
Modeling Web Applications by the Multiple

Levels of Integrity Policy

G. Amato1

Dipartimento di Scienze
Università degli Studi “G. d’Annunzio”, Italy

M. Coppola, S. Gnesi2

Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”
CNR Pisa, Italy

F. Scozzari, L. Semini3

Dipartimento di Informatica
Università di Pisa, Italy

Abstract

We propose a formal method to validate the reliability of a web application, by modeling interac-
tions among its constituent objects. Modeling exploits the recent “Multiple Levels of Integrity”
mechanism which allows objects with dynamically changing reliability to cooperate within the ap-
plication. The novelty of the method is the ability to describe systems where objects can modify
their own integrity level, and react to such changes in other objects. The model is formalized with
a process algebra, properties are expressed using the ACTL temporal logic, and can be verified by
means of a model checker. Any instance of the above model inherits both the established prop-
erties and the proof techniques. To substantiate our proposal we consider several case-studies of
web applications, showing how to express specific useful properties, and their validation schemata.
Examples range from on-line travel agencies, inverted Turing test to detect malicious web-bots, to
content cross-validation in peer to peer systems.

Keywords: Formal Methods, Model Checking, Process Algebra, Temporal Logic.

1 Email: amato@sci.unich.it
2 Email: {coppola,gnesi}@isti.cnr.it
3 Email: {scozzari,semini}@di.unipi.it

Electronic Notes in Theoretical Computer Science 157 (2006) 167–185

1571-0661/$ – see front matter © 2006 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.12.053

mailto:amato@sci.unich.it
http://www.elsevier.com/locate/entcs

1 Introduction

Formal methods are increasingly being used to validate the design of dis-
tributed systems and have already proved successful in specifying commercial
and safety-critical software and in verifying protocol standards and hardware
design [6,11]. It is increasingly accepted that the adoption of formal methods
in the life cycle development of systems would guarantee higher levels of de-
pendability and greatly increase the understanding of a system by revealing,
right from the earliest phases of the software development, inconsistencies,
ambiguities and incompletenesses, which could cause subsequent faults. In
particular model checking techniques [8,9] have emerged as successful formal
verification techniques. They have been defined to automatically check the
truth of system properties, expressed as temporal logic formulae, on the fi-
nite state model representing the behavior of a system. Model checkers can
easily be used by non–expert users too. For this reason model checking has of-
ten been preferred in industries to other verification tools, and many efficient
verification environments are currently available, based on model checking
algorithms [7,14,19].

In the last few years distributed applications over the WEB have gained
wider popularity. Several systems have led to an increasing demand of evolu-
tionary paradigms to design and control the development of applications over
the WEB. The main advantages of exploiting the WEB as underlying plat-
form can be summarized as follows. The WEB provides uniform mechanisms
to handle computing problems which involve a large number of heterogeneous
components that are physically distributed and (inter)operate autonomously.
Conceptually, WEB services are stand-alone components that reside over the
nodes of the network. Each WEB service has an interface which is network
accessible through standard network protocols and describes the interaction
capabilities of the service. Applications over the WEB are developed by com-
bining and integrating together WEB services. Web applications show the
same verification problems of classical distributed systems. We may hence
extend techniques and tool used for their verification also in the case of Web
applications.

The formalization framework that we propose in this paper is based on
some results presented in [17], where the formal validation of an interaction
policy between communicating objects was carried out. The policy is the
Multiple Levels of Integrity policy, defined in the context of the design of fault
tolerant systems to enhance systems dependability. The original definition of
the policy simply consists of a set of declarative rules: it can be operationally
realized defining a communication protocol. The protocol which carries out the
integrity policy is formally specified as a collection of interacting processes in

G. Amato et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 167–185168

a process algebra. We consider specific interaction patterns, which subsume
the most complex interaction schemata, and check on them temporal logic
formulae expressing the non-violation of integrity rules.

2 The Multiple Levels of Integrity policy

Integrity policies are defined in the field of fault tolerant systems. The design
of fault tolerant systems usually includes the modeling of faults and failures
or the definition of fault tolerant schemata. At the software architecture level,
a fault tolerant schema usually describes a set of components and their in-
teractions. A component that is part of a fault tolerant system is said to be
critical if its failure can seriously affect the reliability of the overall system.
Fault tolerant schemata, and in particular integrity policies, are defined to
prevent failure propagation from non critical to critical components. An in-
tegrity policy assigns a level of integrity, ranging over a finite set of natural
values, to each system component, and states the communication patterns.
Components that may be critical are assigned a high integrity level.

The Multiple Levels of Integrity policy has been defined within an object–
oriented framework, to provide flexible fault tolerant schemata. The policy
builds on Biba’s [4] and the Clark and Wilson’s [10] policies. Biba’s policy,
which is based on the Bell–LaPadula lattice model [2], forbids any flow of data
from a low to a high integrity level. The Clark-Wilson model defines a set of
fine grained rules, based on commercial data processing practices, to maintain
data integrity. Data can flow to a low level and go back, if it is possible to
prove that they did not lose their integrity.

The Multiple Levels of Integrity policy permits some objects to receive
low level data, by decreasing their integrity level. Being based on a set of
general interaction rules, it generalizes the Clark-Wilson policy, which exploits
procedures specific for each application domain. The policy is based on the
following concepts:

Integrity levels (il) range from 0, the lowest, to 3, the highest. Data are
assigned the integrity level of the object which produced them.

Single Level Objects (SLO) are objects whose integrity level does not
change during computations. Consequently, an SLO of level n is only allowed
to receive data from objects of level ≥ n.

Multiple Level Objects (MLO) are the core of the policy: their integrity
level can be dynamically modified, since they are allowed to receive low level
data. To this purpose, an MLO is assigned three values:

maxil which represents the maximum integrity level that the MLO can have.
It is also called the intrinsic level of the MLO, since it is assigned during

G. Amato et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 167–185 169

3

2

1

0

RR

AN

minil=1 minil=1

il=3

il=2 AN

RR
MLO MLO

Fig. 1. Behavior of an MLO: dotted arrows follow the MLO’s evolution, thick arrows bind requests
to the corresponding answers.

the design of the application. It is a static value.

minil which represents the minimum value the integrity level of the MLO can
reach while interacting with other objects. It is set at invocation time, on
the bases of the invocation level. No memory of it is kept after the answer
to the invocation is returned: minil is local to an invocation.

il which is the current integrity level. It is set at invocation time to a value
ranging between maxil and minil and decreases if lower level data are re-
ceived during the computation to serve the invocation. Also il is local to
each invocation.

The policy requires a new MLO instance to be created every time the MLO
is invoked. As a consequence, an MLO cannot be used to implement a com-
ponent which has to store some data. This means that an MLO, from a
functional point of view, is a stateless object: only SLOs can store data. In
Fig. 1, we provide an example of the evolution of an MLO in response to an
invocation: when an MLO with maxil = 3 receives a read request of level 1, it
sets its minil: no answer with integrity level smaller than 1 can be returned.
The value of il equals maxil: a read request does not corrupt the integrity
level of the MLO. Suppose the MLO needs to delegate part of the answer con-
struction, sending another read request to a third object. The level assigned
to the request equals minil: an answer to this request is accepted if greater
or equal to minil. Since the integrity level of the answer is 2, the MLO can
accept it but il is decreased to level 2. Finally, an answer to the first request
is provided, whose level equals the current il, and the MLO restores its initial
state.

The assignment of the maxil value to an object should be done accordingly
to the level of its trustiness. For instance, this value can be assigned by a
certification authority. In a more decoupled world, we can foresee a model in
which each application is designed in such a way that a component declares
its own maxil, which has to be accepted by the interacting parties.

G. Amato et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 167–185170

Conditions A&B SLOs A SLO, B MLO A MLO, B SLO A&B MLOs

A reads B il(A)≤ il(B) il(A)≤maxil(B) minil(A)≤ il(B) minil(A)≤maxil(B)

A writes B il(B)≤ il(A) always il(B)≤ il(A) always

A r-w B il(A)= il(B) il(A)≤maxil(B) minil(A)≤ il(B)≤ il(A) minil(A)≤maxil(B)

Effect A SLO, B MLO A&B MLOs

A reads B
minil(B) := il(A);

il(B) := maxil(B)

minil(B) := minil(A);

il(B) := maxil(B)

A writes B il(B) := min(il(A), maxil(B)) il(B) := min(il(A), maxil(B))

A r-w B minil(B), il(B) := il(A)
minil(B) := minil(A);

il(B) := min(il(A), maxil(B))

Table 1
Conditions to be satisfied for a method invocation to be accepted, and the effect on the level of

objects after acceptance.

Validation Objects (VO) are used to extract reliable data from low
level objects and to provide information at a fixed level of integrity. In real
systems, it is sometimes necessary to get data from unreliable sources, such as
sensors, and use them in critical tasks. However, this use could either lower
the level of the entire system or violate the integrity policy. Validation Objects
represent a safe way to upgrade the integrity level of these data. An example
of Validation Object is the one that uses a redundant number of data sources,
and filters them with appropriate algorithms. For instance, a voting policy
can be used. These policies are well known in the literature, in particular in
the distributed fault tolerant community. Among them, we recall the solutions
to the Byzantine Generals problem [20], where an agreement among multiple
nodes is sought in the presence of faults. To validate a voting algorithm we
can apply the results presented in [3].

A set of rules is given, describing all the possible communication patterns
among pairs of objects, depending on the respective integrity levels. We list
them in Table 1: we call A and B the invoking and the invoked objects,
respectively. The first part of the table considers invocation conditions. The
invocation is refused if the specified condition is not satisfied. If it is accepted,
the invoked object (if an MLO) might have to change its integrity level, as
shown in the second part of the table, where invocation effects are considered.
In the case of read or read–write invocation, an answer is returned at the end of
the method execution. If the invoking object was an MLO, then the returned
data may decrease its integrity level as follows: il(A) := min(il(A), il(B)).

The communication model is based on the notion of method invocation.

G. Amato et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 167–185 171

a : P Action prefix Action a is performed, and then process P is exe-
cuted. Action a is in Act

P + Q Nondeterministic choice Alternative choice between the behavior of process
P and that of process Q

P ‖ Q Parallel composition Interleaved executions of processes P and Q. The
two processes synchronize on complementary in-
put (?) and output (!) actions

P \ a Action restriction The action a can only be performed within a syn-
chronization

P = P ′ Process definition It includes recursion

Table 2
A fragment of CCS syntax

Method invocations are assigned an integrity level too. In particular, read,
write and read–write requests are considered as abstractions of any method,
with respect to the effect on the state of objects. The level of a write request
corresponds to the level of the data which are written, the level of a read
request corresponds to the minimum acceptable level of the data to be read.
Read–write requests are assigned two integrity levels, one for read and one for
write.

3 Formal Validation Methodology

The Multiple Levels of Integrity policy has been validated according to the
following steps. We follow the same methodology to validate the case studies.

– Formal specification of the mechanism using the CCS process algebra [21].
Process algebras are based on a simple syntax and are provided with a
rigorous semantics defined in terms of Labeled Transition Systems (LTSs).
Process algebras are well suited to describing interaction policies, since
a policy definition abstracts from the functionalities of the objects, and
the relevant events to be specified are the object invocations (the actions)
which may change the object integrity level (the state). In Table 2 we
present the subset of the CCS operators used in the following.

– Use of the ACTL temporal logic [13] to describe the desired properties. ACTL

is a branching-time temporal logic whose interpretation domains are LTSs.
It is the action based version of CTL [16] and is well suited to expressing
the properties of a system in terms of the actions it performs. We use a
fragment of ACTL, given by the following grammar, where φ denotes a state

G. Amato et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 167–185172

property:

φ ::= true
∣
∣ false

∣
∣ φ & φ′ ∣

∣ [μ]φ
∣
∣ AG φ

∣
∣ A[μUμ′] (1)

In the above rules μ is an action formula defined by:

μ ::= true
∣
∣ a

∣
∣ μ ∨ μ

∣
∣ ∼μ for a ∈ Act

We provide here an informal description of the semantics of ACTL operators.
The formal semantics is given in [13]. Any state satisfies true and no state
satisfies false. A state satisfies φ & φ′ if and only if it satisfies both φ and
φ′. A state satisfies [a]φ if for all next states reachable with a, φ is true.
The meaning of AG φ is that φ is true now and always in the future.

A state P satisfies A[μUμ′] 4 if and only if in each path exiting from P ,
μ′ will eventually be executed. It is also required that before μ′ only μ or
τ actions can be executed. A useful formula takes the form of A[trueUa]
meaning that action a will eventually be executed and that any action can
be executed before a: this is the simplest way to express liveness. Safety
can be expressed by AG[a]false meaning that the action a can never be
executed.

– Generation of the (finite state) model. To this end, we use the tools of the
JACK (Just Another Concurrency Kit) verification environment [5], which is
based on the use of process algebras, LTSs, and temporal logic formalisms,
and supports many phases of the systems development process.

– Model checking of the ACTL formulae against the model, using the model
checker for ACTL available in JACK, FMC.

3.1 Validation of the Multiple Levels of Integrity policy

The Multiple Levels of Integrity policy has to guarantee that the interaction
among different components does not affect the overall confidence of the appli-
cation, i.e., that a non–critical component does not corrupt a critical one. In
particular, data of a low integrity level cannot flow to a higher integrity level
(unless through a Validation Object). This condition should hold for isolated
objects and in any schema of interaction among objects. In [17], the following
properties have been validated:

(i) An object with intrinsic level i cannot provide answers of level j > i.

(ii) An object with intrinsic level i does not accept read requests of level
j > i.

4 This is a shorthand for the ACTL formula A[true{μ}U{μ′}true].

G. Amato et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 167–185 173

(iii) If an MLO with intrinsic level i receives a read request of level j ≤ i,
and, to serve the request, it invokes with a read request a third object
of intrinsic level maxil smaller than j, then it cannot answer the initial
request. Indeed, its level is decreased to the maxil value of the third
object because of the new data received.

(iv) If an MLO with intrinsic level i receives a read request of level j ≤ i,
and then a write request of level k < j, then it can still answer the
read request. In other words, its level is not decreased by the concurrent
invocation.

4 Verification of open systems

The model proposed in [17] assumes that all the components of a system and
their relationships are known. This assumption cannot be satisfied in the case
of web site specification, since we only analyze a part of the system, and we
only know the interface of the remaining components (the environment).

For checking a property of a sub–system regardless of its environment,
one can compose the sub–system with an approximation of the environment.
This can be thought of as the interface of the environment with respect to the
specific sub–system. The result is a new system where more computations are
allowed. The formal verification can be done by just observing the actions
which involve the part of the system we are interested in. Since we allow more
computations, i.e. more traces in the computation tree, we are ensured that
any LTL formula which can be verified on the new system, does hold in the
original one. Therefore, we restrict ourself to properties that can be expressed
in both LTL and CTL, as discussed in Section 4.2.

4.1 A concept of process interface

We first need to define a formal concept of interface for a component of a
system expressed in the CCS process algebra. This is accomplished by using
the restriction operator together with a dummy process which simulates the
rest of the world. Let P be a process over the set of actions ActP . We could
imagine to have a process W describing the rest of the world, thus we would
like to verify the overall system P ‖ W . Of course, this is not possible, since
we cannot specify all the possible components. Actually, we are not interested
in other communications than those among our process P and the rest of the
world. Our idea is to consider, instead of the process W , its interface toward
P . To this aim, we need to introduce a dummy process, that we use to single
out the proper interface of W we are interested in. Let DW,P be the dummy

G. Amato et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 167–185174

process

DW,P = ā1 : DW,P + ā2 : DW,P + . . . + ān : DW,P (2)

where {a1, . . . , an} = ActW \ ActP , ActW (resp. ActP) is the set of actions of
W (resp. P) and āi is the complementary action of ai. We define the interface
of W w.r.t. P as the process WP = (W ||DW,P) \ (ActW � ActP). In this way
we obtain an hiding mechanism: we only observe the actions involved in the
communication between P and W .

Actually, for our purpose, any process weakly trace equivalent to WP would
suffice, that is any process which exhibits the same behavior w.r.t. P when
we observe only the traces of the system. In the following, we call interface
any of such processes. Thus, given any interface I of W w.r.t. P , we simply
consider the system P ||I.

For example, given P =?request :!ask google :?read google :!reply we
do not want to observe the interaction of the Google web site with the rest
of the world, then we may choose ?ask google and !read google as the only
actions we are interested in, and which should be described in the interface of
Google.

4.2 A linear fragment of ACTL

Our aim is to verify ACTL formulas on processe defined by CCS agents. Since
we adopt the above concept of interface, we are particularly interested in those
formulas such that, once proved for P ‖ I, where I is any interface of W w.r.t.
P , they also hold for P ||W . In other words, we want to restrict ourself to a
fragment of ACTL which preserves weak trace equivalence.

Proposition 4.1 The fragment of ACTL defined in (1) preserves weak trace
equivalence. 5

The proof of the proposition proceeds by converting every formula in (1)
into an equivalent ALTL formula. An ALTL formula is an ACTL∗ formula Aφ
where φ does not contain any path quantifier (see [18] for a slightly different
definition of ALTL). Actually, ALTL preserves trace equivalence, since the X
operator is able to distinguish between silent and non-silent actions. However,
if we consider ALTL−{X, Xa} (but keeping the derived modalities φ[μ]U [μ′]φ′

and φ[μ]Uφ′), we get a logic which preserves weak trace equivalence.

5 The proof can be found in the Appendix.

G. Amato et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 167–185 175

5 Case Study: the Travel Agency

Our first case study concerns the modeling and analyzing of the architecture
of the subset of the Web, which is of interest for a user willing to organize a
travel by booking flights and hotels. The user interacts with an on–line travel
agency. The travel agency, in turn, accesses the web sites of air companies,
tour operators, single hotels as well as other travel agencies specialized in hotel
booking, and so on. Here, we consider a simplified scenario, with two reliable
sites, namely those of the travel agency and the air company Alitalia 6 , and a
fairly reliable hotel booking site.

We model Alitalia and the travel agency as MLOs with maxil 3, called
ALITALIA3 and TA3, respectively, and the hotel booking site as HOTELSEEK,
an MLO with maxil 2. All these sites are supposed to interact and receive
data from many distinguished other components. We want them to perform
their job even if the received data have a lower integrity level. At the same
time, we recall that MLOs cannot store data: we can imagine that these
components interact with some private SLOs, where to store the information
of any finalized reservation. To exemplify this, we specify the SLOs of the
travel agency, and call them disks. Since the travel agency is an MLO of
level 3, it may be at any level when accessing its disks with a write request.
We hence introduce 4 disks, one for each integrity level. They are specified
parametrically by the process DISKx. We also need a disk manager, specified
as an MLO of level 3, in order to choose the right DISKx according to the
integrity level.

The architecture of the resulting system is described in Figure 2. The full
specification is given below, by instantiating the process defined in [17]. A
disk can receive a read request when the travel agency needs to access previous
reservations. read requestx is a read request action of level x. In general,
this means that the invocation was issued either by an SLO with x as il or by
an MLO with x as minil. A disk can receive a write request too, when the
travel agency needs to store a new reservation. Only requests at level x are
served. A write request at a different level will be served by another disk.
DISK_MANAGER(3) =

?read_data(y). !read_disk(y).!answer_data(y).DISK_MANAGER(3) +
?write_data(y).!write_disk(y).DISK_MANAGER(3)

DISK_0 = ?read_disk(0).DISK_0 +
?write_disk(0).DISK_0

DISK_1 = ?read_disk(1).DISK_1 +
?write_disk(1).DISK_1

6 Disclaimer: The company names and the integrity level we use, are freely introduced for
the purposes of the example, and have no correspondence with the reliability of the actual
sites, when they exists.

G. Amato et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 167–185176

3TA

Alitalia 3

Disk0

Disk1 Disk2

Disk3

2
HotelSeek

DiskManager
3

Fig. 2. The travel agency architecture.

DISK_2 = ?read_disk(2).DISK_2 +
?write_disk(2).DISK_2

DISK_3 = ?read_disk(3).DISK_3 +
?write_disk(3).DISK_3

The agent HOTELSEEK accepts read–write hotel reservation requests, and
write–only confirmation requests. r w hreservey,z denotes a request issued
either by an MLO with y as minil and z as il or by an SLO with il = y = z.
Variable y denotes the read level of the request, variable z denotes the write
level. w confirmy denotes a write request of level y, issued by an object with y

as il. Hotel reservation requests are served as specified by process HOTEL RES.
HOTELSEEK(2) = ?r_w_hreserve(y,z).!hotel.(

([y <= z] [z <= 2] HOTEL_RES(y,z,2)) +
([y <= 2] [2 <= z] HOTEL_RES(y,2,2)) +
([y > 2] !answer_hres(-1). HOTELSEEK(2))) +

?w_confirm(y). HOTELSEEK(2)

HOTEL_RES(min,il,max) =
([min <= 0] [0 <= il] !answer_hres(0). HOTELSEEK(2)) +
([min <= 1] [1 <= il] !answer_hres(1). HOTELSEEK(2)) +
([min <= 2] [2 <= il] !answer_hres(2). HOTELSEEK(2)) +
([min <= 3] [3 <= il] !answer_hres(3). HOTELSEEK(2)) +
!answer_hres(-1). HOTELSEEK(2)

The Alitalia specification is very simple. A web site such as the Alitalia
one can be implemented using a groupware protocol. These protocols ad-
dress, among others, the concurrency control problems that arise in systems
with multiple users (namely, groupware systems [1,15]) whose actions may be
conflicting. A typical example is to reserve the same seat to two or more users
that are concurrently booking a flight. The high integrity level of the Alitalia

G. Amato et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 167–185 177

site can be guaranteed by formally specifying the protocol and by proving
the non interference properties of interest. Validation can be done by model
checking using, for instance, the results given in [22] where some properties of
a public subscribe groupware protocol have been proved.
ALITALIA(3) = ?r_w_freserve(y,z). !flight.

[y <= z] !answer_fres(z). ALITALIA(3) +
?w_confirm(y). ALITALIA(3)

Finally, the travel agency.
TA(3) = ?r_w_booktravel(y,z). [y <= z] TA_BOOK(y,z,3) +

?r_infotravel(y). TA_INFO(y,3,3)

TA_BOOK(min,il,3) = F_BOOK(min,il,3) +
H_BOOK(min,il,3) +
F_BOOK(min,il,3).H_BOOK(min,il,3)

F_BOOK(min,il,3) = !r_w_freserve(min,il). ?answer_fres(x).
([x < min] !answer_booktravel(-1). TA(3) +
[min <= x] [x <= il] TA_FINALIZE(min,x,3) +
[il <= x] TA_FINALIZE(min,il,3))

H_BOOK(min,il,3) = !r_w_hreserve(min,il). ?answer_hres(x).
([x < min] !answer_booktravel(-1). TA(3) +
[min <= x] [x <= il] TA_FINALIZE(min,x,3) +
[il <= x] TA_FINALIZE(min,il,3))

TA_FINALIZE(min,il,3) = !write_data(il). !w_confirm(il).
!answer_booktravel(il). TA(3)

TA_INFO(min,3,3) = !read_data(min). ?answer_data(x).
([x < min] !answer_info(-1). TA(3) +
[x >= min] !answer_info(x). TA(3))

We also need to specify a generic user of the system, which can ask for
information or book a travel.
User(x) = !info. ((!r_infotravel(x). ?answer_info(y).

(([y < 0] !failure. User(x)) +
([y >= 0] !success. User(x)))) +

!book. (!r_w_booktravel(0,x). ?answer_booktravel(y).
(([y < 0] !failure. User(x)) +
([y >= 0] !success. User(x)))))

In our test, we use a generic process consisting of the travel agency, the
air company, the hotel booking site, a generic user of level 2 and the disks.
(HOTELSEEK(2) || ALITALIA(3) || TA(3) || User(2) || DISK_MANAGER(3)
|| DISK_0 || DISK_1 || DISK_2 || DISK_3) \read_data \answer_data

\write_data \answer_hres \r_w_hreserve \w_confirm \r_w_freserve
\answer_fres \r_w_booktravel \r_infotravel \answer_booktravel
\answer_info \read_disk \write_disk

The only non restricted actions are info, book, hotel and flight. There-
fore we will use them when specifying the ACTL formula. As a first example,
we want to prove that, if a client requires a booking service (action !book),
the travel agency will either book an hotel (action !hotel) or a flight (action
!flight) before any positive answer (action !success). Formally, we require
to verify the following ACTL formula:

G. Amato et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 167–185178

Peer
1

RL
2

RL
1

3VO

Peer
2

Fig. 3. The Peer to Peer Validation Service architecture.

AG [!book] A [true { ~ !success } U { !hotel | !flight } true]

The result of the model checker is that the formula is true and that 153
states has been observed. The following formula:
AG [!info] A [true { ~ !success } U { !hotel | !flight } true]

states that at any request of information will follow the booking of an hotel
or a flight. Of course, in this case the result of the model checker is that the
formula is false.

6 Case Study: Peer to Peer Validation Service

We here describe a peer to peer architecture that a user can query to download
a video. This is a simplified instance of the concrete problem of identifying
remote file content before downloading in peer to peer systems, where some
or all of the peers are untrusted, or content-based access control has to be
enforced. In the example we assume that two peers exist, at level 1 and 2
respectively. Moreover, the system includes two refutation lists which collect
information of help to know whether the expected content of a file corresponds
to the file name. The download is filtered by a Validation object that first
looks for the video with a read video request, and then validates the answer
by querying the refutation lists. The system is described in Figure 3.

A peer’s answer to a read video request carries two values: the peer
integrity level, and an integer holding −1 if the peer does not have the video,
a different value otherwise. If the video is not found from both peers P, the
validator VO sends a negative answer to the user, otherwise it validates the
video content with the help of the clauses of the agents VAL and VAL2. This
involves querying one or more of the refutation lists processes RL.

G. Amato et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 167–185 179

In the example, we abstract from actual validation algorithms in VAL and
VAL2, and show a completely non-deterministic behavior that can be refined
in any concrete solution. Our validation approach is compositional: to prove
the correctness of the final system, we only need to validate the refinement
step. Indeed, the abstract behavior of the VO specified here corresponds to the
interface of any actual validation object, with a specific validation algorithm
demanded to the VAL agent.

To complete the example description, we assume that peers perform a
visible action video when the video is available, and the user performs the
visible actions start at search beginning, then success, or failure. The
last two actions discriminate the cases where a valid video was found from the
cases where either no video was found, or the video content was not correct.

P(x) = ?read_video(y). (([y <= x] (!video. !answer_video(x,x). P(x) +
!answer_video(x,-1). P(x))) +

([y > x] !answer_video(-1,-1). P(x)))

RL(x) = ?query_video(y). (([y <= x] !query_answer(x). RL(x)) +
([y > x] !query_answer(-1). RL(x)))

VO(x) = ?user_req(y). (([y <= x] !read_video(0). ?answer_video(z,w).
(([z = -1] !user_answer(-1). VO(x)) +

([z >=0] VAL(x,w))) +
([y > x] !user_answer(-1).VO(x))))

VAL(x,w) = [w = -1] !user_answer(-1). VO(x) +
[w >= 0] (!query_video(0). ?query_answer(y).

(!user_answer(x). VO(x) +
!user_answer(-1). VO(x) +
VAL2(x)))

VAL2(x) = !query_video(0). ?query_answer(y). (!user_answer(x). VO(x) +
!user_answer(-1). VO(x))

User(x) = !start. !user_req(x). ?user_answer(y).
(([y < 0] !failure. User(x)) +

([y >= 0] !success. User(x)))

net Net = (VO(3) || P(1) || P(2) || RL(1) || RL(2) || User(1))
\read_video \query_video \user_req \answer_video \query_answer
\user_answer

The validation process has lead to the generation of a model with 524
states, against which the following properties have been checked, returning
the expected results.

AG [!start] A [true { ~ !start } U { !failure | !video } true]
-- The formula is TRUE --

AG [!start] A [true { true } U { !video } true]

G. Amato et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 167–185180

Fig. 4. Editing test: only humans are supposed to read the sequence of characters.

-- The formula is FALSE --

7 The inverted Turing Test

The Inverted Turing test, proposed by Watt[23] as an alternative to the con-
ventional Turing Test for artificial intelligence, requires:

• to put a system in the role of the observer;

• the observer to discriminate between humans and machines.

The machine that wants to mimic humans should show naive psychology, that
faculty which predisposes us to anthropomorphism and enables us to ascribe
intelligence to others. An example test is the one that asks many questions
like “how close is a building to a house, how close is a hotel to a house, how
close is a lodge to a house, how close is a cavern to a house”, with answers
in a finite range, say 1–100. The observer compares the answers to a table
obtained by making the same questions to a sufficiently large population.

A variant of the Inverted Turing Test is the Editing Test [12], often used
to discriminate humans from machines when assigning a new e-mail address.
It is based on the so-called interpretative asymmetry, that is the asymmetry
of the skillful way in which humans “repair” deficiencies in speech, written
texts, handwriting, etc., and the failure of computers to achieve the same
interpretative competence. For instance, an optical sequence of characters
like the one in Figure 4 is printed on the screen, and the observed entity is
asked to type the characters with the keyboard.

The component implementing the Inverted Turing test can be modeled in
our framework as a validation object. The architecture of the subset of the
WEB of interest can be modeled as described in Figure 5: the validation object
intercepts the interactions between the entity (human or machine) asking for
an e-mail address.

G. Amato et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 167–185 181

Provider
33ITT

Fig. 5. Architecture of the subset of the WEB including an Inverted Turing test.

8 Conclusion

We have proposed a formal method to describe web applications by means of
a process algebra which can be automatically verified by a model checker. By
considering a fragment of the ACTL logic which does not contain negation and
existential path quantification, we can introduce a formal notion of interface
which allows us to prove properties expressed by temporal formulae in a mod-
ular way. We exploit the notion of validation object proposed in fault tolerant
system verification and show examples of web applications where validation
objects play a fundamental role. We describe in details two case studies val-
idating some formulae with the help of the FMC model checker. Moreover,
we briefly sketch another example where a commonly used web application
can be easily modeled as a validation object. As a future work, we intend
to investigate the possibility to separately verify different parts of the system
and to compose the results.

References

[1] Baecker, R., editor, “Readings in Groupware and Computer Supported Cooperation
Work–Assisting Human-Human Collaboration,” 1992.

[2] D.E. Bell and L.J. LaPadula. Security Computer Systems: Mathematical foundations
and model. Technical Report M74-244, MITRE Corp., Bedford, Mass., 1974.

[3] Bernardeschi, C., A. Fantechi and S. Gnesi, Formal validation of fault–tolerance
mechanisms inside Guards, Reliability, Engineering and System Safety (RE&SS) 71
(2001), pp. 261–270, Elsevier.

[4] K. Biba. Integrity Considerations for Secure Computer Systems. Technical Report
Tech. Rep. ESD-TR 76-372, MITRE Co., Apr. 1997.

[5] Bouali, A., S. Gnesi and S. Larosa, JACK: Just another concurrency kit, Bulletin of the
European Association for Theoretical Computer Science 54 (1994), pp. 207–224.

[6] Bowen, J. and M. Hinchey, Seven more myths of formal methods, IEEE Software 12
(1995), pp. 34–41.

[7] Burch, J., E.M.Clarke, K. McMillan, D. Dill and J. Hwang., Symbolic Model Checking
1020 states and beyond, in: Proceedings of Symposium on Logics in Computer Science,
1990.

G. Amato et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 167–185182

[8] Clarke, E., E. Emerson and A. Sistla, Automatic Verification of Finite–State Concurrent
Systems Using Temporal Logic Specification, ACM Transaction on Programming
Languages and Systems 8 (1986), pp. 244–263.

[9] Clarke, E., O. Grumberg and D.Peled, “Model Checking,” MIT Press, 1999.

[10] D.D Clark and D.R Wilson. Comparison of Commercial and Military Computer
Security Policies. In IEEE Symp. on Security and Privacy, pages 184–194, Oakland,
CA, 1987. IEEE Computer Society Press.

[11] Clarke, E. and J. Wing, Formal methods: state of the Art and Future Directions, ACM
Computing Surveys 28 (1996), pp. 627–643.

[12] Collins, H., The editing test for the deep problem of AI, Psycoloquy 8 (1997).

[13] De Nicola, R. and F. Vaandrager, Action versus State based Logics for Transition
Systems, in: Proceedings Ecole de Printemps on Semantics of Concurrency, Lecture
Notes in Computer Science 469 (1990), pp. 407–419.

[14] Dill, D., A. Drexler, A. Hu and C. H. Yang, Protocol Verification as a Hardware Design
Aid, in: IEEE International Conference on Computer Design: VLSI in Computers and
Processors (1992), pp. 522–525.

[15] Ellis, C. and S. Gibbs, Concurrency control in groupware systems, in: In Proc.
SIGMOD’89 (1989), pp. 399–407.

[16] Emerson, E. and J. Halpern, Sometimes and Not Never Revisited: on Branching Time
versus Linear Time Temporal Logic, Journal of ACM 33 (1986), pp. 151–178.

[17] Fantechi, A., S. Gnesi and L. Semini, Formal Description and Validation for an Integrity
Policy Supporting Multiple Levels of Criticality, in: C. Weinstock and J. Rushby, editors,
Proc. DCCA–7, Seventh IFIP International Conference on Dependable Computing for
Critical Applications (1999), pp. 129–146.

[18] Giannakopoulou, D. and J. Magee, Fluent Model Checking for Event-based Systems, in:
Proc. ESEC/SIGSOFT FSE 2003 (2003), pp. 257–266, ACM Press.

[19] Holzmann, G., The Model Checker SPIN, IEEE Transaction on Software Engineering
5 (1997), pp. 279–295.

[20] Lamport, L., R. Shostack and M. Pease, The Byzantine Generals problem, ACM
Transactions on Programming Languages and Systems 4 (1982), pp. 282–401.

[21] Milner, R., “A Calculus of Communicating Systems,” Lecture Notes in Computer
Science 92, Springer-Verlag, Berlin, 1980.

[22] ter Beek, M., M. Massink, D. Latella and S. Gnesi, Model checking groupware protocols.,
in: F. Darses, R. Dieng, C. Simone and M. Zacklad, editors, Cooperative Systems Design
- Scenario-Based Design of Collaborative Systems, Frontiers in Artificial Intelligence and
Applications 107 (2004), pp. 179–194.

[23] Watt, S., Naive-psychology and the inverted turing test, Psycoloquy 7 (1996).

G. Amato et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 167–185 183

Appendix

Proof of Proposition 4.1. We give a transformation t mapping a formula
φ to t(φ) obtained from φ by deleting all its path quantifiers. Then we show
that the formulas φ and At(φ) are equivalent. Since t(φ) does not contain
any path quantifier and the operators X and Xa (“next”) from ACTL can
only appear as a subformula of an “until”, it immediately follows that any
formula of the form At(φ) cannot distinguish between weakly trace equivalent
processes. Hence, any formula in the fragment defined in (1) preserves weak
trace equivalence.

The map is the following:

• t(true) = true

• t(false) = false

• t(φ1 ∧ φ2) = t(φ1) ∧ t(φ2)

• t(A[true{μ}U{μ′}true]) = true{μ}U{μ′}true

• t(AGφ) = Gt(φ)

• t([μ]φ) = ¬(true{false}U{μ}¬t(φ))

We prove that φ and At(φ) are equivalent, that is to say that for any LTS
A and run r, it holds that A, r |= φ iff A, r |= At(φ). In the following, we
write [[μ]]φ ≡ ¬(true{false}U{μ}¬φ). Therefore, the last expression becomes
t([μ]φ) = [[μ]]t(φ).

The proof is by structural induction.

• φ ≡ true. Then A, r |= true and A, r |= A true always hold.

• φ ≡ false. Then A, r |= false iff A, r |= A false holds.

• φ ≡ φ1 ∧ φ2. In this case A, r |= φ iff A, r |= φ1 and A, r |= φ2 iff A, r |=
At(φ1) iff A, r |= At(φ2) iff A, r |= A(t(φ1) ∧ t(φ2)).

• φ ≡ A[true{μ}U{μ′}true]. Trivial.

• if φ ≡ AGθ, then A, r |= AGθ iff for every r′ s.t. first(r′) = first(r) and
all s ≥ r′, A, s |= θ. By induction, A, s |= θ iff A, s |= At(θ) iff forall s′

s.t. first(s′) = first(s), s′ |= t(θ). In particular, it holds for s′ = s. Hence,
A, r |= AGt(θ).

Conversely, if A, r |= AGt(θ), we have that for every r′ s.t. first(r′) =
first(r) and all s ≥ r′, φ, s |= t(θ). Now, for each r′ and s, assume given s′

such that first(s′) = first(s). It is obvious that if r′ = q · s, then r′′ = q · s′
is a run s.t. first(r′′) = first(r) and therefore A, s′ |= t(θ). This implies
A, s |= At(θ). By inductive hypothesis, A, s |= θ, and thus A, r |= AGθ.

• φ ≡ [μ]θ. If A, r
|= φ, there exists a run r′ such that first(r′) = first(r),

G. Amato et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 167–185184

r′ = r′′ · (s′, b, s′′) · r′′′, b ∈ μ, r′′′
|= θ and r′′ is a prefix of r′ with only
silent moves. By inductive hypothesis, r′′′
|= At(θ), i.e. there exists a
run t such that first(t) = first(r′′′) and A, t
|= t(θ). Now consider the run
n = r′′·(s′, b, s′′)·t, and it is obvious that A, n |= (true[false]U [μ]¬t(θ)). This
implies that. A, r |= E(true{false}U{μ}¬t(θ)), i.e. A, r
|= A([[μ]]t(θ)).

If A, r
|= A([[μ]]t(θ)), there exists a run r′ such that first(r′) = first(r),
r′ = r′′ · (s′, b, s′′) · r′′′, b ∈ μ, r′′′
|= t(θ) and r′′ is a prefix of r′ with only
silent moves. It is obvious that r′′′
|= At(θ), and by inductive hypothesis,
r′′′
|= θ. Hence A, r
|= [μ]θ.

This concludes the proof. �

G. Amato et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 167–185 185

	Introduction
	The Multiple Levels of Integrity policy
	Formal Validation Methodology
	Validation of the Multiple Levels of Integrity policy

	Verification of open systems
	A concept of process interface
	A linear fragment of ACTL

	Case Study: the Travel Agency
	Case Study: Peer to Peer Validation Service
	The inverted Turing Test
	Conclusion
	References

