
Observational Completeness on Abstract

Interpretation

Gianluca Amato and Francesca Scozzari

Dipartimento di Scienze, Università di Chieti-Pescara
{amato,scozzari}@sci.unich.it

Abstract. In the theory of abstract interpretation, we introduce the ob-
servational completeness, which extends the common notion of complete-
ness. A domain is complete when abstract computations are as precise
as concrete computations. A domain is observationally complete for an
observable π when abstract computations are as precise as concrete com-
putations, if we only look at properties in π. We prove that continuity of
state-transition functions ensures the existence of the least observation-
ally complete domain. When state-transition functions are additive, the
least observationally complete domain boils down to the complete shell.

1 Introduction

Abstract Interpretation. Abstract interpretation [3,4] is a general theory for
approximating the behavior of a discrete dynamic system. The idea is to replace
the formal semantics of a system with an abstract semantics, computed over a
domain of abstract objects. There are many different methods to describe the
semantics of a system. Most of them are based on a partially ordered set (poset)
〈C,≤C〉 of states and a set F of monotone state-transition functions f : C → C.
The semantics S is defined as the (least) fixpoint of a semantic function F
obtained as a composition of state-transition functions. The poset 〈C,≤C〉 is
called concrete domain and S = lfpF is called the concrete semantics.

An abstract interpretation is specified by the poset 〈A,≤A〉 of abstract objects.
The abstract objects describe the properties of the system we are interested in.
The relationship between the concrete and abstract objects is formalized by
a monotone concretization map γ : A → C which, given a property a ∈ A,
yields the biggest concrete state c ∈ C which enjoys the property a. Therefore,
a property a is a correct approximation of a concrete state c when c ≤C γ(a).

any

pos

���������
zero neg

���������

empty

���������

���������

For instance, consider the concrete do-
main ℘(Z) with the standard ordering given
by inclusion, and Sign = {empty, pos, neg,
zero, any} ordered as depicted on the right.
The intuition is that pos represents the set
of (strictly) positive integers, zero represents
the singleton {0}, while empty represents the
empty set of integers. This may be formalized

H. Ono, M. Kanazawa, and R. de Queiroz (Eds.): WoLLIC 2009, LNAI 5514, pp. 99–112, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

100 G. Amato and F. Scozzari

by defining γ as follows: γ(empty) = ∅, γ(pos) = {n ∈ Z | n > 0}, γ(neg) =
{n ∈ Z | n < 0}, γ(zero) = {0}, γ(any) = Z.

Often, it is possible to define a monotone abstraction map α : C → A which
yields the largest properties a enjoyed by a concrete object c, such that c ≤C

γ(a) ⇐⇒ α(c) ≤A a. In the previous example, the abstraction is given by α(c) =
{a ∈ A | c ≤C γ(a)}. For instance, α({−1,−2}) = neg while α({−1, 0}) = any.

An abstract domain is given by the poset A of the abstract objects and the
pair of maps 〈α, γ〉. However, since γ is uniquely determined by α and viceversa,
in the following we specify an abstract domain just by giving α.

The goal of any abstract interpretation is to compute α(S), that is to find out
the properties enjoyed by the semantics of the system. Instead of computing S
(which is not computable) and then applying α, the idea is to replace, in the the
definition of F , every state-transition function f with an abstract counterpart
f# : A → A, which must be correct. We say that f# is correct if, whenever a
is a correct approximation of c, then f#(a) is a correct approximation of f(c).
This is equivalent to say that any abstract computation f#(α(c)) approximates
the corresponding concrete computation f(c), i.e.:

α ◦ f ≤A→A f# ◦ α , (1)

where ≤A→A is the pointwise extension of ≤A. In particular, there is a best
correct abstraction of f , denoted by fα, which is fα = α ◦ f ◦ γ. If we replace
the state-transition functions in the definition of F with the corresponding best-
correct abstractions, we obtain a new semantic function F# and a new abstract
semantics S# = lfpF#, and the theory of abstract interpretation ensures that

α(S) ≤A S# . (2)

As an example of abstract state-transition function, consider inc : ℘(Z) →
℘(Z) such that inc(X) = {n + 1 | n ∈ X}. The best correct abstraction of inc is

incα(a) =

⎧
⎪⎨

⎪⎩

empty if a = empty,

pos if a = zero or a = pos,

any otherwise.

Completeness. Generally speaking, the inequalities (1) and (2) are strict.
This means that computing in the abstract domain is (strictly) less precise
than computing on the concrete one. For instance, α(inc(−1)) = zero but
incα(α(−1)) = any. When α ◦ f = fα ◦ α we say that the abstract domain
is complete for the function f . Intuitively, when this happens, the best correct
abstraction fα perfectly mimics the concrete function f . For example, given
sq(X) = {x2 | x ∈ X}, the best correct abstraction is

sqα(a) =

{
pos if a = pos or a = neg,

a otherwise.

Observational Completeness on Abstract Interpretation 101

It follows that sq({−1,−2}) = {1, 4}, and its abstraction is α(sq({−1,−2})) =
pos, meaning that the square of any integer in {−1,−2} is positive. The same
result may be obtained by first abstracting {−1,−2} and then computing sqα,
since sqα(α({−1,−2})) = sqα(neg) = pos. It is easy to show that, for any set
of integers X ∈ ℘(Z), it holds that sqα(α(X)) = α(sq(X)). Thus, the abstract
domain Sign is complete for the function sq.

Completeness enjoys many good properties. If an abstract domain α is com-
plete for f and g, then it holds that:
– α is complete for f ◦ g and fα ◦ gα = (f ◦ g)α;
– α(lfp f) = lfp(fα).

This implies that (2) is an equality, and therefore one does not lose precision by
computing on the abstract domain.

When an abstract domain α is not as precise as the concrete one, that is, the
abstract semantics S# does not coincide with α(S), then we need to refine the
abstract domain α. This means to replace α by a new domain β and S# by a
new abstract semantics S◦, such that α(S) may be recovered by S◦. Here, S◦

is obtained by replacing all the state-transition functions f in F with fβ. Con-
ceptually, the domain β is the computational domain and α is the observational
domain, which contains all the properties we want to observe. The abstract ob-
jects in β which do not belong to α are only used to compute intermediate
steps in order not to lose precision. Obviously, we want to keep β as small as
possible.

In the literature of abstract interpretation, the standard way of refining α is
to compute the least complete domain for F which includes α. This is called the
complete shell of α, and may be constructively computed [8].

The Goal. In this paper, we show that the complete shell may not be the
smallest abstract domain which enables us to recover the property α(S). This is
because we are only interested in properties in α, and not in the new objects in-
troduced by β. This observation suggests another notion of completeness, which
we call observational completeness. A domain β is observationally complete for
a function f and an observational domain α when every concrete computation
may be approximated in β without losing precision on the properties in α. In
order to formalize the observational completeness, we first need to introduce a
new ordering between abstract domains. We say that an abstract domain β is
more precise than an abstract domain β′ for observing properties in α when-
ever the result of each computation on β observed on α is approximated by the
result of the corresponding computation on β′, observed on α. We show that,
under suitable conditions, there exists the smallest observationally complete do-
main for a given set F of functions and an observational domain. We prove that
any complete domain which contains α is also observationally complete for α,
but the converse does not hold. We give the conditions under which the least
observationally complete domain corresponds to the complete shell.

Plan of the Paper. The next section recalls some basic definitions and nota-
tions about abstract interpretation. In Sect. 3 we define the notion of

102 G. Amato and F. Scozzari

observational completeness, in Sect. 4 we study the relationships between obser-
vational completeness and standard completeness. In Sect. 5 we briefly compare
observational completeness to other notions of completeness in the literature,
such as forwards completeness and fixpoint completeness.

2 Basic Notions of Abstract Interpretation

In the abstract interpretation theory, abstract domains can be equivalently spec-
ified either by Galois connections or by upper closure operators (ucos) [4].
When an abstract domain A is specified by a Galois connection, i.e., a pair
of abstraction and concretization maps 〈α, γ〉, then γ ◦ α ∈ uco(C) is the
corresponding uco on C. On the contrary, given an uco ρ, the corresponding
Galois connection is 〈ρ, id〉. In the rest of the paper, we will use ucos, since
they are more concise. Moroever, we assume that the concrete domain C is a
complete lattice, which is a standard hypothesis in the abstract interpretation
theory.

An uco ρ on the concrete domain C is a monotone, idempotent (i.e., ρ(ρ(x)) =
ρ(x)) and extensive (i.e., ρ(x) ≥ x) operator on C. Each uco ρ on C is uniquely
determined by the set of its fixpoints, which is its image, i.e. ρ(C) = {x ∈
C | ρ(x) = x}, since ρ = λx.

∧{y ∈ C | y ∈ ρ(C), x ≤ y}. Moreover, a subset
X ⊆ C is the set of fixpoints of an uco on C iff X is meet-closed, i.e. X =
M (X) = {∧Y | Y ⊆ X}. For any X ⊆ C, M (X) is called the Moore-closure
of X . Often, we will identify closures with their sets of fixpoints. This does not
give rise to ambiguity, since one can distinguish their use as functions or sets
according to the context. It is well known that the set uco(C) of all ucos on C,
endowed with the pointwise ordering ⊇, gives rise to a complete lattice. The top
on uco(C) is {�C}, the bottom is C, and the join operation is set intersection
∩. The ordering on uco(C) corresponds to the standard order used to compare
abstract domains: A1 is more concrete than A2 (or A2 is more abstract than A1)
iff A1 ⊇ A2 in uco(C).

An abstract domain ρ ∈ uco(C) is complete for f iff ρ ◦ f = ρ ◦ f ◦ ρ holds.
Giacobazzi et al. [8] give a constructive characterization of complete abstract
domains, under the assumption of dealing with continuous concrete functions.
A function f : C → C is (Scott) continuous if it preserves least upper bounds of
chains in C, i.e., f(

∨
B) =

∨
f(B) for any chain B ⊆ C. The idea is to build the

greatest (i.e., most abstract) domain in uco(C) which includes a given domain
ρ and which is complete for a set F ⊆ C → C of continuous state-transition
functions, i.e., for each function in F . In particular, [8] define a mapping RF :
uco(C) �→ uco(C) as follows:

RF (ρ) = M
(⋃

f∈F,a∈ρ max({x ∈ C | f(x) ≤ a})
)

,

where max(X) is the set of maximal elements in X . They prove that the most ab-
stract domain which includes ρ and is complete for F is gfp(λη.M (ρ ∪RF (η))).
This domain is called the complete shell of ρ for F .

Observational Completeness on Abstract Interpretation 103

3 Observational Completeness

In abstract interpretation, it is common that, in order to observe a property π
with a good deal of precision, we need to perform the computation in a richer
domain ρ ⊇ π. In the following, we call π the observational domain and ρ the
computational domain. In the rest of the paper, we assume given a complete
lattice C (the concrete domain), a set F of monotone functions from C to C and
an uco π ⊆ C which represents the set of observable properties.

A common problem is to find a domain ρ such that if we perform any com-
putation on ρ and we project over π, we obtain the same result of the concrete
computation, projected over π. In order to formalize this notion, we first need to
define the concept of computation (on both an abstract and a concrete domain).

Definition 1 (Computation). A finite sequence ξ = 〈f1, . . . , fn〉 of elements
of F is called computation. Given a computation ξ, a domain α, and an element
c ∈ C, we denote by ξα(c) the value (α◦f1 ◦ . . .◦α◦fn)(α(c)). As a special case,
when ξ is the empty computation, we define ξα(c) = α(c).

Note that, if id is the identity abstraction, then ξid (c) = (f1 ◦ . . . ◦ fn)(c). We
write ξ(c) as a short form for ξid (c).

We are now able to compare abstract domains in terms of precision of their
computations. We say that a domain α is more precise than a domain β if it is the
case that, the result of a computation on α projected over π is more precise (it
is approximated by) the result of the corresponding computation on β projected
over π.

Definition 2 (More Precise than). We say that α is more precise than β
for computing F observing π, and we write it as α ≤ β, when

πξα(c) ≤ πξβ(c)

for every computation ξ and c ∈ C.

Although the relation ≤ depends on F and π, we prefer to use just ≤ instead of
a more precise notation such as ≤π

F , in order to avoid a cumbersome notation.
Since F and π are fixed, this does not cause ambiguities.

It is easy to check that ≤ is a preorder, which may be viewed as a generaliza-
tion of the standard ordering between ucos: if α ⊇ β then α ≤ β. Our notion is
more general than the standard ordering since it allows us to compare two dif-
ferent domains (α and β) w.r.t. their precision on a third domain (π), and does
not require neither α nor β to be in any relation with π. Note that, if π = id ,
then α ≤ β iff α ⊇ β, since we also consider the empty computation.

Our formal notion of precision suggests to define a corresponding notion of
completeness. We say that a domain α is observationally complete for π if any
computation on α projected over π, gives the same result of the correspond-
ing concrete computation, projected over π. Here, the key notion is that any
computation is always observed on π.

104 G. Amato and F. Scozzari

Definition 3 (Observational Completeness). We say that a domain α is
observationally complete (for F and π) if α is more precise than the concrete
domain, i.e., α ≤ id .

Among all the observationally complete domains, we are interested in the least
(most abstract) one w.r.t. set inclusion. In general, the least observationally
complete domain does not exist, as the following example shows.

Example 1. Let us consider the dia-
gram on the right, where the nodes
are the elements of the domain C =
{�,⊥, a, b, c1, c2, . . . , ci, . . .}, solid and
dotted edges represent the ordering on
C and dashed arrows represent a func-
tion f : C → C.

Let π = {�, a}, ρ1 = {�, a, b,⊥}∪{ci |
i is even} and ρ2 = {�, a, b,⊥} ∪ {ci |
i is odd}. It is easy to check that both
ρ1 and ρ2 are observationally complete.
However, ρ = ρ1 ∩ ρ2 = {�, a, b,⊥}
is not observationally complete, since,
for the computation ξ = 〈f〉, we have
that π(ξ(c1)) = a while π(ξρ(c1)) =
π(ρ(f(ρ(c1)))) = π(ρ(f(a)) = �. ��

As a key result we show that, if all
the functions in F are continuous, the
least observationally complete domain
exists.

�������	�

������a

��

�

�
�

��������� ���������
������b

								

��

	

�

�������	ci

����������

�������	c3

��

�������	c2

���
�

�
�

�
�

�
�

�
�

�
�

�������	c1

���
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�������	⊥

��������

����������������������������������� 		
�

�
�

Theorem 1. If F is a set of continuous functions, than

σ = M
(⋃

{max{x ∈ C | ξ(x) ≤ a} | ξ computation and a ∈ π}
)

is the least observationally complete domain (for F and π).

In order to exploit this notion of observational completeness for approximating
the formal semantics S, we need to show that an observationally complete do-
main σ preserves the least fixpoint of any composition of functions from F . This
result implies that, we can safely approximate the concrete semantic function F
with the abstract semantic function on σ without losing precision on π.

Theorem 2 (Fixpoint Preservation). Let α be observationally complete for
F and π. Then α preserves the least fixpoint of any composition of functions
from F , when observing π. In formulas, we have that:

∀f1, . . . fn ∈ F, π(lfp(f1 ◦ . . . ◦ fn)) = π(lfp(α ◦ f1 ◦ α ◦ f2 ◦ . . . α ◦ fn ◦ α)) .

Observational Completeness on Abstract Interpretation 105

The previous theorem allows us to say that π(lfp(F)) = π(lfp(F#)) for any
observationally complete domain. In other words, if we only want to observe
π, an observationally complete domain does not lose precision in the fixpoint
computation involving any composition of functions from F .

4 Observational Completeness and Complete Shell

In this section we study the relationships between observational completeness
and the standard notion of completeness, in particular between the least obser-
vationally complete domain and the complete shell.

It is immediate to show that if α is complete for F and α ⊇ π, then α
is observationally complete for F and π. More generally, α is observationally
complete for F and α. We wonder whether:

a) every observationally complete domain for F and π is complete for F ;
b) the least observationally complete domain for F and π is the complete shell

of π for F .

With respect to the first question, note that if α is observationally complete
for F and π, every β ⊇ α is still observationally complete. This does not hold for
completeness: α may be complete for F , although some β ⊇ α may not. This is
because in the observational completeness the observable properties remain fixed
when we refine the initial domain, while for standard completeness the notion
of observational domain coincides with the computational domain.

Example 2. Consider the concrete domain C = {�, a, b, c,⊥} depicted in Fig. 1a.
The domain α = {�, a, b} is complete for the function depicted in the diagram,
hence it is also observationally complete for π = {�, a}. However, the domain
{�, a, b, c} is observationally complete for π but it is not complete. ��
Since completeness implies observational completeness, we may argue that the
least observationally complete domain for π and F coincides with the complete
shell of π. In the general case this is not true and the least observationally
complete domain is more abstract than the complete shell. The next examples
illustrate this case.

Example 3. Consider the concrete domain C = {�, a, b, c, d,⊥} depicted in
Fig. 1b. Assume π = {�, a}. If we build the complete shell of π for F , in the first
step we include the element b and c, since they are the maximal x ∈ C such that
f(x) ≤ a, and the element d since it is the meet of b and c. At the second step,
we also include ⊥, which is the greatest element x ∈ C such that f(x) ≤ c. Note
that, in each step, we consider all the elements generated in the previous steps,
forgetting the observational domain π which started the process. However, it is
trivial to check that the domain α = C \ {⊥} has the same precision of C when
observing π, i.e. πf i(x) = π(αfα)i(x) for every x ∈ C and i ∈ N. When x ∈ α,
the stronger property f i(x) = (αfα)i(x) holds. When x = ⊥, it is not true that
f i(⊥) = (αfα)i(⊥): for example it does not hold for i = 1. However, for each i,
πf i(⊥) = a = π(αfα)i(⊥), hence α is observationally complete. ��

106 G. Amato and F. Scozzari

�������	�
		

�
�

�

������a

��

�

�
�

������b

�
��

��������c

��

�

�
�

�������	⊥

��

�

�
�

(a) Example 2

�������	�
��

��
�

������a

��

�

�
�

������b

��������
�
� � ��������c

									

��

	

�

������d

��������

��

�
�

� ��������

�������	⊥

��

�
� �

(b) Example 3

�������	�
��

��
�

������a

��

�

�
�

�������	c1

��
�
� �

���������
�������	b1

��������

��

�
�

�

�������	c2

��

�
�

�

�������	b2

��

�

�
�������	⊥��

��
�

���������

(c) Example 4

Fig. 1. Counterexamples

Example 4. Consider the concrete domain C = {�, a, b1, b2, c1, c2,⊥} depicted
in Fig. 1c. If π = {�, a}, the complete shell is the entire domain C. However, c2

is useless when observing π, since the least observationally complete domain is
C \ {c2}. ��

4.1 The Case of Additive Functions

We will show that, when all the functions in F are (completely) additive, the
least observationally complete domain and the complete shell coincide. However,
in order to prove this result, we need to give an alternative construction for the
complete shell, more similar to the construction for the least observationally
complete domain. In more details, we replace the standard refinement operator
RF : uco(C) �→ uco(C) given in Sect. 2 with a new operator R̂F : ℘(C) �→
℘(C) simply obtained by removing the Moore closure from the definition of RF .
Therefore, we define

R̂F (X) =
⋃

f∈F,a∈X

max{x ∈ C | f(x) ≤ a} .

Note that R̂F (X) may not be an uco even if X is an uco, and that RF (X) =
M

(
R̂F (X)

)
. We recall that, given a function G : ℘(C) → ℘(C), we have that

Gω(X) = ∪i∈NGi(X) where G0(X) = X and Gi+1(X) = G(Gi(X)).

Theorem 3. For every set F of continuous maps, the complete shell of π for
F is given by

S = M
(
R̂ω

F (π)
)

.

Observational Completeness on Abstract Interpretation 107

This new construction, which is the key result to prove Theorem 4, is inter-
esting in itself, since it sheds a new light on the construction of the complete
shell. First of all, it shows that it is not necessary to compute the Moore closure
at each step of the refinement, but it suffices to compute it at the end. Secondly,
it shows that we need at most ω steps of refinement to reach the fixpoint.

We recall that a function f : C → C is (completely) additive if it preserves
arbitrary least upper bounds, i.e., f(

∨
B) =

∨
f(B) for any B ⊆ C.

Theorem 4. If F is a set of completely additive functions, the complete shell
S of π for F is the smallest observationally complete domain σ for F and π.

It is worth noting that, even if F is a set of additive functions, this theorem does
not imply that observational completeness and completeness are the same thing:
in Example 2 the function f is additive, yet there is an observationally complete
domain which is is not complete.

5 Conclusions and Related Work

Different kinds of completeness have been proposed in the literature. The first
notion of completeness appears in Cousot and Cousot [4]. In the same paper, the
notion of fixpoint completeness is formalized. A domain α is fixpoint complete
for a function f when it preserves the least fixpoint of f , in formulas α(lfp f) =
lfp(α ◦ f ◦ α). Cousot and Cousot have shown that complete domains are also
fixpoint complete. A detailed study on completeness and fixpoint completeness
can be found in Giacobazzi et al. [8], where the authors solve the problem of
synthesizing complete abstract domains.

Cousot and Cousot [2] introduced a different notion of completeness called
exactness. The same notion has been renamed as forward completeness (F-
completeness) by Giacobazzi and Quintarelli [7] who apply the completeness
results on model checking. Moreover, to distinguish between standard complete-
ness and F-completeness, Giacobazzi and Quintarelli renamed the former as
backward completeness (B-completeness). A domain α is F-complete for a func-
tion f when f ◦ α = α ◦ f ◦ α. Intuitively, this means that the result of any
abstract computation coincides with the result of the corresponding concrete
one, when the starting object is an abstract object.

Our notion of observational completeness differs from all the previous no-
tions (B-completeness, fixpoint completeness, F-completeness). The main point
is that, in our notion, we have two concepts of observational and computa-
tional domain and, most importantly, the observational domain is kept fixed
when refining. We believe that, in any static analysis or semantics definition,
the observable property does not change when looking for better domains. On
the contrary, B-completeness is self-referential, since the observational domain
changes when refining the domain. More precisely, given a domain π, the com-
plete shell of π for f is the least abstract domain β containing π which is ob-
servationally complete for β (and thus it is observationally complete for π).
Moreover, the self-referentiality of completeness yields some counter-intuitive

108 G. Amato and F. Scozzari

behaviors. For instance, if α is complete and β contains α, it may well hap-
pen that β is not complete even if, according to our intuition, β is “richer”
than α. This does not happen for observational completeness, where super-
sets of observationally complete domains are still observationally complete (see
Example 2).

The notion of F-completeness does not fix any observable property. This kind
of completeness is useful when we are interested in a subset of the concrete
domain closed for the application of any state-transition function.

Finally, fixpoint completeness does not take into consideration intermedi-
ates steps during the abstract computation. In fact, it is only required that
the abstract least fixpoint (computed on the abstract domain) coincides with
the abstraction of the concrete least fixpoint. Giacobazzi et al. [8] show that,
even under strong hypotheses, the existence of the least fixpoint complete do-
main containing π cannot be ensured. They show that, even if the concrete
domain is a complete Boolean algebra or a finite chain, and the concrete func-
tion f is both additive and co-additive, the least fixpoint complete domain con-
taining π does not necessarily exist. The counterexamples suggest that finding
reasonable conditions for the existence of least fixpoint complete domains is
not viable.

Other notions of completeness have been proposed for dealing with logic (see,
for instance, Cousot and Cousot [5], Schmidt [9], Dams et al. [6]). In general,
completeness problems on fragments of temporal logic are considered (covering,
preservation, strong preservation). All these notions are very different from the
other forms of completeness, since they consider only fixed logical operators,
and, in general, one is not interested in least fixpoint preservation.

As a future work, we think that observational completeness could be general-
ized, in order to be relative to an abstract domain, instead of the concrete one.
We say that a domain α is observationally complete for π and F relatively to
the domain β, when the result of any abstract computation, observed over π,
is more precise than the corresponding abstract computation on the domain β,
observed over π. Here, the novelty is that the domains α, β and π do not need
to be in any relation. Thus, the least observationally complete domain for π and
F relatively to β could be incomparable with β.

Observational completeness naturally arises once we fix the preorder ≤ on
domains, which formalizes the intuitive notion of precision. The novelty with
respect to the standard treatment of completeness is that we have two order-
ings on ucos: standard inclusion ⊇ and precision ≤. The latter is used to define
what an observationally complete domain is, while the former selects, among
observationally complete domains, the preferred one. In the complete shell con-
struction the two orderings coincide. In principle, we could change the standard
inclusion ordering, obtaining a different notion of “least” observationally com-
plete domain. For instance, we could compare two abstract domains on the base
of their cardinality or of a suitable notion of “complexity” of their abstract
objects.

Observational Completeness on Abstract Interpretation 109

References

1. Birkhoff, G.: Lattice Theory, 3rd edn., vol. XXV. AMS Colloquium Publications,
American Mathematical Society (1967)

2. Cousot, P.: Types as abstract interpretations, invited paper. In: POPL 1997: Pro-
ceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pp. 316–331. ACM Press, New York (1997)

3. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL 1977:
Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of pro-
gramming languages, pp. 238–252. ACM Press, New York (1977)

4. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: POPL
1979: Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pp. 269–282. ACM Press, New York (1979)

5. Cousot, P., Cousot, R.: Temporal abstract interpretation. In: POPL 2000: Proceed-
ings of the 27th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pp. 12–25. ACM Press, New York (2000)

6. Dams, D., Gerth, R., Grumberg, O.: Abstract interpretation of reactive systems.
ACM Transactions on Programming Languages and Systems 19(2), 253–291 (1997)

7. Giacobazzi, R., Quintarelli, E.: Incompleteness, counterexamples, and refinements
in abstract model-checking. In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp.
356–373. Springer, Heidelberg (2001)

8. Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract interpretations complete.
Journal of the ACM 47(2), 361–416 (2000)

9. Schmidt, D.A.: Comparing completeness properties of static analyses and their log-
ics. In: Kobayashi, N. (ed.) APLAS 2006. LNCS, vol. 4279, pp. 183–199. Springer,
Heidelberg (2006)

A Appendix

In some proofs we will make use of the Hausdorff’s maximality principle [1]. We
recall that a chain Y in a poset P is maximal (with respect to set inclusion)
whenever for any other chain Y ′ in P , Y ⊆ Y ′ implies Y = Y ′. The Hausdorff’s
maximal principle says that every chain in a poset P can be extended to a
maximal chain in P .

Theorem 1. If F is a set of continuous functions, than

σ = M
(⋃

{max{x ∈ C | ξ(x) ≤ a} | ξ computation and a ∈ π}
)

is the least observationally complete domain (for F and π).

Proof. First of all, we show that σ is observationally complete. We prove, by in-
duction on the length of ξ, that ξ(x) ≤ a implies ξσ(x) ≤ a for each computation
ξ and a ∈ π. If |ξ| = 0, then ξ(x) = x and ξσ(x) = σ(x). Note that σ ⊇ π since
if a ∈ π then a =

∨{x ∈ C | x ≤ a}. Hence x ≤ a implies σ(x) ≤ a. Now assume
|ξ| = i+1. If ξ(x) ≤ a, consider the poset C′ = {c ∈ C | ξ(c) ≤ a} and the chain
{x} ⊆ C′. By Hausdorff’s maximality principle there exists a maximal chain

110 G. Amato and F. Scozzari

Y ⊇ {x} which is contained in C′. Let y =
∨

Y . By continuity of ξ, we have that
ξ(y) ≤ a. Since Y is a maximal chain in C′, then y ∈ max C′. Moreover, by def-
inition of σ we have that y ∈ σ. It follows that ξ(σ(x)) ≤ ξ(y) ≤ a. If ξ = ξ1 · f ,
by inductive hypothesis ξσ(x) = ξσ

1 (f(σ(x))) ≤ a since ξ1(f(σ(x))) ≤ a.
Now we show that σ is the least observationally complete domain. Assume,

without loss of generality, that v ∈ max{x ∈ C | ξ(x) ≤ a} for some computation
ξ and a ∈ π and let ρ be a domain such that v /∈ ρ. Then, ξ(ρ(v)) �≤ a since
ρ(v) > v and by definition of v. Hence, also ξρ(v) �≤ a, which means ρ is not
observationally complete. ��
Theorem 2 (Fixpoint Preservation). Let α be observationally complete for
F and π. Then α preserves the least fixpoint of any composition of functions
from F , when observing on π. In formulas, we have that:

∀f1, . . . fn ∈ F, π(lfp(f1 ◦ . . . ◦ fn)) = π(lfp(α ◦ f1 ◦ α ◦ f2 ◦ . . . α ◦ fn ◦ α)) .

Proof. It clearly holds that

π(lfp(f1 ◦ . . . ◦ fn)) ≤ π(lfp(α ◦ f1 ◦ α ◦ f2 ◦ . . . α ◦ fn ◦ α)) ,

since α is extensive. We now show the other direction. We prove that, for any
c ∈ C and ordinal ε, it holds that

π
(∨

i∈ε(α ◦ f1 ◦ α ◦ f2 ◦ . . . α ◦ fn ◦ α)i(c)
) ≤ π

(∨
i∈ε(f1 ◦ f2 ◦ . . . ◦ fn)i(c)

)
.

Since π is an upper closure operator, it is complete for arbitrary lubs. It follows
that:

π
(∨

i∈ε(α ◦ f1 ◦ α ◦ f2 ◦ . . . α ◦ fn ◦ α)i(c)
)

=

π
(∨

i∈ε π(α ◦ f1 ◦ α ◦ f2 ◦ . . . α ◦ fn ◦ α)i(c)
)

.

Since α is observationally complete for F and π, then

π
(∨

i∈ε π(α ◦ f1 ◦ α ◦ f2 ◦ . . . α ◦ fn ◦ α)i(c)
)

=

π
(∨

i∈ε π(f1 ◦ f2 ◦ . . . ◦ fn)i(c)
)

,

which is equivalent to π
(∨

i∈ε(f1 ◦ f2 ◦ . . . ◦ fn)i(c)
)
. ��

Lemma 1. For every set F of continuous functions and every X ⊆ C, we have

M
(
R̂F (M (X))

)
= M

(
R̂F (X)

)
.

Proof. It is immediate by monotonicity of R̂F and M () that M
(
R̂F (M (X))

)

⊇ M
(
R̂F (X)

)
. For the converse inequality, since M () is an upper closure

operator on ℘(C), it is enough to prove that R̂F (M (X)) ⊆ M
(
R̂F (X)

)
. Given

Observational Completeness on Abstract Interpretation 111

y ∈ R̂F (M (X)), we have y ∈ max{x ∈ C | f(x) ≤ a} and a =
∧

i∈I ai where
f ∈ F and {ai}i∈I ⊆ X .

For each i ∈ I, consider the set Yi = max{x ∈ C | f(x) ≤ ai} ⊆ R̂F (X).
Since f(y) ≤ a ≤ ai and f is continuous, there is an yi ∈ Yi such that yi ≥ y.
We may find yi as the least upper bound of a maximal chain in Yi containing y,
which exists by Hausdorff’s maximality principle. It is enough to prove that y =∧

i∈I yi. By definition of the yi’s, we have y ≤ ∧
i∈I yi. Moreover, f(

∧
i∈I yi) ≤

f(yi) ≤ ai hence f(
∧

i∈I yi) ≤ a. Since y is a maximal element such that f(y) ≤
a, this means that y =

∧
i∈I yi. ��

Theorem 3. For every set F of continuous maps, the complete shell S of π for
F is given by

S = M
(
R̂ω

F (π)
)

.

Proof. It can be easily proved that

S = M (Gκ({�}))

for some ordinal κ, where G : uco(C) �→ uco(C) is the map

G(ρ) = M (π ∪RF (ρ)) = M
(
π ∪ R̂F (ρ)

)
.

It is enough to prove that M
(
R̂ω

F (π)
)

is a subset of S and a fixpoint of G. In

order to prove M
(
R̂ω

F (π)
)
⊆ S it is enough to show that Ri

F (π) ⊆ Gi+1({�})
for every i < ω. The proof is by induction over i. For i = 0, we have R̂0

F (π) = π ⊆
G({�}). If i = j + 1, R̂i

F (π) = R̂F (R̂j
F (π)) ⊆ R̂F (Gi({�})) ⊆ G(Gi({�})) =

Gi+1({�}). Now we prove that M
(
R̂ω

F (π)
)

is a fixpoint of G. We have that

G
(
M

(
R̂ω

F (π)
))

= M
(
π ∪ R̂F

(
M

(
R̂ω

F (π)
)))

= M
(
π ∪M

(
R̂F

(
M

(
R̂ω

F (π)
))))

= M
(
π ∪M

(
R̂F (R̂ω

F (π))
))

= M
(
π ∪

⋃
{R̂i+1

F (π) | i < ω}
)

= M
(
R̂ω

F (π)
)

.

This concludes the proof. ��

Theorem 4. If F is a set of completely additive functions, the complete shell
S of π for F is the least observationally complete domain σ for F and π.

112 G. Amato and F. Scozzari

Proof. We know that S is observationally complete, since it is complete and
contains π. It is enough to prove that if a ∈ R̂ω

F (π) and a /∈ ρ, then ρ is not
observationally complete for π and F . Assume a ∈ R̂i

F (π) and there is no j < i

such that a ∈ R̂i
F (π). It means there exist a computation ξ = 〈f1, . . . , fi〉 of

maps in F and a sequence a0, . . . , ai of objects in C such that a = ai, a0 ∈ π
and aj ∈ max{x ∈ C | fj(x) ≤ aj−1} for any j ∈ [1, . . . , i]. It immediate to check
that ξ(a) ≤ a0. We prove that ξρ(a) �≤ a0.

Note that, if f is completely additive, then max{x ∈ C | f(x) ≤ y} is a
singleton for any y ∈ C. Therefore, if max{x ∈ C | f(x) ≤ y} = {z} and x �≤ z,
then f(x) �≤ y. In our proof, this means that, for each j ∈ [1, . . . , i], x �≤ aj

implies fj(x) �≤ aj−1. Since ρ(f(x)) ≥ f(x), this also implies ρ(fj(aj)) �≤ aj−1.
Since a /∈ ρ, then ρ(a) > a, i.e. ρ(a) �≤ a, hence ξρ(a) �≤ a0. ��

	Observational Completeness on Abstract Interpretation
	Introduction
	Basic Notions of Abstract Interpretation
	Observational Completeness
	Observational Completeness and Complete Shell
	The Case of Additive Functions

	Conclusions and Related Work
	Appendix

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

