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Abstract

A classical theorem of Kervaire states that products of spheres are parallelizable if
and only if at least one of the factors has odd dimension. The versor field given by the
complex multiplication on the odd-dimensional factor gives explicit parallelizations
B (if the odd dimensions is n = 1, 3), P (for any odd n). In this paper we use B, P to
obtain orthogonal and symmetric orbits of B, P-invariant G-structures on Sm×Sn,
where G = U((m+n)/2), Sp((m+n)/4), G2, Spin(7), Spin(9). This approach leads
to an alternative description of classical structures as well as to new structures on
products of spheres.

1 Introduction

In the classical paper [Ber55], M. Berger showed that the holonomy group
of a not locally symmetric Riemannian manifold must act transitively on a
sphere. Together with the isomorphisms G2/SU(3) ' S6, Spin(7)/G2 ' S7,
this theorem gave rise to the problem, recently solved by D. Joyce, of finding
examples of compact manifolds with holonomy G2 and Spin(7) (see [Joy00],
[Joy02]).

From a general point of view, given any Riemannian manifold Md and a Lie
group G that is the stabilizer of some tensor η on Rd, that is, G = {g ∈
SO(d) : gη = η}, a G-structure on M defines a global tensor η on M , and
it can be shown that ∇η (the so-called intrinsic torsion of the G-structure)

is a section of the vector bundle W def
= T ∗ ⊗ g⊥, where so(d) = g ⊕ g⊥. The

action of G splits W into irreducible components, say W = W1 ⊕ · · · ⊕ Wk.
G-structures on M can then be classified in at most 2k classes, each class being
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given by the G-structures on M whose intrinsic torsion lifts to some subspace
Wi1 ⊕ · · · ⊕Wil of W :

Wi1 ⊕ · · · ⊕Wil
� � //W

²²
M

∇Φ

HH\\

In this framework, the holonomy condition is the most restrictive, since M
has holonomy group contained in G if and only if its intrinsic torsion is zero.

A. Gray and L. Hervella in [GH80] have considered the case G = U(n), that
is, almost Hermitian structures. The space W splits in this case into four
U(n)-irreducible components, that give rise to exactly sixteen classes of al-
most Hermitian manifolds. Afterwards, M. Fernandez and Gray in [FG82]
have treated the case G = G2, and Fernandez in [Fer86] the case G = Spin(7).
In the former case, the G2-irreducible components of W are four, giving rise
to at most sixteen classes of G2-manifolds, of which only nine was shown in
[FG82] to be distinct; in the latter case, the Spin(7)-irreducible components of
W are two, giving rise to exactly four classes of Spin(7)-manifolds. F. Cabrera
(see [Cab95a] and [Cab96]) completed and refined the G2 and Spin(7) classi-
fication: in particular, he showed that there are exactly fifteen distinct classes
in the G2 case (for connected manifold), and using the fact that the intrinsic
torsion depends only on dη and d ∗ η, for the G2 case, and only on dη, for the
Spin(7) case (see [Sal89]), he gave an alternative characterization of each class.
For instance, a G2-structure belongs to the class W4 if and only if there exists
a closed 1-form τ such that dη = 3τ ∧η and d∗η = 4τ ∧η; a Spin(7)-structure
belongs to the class W2 if and only if there exists a closed 1-form τ such that
dη = τ ∧ η (these are the locally conformal parallel structures).

The following table (compare with [Sal00]) summarizes the situation (the
weird G2 and Spin(7) forms depend on the choice of the representation of
G2 and Spin(7) on R7 and R8 respectively):

d Φ G k # of classes

2n Kähler form U(n) 4 16

7 locally:
∑

i∈Z7

ei,i+1,i+3 G2 4 15

8 locally: λ ∧ ∑

i∈Z7

ei,i+1,i+3 − ∑

i∈Z7

ei,i+2,i+3,i+4 Spin(7) 2 4

At first, also Spin(9) appeared in Berger’s list; but D. Alekseevskij proved (see
[Ale68]) that any complete 16-dimensional Riemannian manifold with holon-
omy group contained in Spin(9) is either flat or isometric to the Cayley plane
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F4/Spin(9) or its noncompact dual. The study of Spin(9)-structures has been
then neglected until December 1999, when T. Friedrich in [Fri01] pointed out
that this is one of the three cases in which there is a notion of weak holon-
omy different from the classical notion of holonomy, the other two being U(n)
and G2. He started then to study such weak holonomy structures, developing
a classification of Spin(9)-structures on sixteen-dimensional manifolds. This
classification starts from the remark that the intrinsic torsion of a Spin(9)-
structure can be replaced by a 1-form Γ taking values in Λ3(V 9), for a suitable
defined vector bundle V 9 locally spanned by 9 auto-adjoint, anti-commuting
real structures. The key point is that with this replacement one does not lose
any information about the geometric type of the original Spin(9)-structure.
The same point of view could be used to study G2 and Spin(7)-structures,
but it is especially useful for Spin(9)-structures, since the definition of the
Spin(9)-invariant 8-form given in [BG72] is not easy to handle.

Since a product of spheres is parallelizable whenever one of its factors has odd
dimension, it can in that case be equipped of any G-structure compatible with
the dimension, and the properties of this structures depend on the choice of
the parallelization.

In this paper the parallelizations B and P on Sm × Sn, odd n, defined in
[Par01a], are used to obtain G-structures where G = U((m + n)/2), if both
the dimensions are odd, G = Sp((m + n)/4), if both the dimensions are odd
and m + n = 0 mod 4, G = G2, Spin(7), Spin(9) on the 7-dimensional, 8-
dimensional, 16-dimensional products Sm × Sn respectively. Their orbits by
the symmetric group Sm+n and by the orthogonal group O(m + n) are then
studied.

These results were announced in [Par01b].

Theorems 26, 28 show that isotopic almost complex structures are not neces-
sarily isomorphic.

The symmetric orbits Sm+3(IB, JB, KB) on Sm×S3 and Sm+n(IP , JP , KP) on
Sm×Sn, m+n = 0 mod 4, provide examples of non-integrable hyperhermitian
structures (corollary 29), and the symmetric orbits S7ϕB, S8φB on S4 × S3,
S5×S3 respectively, S7ϕP , S8φP on Sm×Sn, (n odd) m+n = 7, 8 respectively,
provide examples of G2 and Spin(7)-structures of general type (theorem 30).

The following theorems were conjectured using experimental data obtained by
a computer calculation, and then proved by classical arguments: 3, 16, 26, 28,
34.

Since #(S7 ∩ G2) = 21 and #(S8 ∩ Spin(7)) = 168, the symmetric orbits
S7ϕ and S8φ contains both 7!/21 = 8!/168 = 240 different structures. This
remark is useful to obtain an efficient implementation of all the computation
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involved in theorems 17, 30.

spheres (n odd) G frame orbit see

Sm × S1
m+1≡20 U(m+1

2
) B O(m + 1)IB theorem 32

Sm × S1
m+1≡40 Sp(m+1

4
) B O(m + 1)(IB, JB, KB) theorem 33

S6 × S1 G2 B O(7)ϕB theorems 11, 22, 33

S7 × S1 Spin(7) B O(8)φB theorems 11, 22, 33

S15 × S1 Spin(9) B O(16)ΦB theorems 23, 24, 33

Sm × S3
m+3≡20 U(m+3

2
) B Sm+3IB theorem 28

Sm × S3
m+3≡40 Sp(m+3

4
) B Sm+3(IB, JB, KB) corollary 29

S4 × S3 G2 B S7ϕB theorems 17, 30

S5 × S3 Spin(7) B S8φB theorems 17, 30

Sm × Sn
m+n≡20 U(m+n

2
) P Sm+nIP theorems 3, 26, 27

Sm × Sn
m+n≡40 Sp(m+n

4
) P Sm+n(IP , JP , KP) corollary 29

Sm × Sn
m+n=7 G2 P S7ϕP theorems 17, 30

Sm × Sn
m+n=8 Spin(7) P S8φP theorems 17, 30

S6 × S1 G2 P O(7)ϕP theorems 16, 34

An index of the results in the paper.

2 Preliminaries

Recall the definitions of the frames B and P on Sm× Sn, odd n (see [Par01a]
for more details). Denote by x = (xi), y = (yj) the coordinates on Rm+1, Rn+1

and let Sm, Sn be the unit spheres in Rm+1, Rn+1 respectively. Look first to
the cases n = 1, 3. The frame {|x|∂xi

}i=1,...,m+1 on Rm+1r 0 is projectable for
the universal covering map Rm+1r0 → Sm×S1 given by p(x) = (x/|x|, log |x|
mod 2π), hence it defines a parallelization B on Sm × S1. The Hopf fibration
of S3 then gives a frame on Sm × S3, that is still denoted by B.

In the general case the complex multiplication in C(n+1)/2 = Rn+1 induces

a tangent versor field T
def
=

∑n+1
j=1 tj∂yj

on Sn. Also, let {Mi}i=1,...,m+1 and
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{Nj}j=1,...,n+1 be the meridian vector fields on Sm and Sn respectively, i. e.

Mi
def
= orthogonal projection of ∂xi

on Sm i = 1, . . . , m + 1,

Nj
def
= orthogonal projection of ∂yj

on Sn j = 1, . . . , n + 1.

Denote by P the parallelization on Sm × Sn given by the vector fields

pi
def
= Mi + xiT i = 1, . . . , m− 1,

pm−1+j
def
= yjMm + tjMm+1 + (tjxm+1 + yjxm − tj)T + Nj j = 1, . . . , n + 1.

(1)

The frames B and P (the first defined only for n = 1, 3) are orthonormal with
respect to the product metric on Sm×Sn. Since we are going to consider only
subgroups of the orthogonal group, then all the G-structures we look at in
this paper are compatible with this metric.

The following table gives the relation between P and B when n = 1, 3:

n = 1 n = 3

P = B




0 0

Im−1
...

...

0 0

0 · · · 0 y1 y2

0 · · · 0 −y2 y1




P = B




0 0 0 0

Im−1
...

...
...

...

0 0 0 0

0 · · · 0 y1 y2 y3 y4

0 · · · 0 −y2 y1 −y4 y3

0 · · · 0 −y3 y4 y1 −y2

0 · · · 0 −y4 −y3 y2 y1




(2)

The following are the structure equations, where τ is given by

τ =
m+1∑

i=1

xib
i =

m−1∑

i=1

xip
i + (xmy1 − xm+1y2)p

m + (xmy2 + xm+1y1)p
m+1.

Note that the general formulas for P , n ≥ 3, are really complicated also to
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write down, and are therefore put at the end of the paper.

n = 1 n = 3

B dbi = τ ∧ bi, i = 1, . . . , m + 1

dbi = bi ∧ τ + 2xib
m+2 ∧ bm+3, i = 1, . . . , m + 1

dbm+2 = 2bm+3 ∧ τ

dbm+3 = −2bm+2 ∧ τ

P
dpi = pi ∧ τ, i = 1, . . . , m− 1

dpm = pm ∧ τ + pm+1 ∧ τ

dpm+1 = pm+1 ∧ τ − pm ∧ τ

see the general formula (A.1)

(3)

3 Almost Hermitian and hyperhermitian structures

Let m, n be odd. Let C def
= {c1, . . . , cm+n} be an ordered orthonormal basis of

an Euclidean vector space V m+n. The Hermitian structure IC on V associated

to C is given by IC(c2i−1)
def
= c2i, i = 1, . . . , (m + n)/2. One thus obtain almost

Hermitian structures IB and IP on Sm × Sn, the former only defined when
n = 1, 3.

The same way, if m, n are odd and m + n = 0 mod 4, there are besides IC
the Hermitian structures JC, KC given by

JC(c4i−3)
def
= c4i−1

JC(c4i−2)
def
= −c4i

KC(c4i−3)
def
= c4i

KC(c4i−2)
def
= c4i−1

i = 1, . . . , (m + n)/4.

The identity ICJC = −JCIC shows that (IC, JC, KC) is a hyperhermitian struc-
ture on V , that is referred to as the hyperhermitian structure associated to C.
One thus obtain almost hyperhermitian structures (IB, JB, KB) and (IP , JP , KP)
on Sm × Sn, the former only defined when n = 1, 3.

We shall often forget to state “[. . . ]where m, n are odd and m + n = 0
mod 4[. . . ]” and other similar conditions. Thus we here agree that whenever
we write a statement about a product of two spheres then: (1) the right sphere
has odd dimension, also if not specified; (2) all conditions necessary to make
sensate the statement hold. For instance, the statement in proposition 4 “The
almost hyperhermitian structures [. . . ] on Sm×S3 [. . . ]” become “Let m+3 = 0
mod 4. The almost hyperhermitian structures [. . . ] on Sm × S3 [. . . ]”.

The definition of B on Sm × S1 gives the following remark:
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Remark 1 The almost Hermitian structure IB and the almost hyperhermitian
structure (IB, JB, KB) on Sm × S1 coincide respectively with the Hopf Hermi-
tian structure Ie2π and with the Hopf hyperhermitian structure (Ie2π , Je2π , Ke2π)
induced by the multiplication by e2π.

Since the left-side matrix in formula (2) belongs to U((m + 1)/2), but not to
Sp((m + 1)/4), the following remark does not hold in the almost hyperhermi-
tian case:

Remark 2 The almost Hermitian structure IP on Sm× S1 coincide with the
Hopf Hermitian structure Ie2π induced by the multiplication by e2π.

On each product Sm×Sn of two odd-dimensional spheres is defined a family of
Calabi–Eckmann complex structures, parametrized by the moduli space of the
torus S1×S1 (see [CE53]). The Calabi–Eckmann complex structure on Sm×Sn

given by the non-real complex number τ is defined as follows: denote by S, T
the versor field given by the complex multiplication on Sm, Sn respectively,
and remark that the complex Hopf fibration induces a complex structure on
their orthogonal complement (with respect to the product metric); then map
S into Re τS + ImτT .

Only τ = ±i gives thus Calabi–Eckmann Hermitian structures: here and
henceforth, denote by Im,n the Calabi–Eckmann Hermitian structure on Sm×
Sn given by τ = −i. Therefore, Im,n(T ) = S. It is well-known that Calabi–
Eckmann complex structures are a generalization of Hopf complex structures:
in particular, using our notation, Im,1 = Ie2π .

The following theorem was already proved in [Par01b]:

Theorem 3 Let m, n ≥ 1 be odd. Then the Calabi–Eckmann Hermitian
structure Im,n on Sm×Sn coincide with the almost Hermitian structure IP on
Sm × Sn associated to P.

Using the previous theorem and the fact that the right-side matrix in formula
(2) belongs to U((m + 3)/2) and also to Sp((m + 3)/4), one obtains:

Proposition 4 The almost Hermitian structure IB on Sm×S3 coincide with
the Calabi–Eckmann Hermitian structure Im,3. The almost hyperhermitian
structures (IB, JB, KB) and (IP , JP , KP) on Sm × S3 coincide.

The following theorem is a particular case of corollary 29 and is stated here
for completeness:

Theorem 5 On Sm × Sn, for m, n odd and m + n = 0 mod 4, the almost
hyperhermitian structure (IP , JP , KP) is non-integrable.
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· 1 e1 e2 e3 e4 e5 e6 e7

1 1 e1 e2 e3 e4 e5 e6 e7

e1 e1 −1 e4 e7 −e2 e6 −e5 −e3

e2 e2 −e4 −1 e5 e1 −e3 e7 −e6

e3 e3 −e7 −e5 −1 e6 e2 −e4 e1

e4 e4 e2 −e1 −e6 −1 e7 e3 −e5

e5 e5 −e6 e3 −e2 −e7 −1 e1 e4

e6 e6 e5 −e7 e4 −e3 −e1 −1 e2

e7 e7 e3 e6 −e1 e5 −e4 −e2 −1

Fig. 1. Multiplication table of the Cayley numbers.

4 Algebraic preliminaries: structures related to the octonions

Call {e1, . . . , e7} the standard basis of R7, and {e1, . . . , e7} the corresponding
dual basis. Let R8 = R⊕R7. Then the standard basis of R8 is {1, e1, . . . , e7}.
Call {λ, e1, . . . , e7} the corresponding dual basis, with an obvious misuse of
notation. LetO be the non-associative normed algebra of Cayley numbers, that
is, R8 equipped with the standard scalar product 〈·, ·〉, and with multiplicative
structure defined by (see [BG72]) e2

i = −1, eiej = −ejei and eiei+1 = ei+3 for
all cyclic permutation of {i, i + 1, i + 3}, where indices run in Z7.

The multiplication table of O is given in figure 1.

Remark 6 The standard quaternion subalgebra H of O is generated by 1, e1,
e2, e4. This choice is made (following for instance [BG72], [Gra77], [Mar81a],
[FG82] or [Cab97]) in order to have a simpler definition of the forms asso-
ciated to the G2 and Spin(7)-structures, to be considered on our products of
spheres. An orthonormal basis {1, e1, . . . , e7} of O satisfying the previous rela-
tions is called in many different ways: a Cayley basis (see [FG82], [Cab95a],
[Cab95b], [Cab96] or [Cab97]), or also an adapted basis (see [Mar81a] or
[Mar81b]) or again a canonical basis (see [BG72]). Last, some authors use the
more classical (though more asymmetric) multiplication table given by choos-
ing {1, i, j, k, e, ie, je, ke} in place of {1, e1, . . . , e7} (see [Mur89], [Mur92],
[CMS96] or [FKMS97]).

The 3-form ϕ on R7 = Im(O) defined by ϕ(x, y, z)
def
= 〈x, yz〉 can be computed

using the table in figure 1:

ϕ =
∑

i∈Z7

ei,i+1,i+3. (4)

Remark that G2 is the stabilizer in GL(8) of ϕ. Thus, if C is any ordered
orthonormal basis on an Euclidean vector space V of dimension 7, the above
equation defines a G2-structure ϕC on V associated to C.
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Denote by ∗ the Hodge star operator on (R8, 〈·, ·〉), where the positive ori-
entation is given by {1, e1, . . . , e7}. Since {1, e1, . . . , e7} is orthonormal, one
obtains

∗(λ ∧ ϕ) = − ∑

i∈Z7

ei+2,i+4,i+5,i+6 = − ∑

i∈Z7

ei,i+2,i+3,i+4. (5)

Define the 4-form φ on R8 by φ
def
= λ∧ϕ+∗(λ∧ϕ). Using (4) and (5) one gets

φ = λ ∧ ∑

i∈Z7

ei,i+1,i+3 − ∑

i∈Z7

ei,i+2,i+3,i+4. (6)

The Lie group Spin(7) is the stabilizer of φ, thus if C is any ordered orthonor-
mal basis on an Euclidean vector space V of dimension 8, the above equation
defines a Spin(7)-structure φC on V associated to C.

5 G2 and Spin(7)-structures

A G2-structure on a seven-dimensional manifold M is a reduction of the struc-
ture group GL(7) to G2. Since G2 ⊂ SO(7), a G2-structure induces a metric.

Since G2 is the stabilizer of ϕ, a G2-structure gives a canonical identification
of each tangent space with R7, in such a way that the local 3-form defined by
(4) is actually global. Vice versa, if there exists on M a global 3-form that
can be locally written as in (4), then M admits a G2-structure. Hence, the
G2-structure is often identified with the 3-form.

Analogous statements hold for Spin(7)-structures: a Spin(7)-structure on an
eight-dimensional manifold M is a reduction of the structure group GL(8) to
Spin(7) ⊂ SO(8). Since Spin(7) is the stabilizer of φ, a Spin(7)-structure on
M is often identified with a global 4-form that can be locally written as φ.

Definition 7 Let M be a seven, eight-dimensional manifold with a G2, Spin(7)-
structure respectively. Let ϕ be its structure differential form and ∇ the Levi–
Civita connection of the metric defined by ϕ. The structure is then said to
be: parallel if ∇ϕ = 0; locally conformal parallel if ϕ is locally conformal
to local structures ϕα, which are parallel with respect to the local Levi–Civita
connections they define.

A G2-structure is parallel if and only if dϕ = d∗ϕ = 0, and a Spin(7)-structure
is parallel if and only if dφ = 0 ([Sal89]). This facts can be used to characterize
locally conformal parallel G2 and Spin(7)-structures:

Theorem 8 A G2-structure ϕ on M7 is locally conformal parallel if and only
if there exists a closed τ ∈ Ω1(M) such that dϕ = 3τ ∧ ϕ, d ∗ ϕ = 4τ ∧ ∗ϕ.

9



A Spin(7)-structure φ on M8 is locally conformal parallel if and only if there
exists a closed τ ∈ Ω1(M) such that dφ = τ ∧ φ.

PROOF. Let ϕ be a locally conformal parallel G2-structure. Then for each
x ∈ M , there exist a neighborhood U of x and a map σ : U → R such that

the local G2-structure ϕU
def
= e−3σϕ|U is parallel with respect to its local Levi–

Civita connection. One then obtains dϕU = d ∗U ϕU = 0, where ∗U is the
local Hodge star-operator associated to ϕU , and using these relations together
with e4σ∗U = e3σ∗, one obtains dϕ|U = 3dσ ∧ ϕ|U , d ∗ ϕ|U = 4dσ ∧ ∗ϕ|U . The
closed 1-form τ locally defined by dσ is easily seen to be global. The reverse
implication is obtained the same way, once observed that since τ is closed
then there exist local maps σ : U → R such that τ|U = dσ. A similar argument
proves the Spin(7) case. 2

Remark 9 Let ϕ be a G2 or a Spin(7)-structure. Using the local expression
of ϕ, it can be shown that α ∧ ϕ = 0 if and only if α = 0, for any 2-form
α on M . This means that the requirement of τ to be closed in the previous
theorem can be dropped. Moreover, one can also modify the statement: in the
G2 case “[. . . ] if and only if there exist α, β ∈ Ω1(M) such that dϕ = α ∧ ϕ,
d∗ϕ = β∧∗ϕ”, and then prove that −4α = −3β = ∗(∗dϕ∧ϕ); in the Spin(7)
case “[. . . ] if and only if there exist α ∈ Ω1(M) such that dφ = α ∧ φ” and
then prove that −7α = ∗(∗dφ ∧ φ).

Remark 10 A parallel G2 or Spin(7)-structure on a compact M gives a non-
trivial element in 3 or 4-dimensional cohomology respectively (see [Bon66]).

Let ϕB, φB be the G2, Spin(7)-structure on S6 × S1, S7 × S1 respectively
associated to B, that is,

ϕB
def
=

∑

i∈Z7

bi,i+1,i+3, φB
def
= b8 ∧ ∑

i∈Z7

bi,i+1,i+3 − ∑

i∈Z7

bi,i+2,i+3,i+4.

Theorem 11 ϕB and φB are locally conformal parallel. The local parallel
structures are induced by ϕ, φ by p : Rm+1 r 0 → Sm × S1, for m = 6, 7 re-
spectively.

PROOF. The 3-form ϕ =
∑

i∈Z7
dxi∧dxi+1∧dxi+3 is parallel, and on R7r 0

it is globally conformal to the p-invariant 3-form

ϕ′ =
1

|x|3
∑

i∈Z7

dxi ∧ dxi+1 ∧ dxi+3.

Observe that R7 r 0 is locally diffeomorphic to S6 × S1, and that ϕ′ induces
ϕB, to end the proof in the G2 case. The Spin(7) case is similar. 2
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Remark 12 By remark 10, S6 × S1 and S7 × S1 have no parallel G2 and
Spin(7)-structures.

Remark 13 Since B is orthonormal, the metric induced on S6×S1, S7×S1

by means of ϕB, φB is the product metric.

The same construction can be applied to seven and eight-dimensional products
of spheres equipped with the frame P . On S4×S3, S5×S3 also the frame B is
available. One obtains G2 and Spin(7)-structures of general type. The rest of
this section is devoted to recall what G2 and Spin(7)-structures of general type
are. We do the discussion in the G2 case, pointing out the main differences
with the Spin(7) case.

Look at ∇ϕ as belonging to Ω1(Λ3M) = Γ(T ∗M ⊗ Λ3M). The G2-structure
allows one to identify each tangent space with the standard 7-dimensional
orthogonal representation of G2. The induced action of G2 splits each fiber
of T ∗M ⊗ Λ3M into irreducible components, giving rise to a splitting of
T ∗M ⊗ Λ3M , and if ∇ϕ lifts to a particular component of this splitting,
one says that ϕ belongs to the corresponding particular class. Actually, due to
special properties of ϕ, it can be shown that ∇ϕ lifts always to a G2-invariant
subbundle W of T ∗M ⊗ Λ3M :

W � � //

&&NNNNNNNNNNNN T ∗M ⊗ Λ3M

²²
M∇ϕ

[[

As a consequence, the above splitting must be done on fibers of W . The irre-
ducible components of W turn out to be four, and they are classically denoted
by W1, W2, W3, W4 for the components of rank 1, 14, 27, 7 respectively. The
G2-structure ϕ is then said of type Wi1⊕· · ·⊕Wil if ∇ϕ lifts toWi1⊕· · ·⊕Wil :

Wi1 ⊕ · · · ⊕Wil
� � //W

²²
M

∇ϕ

HH\\

In the Spin(7) case the irreducible components are only two, of rank 48 and
8. The Spin(7)-structure φ is said of type W1, W2 if ∇φ lifts to W1, W2

respectively:
W1

� � //W

²²

W2_?
oo

M

∇φ

HHSS KK

For more details, see [FG82] and [Fer86].

Definition 14 If ∇ϕ does not lift to any between W1⊕W2⊕W3, W1⊕W2⊕
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W4, W1 ⊕ W3 ⊕ W4, W2 ⊕ W3 ⊕ W4 then the G2-structure ϕ is said to be
of general type. If ∇φ does not lift to neither W1 nor W2 then the Spin(7)-
structure φ is said to be of general type.

In [FG82], [Fer86] the irreducible components of W are explicitly given, but
the defining relations are rather complicated. These relations can be simplified
by looking at opportune G2 and Spin(7)-equivariant maps. This is done in
[Cab95a], [Cab96]. Here is a list of the resulting simplified relations restricted
to the ones that will be useful in the following:

Theorem 15 ([Cab95a], [Cab96]) A G2-structure ϕ on a manifold M is
of type:

• W4 if and only if there exist α, β ∈ Ω1(M) such that dϕ = α ∧ ϕ and
d ∗ ϕ = β ∧ ∗ϕ (this class is needed in section 6);

• W1 ⊕W2 ⊕W3 if and only if (∗dϕ) ∧ ϕ = 0;
• W1⊕W2⊕W4 if and only if there exist α ∈ Ω1(M), f ∈ C∞(M) such that

dϕ = α ∧ ϕ + f ∗ ϕ;
• W1⊕W3⊕W4 if and only if there exists β ∈ Ω1(M) such that d∗ϕ = β∧∗ϕ;
• W2 ⊕W3 ⊕W4 if and only if dϕ ∧ ϕ = 0.

A Spin(7)-structure φ on a manifold M is of type:

• W1 if and only if (∗dφ) ∧ φ = 0;
• W2 if and only if there exists α ∈ Ω1(M) such that dφ = α ∧ φ.

Therefore, to check that a given G2 or Spin(7)-structure is of general type,
one must verify that none of the above relations is satisfied.

Theorem 16 The G2-structure ϕP associated to the frame P on S6 × S1 is
of general type.

PROOF. The 3-form ϕP and the 4-form ∗ϕP are given by

ϕP =
∑

i∈Z7

pi,i+1,i+3, ∗ϕP = − ∑

i∈Z7

pi,i+2,i+3,i+4.

Using formulas (3) for P and n = 1 one obtains

dϕP = 3ϕP ∧ τ − (p6,1,3 + p4,5,6 − p3,4,7 − p5,7,1) ∧ τ,

d ∗ ϕP = −4 ∗ ϕP ∧ τ − (p7,1,3 + p4,5,7 + p3,4,6 + p5,6,1) ∧ p2 ∧ τ.

A computation then shows that no relation of the previous theorem is satisfied,
and ϕP is of general type. 2

The same result holds for seven and eight-dimensional product of spheres
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equipped with the frame P , and for S4 × S3, S5 × S3 with the frame B; but
computation, being based on the general formulas (A.1), is much harder than
before. Therefore, the following theorem was proved by a computer calculation:

Theorem 17 The G2-structures associated to the frames B and P on S4×S3

and to the frame P on S2 × S5 are of general type. The Spin(7)-structures
associated to the frame P on S7 × S1, to the frames B and P on S5 × S3 and
to the frame P on S3 × S5 are of general type.

6 Relations among the structures

A unified treatment of G2 and Spin(7)-structures can be done by means of the
vector cross product notion. A beautiful reference is [Gra69].

Definition 18 Let (V, 〈·, ·〉) be an n-dimensional Euclidean vector space. An
r-linear map P : V r → V (1 ≤ r ≤ n) is an r-fold vector cross product on V
if P (v1, . . . , vr) is orthogonal to v1, . . . , vr and 〈P (v1, . . . , vr), P (v1, . . . , vr)〉 =
det(〈vi, vj〉).

In [BG67] vector cross products together with their automorphism groups
are classified. Two of the four classes are strictly related to G2 and Spin(7)-
structures:

Proposition 19 ([Gra69, Proposition 2.2]) A manifold M has a vector
cross product of class (III), (IV) if and only if it has a G2, Spin(7)-structure
respectively.

In what follows we need the following corollary of theorems 8, 15:

Corollary 20 A G2-structure ϕ is of type W4 if and only if ϕ is locally con-
formal parallel. A Spin(7)-structure φ is of type W2 if and only if φ is locally
conformal parallel.

The following theorem defines new vector cross products from old:

Theorem 21 ([Gra69, Theorem 2.6]) Let M be an oriented hypersurface
of M̄ , and let N be its unit normal vector field. Let P̄ a differentiable (r + 1)-

fold vector cross product on M̄ . Then the map P given by P (X1, . . . , Xr)
def
=

P̄ (N,X1, . . . , Xr) where X1, . . . , Xr ∈ X(M), defines a vector cross product
on M .

Let us now describe how all these pieces collect together to give a Spin(7)-
structure on S7 × S1 and a G2-structure on S6 × S1. Firstly, use previous
theorem with the Spin(7)-structure φ on R8 to obtain a G2-structure ϕS7 on
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S7, that is described in [FG82]. Then the 4-form φS7×S1 on S7 × S1 defined

by φS7×S1
def
= dθ∧ϕS7 + ∗ϕS7 is a locally conformal parallel Spin(7)-structure.

(see [Cab95a] and use corollary 20). Using theorem 21 and proposition 19 one
obtains a G2-structure ϕS6×S1 on S6 × S1 ⊂ S7 × S1, which turns out to be
locally conformal parallel ([Cab97, Theorem 4.4] and corollary 20).

We now prove that ϕS6×S1 and φS7×S1 are structures associated to B:

Theorem 22 The locally conformal parallel structures φS7×S1, ϕS6×S1 coin-
cide with φB, ϕB respectively.

PROOF. Since p : R8 r 0 → S7 × S1 is a local diffeomorphism and p∗(φB) =
|x|−4φ, we are left to prove p∗(φS7×S1) = |x|−4φ. Consider the versor field

N
def
= |x|−1(x1∂x1 + · · · + x8∂x8) on R8 r 0 and its dual 1-form n ∈ Ω1(R8 r

0). Then a straightforward computation gives p∗(φS7×S1) = |x|−4(n ∧ iNφ +
∗(n ∧ iNφ)), and since the action of Spin(7) on S7 is transitive, one obtains
n ∧ iNφ + ∗(n ∧ iNφ) = φ. This completes the proof of the statement about
Spin(7). To complete the proof, choose the embedding S6 × S1 ⊂ S7 × S1

given by x8 = 0. The normal vector field is then ∂x8 = b8, and one obtains
ϕS6×S1 = i∂x8

φS7×S1 = ib8φB = ϕB. 2

7 Spin(9)-structures

A Spin(9)-structure on a sixteen-dimensional manifold M is a reduction of the
structure group of M to Spin(9) ⊂ SO(16).

In [BG72] it is shown that Spin(9) is the stabilizer of a Spin(9)-invariant 8-form
Φ ∈ Λ8(R16). This allows one to think a Spin(9)-structure on M16 as a global
8-form that can be locally written as Φ. In particular, on any parallelizable
M16, an explicit parallelization gives such a global 8-form. Therefore one can
define Spin(9)-structures on S15 × S1, S13 × S3, S11 × S5, S9 × S7, S7 × S9,
S5 × S11, S3 × S13, S1 × S15 associated to the frames P , B and denoted by
ΦP , ΦB.

Theorem 23 The Spin(9)-structure on S15 × S1 given by ΦB is locally con-
formal parallel. The local parallel Spin(9)-structures are induced by Φ by p :
R16 r 0 → S15 × S1.

PROOF. It follows by the fact that |x|−8Φ is p-invariant, globally conformal
to Φ, and induces ΦB. 2
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Unfortunately, the 8-form Φ is not easy to handle, and this is probably one of
the reasons why a Gray–Hervella-like classification of Spin(9)-structures was
lacking until [Fri01].

In what follows, the construction given in [Fri01] is briefly described. Let R be
a Spin(9)-structure on a 16-dimensional Riemannian manifold M16, and de-
note by F(M) the principal orthonormal frame bundle. ThenR is a subbundle
of F(M):

R � � //

!!CC
CC

CC
CC

F(M)

{{wwwwwwww

M

The Levi–Civita connection Z : T (F(M)) → so(16) = spin(9)⊕ spin(9)⊥

restricted to T (R) decomposes into Z∗ ⊕ Γ, where Z∗ is a connection in
the principal Spin(9)-fibre bundle R, and Γ ∈ Ω1(R ×Spin(9) spin(9)⊥) =

Ω1(Λ3(V )), where V = V 9 def
= R ×Spin(9) R9. The irreducible components of

Λ1(M) ⊗ Λ3(V ) are described in [Fri01]. In particular, one component is the
16-dimensional representation Λ1(M), that defines the nearly parallel Spin(9)-
structures. The action of Spin(9) on S15 is transitive, with isotropy subgroup
Spin(7), and this allows to define the principal Spin(7)-fibre bundle RS15×S1

Spin(9) × S1 → S15 × S1, that in [Fri01] is shown to be actually a nearly
parallel Spin(7) ⊂ Spin(9)-structure on S15 × S1.

Theorem 24 The nearly parallel Spin(9)-structure RS15×S1 and the locally
conformal parallel Spin(9)-structure ΦB on S15 × S1 are the same.

PROOF. Consider the following diagram of Spin(7) ⊂ Spin(9)-structures:

Spin(9)× R+ //

R′
²²

Spin(9)× S1

R
²²

R16 r 0
α // Spin(9)

Spin(7)
× R+ β // Spin(9)

Spin(7)
× S1

where α(x) = (x/|x|, |x|) and β([g], ρ) = ([g], log ρ mod 2π). Then β ◦ α =
p : R16 r 0 → S15 × S1 and the map α−1 ◦ R′ : Spin(9) × R+ → R16 r 0
is a Spin(7) ⊂ Spin(9)-structure on R16 r 0. The pull-back (β ◦ α)∗ΦB ∈
Ω8(R16 r 0) gives by definition the admissible frame {|x|∂x1 , . . . , |x|∂x16}. A
direct computation shows that this frame is admissible also for α−1 ◦ R′. 2

15



8 Orthogonal and symmetric orbits

The representations of Sm+n and O(m + n) on Rm+n give symmetric and
orthogonal orbits of G-structures on Sm × Sn. In this section we describe the
following orbits:

• Sm+nIP , Sm+n(IP , JP , KP) on Sm×Sn; S7ϕP on S6×S1, S4×S3, S2×S5;
S8φP on S7 × S1, S5 × S3, S3 × S5, S1 × S7;

• Sm+3IB, Sm+3(IB, JB, KB) on Sm×S3; S7ϕB on S4×S3; S8φB on S5×S3;
• O(m + 1)IB, O(m + 1)(IB, JB, KB) on Sm×S1; O(7)ϕB on S6×S1; O(8)φB

on S7 × S1; O(16)ΦB on S15 × S1;
• O(7)ϕP on S6 × S1.

8.1 The symmetric orbit

The following is a particular case of theorem 32:

Lemma 25 All almost Hermitian structures on Sm × S1 in Sm+1IB are bi-
holomorphic to the Hopf Hermitian structure Ie2π .

The following theorem splits the symmetric orbit of almost Hermitian struc-
tures associated to P in integrable and non-integrable ones:

Theorem 26 Let m, n be odd. An almost Hermitian structure I ∈ Sm+nIP
on Sm × Sn is integrable if and only if

I(pm−1+j) = ±pm+j j odd, j = 1, . . . , n + 1, (7)

where the sign is the same for all j.

PROOF. Firstly, the if part. Taking −I in case, one can suppose all signs
in (7) to be positive. Suppose I = πIP for an element π of Sm+n. Then
there exist a set of (n + 1)/2 pairs of elements of {1, . . . ,m + n} of the form
(odd, odd+1) which is invariant for π, and this gives π̃ ∈ Sm+1, where π̃(m) =
m, π̃(m + 1) = m + 1. Let S1 be the fiber of the Hopf fibration of Sn, and
consider the frame B = {b1, . . . , bm+1} on Sm × S1. Writing B in the basis P
we obtain πIP(bm) = bm+1, hence πIP coincide with π̃IB on Sm × S1. Then
lemma 25 implies that πIP is integrable on Sm × S1.

Define the versor field π̃(S) on Sm by π̃(S)
def
= −xπ̃(2)∂xπ̃(1)

+ xπ̃(1)∂xπ̃(2)
+

· · · − xπ̃(m+1)∂xπ̃(m)
+ xπ̃(m)∂xπ̃(m+1)

. Let S1 be the orbit of π̃(S) in Sm, and let

B̃ = {b̃1, . . . , b̃n+1} be the frame on S1 × Sn given by b̃j
def
= Nj − yjπ̃(S), j =
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1, . . . , n+1. One obtains Nj−yjπ̃(S) = pm−1+j−yjbm−tjbm+1 +tjT −yjπ̃(S).
Then, using the fact that πIP(T ) = π̃(S), we get πIP(b̃j) = b̃j+1 for odd
j = 1, . . . , n+1. Namely, πIP coincide with IB̃ = Ie2π on S1×Sn, and it is thus
integrable on S1 × Sn. A straightforward computation show that the torsion
of πIP is zero when evaluated on (bi, b̃j), and since B ∪ B̃ spans T (Sm × Sn),
the proof of the if part is completed.

Secondly, the only if part: it is given by a case by case computation, here
sketched, which uses formulas (A.1). Suppose that condition (7) is not satis-
fied. Then, taking −I in case, there exists an odd j ∈ {1, . . . , n+1} such that
one of the following conditions holds:

(1) there exist i, k ∈ {1, . . . ,m− 1}, i 6= k such that

I(pm−1+j) = pi and I(pm+j) = ±pk;

(2) there exist i ∈ {1, . . . ,m− 1}, k ∈ {1, . . . , n + 1}, k 6= j, j + 1 such that

I(pm−1+j) = pi and I(pm+j) = ±pm−1+k;

(3) there exist i ∈ {1, . . . , n + 1}, k ∈ {1, . . . , m− 1}, i 6= j, j + 1 such that

I(pm−1+j) = pm−1+i and I(pm+j) = ±pk;

(4) there exist i, k ∈ {1, . . . , n + 1}, i, k 6= j, j + 1, i 6= k such that

I(pm−1+j) = pm−1+i and I(pm+j) = ±pm−1+k.

The torsion tensor can then be computed in each case, using formulas (A.1),
and in particular one obtains (tj are the coordinates of T ):

(1) 〈N(pm−1+j, pm+j), pk〉 = 2(±xi(1− y2
j − y2

j+1)+xk(1− 2(y2
j + y2

j+1))) 6= 0;
(2) 〈N(pm−1+j, pm+j), pi〉(yj = yj+1 = yk = 0, tk = 1) = 2(xi ∓ xm+1) 6= 0;
(3) 〈N(pm−1+j, pm+j), pk〉(yj = yj+1 = yi = 0, ti = 1) = 2(xk ± xm+1) 6= 0;
(4) 〈N(pm−1+j, pm+j), pm−1+i〉(yj = yj+1 = ti = xm = 0, yi = xm+1 = 1) =

∓2tk 6= 0,

which concludes the proof. 2

Theorem 27 All integrable almost Hermitian structures on Sm×Sn in Sm+nIP
are biholomorphic to the Calabi–Eckmann Hermitian structure Im,n.

PROOF. Let πIP ∈ Sm+nIP be integrable. Let π̃ be the element of Sm+1

built in proof of theorem 26. Then the map (x1, . . . , xm+1, y) 7→ (xπ̃(1), . . . , xπ̃(m+1), y)
is a biholomorphism between πIP and IP , and theorem 3 ends the proof. 2
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Theorem 28 An almost Hermitian structure I ∈ Sm+3IB on Sm × S3 is
integrable if and only if I(b2n−1) = ±b2n. In this case, it is biholomorphic to
Im,3.

PROOF. Suppose that I(b2n−1) 6= ±b2n. Then there exist i 6= j ∈ {1, . . . , 2n−
2} such that I(b2n−1) = bi, I(b2n) = ±bj. Then N(b2n−1, b2n) = 2(±xibj∓xjbi+
2

∑2n−2
k=1 xkbk−2xjbj−2xibi) 6= 0, showing that I is non-integrable. To prove the

reverse implication, suppose that πIB ∈ Sm+3IB satisfies πIB(b2n−1) = ±b2n.
Then πIP satisfies the hypothesis of theorem 26 for n = 3, and using the
right-side matrix in formula (2) we obtain that πP and πB differ by a unitary
matrix, which implies πIB = πIP . 2

Corollary 29 All almost hyperhermitian structures on Sm × Sn, Sm × S3 in
Sm+n(IP , JP , KP), Sm+3(IB, JB, KB) respectively are non-integrable.

PROOF. It follows by theorems 26, 28 once observed that a 2-dimensional
distribution cannot be invariant for a hyperhermitian structure. 2

It should be here remarked that, since an explicit expression for the Spin(9)-
invariant 8-form is still lacking, it was not possible to apply the G2 and Spin(7)
techniques to the symmetric orbit of Spin(9)-structures.

Theorem 30 The symmetric orbits S7ϕP of G2-structures on S6×S1, S4×
S3, S2×S5, S8φP of Spin(7)-structures on S7×S1, S5×S3, S3×S5, S1×S7,
S7ϕB of G2-structures on S4 × S3, S8φB of Spin(7)-structures on S5 × S3

are of general type.

PROOF. Use theorem 15 together with the structure equations (3). 2

8.2 The orthogonal orbit

This section is devoted to prove results about the orthogonal orbits O(m+1)IB,
O(m + 1)(IB, JB, KB), O(7)ϕB, O(8)φB, O(16)ΦB, O(7)ϕP on Sm × S1.

The following lemma is trivial to prove but useful:

Lemma 31 Let A ∈ O(m+1). Then A : Rm+1r0 → Rm+1r0 is p-invariant,
and the induced diffeomorphism fA : Sm × S1 → Sm × S1 is given by (x, θ) 7→
(A(x), θ). Moreover, the matrix of dfA with respect to the basis B on Sm × S1

is A.
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Theorem 32 All almost Hermitian structures on Sm × S1 in the orthogonal
orbit O(m + 1)IB are biholomorphic to the Hopf Hermitian structure Ie2π .

PROOF. Let IA(B) ∈ O(m+1)IB. Then the matrix of IA(B)◦dfA with respect
to the basis B is [IA(B)◦dfA]B = AIA−1A = AI = [dfA◦IB]B, and the conclusion
follows by remark 1. 2

Clearly, the proof does not rely on properties of U((m + 1)/2), and it works
fine for all the other G-structures:

Theorem 33 All almost hyperhermitian structures on Sm × S1 in the or-
thogonal orbit O(m+1)(IB, JB, KB) are equivalent to the Hopf hyperhermitian
structure (Ie2π , Je2π , Ke2π). The G2, Spin(7), Spin(9)-structures on S6 × S1,
S7 × S1, S15 × S1 in the orthogonal orbits O(7)ϕB, O(8)φB, O(16)ΦB are
isomorphic to ϕB, φB, ΦB respectively.

Since the lemma does not hold for the frame P on Sm × S1, because of the
twisting of pm, pm+1, the following theorem is not trivial:

Theorem 34 The G2-structures on S6 × S1 in the orthogonal orbit O(7)ϕP
are of general type.

PROOF. Let A = (ai,j) ∈ SO(7), and denote by {q1, . . . , q7} the coframe on

S6×S1 induced by A, that is, qi def
=

∑7
j=1 ai,jp

j. Let τ = −y2dy1 +y1dy2 be the
usual 1-form on S6 × S1, and ui its coordinates with respect to {q1, . . . , q7}.
Then

ϕA(P) =
∑

i∈Z7

qi,i+1,i+3, ∗ϕA(P) = − ∑

i∈Z7

qi,i+2,i+3,i+4,

and using the structure equations (3) one obtains

dϕA(P) = 3ϕA(P) ∧ τ

+
∑

i∈Z7

((ai,6p
7 − ai,7p

6)qi+1,i+3 − (ai+1,6p
7 − ai+1,7p

6)qi,i+3

+ (ai+3,6p
7 − ai+3,7p

6)qi,i+1) ∧ τ

d ∗ ϕA(P) = −4 ∗ ϕA(P) ∧ τ

+
∑

i∈Z7

((ai,6p
7 − ai,7p

6)qi+2,i+3,i+4 − (ai+2,6p
7 − ai+2,7p

6)qi,i+3,i+4

+ (ai+3,6p
7 − ai+3,7p

6)qi,i+2,i+4 − (ai+4,6p
7 − ai+4,7p

6)qi,i+2,i+3) ∧ τ.

The 3-form ∗dϕA(P) is not so easy to write. Let αi,j
def
= ai,6aj,7 − ai,7aj,6. Then
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by a long calculation one obtains

∗ dϕA(P) =
∑

i∈Z7

[

(−3ui+2 − ui(−αi,i+2 + αi+4,i+3 + αi+5,i+1) + ui+3(−αi+6,i+1 + αi+3,i+2 + αi+4,i)

+ ui+1(αi+6,i+3 + αi+1,i+2 + αi+5,i))q
i+4,i+5,i+6

+ (3ui+4 − ui(αi,i+4 + αi+2,i+3 + αi+6,i+1) + ui+1(−αi+1,i+4 − αi+5,i+3 + αi+6,i)

− ui+3(−αi+5,i+1 − αi+2,i + αi+3,i+4))q
i+2,i+5,i+6

+ (−3ui+5 + ui+3(αi+4,i+1 + αi+6,i + αi+3,i+5) + ui(αi,i+5 + αi+2,i+1 − αi+6,i+3)

− ui+1(αi+2,i + αi+4,i+3 − αi+1,i+5))q
i+2,i+4,i+6

+ (3ui+6 − ui+3(−αi+5,i + αi+2,i+1 + αi+3,i+6)− ui(αi+5,i+3 + αi,i+6 − αi+4,i+1)

+ ui+1(−αi+4,i − αi+1,i+6 + αi+2,i+3))q
i+2,i+4,i+5

+ (ui+6(−αi,i+2 + αi+4,i+3 + αi+5,i+1)− ui+3(αi+5,i+2 + αi,i+1 + αi+4,i+6)

+ ui+2(αi+5,i+3 + αi,i+6 − αi+4,i+1)− ui+1(−αi,i+3 − αi+4,i+2 + αi+5,i+6))q
i,i+4,i+5].

Now use theorem 15 to check which classes ϕA(P) belongs to. As for the class
W2 ⊕W3 ⊕W4, one obtains

0 = dϕA(P) ∧ ϕA(P) = σ ∧ τ

where σ is a 6-form on S6 × S1 with constant coefficients with respect to P ,
and this is easily seen to be impossible. The existence of a 1-form β on S6×S1

such that d ∗ ϕA(P) = β ∧ ϕA(P) implies that

αi,i+1 + αi+5,i+2 − αi+6,i+4 = 0 i ∈ Z7.

But this system has no solution, hence ϕA(P) does not belong to the class
W1⊕W3⊕W4. The above system comes out also requiring the existence of a
1-form α and a function f on S6×S1 such that dϕA(P) = α∧ϕA(P) +f ∗ϕA(P),
hence ϕA(P) does not belong to W1 ⊕W2 ⊕W4. Finally, ∗dϕA(P) ∧ ϕA(P) 6= 0
by a direct computation.

If det A = −1, some signs in formulas are reversed, but the same impossible
conditions are obtained. 2
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A Structure equations for P on Sm × Sn

Using the following abbreviations:

Xm
def
=

n+1∑

j=1

yjpm−1+j,

Xm+1
def
=

n+1∑

j=1

tjpm−1+j,

Cj,k
def
= yjtk − yktj j, k = 1, . . . , n + 1,

Dj,k
def
= 2Cj,k∓δk,j±1︸ ︷︷ ︸

j odd
even

±δj,k±1︸ ︷︷ ︸
k odd

even

j, k = 1, . . . , n + 1.

one can write down the general formulas:

[pi, pj] = xipj − xjpi i, j = 1, . . . , m− 1,

[pi, pm−1+j] = −(yjxm + tjxm+1)pi

∓xipm−1+j±1︸ ︷︷ ︸
j odd

even

+xiyjXm + xitjXm+1 i = 1, . . . , m− 1, j = 1, . . . , n + 1,

[pm−1+j, pm−1+k] = Dj,k

m−1∑

i=1

xipi + yjpm−1+k − ykpm−1+j

+ (xmDj,k − xm+1Cj,k)Xm + ((xm+1 − 1)Dj,k + xmCj,k)Xm+1

+ (∓yjxm ∓ tjxm+1 ± tj)pm−1+k±1︸ ︷︷ ︸
k odd

even

+ (±ykxm ± tkxm+1 ∓ tk)pm−1+j±1︸ ︷︷ ︸
j odd

even

j, k = 1, . . . , n + 1.

(A.1)
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