values (such as bounds of arrays, division by 0, etc. . .). Therefore, we
would like to minimally transform the result of the PCA in such a way that A
is an integer matrix: thus, we enter the realm of simple component analysis.

22

6.2. OSCA

Principal components have many theoretical properties, but often statisti-
cians need to interpret them in the context of the data studied. Therefore, they
may prefer to replace principal components with other components which are in
some way simpler, and therefore easier to interpret. Simplicity means the ap-
pearance of some structure in the change of basis matrix, such as groupings of
variables, sparseness or integer coefficients. Among the many variants of simple
component analysis, we follow the approach of the orthogonal simple component
analysis (OSCA), introduced by Anaya-Izquierdo et al. (2011).

The authors define a simplification procedure which transforms the orthog-
onal matrix A given by the PCA into an integer matrix B, given a threshold
η. More in detail, the integer coefficients of B are chosen as small as possible,
subject to the conditions that columns are orthogonal and the angle between
the original columns of A and the corresponding columns of B is smaller than
η. Note that, in the general case, B is not an orthogonal matrix because its
columns are pairwise orthogonal but their length is not one.

The optimal solution of this problem would be too costly from a computa-
tional point of view, therefore Anaya-Izquierdo et al. (2011) propose a greedy
approach. One principal component v is chosen, an integer vector v′ with coef-
ficients as small as possible and with an angle lesser than η from v is computed
and then all the other principal components are projected onto the orthogonal
space of v′. Finally, the previous steps are repeated recursively on a matrix of
smaller dimension then the original one. The order in which principal compo-
nents are selected is important, since it can give different results.

Another important choice in applying the algorithm is η. Small values of
η imply big integer coefficients, while big values of η imply low accuracy. In
their original paper Anaya-Izquierdo et al. (2011) show that different values of
η give different results all potentially interesting, and propose a procedure which
efficiently computes all the different solutions which arise by changing η.

Example 11. Applying OSCA to Example 7, with a threshold η = π/8, re-
places v1 with (1, 1) and v2 with (−1, 1). The intuitive interpretation of the
principal components given in the original example is preserved, but now it is
more evident, while before it was obfuscated by the use of real numbers. �

6.2.1. OSCA for static analysis

Although our aim in simplifying the result of the PCA is different from statis-
ticians’ goals, we think that OSCA may be a good candidate for a simplification
procedure suited for static analysis. First of all, the result is an integer matrix,
and we have already discussed on the appropriateness of this choice. Moreover,
the fact that OSCA is biased towards small integers seems well suited for static
analysis: it is more likely that linear invariants have coefficients like 1 or 2 than
76484 or 29134. Actually, this is the reason why Octagon works quite well in
practice.

In order to apply OSCA, we need to choose a value for η and a selection
order for the principal components. By performing several experiments, it seems

23

that a value of π/8 works quite well in practice (but not always, see the karr76

example in the following section). Another possibility would be to perform
the analysis with different values of η, using the procedure devised in (Anaya-
Izquierdo et al., 2011) to select only the η which gives origin to different results.
In this paper, we have decided to work with a fixed η.

With respect to the ordering of principal components, it is important to
observe that, since in our case the last principal components are generally more
important than the first ones, we start the simplification from the last compo-
nent and proceed towards the first.

Example 12. Applying OSCA to the matrix Aθ in Example 10, with a per-
turbation θ = 0.1 and a threshold η = π/8, we get the integer matrix[

1 −1
1 1

]
.

The same holds for any θ between −π/8 and π/8. �

7. Optimizations and extensions

In this section we illustrate some improvements over the basic ideas presented
in the previous sections.

7.1. Coverage

The PCA matrix is computed on a subset of the variable values excerpted
from a finite set of partial execution traces. We use a very basic approach.
When analyzing programs without input variables, we simply run the program
until it terminates or a threshold on the number of execution steps is reached. In
the presence of input variables, the user may supply input values, to be used to
generate the partial traces. A possible optimization could be to apply specific
coverage techniques, such as dynamic generation of input values or symbolic
execution. The aim is to generate input values able to cover every path in the
program. For instance, in every if-statement, we wish to cover both branches
in the set of collected traces. To generate suitable input values, one may collect
linear constraints from test and loop guards, which are solved by using a stan-
dard constraint solver (see, e.g., Godefroid et al. (2005); Cadar et al. (2006);
Tillmann and de Halleux (2008)). We believe that all these methods may con-
siderably help in achieving a high code coverage, and may be used to improve
the precision of the overall analysis.

A different probabilistic technique recently proposed in Gulwani and Necula
(2003, 2005) may also be used. The aim is to collect information on all the
possible execution traces with a single execution trace, by performing a single
run through the program. The basic idea is to relax the semantics of branching
points (such as if-then-else) by combining the values of both paths. For instance,
one could take 40% of one path and 60% of the other. For any variable x
involved in the statement, if x1 and x2 are, respectively, the values computed

24

on the two paths, we use a combined value 0.4 ∗ x1 + 0.6 ∗ x2. By randomly
choosing the weights in each branch, the effect is to obtain a trace which involves
all the possible traces. The authors show that this strategy captures most of
the affine relationships among variables of the program. Of course, the traces
obtained may fail to be a real run of the program, but they may be very close.
Our approach may largely benefit from this technique, since we do not require
correctness in collecting execution traces, and we may as well accept traces
which are not a real run of the program.

7.2. Partitioning the set of variables according to usage pattern

The matrix computed by the PCA may combine variables which are not
logically related. For instance, when dealing with arrays, we can recognize
index variables, used to identify positions in arrays, and data variables, used to
temporary store data from arrays (to swap elements, to compute new elements,
etc.). We have experienced that not combining these variables in the PCA may
considerably enhance the overall precision of the analysis. This suggests, as
a possible improvement, that one could partition the set of variables in two
sets and apply the PCA separately on the two sets. The partitioning may be
determined statically before applying the PCA, by syntactically examining the
program source code. Initially, all the variables are in the index-variable sets
(and the data-variable set is empty). Whenever we found a variable assigned
to/from an array element, then we move that variable from the index-variable
set to the data-variable set. We do the same for guards involving array elements.

This idea may be refined by computing finer partitions, each one composed
of variables which interact during the execution of the program. This is what
Guo et al. (2006) call abstract types. Abstract types may be computed either
at run-time or at compile-time, with tools such as Ajax (O’Callahan, 2001) and
Lackwit (O’Callahan and Jackson, 1997).

In addition, we may partition the program code (for example around loops),
perform a different PCA on each partition, and change the abstract domain ap-
propriately when crossing partitions. In the extreme, we could choose different
parameters for each program point, like Sankaranarayanan et al. (2005) do for
template polyhedra.

7.3. Packing

The optimization discussed in Section 7.2 is very similar to packing, used in
the ASTREÉ analyzer (Blanchet et al., 2003) with the octagon domain. The
main difference is that we produce partitions of the set of variables, while packs
generally have non-empty intersections. Moreover, while we use partitioning to
improve the precision and speed of the analysis, packing is used exclusively to
increase speed (and scalability), while reducing accuracy.

Note that standard packing may be used with the parallelotope domains,
and this may improve precision with respect to a non-packed analysis. This is
because when packing is used in Octagon, it reduces the number of linear forms
encoded in the domain. In the case of parallelotopes, however, non-disjoint

25

packs may increase the number of linear forms encoded. For example, when we
analyze a program with n variables without packing, the parallelotope domain
encodes n linear constraints. But if we use two packs of 2n/3 variables each,
then 4n/3 linear forms may be possibly encoded.

7.4. Interval linear forms

Sometimes, a more general form of assignment is desired, where a is an
interval vector and b is an interval. This may be used to model non-determinism
(such as the input from an external sensor) or to handle non-linear expressions
by a preliminary linearization process (Miné, 2006). In this case, given a ∈ In
and b ∈ I, we define assign(i,a, b) : ℘(Rn)→ ℘(Rn) as follows:

assign(i,a, b)(X)
def
= {assign(i,a′, b′)(x) | x ∈ X,a′ ∈ Rn, b′ ∈ R,

a ≤ a′ ≤ a, b ≤ b′ ≤ b} .
(17)

The abstract operators in the interval and parallelotope domains are essen-
tially the same as in the standard case, provided that a is now an interval vector,
b is an interval and Hi,a is an interval matrix.

7.5. The case of integer variables

Although we have presented our domain as an abstraction of ℘(Rn), we may
apply the same construction to build an abstraction of ℘(Zn), in order to analyze
programs with integer variables. In this case, whenever A is an integer matrix,
we may perform almost all the computations on integers. In fact, observe that
A−1 is an integer matrix divided by an integer number d ∈ Z. Since all the
operations involved in assignA are linear, d may be factored out and applied
at the end of the computation only, before rounding the intervals to integer
bounds.

Let IntZ be the set of boxes with integers (and infinite) bounds. We define

a concretization map γIntZ : Int→ ℘(Zn) by γIntZ (δ)
def
= γInt(δ)∩Zn. Analogously,

for a given change of basis matrix A, we define γAZ : Int → ℘(Zn) by γAZ (δ)
def
=

γA(δ)∩Zn. Since γIntZ and γAZ are co-continuous, the corresponding αInt
Z and αAZ

can be defined.
The first problem is that, while 〈αInt

Z , γIntZ 〉 is a Galois insertion, 〈αAZ , γAZ 〉 is
only a Galois connection, since there are different integer boxes which contain
exactly the same set of integer points.

Example 13. The set of equations {x− y = 0, x+ y = 1} have no integer solu-

tions. This means that, given the matrix A =

[
1 −1
1 1

]
, the box 〈(0, 1), (0, 1)〉

has an empty concretization, just as the empty box ⊥. �

In other domains, such as Octagon (Miné, 2006), it is common to normalize
the abstract objects in such a way that all the inequalities it encodes are satu-
rated. In our case the normalization process seems to be costly. Therefore, we

26

start1 = function()

{

x=10

y=x

}

start2 = function(x)

{

y=10

x=y

}

Figure 10: Example programs

prefer to work with non-normalized objects, even if we may incur in some loss
of precision.

We show now that, if A is an integer matrix, all abstract operators in the
parallelotope domains may be performed with integer arithmetic. The cases
of union, intersection and forget operators are trivial. For the assignment, the
problem is that we need to compute the matrix Hi,a = A−1Zi,aA, and A−1 may
be non-integer, even if A is.

This seems to require the use of rational or floating point arithmetic. How-
ever, A−1 detA = A∗, where A∗ is the adjoint of A and is an integer matrix.
Therefore, given H∗i,a = A∗Zi,aA, we may compute H∗i,aδ + det(A)Abei with
integer interval arithmetic, and divide by det(A) at the end. Non-integer num-
bers may be replaced by their upper integral parts (for lower bounds) or lower
integral parts (for upper bounds).

For the test operator, we know that testA(a, b, ./) = testInt(A−Ta, b, ./).
However, it is equivalent to testInt((A∗)Ta, bdetA, ./) which only requires inte-
ger numbers.

Note that other optimizations are possible for integer numbers, not related
to the fact that A is integer. For example, test(a, b, <) may be replaced with
test(a, b− 1,≤) which gives better precision.

7.6. Combination with range analysis

Using the parallelotope domains, we have occasionally experienced some
problems in the bootstrap phase of the analysis. Consider the sample program
start1 in Figure 10. If we perform the analysis with the interval domain, we
may easily infer that, at the end of the function, both variables x and y assume
the value 10. However, using the parallelotope domain with the axes rotated
clockwise by 45 degrees, the analysis starts with the abstract state which covers
the whole of R2. The assignment x = 10 has no effect: since there are no bounds
on the possible values for y, then nothing may be said about x + y and x − y,
even if we know the value of x. Therefore, after the second assignment, we only
know that x − y = 0, losing precision with respect to range analysis, although
x = y = 10 may be expressed in the rotated domain as x+ y = 20, x− y = 0.

The problem arises from the fact that assignments are naturally biased to-
wards the standard axes, since the left hand side is always a variable. At the
beginning of the analysis, when the abstract state does not contain any con-
straint, all constant assignments are lost, and this is generally unfavorable to
the precision of the analysis.

27

It is possible to overcome this problem by initializing all the local variables
to zero, as done in many programming languages, or by using the simultaneous
assignment operator. Unfortunately, these methods do not always solve all
the problems, due to the presence of input parameters. Consider the program
start2 in Figure 10. In this case, we assume that y = 0 at the beginning of the
function, but we cannot assume that x = 0, since this is a parameter. However,
our parallelotopes (the 45-degree clockwise rotated boxes) cannot express the
fact that y = 0. Hence the abstract state at the beginning of the function is the
full space R2, and the result at the end of the function is again x− y = 0. From
the point of view of precision, an optimal solution to this kind of problem would
be to use the reduced product of the interval domain and parallelotope domains.
However, this may severely degrade performance. A good trade-off could be to
perform both analyses in parallel: at the end of each abstract operator, we use
the information from one domain to refine the other, and vice versa. Given a
box and a parallelotope, a satisfactory and computationally affordable solution
is to compute the smallest parallelotope which contains the box, and then the
intersection between the two parallelotopes. The symmetric process can be used
to refine the box. We have adopted this solution in our analyzer (see Feret (2004,
2005) for a similar approach).

7.7. Fixing constraints a priori

A limitation of the parallelotope domains is that the number of different
linear forms simultaneously handled is limited to n, where n is the number of
variables. When the change of basis matrix is computed automatically by the
statistical tools, it is possible that the chosen linear forms are not very useful
for the intended application.

For example, consider the following program1, where • stands for non-
deterministic test.

x = 0

y = 0

while (•) {

y = y+1

if (•)

x = 2*y

else

x = -2*y

}

If we collect the program trace at the entry point of the while loop, we get a
sequence where y increases and x jumps between −2y and 2y. The first principal
component will be very close to the y-axis, which is in the middle between the
lines x = 2y and x = −2y. The second component is then forced to be the x-
axis. Thus, the parallelotope domain turns out to be equivalent to the interval
domain, and the analysis cannot prove the invariant −2y ≤ x ≤ 2y. However,

1This program has been suggested by one of the referees.

28

if we manually feed the parallelotope domain with the change of basis matrix

A =

[
1 2
1 −2

]
, we are able to represent constraints on the linear forms x + 2y

and x− 2y, and to prove the above invariant.
As a further example, if the analysis aims to check the absence of divisions by

zero, it is generally better to include in the change of basis matrix all the linear
forms which appear as divisors in the program. Obviously, this is only possible
if these linear forms are linearly independent, otherwise the matrix would be
singular. When there are fewer linear forms than variables, the problem is how
to choose the remaining linear forms.

A possible way to proceed is to collect partial traces as in the standard
approach, project these traces onto the space orthogonal to the chosen linear
forms, and process the result with OSCA or other statistical tools. In this way,
we obtain other linear forms which are by construction linearly independent
of the chosen ones, and luckily the best choice for generating and propagating
invariants.

8. Experimental evaluation

We have implemented a prototype for the intra-procedural analysis of a sim-
ple imperative language, to investigate the feasibility of the ideas introduced
above (Amato et al., 2010b). The prototype has been written in R, a language
and environment for statistical computing (R Development Core Team, 2009).
We analyze programs written in an imperative fragment of the R language,
which includes assignments, conditionals and loops. The analyzer instruments
the program under analysis to record the values of the variables at every pro-
gram point, recovers the partial execution traces starting from the input values
(provided by the user), computes the orthogonal simple components, and finally
performs the static analysis. The analysis may be performed with either the in-
terval domain, the parallelotope domains, or with their combination. Program
equations are solved with a recursive chaotic iteration strategy on the weak topo-
logical ordering induced by the program structure (see Bourdoncle (1993)). The
analyzer uses the standard widening (Cousot and Cousot, 1976) which extrap-
olates unstable bounds to infinity and the standard narrowing which improves
infinite bounds only. Correctness of abstract operators is ensured using rational
arithmetic.

The main drawback of R, at least for our application, is speed. For a pro-
totype, this was deemed less important than fast coding. However, this means
that we cannot compare the effective speed of the parallelotope domains with
the speed of octagons or polyhedra, because all the standard implementations
of the latter domains, in libraries such as APRON (Jeannet and Miné, 2009) or
PPL (Bagnara et al., 2008), are in C or C++.

Although an exhaustive comparison of the speed and precision of the do-
mains of parallelotopes with other domains is outside the scope of this paper,
we present here some preliminary results. We have tested the analyzer with
some simple programs collected from the literature. In Figure 13 we show the

29

cousot78 = function()

{

i = 2

j = 0

while (TRUE) {

if (i*i==4)

i = i+4

else {

j = j+1

i = i+2

} } }

Figure 11: An instance of an example
in Cousot and Halbwachs (1978)

karr76 = function(k)

{

i = 2

j = k+5

while (TRUE) {

i = i+1

j = j+3

}

}

Figure 12: An example program in
Karr (1976)

results for the following programs: xyline – the example program in Figure 1;
cousot78 – the program in Figure 11, which is an instance of a skeletal pro-
gram in Cousot and Halbwachs (1978); karr76 – the program in Figure 12,
which appeared in Karr (1976); bsearch – binary search over 100-element ar-
rays, as appeared in Cousot and Cousot (1976); bsort – bubblesort over 100-
element arrays, which is the first example program in Cousot and Halbwachs
(1978); heapsort – which implements a standard heapsort algorithm and merge

– merge of two ordered arrays. All programs have at least one loop. For each
program, we show the abstract state inferred by the analyzer at the beginning
of the loop. Since bsort and heapsort have two nested loops, we only show the
abstract state for the outer one. For the program merge we show the abstract
state only for the first of its loops.

For the parallelotope and combined domains, we have used a change of
basis matrix determined by the orthogonal simple component analysis with an
accuracy threshold of π

8 . The only exception is karr76, where we have used
an accuracy of π

32 , since OSCA could not find a good matrix using π
8 . In the

examples marked with ∗ we have partitioned the set of variables, according to
Section 7.2.

When comparing intervals and parallelotopes, we find that the results in the
parallelotope domain are more precise for xyline, the results in the interval
domain are more precise for karr76 and bsort, while, in all the other cases,
they are incomparable.

The combined domain is obviously more precise than both intervals and
parallelotopes and it can also improve over the results obtained by the two
separate analyses, as in bsort∗, where the combined domain is able to prove
that all accesses to arrays are correct, and in karr76, where we find the loop
invariant 3i− j + k = 1.

In order to compare the result of the combined domain to the Octagon do-
main (Miné, 2006), we have used the Interproc analyzer (Jeannet, 2004; Jeannet
and Miné, 2009) with standard parameters. This has required converting the

30

p
r
o
g
r
a
m

In
t
e
r
v
a
ls

P
a
r
a
ll
e
lo

t
o
p
e
s

c
o
m

b
in

e
d

O
c
t
a
g
o
n

x
y
l
i
n
e

(0
≤
x
)

(y
≤

0
)

−
x
+
y
≤

0
x
+
y
=

0

a
s
p
to

p
e

a
s
p
to

p
e

c
o
u
s
o
t
7
8

2
≤
i

0
≤
j

(2
≤
i
+
j
)

(2
≤
i)

(−
i
+
j
≤
−
2
)

4
≤

2
i
+
j

−
i
+

2
j
≤
−
2

2
≤
i

0
≤
j

(2
≤
i
+
j
)

(−
i
+
j
≤
−
2
)

4
≤

2
i
+
j

−
i
+

2
j
≤
−
2

2
≤
i

0
≤
j

2
≤
i
+
j

−
i
+
j
≤
−
2

(4
≤

2
i
+
j
)

k
a
r
r
7
6

(η
=
π
/
3
2
)

2
≤
i

2
≤
i

(5
≤
j
−
k
)

3
i
−

j
+

k
=

1

2
≤
i

5
≤
j
−
k

b
s
e
a
r
c
h

1
≤

lw
b
≤

1
0
0

1
≤

u
p
b
≤

1
0
0

0
≤
m
≤

1
0
0

(−
9
9
≤

u
p
b
−

lw
b
≤

9
9
)

(−
1
0
0
≤

m
−

lw
b
≤

9
9
)

0
≤

u
p
b
−

lw
b

a
s
in
t+

p
to

p
e

1
≤

lw
b
≤

1
0
0

1
≤

u
p
b
≤

1
0
0

0
≤
m
≤

1
0
0

0
≤

u
p
b
−

lw
b
≤

9
9

−
9
9
≤

m
−

lw
b
≤

9
9

b
s
e
a
r
c
h
*

1
≤

lw
b
≤

1
0
0

1
≤

u
p
b
≤

1
0
0

0
≤
m
≤

1
0
0

(−
9
9
≤

u
p
b
−

lw
b
≤

9
9
)

(−
1
0
0
≤

m
−

lw
b
≤

9
9
)

(−
2
0
0
≤
−
lw

b
−

u
p
b
+

2
m
≤

1
9
8
)

0
≤

u
p
b
−

lw
b
≤

9
9

(−
1
0
1
/
2
≤
m
−

lw
b
≤

2
9
9
/
4
)

−
1
0
1
≤
−
u
p
b
−
lw
b
+

2
m
≤

1
0
1
/
2

a
s
in
t
+

p
to

p
e

1
≤

lw
b
≤

1
0
0

1
≤

u
p
b
≤

1
0
0

0
≤
m
≤

1
0
0

0
≤

u
p
b
−

lw
b
≤

9
9

−
9
9
≤

m
−

lw
b
≤

9
9

(−
1
9
9
≤
−
u
p
b
−
lw
b
+

2
m
≤

1
9
8
)

b
s
o
r
t

1
≤
b

0
≤
j,
t

(0
≤
j
+
t)

1
≤
b

a
s
in
t
+

p
to

p
e

1
≤
b

0
≤
j,
t

0
≤
j
+
t

0
≤

b
−

t
≤

1
0
0

b
−

j
≤

1
0
0

0
≤

j
−

t

b
s
o
r
t
*

a
s
a
b
o
v
e

a
s
a
b
o
v
e

1
≤
b
≤

1
0
0

0
≤
j
≤

1
0
0

0
≤
t
≤

9
9

0
≤
j
+
t
≤

1
9
9

0
≤
j
−
t
≤

1
0
0

(−
9
8
≤
b
−
t
≤

1
0
0
)

(−
9
9
≤
b
−
j
≤

1
0
0
)

1
≤
b

0
≤
j

0
≤
t

0
≤
j
+
t

0
≤
j
−
t

0
≤
b
−
t
≤

1
0
0

b
−
j
≤

1
0
0

h
e
a
p
s
o
r
t
*

2
≤
n
,
r

1
≤
l

−
n
+
r
≤

0
a
s
in
t
+

p
to

p
e

2
≤
n
,
r

1
≤
l

−
n
+
r
≤

0

m
e
r
g
e
*

1
≤
i,
j,
k
,
n
,
m

(3
≤
i
+
j
+
k
)

(1
≤
k
)

3
≤
i
+
j
+
k

−
i
−

j
+

k
=
−
1

a
s
in
t
+

p
to

p
e

1
≤
i,
j,
k
,
n
,
m

(3
≤
i
+
j
+
k
)

0
≤
−
i
+

k
,
−
j
+

k
,
−
j
+

m
,
−
i
+

n

F
ig

u
re

1
3
:

R
es

u
lt

s
o
f

th
e

a
n

a
ly

se
s

fo
r

se
v
er

a
l

p
ro

g
ra

m
s

a
n

d
d

o
m

a
in

s.
C

o
n

st
ra

in
ts

in
p

a
re

n
th

es
es

a
re

n
o
t

p
a
rt

o
f

th
e

re
su

lt
o
f

th
e

a
n

a
ly

se
s,

b
u

t
m

a
y

b
e

in
fe

rr
ed

fr
o
m

th
em

.

31

sample programs from the R syntax to the syntax supported by Interproc. In
Figure 13, the results for Octagon are simplified by removing constraints which
are implied by other constraints.

In the general case, the combined domain and Octagon are incomparable.
For instance, with cousot78, karr76, bsearch∗ and bsort∗, we obtain more
precise results with the combined domain, while for bsearch and bsort, Oc-
tagon is more precise (but the theoretical complexity of its operators is greater).
In particular, for cousot78 we were able to obtain the property −i + 2j ≤ −2
which cannot be represented in Octagon, and cannot be inferred by the cor-
responding results. It is worth noting that, for bsort∗, the analysis on the
combined domain gives more precise results than Octagon, even if it uses octag-
onal constraints only. This is due to the fact that some operators in Octagon
are not the best correct abstractions.

A practical comparison of speed between our implementation and Octagon is
not possible at the moment, since our implementation in R is definitively slower
than the APRON (Jeannet and Miné, 2009) library used in Interproc. However,
the theoretical costs in Figure 6 show that most parallelotope operators are
definitely faster than Octagon’s.

9. Related work

The approach we propose in this paper is to use parametric numerical ab-
stract domains, and determine the best parameters for a given program using
statistical analysis of partial traces.

The phase of statistical analysis may be considered as a way to dynami-
cally infer invariants, although it only determines the shape (that is, the linear
combination of variables) of the invariants and not the real bounds. The latter
are determined and guaranteed to be true by the static analysis phase. Sev-
eral works try to determine invariants dynamically. Among them we recall the
Daikon invariant generator (Ernst et al., 2001) and the approach based on ran-
dom interpretation (Gulwani and Necula, 2005). Daikon executes the program,
collects variable values at different program points, and checks the (likely) va-
lidity of a set of predefined invariants. The random interpretation approach
collects probabilistic execution traces, in order to directly derive linear rela-
tionships between program variables, which hold with a given probability. We
cannot immediately replace SCA with these tools: the parallelotope domains
need a basis for the vector space of variable values, while these approaches gen-
erate a set of linear combinations of variables which, in the general case, is
neither linear independent nor a generator.

The abstract domain of parallelotopes is a weakly relational abstract domain
such as octagons (Miné, 2006), weighted hexagons (Fulara et al., 2010), two
variables per inequality (Simon et al., 2003) and many others. From the point
of view of precision, it is incomparable with all the other weakly relational
abstract domains and even with the interval domain. In practice, the precision
of the analysis with parallelotopes strictly depends on the choice of the change
of basis matrix. Most of the time, parallelotope analysis should be performed

32

in lockstep with interval analysis to reach a good level of precision. From the
point of view of performance, parallelotopes are a bit slower than interval but
faster than other weakly relational abstract domains.

The idea of parameterizing analyses for a class of programs or for a single
program has been pursued in many papers. The analysis for digital filters pro-
posed in Feret (2004) is an example of domains developed for a specific class of
applications. The same holds for the domain of arithmetic-geometric progres-
sions (Feret, 2005), used to determine restrictions on the value of variables, as
a function of the program execution time.

Other domains have parameters which may be tuned for a given program: it
is the case for the domain of symbolic intervals (Sankaranarayanan et al., 2007),
which depends on a total ordering of variables, and most importantly, for the
domain of template polyhedra (Sankaranarayanan et al., 2005). In the latter,
the authors fix a priori, for each program point, a matrix A and consider all the
polyhedra of type Ax ≤ b. The choice of A is what differentiates template poly-
hedra from other domains, where the matrix either is fixed for all the programs
(such as intervals or octagons) or varies freely (such as polyhedra.) A limit of
the parallelotope domains is that the number of constraints it can represent is
bounded by n, and they must be linearly independent. This differs from poly-
hedral templates which allow an unlimited number of constraints. However, it
is this limitation which guarantees the existence of very fast basic operators,
without the need to resort to linear programming methods.

There are also parametrization strategies applicable to almost all numeric
domains. Many of them are discussed in Blanchet et al. (2003). For exam-
ple, the accuracy of widening operators can be enhanced through the adoption
of intermediate thresholds, recoverable from a simple syntactic analysis of the
program (e.g., maximum size of arrays and declared constants). Moreover, the
complexity of relational analyses can be reduced by using packing (see Sec-
tion 7.3). These strategies are orthogonal to our approach, and can be applied
to our domains as well.

In all the cases shown above, parameters are chosen after a syntactic in-
spection of the program, while in our case we perform a dynamic analysis of
the program’s behavior. To the best of our knowledge, the only work which
combines static and dynamic analysis is the paper of Gupta et al. (2009), whose
ideas have been implemented in InvGen (Gupta and Rybalchenko, 2009). In this
work, dynamic analysis is used to improve the efficiency of a constraint-based
invariant generator. Programs are executed in order to collect variable values
at different program points, just like in our approach. These values are used
to generate new linear constraints on the invariant’s parameters, which help to
reduce the search space of the constraint solver. Note that InvGen also gives
the opportunity to perform a symbolic execution of the program, instead of a
real execution.

Another paper which has strong similarity to ours is the work of Stursberg
and Krogh (2003) on approximating the reachable states for hybrid systems. In
order to represent concisely the set of points reachable by the system during a

33

time step ∆T , they use parallelotopes2, while PCA finds out a good orientation
for the axis. The idea is very similar to ours, but they do not provide any infor-
mation on the implementation of the abstract operators. Moreover, their work
is not directly applicable to static analysis of software since they only consider
bounded parallelotopes. This leads to ignore the problems which brought us to
choose SCA instead of PCA.

10. Conclusions and future work

We have presented a new technique for shaping numerical abstract domains
to single programs, by applying a “best” linear transformation to the space of
variable values. One of the main advantages of this technique is the ability
to transform non-relational analysis into relational ones, by choosing the ab-
stract domain which best fits for a single program. Moreover, this idea may
be immediately applied to any numerical abstract domain which is not closed
by linear transformations, such as octagons (Miné, 2006), bounded differences
(Miné, 2001), simple congruences (Granger, 1989). For the transformed domain,
it suffices to give specialized algorithms for the assignment and forget operators,
since the abstract operators for union, intersection and test are derived imme-
diately from the original operators.

We have built a prototype analyzer and, as an application, we have fully
developed our technique for the interval domain. The experimental evaluation
seems promising, but also shows that there is still space for many improvements,
most of which have been discussed in Section 7.

The use of linear transformations also suggests the combination of PCA with
different approaches. We may infer the axes in the new coordinate system from
both the semantics and the syntax of the program. The analysis could vastly
benefit from the ability to express constraints occurring in the linear expressions
of the program, especially in loop guards and array accesses. However, the syn-
tactic approach alone is not recommended, since not all the interesting invariants
appear as expressions in the source code. For example, the cousot78 program
in Figure 11 does not contain the expressions i+j, j-i or 2*j-i: nonetheless,
the analysis was able to prove invariants on these constraints (see Figure 13).
To overcome this limitation, we may use the probabilistic invariants found by
the analysis in Gulwani and Necula (2005) instead of using the syntax of the
program.

Writing the implementation in R has been useful for rapid prototyping, but
porting the code to a faster programming language, possibly within the frame-
work of well known libraries such as APRON (Jeannet and Miné, 2009) or PPL

(Bagnara et al., 2008), would make it available to a wider community, while
improving performance.

Finally, remark that we never use the fact that the axes obtained by OSCA
are orthogonal. This suggests that a different SCA might be used to obtain

2which they call oriented rectangular hulls.

34

the matrix A. In particular, one could use the SCA described in Rousson and
Gasser (2004), which is not related to PCA.

References

Amato, G., Parton, M., Scozzari, F., 2010a. Deriving numerical abstract do-
mains via principal component analysis. In: Cousot, R., Martel, M. (Eds.),
17th International Symposium, SAS 2010, Perpignan, France, September
14-16, 2010, Proceedings. Vol. 6337 of Lecture Notes in Computer Science.
Springer, Berlin Heidelberg, pp. 134–150.

Amato, G., Parton, M., Scozzari, F., 2010b. A tool which mines partial execu-
tion traces to improve static analysis. In: Barringer, H., et al. (Eds.), First
International Conference, RV 2010, St. Julians, Malta, November 1-4, 2010.
Proceedings. Vol. 6418 of Lecture Notes in Computer Science. Springer, Berlin
Heidelberg, pp. 475–479.

Anaya-Izquierdo, K., Critchley, F., Vines, K., March 2011. Orthogonal simple
component analysis: a new, exploratory approach. Annals of Applied Statis-
tics 5 (1), 486–522.

Bagnara, R., Hill, P. M., Zaffanella, E., 2008. The Parma Polyhedra Library:
Toward a complete set of numerical abstractions for the analysis and verifi-
cation of hardware and software systems. Science of Computer Programming
72 (1–2), 3–21.

Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monni-
aux, D., Rival, X., June 7–14 2003. A static analyzer for large safety-critical
software. In: Proceedings of the ACM SIGPLAN 2003 Conference on Pro-
gramming Language Design and Implementation (PLDI’03). ACM Press, San
Diego, California, USA, pp. 196–207.

Bouajjani, A., Maler, O. (Eds.), 2009. Computer Aided Verification, 21st Inter-
national Conference, CAV 2009, Grenoble, France, June 26 – July 2, 2009.
Proceedings. Vol. 5643 of Lecture Notes in Computer Science. Springer, Berlin
Heidelberg.

Bourdoncle, F., 1993. Efficient chaotic iteration strategies with widenings. In:
Bjørner, D., Broy, M., Pottosin, I. V. (Eds.), Formal Methods in Programming
and Their Applications, International Conference Academgorodok, Novosi-
birsk, Russia June 28 July 2, 1993 Proceedings. Vol. 735 of Lecture Notes in
Computer Science. Springer, Berlin Heidelberg, pp. 128–141.

Cadar, C., Ganesh, V., Pawlowski, P. M., Dill, D. L., Engler, D. R., 2006. Exe:
automatically generating inputs of death. In: Proceedings of the 13th ACM
conference on Computer and communications security. CCS ’06. ACM, New
York, NY, USA, pp. 322–335.

35

Chang, B.-Y. E., Rival, X., 2008. Relational inductive shape analysis. In: Prin-
ciples Of Programming Languages, POPL’08. Vol. 43(1) of SIGPLAN Not.
ACM, New York, NY, USA, pp. 247–260.

Colóon, M. A., Sipma, H. B., 2001. Synthesis of linear ranking functions. In:
Margaria, T., Yi, W. (Eds.), Tools and Algorithms for the Construction
and Analysis of Systems, 7th International Conference, TACAS 2001 Held
as Part of the Joint European Conferences on Theory and Practice of Soft-
ware, ETAPS 2001 Genova, Italy, April 2–6, 2001 Proceedings. Vol. 2031 of
Lecture Notes in Computer Science. Springer, Berlin Heidelberg, pp. 67–81.

Cousot, P., 1999. The calculational design of a generic abstract interpreter.
In: Broy, M., Steinbrüggen, R. (Eds.), Calculational System Design. NATO
Science Series F. IOS Press, Amsterdam, pp. 421–506.

Cousot, P., Cousot, R., 1976. Static determination of dynamic properties of
programs. In: Proceedings of the Second International Symposium on Pro-
gramming. Dunod, Paris, France, pp. 106–130.

Cousot, P., Cousot, R., Jan. 1979. Systematic design of program analysis frame-
works. In: POPL ’79: Proceedings of the 6th ACM SIGACT-SIGPLAN sym-
posium on Principles of programming languages. ACM Press, New York, NY,
USA, pp. 269–282.

Cousot, P., Cousot, R., Jul. 1992. Abstract interpretation and applications to
logic programs. The Journal of Logic Programming 13 (2–3), 103–179.

Cousot, P., Halbwachs, N., Jan. 1978. Automatic discovery of linear restraints
among variables of a program. In: POPL ’78: Proceedings of the 5th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages.
ACM Press, New York, NY, USA, pp. 84–97.

Dor, N., Rodeh, M., Sagiv, M., 2001. Cleanness checking of string manipula-
tions in C programs via integer analysis. In: Cousot, P. (Ed.), Static Analysis,
8th International Symposium, SAS 2001 Paris, France, July 16–18, 2001 Pro-
ceedings. Vol. 2126 of Lecture Notes in Computer Science. Springer, Berlin
Heidelberg, pp. 194–212.

Ernst, M. D., Cockrell, J., Griswold, W. G., Notkin, D., 2001. Dynamically
discovering likely program invariants to support program evolution. IEEE
Transactions on Software Engineering 27 (2), 99–123.

Feret, J., 2004. Static analysis of digital filters. In: Schmidt (2004), pp. 33–48.

Feret, J., 2005. The arithmetic-geometric progression abstract domain. In:
Cousot, R. (Ed.), Verification, Model Checking, and Abstract Interpretation
– 6th International Conference, VMCAI 2005, Paris, France, January 17-19,
2005. Proceedings. Vol. 3385 of Lecture Notes in Computer Science. Springer,
pp. 42–58.

36

Fulara, J., Durnoga, K., Jakubczyk, K., Schubert, A., October 2010. Relational
abstract domain of weighted hexagons. Electronic Notes in Theoretical Com-
puter Science 267, 59–72.
URL: http://dx.doi.org/10.1016/j.entcs.2010.09.006

Godefroid, P., Klarlund, N., Sen, K., 2005. Dart: directed automated random
testing. In: Proceedings of the 2005 ACM SIGPLAN conference on Program-
ming language design and implementation. PLDI ’05. ACM, New York, NY,
USA, pp. 213–223.

Granger, P., 1989. Static analysis of arithmetical congruences. International
Journal of Computer Mathematics 32.

Gulavani, B. S., Gulwani, S., 2008. A numerical abstract domain based on ex-
pression abstraction and max operator with application in timing analysis. In:
Gupta, A., Malik, S. (Eds.), Computer Aided Verification, 20th International
Conference, CAV 2008 Princeton, NJ, USA, July 7–14, 2008 Proceedings. Vol.
5123 of Lecture Notes in Computer Science. Springer, Berlin Heidelberg, pp.
370–384.

Gulwani, S., Necula, G. C., 2003. Discovering affine equalities using random
interpretation. In: Proceedings of the 30th ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages. POPL ’03. ACM, New York,
NY, USA, pp. 74–84.
URL: http://doi.acm.org/10.1145/604131.604138

Gulwani, S., Necula, G. C., 2005. Precise interprocedural analysis using ran-
dom interpretation. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. POPL ’05. ACM, New
York, NY, USA, pp. 324–337.
URL: http://doi.acm.org/10.1145/1040305.1040332

Guo, P. J., Perkins, J. H., McCamant, S., Ernst, M. D., 2006. Dynamic inference
of abstract types. In: Proceedings of the 2006 international symposium on
Software testing and analysis. ISSTA ’06. ACM, New York, NY, USA, pp.
255–265.
URL: http://doi.acm.org/10.1145/1146238.1146268

Gupta, A., Majumdar, R., Rybalchenko, A., 2009. From tests to proofs. In:
Kowalewski, S., Philippou, A. (Eds.), Tools and Algorithms for the Con-
struction and Analysis of Systems 15th International Conference, TACAS
2009, York, UK, March 22–29, 2009. Proceedings. Vol. 5505 of Lecture Notes
in Computer Science. Springer, Berlin Heidelberg, pp. 262–276.

Gupta, A., Rybalchenko, A., 2009. InvGen: An efficient invariant generator. In:
Bouajjani and Maler (2009), pp. 634–640.

Hausman, Jr., R. E., 1982. Constrained multivariate analysis. In: Optimization
in statistics. Vol. 19 of Stud. Management Sci. North-Holland, Amsterdam,
pp. 137–151.

37

Hickey, T. J., Ju, Q., van Emden, M. H., 2001. Interval arithmetic: From prin-
ciples to implementation. Journal of the ACM 48, 1038–1068.

Jeannet, B., 2004. Interproc Analyzer for Recursive Programs with Numerical
Variables. INRIA, software and documentation are available at the following
URL: http://pop-art.inrialpes.fr/interproc/interprocweb.cgi. Last
accessed: 2010-06-11.

Jeannet, B., Miné, A., 2009. APRON: A library of numerical abstract domains
for static analysis. In: Bouajjani and Maler (2009), pp. 661–667.

Karr, M., 1976. Affine relationships among variables of a program. Acta Infor-
matica 6, 133–151.

Kearfott, R. B., 1996. Interval computations: Introduction, uses, and resources.
Euromath Bulletin 2, 95–112.

Miné, A., 2001. A new numerical abstract domain based on difference-bound
matrices. In: Danvy, O., Filinski, A. (Eds.), Programs as Data Objects, Sec-
ond Symposium, PADO2001 Aarhus, Denmark, May 2123, 2001 Proceeding.
Vol. 2053 of Lecture Notes in Computer Science. Springer, Berlin Heidelberg,
pp. 155–172.

Miné, A., 2004. Relational abstract domains for the detection of floating-point
run-time errors. In: Schmidt (2004), pp. 3–17.

Miné, A., 2004. Weakly relational numerical abstract domains. Ph.D. thesis,
École Polytechnique.

Miné, A., Mar. 2006. The octagon abstract domain. Higher-Order and Symbolic
Computation 19 (1), 31–100.
URL: http://www.di.ens.fr/ mine/publi/article-mine-HOSC06.pdf

Miné, A., 2006. Symbolic methods to enhance the precision of numerical abstract
domains. In: Emerson, E. A., Namjoshi, K. S. (Eds.), Verification, Model
Checking, and Abstract Interpretation. 7th International Conference, VMCAI
2006, Charleston, SC, USA, January 8-10, 2006. Proceedings. Vol. 3855 of
Lecture Notes in Computer Science. Springer, Berlin Heidelberg, pp. 348–
363.

O’Callahan, R. W., 2001. Generalized aliasing as a basis for program analy-
sis tools. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA, USA,
aAI3051029.

O’Callahan, R. W., Jackson, D., 1997. Lackwit: a program understanding tool
based on type inference. In: Proceedings of the 19th international conference
on Software engineering. ICSE ’97. ACM, New York, NY, USA, pp. 338–348.
URL: http://doi.acm.org/10.1145/253228.253351

38

Pearson, K., 1901. On lines and planes of closest fit to systems of points in
space. Philosophical Magazine 2 (6), 559–572.
URL: http://stat.smmu.edu.cn/history/pearson1901.pdf

R Development Core Team, 2009. R: A Language and Environment for Statis-
tical Computing. R Foundation for Statistical Computing, Vienna, Austria.
URL: http://www.R-project.org

Rohn, J., Apr. 2010. Inverse interval matrix: A survey. Tech. Rep. V-1073,
Academy of Sciences of the Czech Republic.

Rousson, V., Gasser, T., 2004. Simple component analysis. J. Roy. Statist. Soc.
Ser. C 53 (4), 539–555.
URL: http://dx.doi.org/10.1111/j.1467-9876.2004.05359.x

Sankaranarayanan, S., Ivančić, F., Gupta, A., 2007. Program analysis using
symbolic ranges. In: Nielson, H. R., Filé, G. (Eds.), Static Analysis, 14th
International Symposium, SAS 2007, Kongens Lyngby, Denmark, August 22-
24, 2007. Vol. 4634 of Lecture Notes in Computer Science. Springer, Berlin
Heidelberg, pp. 366–383.

Sankaranarayanan, S., Sipma, H. B., Manna, Z., January 2005. Scalable analysis
of linear systems using mathematical programming. In: Cousot, R. (Ed.),
Verification, Model Checking, and Abstract Interpretation, 6th International
Conference, VMCAI 2005, Paris, France, January 17-19, 2005. Proceedings.
Vol. 3385 of Lecture Notes in Computer Science. Springer, Berlin Heidelberg,
pp. 25–41.

Schmidt, D. (Ed.), 2004. Programming Languages and Systems, 13th European
Symposium on Programming, ESOP 2004, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2004, Barcelona,
Spain, March 29 - April 2, 2004. Proceedings. Vol. 2986 of Lecture Notes in
Computer Science. Springer, Berlin Heidelberg.

Simon, A., King, A., Howe, J. M., 2003. Two variables per linear inequality as
an abstract domain. In: Leuschel, M. (Ed.), Logic Based Program Synthesis
and Transformation 12th International Workshop, LOPSTR 2002, Madrid,
Spain, September 17–20, 2002. Revised Selected Papers. Vol. 2664 of Lecture
Notes in Computer Science. Springer, Berlin Heidelberg, pp. 71–89.

Stursberg, O., Krogh, B. H., 2003. Efficient representation and computation of
reachable sets for hybrid systems. In: Maler, O., Pnueli, A. (Eds.), Hybrid
Systems: Computation and Control. 6th InternationalWorkshop, HSCC 2003
Prague, Czech Republic, April 3–5, 2003. Proceedings. Vol. 2623 of Lecture
Notes in Computer Science. Springer, Berlin Heidelberg, pp. 482–497.

The Open University, 1983. MDST242 Statistics in Society, Unit C3: Is my
child normal? The Open University, figure 3.12.

39

Tillmann, N., de Halleux, J., 2008. Pexwhite box test generation for .net. In:
Beckert, B., Hhnle, R. (Eds.), Tests and Proofs. Vol. 4966 of Lecture Notes
in Computer Science. Springer, pp. 134–153.

40

