
A tool which mines partial execution traces to

improve static analysis

Gianluca Amato, Maurizio Parton, and Francesca Scozzari

Università “G. d’Annunzio” di Chieti e Pescara – Dipartimento di Scienze

Abstract. We present a tool which performs abstract interpretation
based static analysis of numerical variables. The novelty is that the anal-
ysis is parametric, and parameters are chosen by applying a variant of
principal component analysis to partial execution traces of programs.

Abstract interpretation based static analysis [5] may be used to prove run-
time properties of program variables such as “all the array indexes are contained
within the correct bounds”. It discovers assertions which hold when execution
reaches specific program points. The expressive power of assertions depends on
the particular choice of the abstract domain. The simplest abstract domain for
numerical properties is the interval domain [4], which allows assertions of the
form m ≤ x ≤ M where x is a program variable and m, M are constants.

A lot of research is devoted to explore the trade-off between precision, ex-
pressive power and computational cost of abstract domains. In this context, we
have recently proposed a family of parametric parallelotope domains [1]. They
are similar to the interval domain, except that intervals are expressed in a non-
standard basis in the vector space of variable’s values. The non-standard basis
is the parameter of the domain: given a change of basis matrix A, our domain
includes all the assertions of the form m ≤ Ax ≤ M , where x is the vector of
program variables and A is fixed for the entire analysis. When the basis is clev-
erly chosen, parallelotopes approximate the invariants with a greater precision
than intervals, as illustrated in Figures 1, 2 and 3 on a partial execution trace.

In order to find the “optimal“ basis, we propose a new technique based on a
pre-analysis of the partial execution traces of the program. First, we collect the
values of numerical variables in all the program points for different inputs. Then,
we apply to the sample data a statistical technique called orthogonal simple com-

ponent analysis (OSCA) [2], which is a variant of principal component analysis

(PCA). It finds a new orthonormal coordinate system maximizing the variance
of the collected values. More explicitly, PCA finds new axes such that the vari-
ance of the projection of the data points on the first axis is the maximum among
all possible directions, the variance of the projection of the data points on the
second axis is the maximum among all possible directions which are orthogonal
to the first axis, and so on. If we apply PCA to the values collected from partial
executions traces of the program in Figure 1, we get the new basis (x′, y′) in
Figure 3. OSCA returns an approximation of PCA such that the principal com-
ponents are proportional to vectors of small integers, a property which helps the

xyline = function(x)

{

assume(x>=0)

y=-x

while(x>y) {

y= y+1

}

}

Fig. 1. The example
program xyline.

//

OO

•

•

•

•

•

•

x

y

Fig. 2. Interval abstrac-
tion of a partial execu-
tion trace, observed at
program point ①.

//

OO

•

•

•

•

•

•

x

y

x
′

y
′

��

??

Fig. 3. Parallelotope abstrac-
tion with axes rotated by 45
degrees.

correct implementation of parallelotope operators. For the program in Figure 1,

OSCA finds the change of basis matrix
[

1 1
−1 1

]

whose columns correspond to the

axes (x′, y′) in Figure 3. Whereas the standard analysis on the interval domain
is not able to discover any invariant for the while-statement, the parallelotope
domain is able to find out that x + y = 0 and the combined analysis finds out
that x ≥ −1, y ≤ 1, x+ y = 0, at the program point ①.

1 Using the tool

We have implemented in the R programming language a tool which performs
the following steps:

1. Given a program written in an imperative fragment of the R language, the
tool instruments the program in order to collect variables’s values in all the
program points.

2. On the collected values, the tool computes the PCA (using the standard R
library), which is afterward refined to get the OSCA. The result is a matrix
which describes the (hopefully) optimal basis.

3. The tool performs a static analysis of the program using intervals, parallelo-
topes and their combination. As a result, it returns a set of assertions for
each program point.

The easiest way to use the tool is to start the R interactive environment, load
the tool and the program to analyze, and use the function compare.analyses.
When the function to analyze has no arguments, it is enough to use:

compare.analyses(<function name>)

If the function requires some arguments, we need to provide user-supplied val-
ues. These are not needed for the static analysis, but as input for the instru-
mented program. User-supplied values are passed in the second argument of

compare.analyses as a list of value assignments, where each value assignment
is a map from variable names to values. For instance, if we want to analyze the
example program xyline, using the input values 10, 20, 50 for x, we write

compare.analyses(xyline,list(list(x=10),list(x=20),list(x=50)))

Note that in R the type list is used both for lists and maps.

The result of compare.analyses is a list with five components. The first two
components are the matrices generated by PCA and OSCA. In our case:

x y x y
PC1 0.7072070 0.7070065 PC1 −1 1
PC2 −0.7070065 0.7072070 PC2 1 1

The other three components are the results of the static analyses with the do-
mains of boxes, parallelotopes and their combination. The tool returns a set of
assertions for each program point, which are generally displayed as an annotated
program.

"[y=0]"
assume(x > 0)
"[0<=x , y=0]"
y = -x
"[0<=x , y<=0]"
while ({

"[]"
x > y

}) {
"[]"
x = x - 1
"[]"
y = y + 1
"[]"

}
"[]"

"[]"
assume(x > 0)
"[]"
y = -x
"[x+y=0]"
while ({

"[x+y=0]"
x > y

}) {
"[-x+y<=0 , x+y=0]"
x = x - 1
"[-x+y<=1 , x+y=-1]"
y = y + 1
"[-x+y<=2 , x+y=0]"

}
"[0<=-x+y , x+y=0]"

"[y=0 :]"
assume(x > 0)
"[0<=x , y=0 : -x+y<=0 , 0<=x+y]"
y = -x
"[0<=x , y<=0 : -x+y<=0 , x+y=0]"
while ({

"[-1<=x , y<=1 : -x+y<=2 , x+y=0]"
x > y

}) {
"[0<=x , y<=0 : -x+y<=0 , x+y=0]"
x = x - 1
"[-1<=x , y<=0 : -x+y<=1 , x+y=-1]"
y = y + 1
"[-1<=x , y<=1 : -x+y<=2 , x+y=0]"

}
"[-1<=x<=0 , 0<=y<=1 : 0<=-x+y<=2 , x+y=0]"

The analysis with the box domain does not depend on the result of the PCA.
In this case, the analyses is not able to determine any constraints, if not the trivial
ones before the beginning of the while. For the parallelotope domain, the axes
are rotated according to the change of basis matrix in the second component, and
therefore the domain is able to express intervals of the form m ≤ −x + y ≤ M

and m ≤ x + y ≤ M . The tool shows that, at the end of the program, the
constraints 0 ≤ −x + y and x + y = 0 hold, but it cannot prove any upper
bound for −x+ y. Finally, the domain which combines boxes and parallelotopes
enhances the precision of both analyses.

The function compare.analyses takes many optional parameters which may
heavily modify the result of the analyses. For example, the parameter vars

allows to specify the list of variables to be considered during the analysis. The
standard behaviour includes all the variables in the program since, for most
domains, considering more variables (and thus more relationships) improves the
result of the static analysis. Our tool shows that, in some cases, reducing the

space of variables may considerably improve the precision of the parallelotopes
and combined domains.

For example, consider the standard bubblesort pro-
gram on the right. If we perform an analysis with the
standard parameters, the combined domain proves
that "[0<=b , 0<=j , 0<=t : 0<=b]". The re-
sult of the OSCA is the matrix

b j t tmp
PC1 0 −1 −1 1
PC2 0 1 0 1
PC3 0 −1 2 1
PC4 1 0 0 0

It is worth noting that the variable tmp is included
in the first three simple components, although it con-
tains values from the array k, hence it is not corre-
lated to the variables b, j and t which are used to
index the array.

function(k) {
b = 100
while (b>=1) {
j=1
t=0
while (j<=(b-1)) {
if (k[j]>k[j+1]) {
tmp = k[j+1]
k[j+1] = k[j]
k[j]=tmp
t=j

}
j=j+1

}
if (t==0) return(k)
b=t

}
return(k)

}

If we perform the analysis with the option vars=c("b","j","t") which ex-
cludes the variable tmp, we get the change of basis matrix:

b j t
PC1 0 1 1
PC2 0 −1 1
PC3 1 0 0

and the combined domain is able to find more precise constraints:

”[1<=b<=100 , 0<=j<=100 , 0<=t<=99 : 0<=j+t<=199 , −100<=−j+t<=0 , 1<=b<=100]”

If the result of the statistical analysis of traces is not satisfactory, the tool has
an option to provide a user-supplied change of basis matrix.

2 Implementation

The tool has been almost entirely implemented in R. This has at least three
advantages. First of all, the analyzed language is R itself, and not an ad-hoc,
artificial language. The second advantage is that we exploit metaprogramming on
R, viewing a program both as a list and a function. Finally, R is very well-suited
for statistical applications and manipulation of vectors, which are native types.
On the contrary, the main disadvantage is that the performance of the analyzer in
R is not comparable to other analyzers’, since R uses a call-by-value semantics
and is not well-suited for manipulating complex data structures. Anyway, we
believe that it is a good choice for rapid prototyping.

The program to be analyzed is instrumented by inserting, at each program
point, a call to a function which collects the values of variables. The same func-
tion can also interrupt the program after a certain number of steps. The option
whileonly considers only a single program point for each while cycle, just before
checking the while guard. From several experiments, it does not seem to make
a lot of difference.

The instrumented program is executed and the collected values are stored
in a matrix, which is fed to the native function prcomp which computes PCA.
The resulting matrix is then refined by the OSCA, that we have implemented by
scratch, since, at the best of our knowledge, there exists no available implemen-
tation. The resulting change of basis matrix is the input for the static analysis.
Since static analysis must return only correct results, we need to ensure that
numerical approximations do not introduce any error. In the case of the box
domain, it is enough to appropriately round the result of operations in such a
way that boxes are always overapproximated. To this aim, we have written a
small foreign procedure (in C language) to change the floating point rounding
mode of the CPU. For the parallelotope and combined domains, we have used
exact rational arithmetic through the GMP library. We also wrote a wrapper
library, to support infinite values.

3 Conclusion

This is the first tool which uses partial trace information for feeding a subse-
quent static analysis. The tool is still a prototype, which should be improved
in many ways. We may use techniques of code coverage to improve the qual-
ity of partial execution traces. We may partition the set of program variables
into groups and perform PCA separately on each group. We may also parti-
tion the program code itself, and perform a different PCA on each partition. As
a future work, the tool could also be extended with different statistical meth-
ods, in order to discover better bases, and with a user-friendly front-end, es-
pecially for parameter tuning. Moreover, porting the code of the parallelotope
domain to a faster programming language, possibly within some well-known
library such as APRON [6] or PPL [3], would make it available to a wider commu-
nity, while improving performance. Finally, the tool is available at the web page
http://www.sci.unich.it/~amato/random.

References

1. G. Amato, M. Parton, and F. Scozzari. Deriving numerical abstract domains via
principal component analysis. To appear in Proc. Static Analysis Symposium, 2010.

2. K. Anaya-Izquierdo, F. Critchley, and K. Vines. Orthogonal simple component
analysis: a new, exploratory approach. To appear in the Annals of Applied Statistics,
2010.

3. R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Science of Computer Programming, 72(1–2):3–21, 2008.

4. P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
Proc. Int’l Symposium on Programming, pp. 106–130, 1976.

5. P. Cousot and R. Cousot. Abstract interpretation and applications to logic pro-
grams. The Journal of Logic Programming, 13(2–3):103–179, 1992.

6. B. Jeannet and A. Miné. APRON: A library of numerical abstract domains for
static analysis. Proc. Computer Aided Verification, LNCS 5643, pp. 661–667, 2009.

