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Abstract

We define reduction of locally conformal Kähler manifolds, considered as conformal Hermitian manifolds,
and we show its equivalence with an unpublished construction given by Biquard and Gauduchon. We show
the compatibility between this reduction and Kähler reduction of the universal cover. By a recent result
of Kamishima and the second author, in the Vaisman case (that is, when a metric in the conformal class
has parallel Lee form) if the manifold is compact its universal cover comes equipped with the structure
of Kähler cone over a Sasaki compact manifold. We show the compatibility between our reduction and
Sasaki reduction, hence describing a subgroup of automorphisms whose action causes reduction to bear a
Vaisman structure. Then we apply this theory to construct a wide class of Vaisman manifolds.
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1 Introduction

Since 1974 when the classical reduction procedure of S. Lie was formulated in modern terms by J. Marsden
and A. Weinstein for symplectic structures, this technique was extended to other various geometric structures
defined by a closed form. Extending the equivariant symplectic reduction to Kähler manifolds was most
natural: one only showed the almost complex structure was also projectable. Generalizations to hyperkähler
and quaternion Kähler geometry followed. The extension to contact geometry is also natural and can be
understood via the symplectization of a contact manifold. In each case, the momentum map is produced by
a Lie group acting by specific automorphisms of the structure.

A locally conformal Kähler manifold is a conformal Hermitian manifold (M, [g], J) such that for one (and
hence for all) metric g in the conformal class the corresponding Kähler form Ω satisfies dΩ = ω ∧Ω, where ω
is a closed 1-form. This is equivalent to the existence of an atlas such that the restriction of g to any chart
is conformal to a Kähler metric.

The 1-form ω ∈ Ω1(M) was introduced by H.-C. Lee in [Lee43], and it is therefore called the Lee form of
the Hermitian structure (g, J).

It was not obvious how to produce a quotient construction in conformal geometry. The first published
result we are aware of belongs to S. Haller and T. Rybicki who proposed in [HR01] a reduction for locally con-
formal symplectic structures. Their technique is essentially local: they reduce the local symplectic structures,
then glue the local reduced structures. But even earlier, since 1998, an unpublished paper by O. Biquard
and P. Gauduchon proposed a quotient construction for locally conformal Kähler manifolds [BG98]. Their
construction relies heavily on the language and techniques of conformal geometry as developed, for example,
in [CP99]. The key point is the fact that a locally conformal Kähler structure can be seen as a closed 2-form
with values in a vector bundle (of densities).

Our starting point was the paper [HR01]. Following the lines of the Kähler reduction, we verified that the
complex structure of a locally conformal Kähler manifold can be projected to the quotient. In section 3 of this
paper we construct the momentum map associated to an action by locally conformal Kähler automorphisms,
lying on the notion of twisted Hamiltonian action given by I. Vaisman in [Vai85]. In section 4 we extend
Haller-Rybicki construction to the complex setting. Then, in section 5 we present, rather in detail, due to
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its very restricted previous circulation, the Biquard-Gauduchon construction. The main result of this section
proves the equivalence between the Biquard-Gauduchon reduction and ours.

The universal cover of a locally conformal Kähler manifold has a natural (global) homothetic Kähler
structure. We exploit this fact in section 6 in order to relate locally conformal Kähler reduction to the Kähler
reduction of its universal cover.

The study of locally conformal Kähler manifolds started in the field of Hermitian manifolds. Most of
the known examples of locally conformal Kähler metrics are on compact manifolds and enjoy the additional
property of having parallel Lee form with respect to the Levi-Civita connection. Locally conformal Kähler
metrics with parallel Lee form were first introduced and studied by I. Vaisman in [Vai79, Vai82], so we call
Vaisman metric a locally conformal Kähler metric with this property. Manifolds bearing a Vaisman metric
show a rich geometry. Such are the Hopf surfaces Hα,β described in [GO98], all diffeomorphic with S1×S3 (see
also [Par99]). More generally, I. Vaisman firstly showed that on the product S1 × S2n+1 given as a quotient
of Cn r 0 by the cyclic infinite group spanned by z 7→ αz, where z ∈ Cn r 0 and |α| 6= 1, the projection of
the metric |z|−2

∑
dzi ⊗ dz̄i is locally conformal Kähler with parallel Lee form −|z|−2

∑
(zidz̄i + z̄idzi). The

complete list of compact complex locally conformal Kähler surfaces admitting parallel Lee form was given by
F. Belgun in [Bel00] where it is also proved the existence of some compact complex surfaces which do not
admit any locally conformal Kähler metric.

The definition of Vaisman metric is not invariant up to conformal changes. A conformally equivalent
notion of Vaisman manifold is still missing, but a recent result by Kamishima and the second author in
[KO01] provides one in the compact case, generalizing the one first proposed by Belgun in [Bel00] in the case
of surfaces. We develop this notion in section 7 where we analyze reduction in this case.

Vaisman geometry is closely related with Sasaki geometry. In this case the picture turns out to be the
following. The category of ordinary locally conformal Kähler manifolds can be seen as the image of the
category of pairs (K, Γ) of homothetic Kähler manifolds with a subgroup Γ of homotheties acting freely and
properly discontinuously, with morphisms given by homothetic Kähler morphisms equivariant by the actions.
What we prove in section 6 is that under the functor associating to (K, Γ) the locally conformal Kähler
manifold K/Γ Hamiltonian actions go to twisted Hamiltonian actions, and vice versa, see Theorem 6.5. So
the images of subgroups producing Kähler reduction actually are subgroups producing locally conformal
Kähler reduction (up to topological conditions), and vice versa. The same way the category of (compact)
Vaisman manifolds can be seen as the image of the category of pairs (W,Γ), with W a Sasaki manifold and
Γ a subgroup of (proper) homotheties of the Kähler cone W × R acting freely and properly discontinuously,
with morphisms given by Sasaki morphisms equivariant by the actions. The functor associating to (W,Γ) the
Vaisman manifold (W × R)/Γ is surjective on objects but not on morphisms: we call Vaisman morphisms
the ones in the image. What we prove in section 7 is that, up to topological conditions, subgroups of Sasaki
automorphisms producing Sasaki reduction go to subgroups producing Vaisman reduction, and vice versa.
This is particularly remarkable since, up to topological conditions, Sasaki reduction applies to any subgroup
of automorphisms, that is, the momentum map is always defined. So we obtain that reduction by Vaisman
automorphisms is always defined (up to topological conditions) and produces Vaisman manifolds.

This allows building a wide set of Vaisman manifolds, reduced by circle actions on Hopf manifolds, in
section 8.
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2 Locally conformal Kähler manifolds

Let (M, J) be any almost-complex n-manifold, n ≥ 4, let g be a Hermitian metric on (M, J). Let Ω be the
Kähler form defined by Ω(X, Y ) def= g(JX, Y ). The map L : Ω1(M) → Ω3(M) given by the wedging with Ω is
injective, so that the g-orthogonal splitting Ω3(M) = ImL⊕ (ImL)0 induces a well-defined ω ∈ Ω1(M) given
by the relation dΩ = ω ∧ Ω + (dΩ)0. The 1-form ω ∈ Ω1(M) is called the Lee form of the almost-Hermitian
structure (g, J).

A relevant notion in this setting is that of twisted differential. Given a p-form ψ its twisted differential is
the (p + 1)-form

dωψ
def= dψ − ω ∧ ψ.

Remark that dω ◦ dω = 0 if and only if dω = 0.
A Hermitian metric g on a complex manifold (M, J) is said to be locally conformal Kähler if g is (locally)

conformal to local Kähler metrics. In this case the local forms dαU coming from the local conformal factors
eαU paste to a global form ω satisfying dΩ = ω ∧ Ω. Vice versa this last equation together with dω = 0
characterizes the locally conformal Kähler metrics. In other words a Hermitian metric is locally conformal
Kähler if and only if

dω ◦ dω = 0 and dωΩ = 0. (1)

Definition 2.1 A conformal Hermitian manifold (M, [g], J) of complex dimension bigger than 1 is said to be
a locally conformal Kähler manifold if one (and hence all of) the metrics in [g] is locally conformal Kähler.

Remark 2.2 If, in particular, the Lee form of one (and hence all) of the metrics in [g] is exact, then
the manifold is said to be globally conformal Kähler. This is in fact equivalent to requiring that in the
conformal class there exists a Kähler metric, that is, any metric in [g] is globally conformal to a Kähler
metric. From [Vai80] it is known that for compact manifolds possessing a Kähler structure forbids existence
of locally non-globally conformal Kähler structures, so the two worlds are generally considered as disjoint. In
this paper, however, the two notions behave the same way, so we consider the global case as a subclass of the
local case.

From now on, let (M, [g], J) be a locally conformal Kähler manifold.
Not unlike the Kähler case, locally conformal Kähler manifolds come equipped with a notable subset of

X(M): given a smooth function f the associated Hamiltonian vector field is the Ω-dual of df , and Hamiltonian
vector fields are vector fields that admit such a presentation. But the notion that works for reduction, as
shown in [HR01], is the one given in [Vai85] obtained by twisting the classical. Given f its associated twisted
Hamiltonian vector field is the Ω-dual of dωf . The subset of X(M) of twisted Hamiltonian vector fields is
that of vector fields admitting such a presentation.

Remark 2.3 If M is not globally conformal Kähler the function associating to f its twisted Hamiltonian
vector field is injective. Indeed dωf = 0 implies ω = d log |f | on f 6= 0, so either f ≡ 0 or ω is exact.

Define a twisted Poisson bracket on C∞(M) by

{f1, f2} def= Ω(]dωf1, ]d
ωf2) (2)

The relation

{{f1, f2}, f3}+ {{f2, f3}, f1}+ {{f3, f1}, f2} = dωΩ(]dωf1, ]d
ωf2, ]d

ωf3) = 0 (3)

proves that this bracket turns C∞(M) into a Lie algebra. Remark that the first equality in (3) holds generally
on any almost-Hermitian manifold (M, g, J) under the only assumption dω = 0.

Remark 2.4 Remark that the notion of Hamiltonian vector field is invariant up to conformal change of the
metric, even though the function (possibly, the functions) associated to a Hamiltonian vector field changes
by the conformal factor. A straightforward computation shows in fact that, if Ω′ = eαΩ and ω′ = ω + dα is
the corresponding Lee form, the following relations hold

dωf = e−αdω′(eαf)

]Ωdωf = ]Ω′d
ω′(eαf)

{eαf1, e
αf2}Ω′ = eα{f1, f2}Ω
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so that multiplication by eα yields an isomorphism between (C∞(M), { , }Ω) and (C∞(M), { , }Ω′) commuting
with the corresponding maps ]Ωdω and ]Ω′d

ω′ in the space of twisted Hamiltonian vector fields. In particular
if M is globally conformal Kähler, then the twisted Hamiltonian vector fields of M coincide with the ordinary
Hamiltonian vector fields, since the Lee form of a Kähler metric is 0.

Definition 2.5 Given two locally conformal Kähler manifolds (M, [g], J) and (M ′, [g′], J) a smooth map
h from M to M ′ is a locally conformal Kähler morphism if h∗J ′ = J and [h∗g′] = [g]. We denote by
Aut(M, [g], J), or briefly by Aut(M), the group of locally conformal Kähler automorphisms of (M, [g], J).

The group Aut(M) is a Lie group, contained as a subgroup in the complex Lie group of biholomorphisms
of (M, J). However, unlike the Riemannian case, the Lie algebra of Aut(M) is not closed for the complex
structure. This will be used in the sequel.

3 The locally conformal Kähler momentum map

In this paper we consider (connected) Lie subgroups G of Aut(M).

Remark 3.1 It follows from [MPPS97] that whenever a locally conformal Kähler manifold M is compact,
the group Aut(M) coincides with the isometries of the Gauduchon metric in the conformal class, that is, the
one whose Lee form is coclosed. Hence, in particular, Aut(M) is compact. More generally if a subgroup G of
Aut(M) is compact then by using the Haar integral one obtains a metric in the conformal class such that G
is contained in the group of its isometries. So the case when G is not constituted by isometries of a specific
metric can only happen if both M and G are non-compact.

Throughout the paper we identify fundamental vector fields with elements X of the Lie algebra g of G,
so that if x ∈ M then g(x) means Tx(Gx).

Imitating the terminology established in [MS95], we call the action of G weakly twisted Hamiltonian if the
associated infinitesimal action is of twisted Hamiltonian vector fields, that is, if there exists a (linear) map
µ· : g → C∞(M) such that ιXΩ = dωµX for fundamental vector fields X ∈ g, and twisted Hamiltonian if µ
can be chosen to be a Lie algebra homomorphism with respect to the Poisson bracket (2). In this case we
say that the Lie algebra homomorphism µ is a momentum map for the action of G, or, equivalently, with the
same name and symbol we refer to the induced map µ : M → g∗ given by 〈µ(x), X〉 def= µX(x), for X ∈ g and
carets denoting the evaluation.

Remark 3.2 Note that the property of an action of being twisted Hamiltonian is a property of the conformal
structure, even though the Poisson structure on C∞(M) is not conformally invariant, see Remark 2.4. If
g′ = eαg then µω′ = eαµω. In particular the preimage of 0 is well-defined.

Remark 3.3 Remark that µ is not equivariant for the standard coadjoint action on g∗. It is known from
[HR01] that by modifying the coadjoint action by means of the conformal factors arising from h∗g ∼ g one
can force µ to be equivariant.

On µ−1(0) the twisted differential of the associated twisted Hamiltonian functions µ(g) coincides with the
ordinary differential, since dω

xµX = dxµX − µX(x)ωx for X ∈ g, x ∈ µ−1(0). Thus, if the action is twisted
Hamiltonian, then the functions in µ(g) vanish on the whole orbit of x ∈ µ−1(0), since for x ∈ µ−1(0) and
Y ∈ g(x)

dxµX(Y ) = dω
xµX(Y ) = Ω(]dωµX , ]dωµY )(x) = {µX , µY }(x) = µ[X,Y ](x) = 0,

that is to say, µ−1(0) is closed for the action of G.
Moreover, if 0 is a regular value for µ, then T (µ−1(0))⊥Ω = g, since for any x ∈ µ−1(0), X ∈ g, V ∈

X(µ−1(0)) we have
Ω(X,V )(x) = dω

xµX(V ) = dxµX(V ) = 0.

Thus we say that µ−1(0) is a coisotropic submanifold of M .
In the next section we show how to obtain a locally conformal Kähler structure on µ−1(0)/G under the

additional hypothesis of it being a manifold. But we remark here that, due to the missing equivariance of µ,
a non-zero reduction is not straightforward.
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Remark 3.4 We give a brief description of the existence and unicity problem for momentum maps. Suppose
the action is weakly twisted Hamiltonian, and choose a linear map µ· : g → C∞(M). Denote by N the kernel
of dω : C∞(M) → Ω1(M). The obstruction for µ to be a Lie algebra homomorphism is given by the map
τ : g× g → N sending (X, Y ) into {µX , µY } − µ[X,Y ], which can be shown to live in H2(g, N), and this
cohomology class vanishes whenever the action is twisted Hamiltonian. If this is the case, then momentum
maps are parameterized by H1(g, N). If (M, [g], J) is non-globally conformal Kähler, then N = 0, see
Remark 2.3. Then, in particular, a weakly Hamiltonian action on a compact non-Kähler locally conformal
Kähler manifold always admits a unique momentum map.

In the following we will often need a technical lemma we prove here once and for all. If g and g′ are
tensors on the same manifold we write g ∼ g′ if they are conformal to each other.

Lemma 3.5 Let M be a manifold, let {Ui}i∈I be a locally finite open covering. Let {ρi} be a partition of
unity relative to {Ui}. The following three facts hold.

i) Let g and g′ be two tensors globally defined on M and such that for any i

g|Ui ∼ g′|Ui ;

then g and g′ are globally conformal.

ii) Let {gi} be a collection of local tensors, where gi is defined on Ui, such that whenever Ui ∩ Uj 6= ∅

gi|Ui∩Uj ∼ gj |Ui∩Uj ;

then the tensor g
def=

∑
i ρigi is globally defined on M and g|Ui is locally conformal to gi.

iii) Let {gi} and g be as in ii). If g′ is a global tensor such that g′|Ui is locally conformal to gi, then g and
g′ are globally conformal.

Proof: First prove i). Let eαi be the conformal factor such that

g|Ui = eαig′|Ui ;

then recalling that
∑

i ρi = 1 one obtains

g = (
∑

i

ρie
αi)g′.

Now turn to ii). For any x ∈ M let Ux be a neighborhood of x which is completely contained in any
Ui that contains x, let Uix be one of them and eαx,i be the conformal factor between gix and gi, defined on
Uix ∩ Ui which contains Ux: then the following holds

g|Ux = (
∑

i

ρie
αx,i)gix .

Finally i) and ii) imply iii). ¥

Remark 3.6 Using a more sophisticated argument it is proved in [HR01] that in case ii) one obtains g|Ui ∼ gi.

4 The reduction theorem

Theorem 4.1 Let (M, [g], J) be a locally conformal Kähler manifold. Let G be a Lie subgroup of Aut(M)
whose action is twisted Hamiltonian and is free and proper on µ−1(0), 0 being a regular value for the momen-
tum map µ. Then there exists a locally conformal Kähler structure ([ḡ], J̄) on µ−1(0)/G, uniquely determined
by the condition π∗ḡ ∼ i∗g, where i denotes the inclusion of µ−1(0) into M and π denotes the projection of
µ−1(0) onto its quotient.
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Proof: Since µ−1(0) is coisotropic, and its isotropic leaves are the orbits of G, the [g]-orthogonal splitting
TxM = Ex ⊕ g(x) ⊕ Jg(x) holds, where Ex is the [g]-orthogonal complement of g(x) in Tx(µ−1(0)). This
shows that E is a complex subbundle of TM and, since J is constant along g, it induces an almost complex
structure J̄ on µ−1(0)/G. This is proven to be integrable the same way as in the Kähler case, by computing
the Nijenhuis tensor of J̄ and recalling that π∗[V, W ] = [π∗V, π∗W ] for projectable vector fields V, W .

Take an open cover U of µ−1(0)/G that trivializes the G-principal bundle π : µ−1(0) → µ−1(0)/G and for
each U ∈ U choose a local section sU of π.

Fix an open set U . On its preimage we have two horizontal distributions: the (global) already defined
distribution E, [g]-horizontal, and the tangent distribution SU to sU (U), translated along the fibres by means
of the action of G to give a distribution on the whole preimage of U . Remark that SU cannot be chosen to
coincide with E in general, since SU is obviously a (local) foliation, whereas E is not integrable in general.

Given a vector field V̄ on U denote by V its [g]-horizontal lifting. Then for any V̄ the vector fields V
and J(V ) are projectable and J̄(V̄ ) = π∗J(V ). Moreover denote by V + νV the lifting of V̄ tangent to SU ,
so that dsU (V̄ ) = V + νV .(1) Remark that νV is a vertical vector field on π−1(U), and that clearly V + νV is
projectable itself: more explicitly, for a generic x ∈ π−1(U),

(V + νV )x = (h−1
x )∗dπ(x)sU (V̄π(x))

where by hx we denote the element of G that takes x in sU (π(x)).
Now define a local 2-form Ω̄U

def= s∗U i∗Ω on U . Since vertical vector fields are Ω-orthogonal to any vector
field on π−1(U), this definition implies that for any pair (V̄ , W̄ ) of vector fields on U

Ω̄U (V̄ , W̄ ) = s∗U i∗Ω(V̄ , W̄ )
= i∗Ω(V + νV ,W + νW )
= i∗Ω(V,W ).

Since i∗Ω is compatible with J and positive, the local form Ω̄U easily turns out to be compatible with J̄ ,
since

Ω̄U (J̄(V̄ ), J̄(W̄ )) = s∗U i∗Ω(J̄(V̄ ), J̄(W̄ ))
= i∗Ω(dsU (π∗J(V )), dsU (π∗J(W )))
= i∗Ω(J(V ) + νJ(V ), J(W ) + νJ(W ))

= i∗Ω(J(V ), J(W ))
= i∗Ω(V, W )
= Ω̄U (V̄ , W̄ )

and the same way one shows that Ω̄U is positive.
Denote by ḡU the corresponding local Hermitian metric, which is then locally conformal Kähler.
We want now to show that π∗Ω̄U is conformally equivalent to i∗Ω on π−1(U).
So consider a pair of generic (that is, non necessarily projectable) vector fields (Ṽ , W̃ ) on π−1(U). For

any x ∈ π−1(U) denote by V x the projectable vector field such that V x
x coincide with Ṽx, that is V x

y
def=

(h−1
x,y)∗Ṽh−1

x sU (π(y)), where by hx,y we denote the element of G that takes y in h−1
x sU (π(y)). Similarly define

W x, and call (V̄ x, W̄ x) the projected vector fields on U . We then have

π∗Ω̄U (Ṽx, W̃x) = Ω̄U (π∗Ṽ x
x , π∗W̃ x

x )
= Ω̄U (V̄ x

π(x), W̄
x
π(x))

= i∗Ω(V x
sU (π(x)),W

x
sU (π(x))).

By evaluating the projectable vector field V x in the point y = sU (π(x)) one obtains the following

π∗Ω̄U (Ṽx, W̃x) = i∗Ω((hx)∗Ṽx, (hx)∗W̃x)
= h∗xi∗Ω(Ṽx, W̃x).

Now remark that hx is a conformal map, hence there exists a smooth function αx such that h∗xi∗Ω(Ṽx, W̃x) =
αx(x)i∗Ω(Ṽx, W̃x). But by construction the function x 7→ αx(x) is smooth, so the two 2-forms are conformally
equivalent.

(1)To be precise we should write this expression in the form dsU (V̄ ) = V ◦ sU + νV ◦ sU .
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Then, if U,U ′ ∈ U overlap, we obtain on their intersection that Ω̄U is conformally equivalent to Ω̄U ′ :

Ω̄U ′ = s∗U ′i
∗Ω ∼ s∗U ′π

∗Ω̄U = Ω̄U .

We use a partition of unity {ρU} to glue all together these local forms, obtaining a global 2-form

Ω̄ =
∑

U∈U
ρU Ω̄U

on µ−1(0)/G which, by Lemma 3.5, is locally conformal to any Ω̄U .
This implies that Ω̄ is still compatible with J̄ and positive, and therefore induces a global Hermitian metric

ḡ on µ−1(0)/G which is locally conformal Kähler because it is locally conformal to the locally conformal Kähler
metrics ḡU on U . This ends the existence part.

If g′ is any locally conformal Kähler metric on µ−1(0)/G such that π∗g′ ∼ i∗g, then for any x ∈ µ−1(0)/G
on Ux ⊂ U we obtain g′|Ux = s∗Uπ∗g′|Ux ∼ s∗U i∗g|Ux = ḡU |Ux ∼ ḡ|Ux . So the globally defined metrics g and g′,
being locally conformal, are in fact conformal, by Lemma 3.5. The claim then follows. ¥

Remark 4.2 If µ−1(0)/G has real dimension two then reduction equips it with a complex structure and a
conformal family of Kähler metrics.

Remark 4.3 Let us note by passing that the zero level set offers a natural example of CR-submanifold of
M (see [DO98]). Indeed, the tangent space in each point splits as a direct orthogonal sum of a J-invariant
and a J-anti-invariant distribution: Tx(µ−1(0)) = Ex⊕ g(x). A result of D. Blair and B. Y. Chen states that
the anti-invariant distribution of a CR-submanifold in a locally conformal Kähler manifold is integrable. In
our case, this is trivially true because the anti-invariant distribution is just a copy of the Lie algebra of G.

5 Conformal setting and the Biquard-Gauduchon construction

In defining the reduced locally conformal Kähler structure on µ−1(0)/G we used a specific metric in the
conformal class [g], to obtain a conformal class [ḡ]. In this section we present a more intrinsic construction
for the locally conformal Kähler reduction, due to O. Biquard and P. Gauduchon, which makes use of the
language of conformal geometry. To this aim we mainly fill in details and reorganize material contained in
[CP99] and in the unpublished paper [BG98].

Moreover we prove that the two constructions are in fact the same, by showing in Lemma 5.2 and its
consequences the correspondence between representatives and intrinsic objects.

Let V be a real n-dimensional vector space, and t a real number. The 1-dimensional vector space Lt
V

of densities of weight t on V is the vector space of maps l : (ΛnV )r 0 → R satisfying l(λw) = |λ|−t/nl(w) if
λ ∈ R r 0 and w ∈ (ΛnV ) r 0. We say that a density l is positive if it takes only positive real values. For
positive integers t we have Lt

V = L1
V ⊗· · ·⊗L1

V and for negative integers t we have Lt
V = (L1

V )∗⊗· · ·⊗ (L1
V )∗.

Thus, given an element l of L1
V , we denote by lt the corresponding element of Lt

V under these canonical
identifications, for any t integer.

Remark that Λn+d(V ⊕ Rd) ' ΛnV , and this gives a canonical isomorphism between Lt
V⊕Rd and Lt

V :

l ∈ Lt
V 7→ sgn(l)l

n
n+d ∈ Lt

V⊕Rd . (4)

To any Euclidean metric g on the vector space V we associate the positive element ltg of Lt
V which sends

the length-one element of (ΛnV )r0 to 1. Then under a homothety eαg of the metric we have lteαg = e−tα/2ltg,
and the positive definite element g ⊗ l2g of S2V ⊗ L2

V only depends on the homothety class c of g.
Conversely, given an element c of S2V ⊗L2

V , we can associate to any positive element l of L1
V the element

c ⊗ l−2 of S2V ⊗ L2
V ⊗ L−2

V = S2V , and if c is positive definite so is c ⊗ l−2, which therefore defines a
Euclidean metric on V . If, moreover, c satisfies the normalization condition l2c⊗l−2 = l2 for one (and hence
for all) positive element l of L1

V , then the correspondence between such c’s and the homothety classes of g is
bijective.

For any vector bundle E → M , define the associated density line bundle Lt
E → M as the bundle whose

fiber over x ∈ M is the 1-dimensional vector space Lt
Ex

. If n is the rank of E, then Lt
E can be globally defined

as the fibred product P(E)×G LtRn , where P(E) denotes the principal bundle associated to E with structure
group G ⊂ GL(n), and an element A of G acts on LtRn by multiplication by | det A|t/n. Remark that, in
particular, Lt

E has the same principal bundle as E, for any t ∈ R.
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The above construction identifies conformal classes of metrics on E with normalized positive defined
sections of S2E ⊗L2

E . In particular, if E = TM , the conformal class of a Riemannian metric can be thought
of as a normalized positive defined section c of S2M ⊗ L2

M , where we denote Lt
TM by Lt

M .
A trivialization (usually positive) of L1

M is called a gauge or also a length scale.
This way, on a conformal manifold (M, c), we have a Riemannian metric whenever we fix a gauge. As a

terminology, instead of saying “. . . take a gauge l, and let g
def= c⊗ l−2. . . ” we shall say “. . . let g be a metric

in the conformal class c. . . ”.
Since a connection on M means a connection on GL(M) and GL(M) is also the principal bundle of Lt

M ,
a connection on M induces a connection on Lt

M , for any t ∈ R. Vice versa, suppose a connection ∇ on L1
M

is given. Then we can use a conformal version of the six-terms formula to define a connection on M , still
denoted by ∇, which is compatible with c:

2c(∇XY,Z) = ∇Xc(Y, Z) +∇Y c(X, Z)−∇Zc(X, Y ) + c([X, Y ], Z)− c([X, Z], Y )− c([Y, Z], X), (5)

where both members are sections of L2
M .

This way one proves the fundamental theorem of conformal geometry:

Theorem 5.1 (Weyl) Let (M, c) be a conformal manifold. There is an affine bijection between connections
on L1

M and torsion-free connections on M preserving c.

Torsion-free compatible connections on a conformal manifold are called Weyl connections. In contrast
with the Riemannian case, the previous theorem says in particular that on a conformal manifold there is not
a uniquely defined torsion-free compatible connection.

In this setting a conformal almost-Hermitian manifold is a conformal manifold (M, c) together with an
almost-complex structure J on M compatible with one (and hence with all) metric in the conformal class.

Let (M, c, J) be a conformal almost-Hermitian manifold. We then have a non-degenerate fundamental
form Ω taking values in L2

M , that is, Ω(X, Y ) def= c(JX, Y ) ∈ Γ(L2
M ), for X, Y ∈ X(M). For any metric g

defining c, with corresponding fundamental form Ωg, we have Ω = Ωg ⊗ l2g . The notion of Lee form ωg of the
almost-Hermitian metric g on (M, J) is clearly dependent on the metric, but a straightforward computation
shows that the connection ∇ on L1

M given by ∇X lg
def= (−1/2)ωg(X)lg does not depend on the choice of g in

the conformal class c.
The fundamental theorem of conformal geometry gives then a torsion-free compatible connection on M ,

which is called the canonical Weyl connection of the conformal almost-Hermitian manifold (M, c, J). We
denote simply by ∇ this connection on M , and we use the same symbol for the induced connection on Lt

M ,
for any t ∈ R. In particular, the constant −1/2 in the definition of ∇ was chosen in order that ∇l2g = −ωg⊗ l2g .

Thus, given any Lt
M -valued tensor ψ on a conformal almost-Hermitian manifold, we can differentiate it

with respect to the canonical Weyl connection, and any choice of a metric g in the conformal class c gives a
corresponding real valued tensor ψg. The following Lemma links this intrinsic point of view with the gauge-
dependant setting of almost-Hermitian manifolds. We state it only for L2

M -valued differential forms, because
this is the only case we need.

Lemma 5.2 (Equivalence lemma) Let (M, c, J) be a conformal almost-Hermitian manifold, with canon-
ical Weyl connection ∇. Let ψ be a p-form taking values in L2

M . Then for any metric g in the conformal
class c we have

d∇ψ = dωgψg ⊗ l2g .

Proof:

d∇ψ = d∇(ψg ⊗ l2g) = dψg ⊗ l2g + (−1)|ψg |ψg ∧∇l2g

= dψg ⊗ l2g − (−1)|ψg |ψg ∧ ωg ⊗ l2g = dψg ⊗ l2g − ωg ∧ ψg ⊗ l2g = dωgψg ⊗ l2g .

¥
Using the equivalence Lemma we obtain in particular

d∇Ω = dωgΩg ⊗ l2g . (6)

Since the Weyl connection is compatible with c, we have also

0 = ∇c = ∇(g ⊗ l2g) = ∇g ⊗ l2g + g ⊗∇l2g = ∇g ⊗ l2g − g ⊗ ωg ⊗ l2g = (∇g − ωg ⊗ g)⊗ l2g . (7)
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Theorem 5.3 Let (M, c, J) be a conformal almost-Hermitian manifold, and let ∇ be the canonical Weyl
connection. Let g be any metric in the conformal class c. Then:

i) ∇ preserves J if and only if J is integrable and (dΩg)0 = 0;

ii) the curvature R∇ = ∇[X,Y ] − [∇X ,∇Y ] of ∇ is given by R∇l2g = dωg ⊗ l2g.

Proof: For any complex connection ∇ the following formula holds, linking the torsion T of ∇ with the torsion
N of J :

T (JX, JY )− J(T (JX, Y ))− J(T (X, JY ))− T (X, Y ) = −N(X,Y ).

Since Weyl connections are torsion free, if we find any complex Weyl connection then J is integrable. We
want to show that, if the canonical Weyl connection is complex, then also (dΩg)0 = 0. Denote by A the
alternation operator and by C the contraction such that Ωg = C(J ⊗ g), then

dΩg = A(∇Ωg) = A(∇C(J ⊗ g)) = A(C(J ⊗∇g)) = A(C(J ⊗ ωg ⊗ g))
= A(ωg ⊗ C(J ⊗ g)) = A(ωg ⊗ Ωg) = ωg ∧ Ωg,

where we have used formula (7) to obtain ∇g = ωg ⊗ g.
Suppose now that (dΩg)0 = 0 and that J is integrable. Then using the conformal six-terms formula (5)

we obtain the following conformal version of a classical formula in Hermitian geometry (see [KN69, p. 148]):

4c((∇XJ)Y,Z) = 6d∇Ω(X, JY, JZ)− 6d∇Ω(X,Y, Z),

and this shows that c((∇XJ)Y, Z) = 0 if d∇Ω = 0. But this last condition is equivalent, by formula (6), to
(dΩg)0 = 0, and the claim then follows from the non-degeneracy of c. As for the curvature R∇ of ∇, using
equivalence Lemma we obtain

R∇l2g = −d∇(∇l2g) = −d∇(−ωg ⊗ l2g) = dωgωg ⊗ l2g = dωg ⊗ l2g .

¥
Since a locally conformal Kähler manifold is a conformal Hermitian manifold (M, c, J) such that (dΩg)0 =

0 and dωg = 0, for one (and then for all) choice of metric g in the conformal class c (compare with formula
(1)), we can give the following intrinsic characterization of locally conformal Kähler manifolds:

Corollary 5.4 Let (M, c, J) be a conformal Hermitian manifold. Denote by Ω the L2
M -valued fundamental

form, and let ∇ be the canonical Weyl connection. Then (M, c, J) is locally conformal Kähler if and only if
∇ is flat and Ω is d∇-closed.

Moreover, Theorem 5.3 gives also the following

Corollary 5.5 On a locally conformal Kähler manifold the canonical Weyl connection preserves the complex
structure.

Unless otherwise stated, from now on we consider locally conformal Kähler manifolds (M, c, J).
A locally conformal Kähler manifold (M, c, J) comes then naturally equipped with a closed 2-form Ω, the

only difference from the Kähler case being that Ω now takes values in L2
M . We want go further with this

analogy.
Define the pairing ] : Ω1(L2

M ) → X(M) by ι]αΩ = α, and use it to define a Poisson bracket on Γ(L2
M ) by

{f1, f2} def= Ω(]∇f1, ]∇f2). Using Lemma 5.2 and formula (3), one shows the relation

{{f1, f2}, f3}+ {{f2, f3}, f1}+ {{f3, f1}, f2} = d∇Ω(]∇f1, ]∇f2, ]∇f3) = 0, (8)

proving that this bracket turns Γ(L2
M ) into a Lie algebra. Remark that, as formula (3), the first equality in

(8) holds generally on conformal almost-Hermitian manifolds such that the canonical Weyl connection is flat.
We finally describe the intrinsic version of Aut(M). If l is a section of Lt

M and h is a diffeomorphism of
M , then the section h∗l of Lt

M is given by

(h∗l)x
def= lh(x) ◦ (h∗)x, (9)
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that is, if x ∈ M and w ∈ Λn(TxM) r 0, we have (h∗l)x(w) def= lh(x)((h∗)xw). Recall that for any x
the differential induces the map (h∗)x : Λn(TxM) → Λn(Th(x)M) which is in fact a linear map between 1-
dimensional vector spaces. Whenever a metric g is fixed, a trivialization wg of Λn(TM) associating to x the
length-one element wg

x is defined, hence one can associate to any diffeomorphism h a never-vanishing smooth
function dg

h defined by
h∗wg

x = dg
h(x)wg

h(x),

so the following derivation rule holds for ltg:

(h∗ltg)x(wg
x) = (ltg)h(x)(h∗wg

x)

= (ltg)h(x)(d
g
h(x)wg

h(x))

= |dg
h(x)|− t

n (ltg)h(x)(w
g
h(x)) = |dg

h(x)|− t
n ,

that is, in short, h∗ltg = |dg
h|−

t
n ltg.

For any diffeomorphism of M we then define h∗c in the obvious way, that is, h∗c = h∗g ⊗ h∗l2g . Since

def g
h = e(n/2)f◦he(−n/2)fdg

h,

this definition does not depend on the choice of the gauge g, and gives the intrinsic notion of Aut(M) as
follows.

Proposition 5.6 A diffeomorphism h of a conformal manifold (M, c) preserves c if and only if it is a
conformal transformation of one (and hence of all) metric g in the conformal class c.

Proof: Indeed, h∗g = eαg implies dg
h = enα/2, so h∗l2g = e−αl2g , and then h∗c = h∗(g ⊗ l2g) = h∗g ⊗ h∗l2g =

g⊗ l2g = c. Vice versa h∗c = c implies h∗g⊗h∗l2g = g⊗ l2g , hence (|dg
h|−

2
n h∗g)⊗ l2g = g⊗ l2g , that is h∗g = |dg

h|
2
n g.
¥

Lemma 5.7 The Weyl connection of a conformal almost-Hermitian manifold (M, c, J) is invariant for
Aut(M), that is, h∗∇V W = ∇V W whenever h∗V = V and h∗W = W .

Proof: This is because Aut(M) preserves c and J , and ∇ is defined just using these ingredients. More
formally, we want to show that, if h ∈ Aut(M) and V , W , Z are h-invariant vector fields, then c(∇V W,Z) =
c(h∗∇V W,Z). But we have

c(∇V W,Z) = (h∗c)(∇V W,Z) = h∗(c(h∗∇V W,h∗Z)) = h∗(c(h∗∇V W,Z)),

where we used the general property that if ψ is any tensor field of type (r, 0) and X1, . . . , Xr are vector
fields, then h∗(ψ(h∗X1, . . . , h∗Xr)) = (h∗ψ)(X1, . . . , Xr). We are therefore only left to show that c(∇V W,Z)
is h-invariant for all h ∈ Aut(M), that is, we are left to show that the second side of the conformal six-terms
formula (5) is h-invariant for all h ∈ Aut(M). But it turns out that each summand of (5) is h-invariant. We
show this only on its first and fourth summand, the others being similar: the first summand

h∗∇V c(W,Z) = h∗∇V (g(W,Z)l2g)

= h∗(V g(W,Z)l2g) + h∗(g(W,Z)∇V l2g)

= h∗V g(W,Z)h∗l2g − h∗(g(W,Z))h∗(ωg(V ))h∗l2g
= V ((h∗g)(W,Z))l2h∗g − (h∗g)(W,Z)ωh∗g(V )l2h∗g
= ∇V ((h∗g)(W,Z)l2h∗g) = ∇V c(W,Z),

where we have used that V and h commute on C∞(M), since V is h-invariant, that h∗l2g = l2h∗g and that
h∗ωg = ωh∗g. The fourth summand is

h∗(c([V, W ], Z)) = h∗(g([V, W ], Z)l2g) = h∗(g([V, W ], Z))h∗l2g = (h∗g)([V, W ], Z)l2h∗g = c([V, W ], Z),

where we have used the already cited properties and that the Lie bracket of invariant vector fields is invariant.
¥
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Corollary 5.8 Let (M, c, J) be a conformal almost-Hermitian manifold with Weyl connection ∇, and let
G ⊂ Aut(M). If V , W , Z are G-invariant vector fields on M , then c(∇V W,Z) is G-invariant.

Let G be a Lie subgroup of Aut(M), as in section 3. The momentum map can then be defined as a
homomorphism of Lie algebras µ· : g → Γ(L2

M ) such that ιXΩ = d∇µX . We also denote by µ the corresponding
element of Γ(g∗ ⊗ L2

M ) given by 〈µ(x), X〉 = µX(x), carets denoting the evaluation.

Remark 5.9 In [BG98] the existence of such a homomorphism of Lie algebras is shown to imply the condition

−1
2
ωg(X) +

1
n

divg X = 0

on any fundamental vector field X. This is equivalent to the condition

LXΩg − ωg(X)Ωg = 0

one finds in [HR01], since LXΩg = ((2/n) divg X)Ωg.

If we choose a metric g in the conformal class c, then µX = µX
g l2g , where µ·g : g → C∞(M).

Theorem 5.10 The map µ· : g → Γ(L2
M ) is a momentum map if and only if µ·g : g → C∞(M) is a momentum

map as in section 3.

Proof: Use Lemma 5.2 to compute d∇µX with respect to the fixed gauge:

d∇µX = dωgµX
g ⊗ l2g ,

so that d∇µX = ιX(Ωg ⊗ l2g) = ιXΩg ⊗ l2g if and only if ιXΩg = dωgµX
g . We then have to check that µ is a Lie

algebra homomorphism if and only if µg is. But this is a direct consequence of Lemma 5.2, and of the fact
that ]α = ]gαg:

{f1, f2} = Ω(]∇f1, ]∇f2) = Ωg(]∇f1, ]∇f2)⊗ l2g = Ωg(]gd
ωgf1,g, ]gd

ωgf2,g)⊗ l2g = {f1,g, f2,g}g ⊗ l2g .

¥

Remark 5.11 The previous theorem allows using all proofs of section 3 as proofs in this conformal setting,
just fixing a gauge. In particular, the zero set µ−1(0), where 0 denotes the zero section of g∗ ⊗ L2

M , is the
zero set of any µg, and it is therefore closed with respect to the action of G and coisotropic with respect to
Ω. Moreover, the assumption of 0 being a regular value for µg translates into the assumption that the zero
section be transverse to µ, and under this assumption the isotropic foliation is given exactly by fundamental
vector fields g.

Theorem 5.12 (Biquard & Gauduchon, [BG98]) Let (M, c, J) be a locally conformal Kähler manifold.
Let G be a Lie subgroup of Aut(M) whose action admits a momentum map µ : g → Γ(L2

M ). Suppose that G
acts freely and properly on µ−1(0), 0 denoting the zero section of g∗ ⊗ L2

M , and suppose that µ is transverse
to this zero section. Then there exists a locally conformal Kähler structure (c̄, J̄) on µ−1(0)/G.

Proof: Due to Lemma 5.2 and to Theorem 5.10, this theorem can be viewed at as a translation of Theorem
4.1 in the conformal language. From this point of view, the theorem was already proved.

We want here to give an intrinsic proof, using the characterization of locally conformal Kähler manifolds
given by corollary 5.4.

Take the c-orthogonal decomposition TxM = Ex⊕g(x)⊕Jg(x), where Ex is the c-orthogonal complement
of g(x) in Tx(µ−1(0)). We obtain a vector bundle E → µ−1(0) of rank n− 2 dimG.

First we need to relate Lt
µ−1(0)/G with Lt

E . Remark that E/G → µ−1(0)/G is isomorphic as a bundle to the
tangent bundle of µ−1(0)/G, by means of π∗|E . On its side Lt

E/G is isomorphic to GL(E/G)×GL(n−2 dim G)

Lt
Rn−2 dim G , since the actions of G and of GL(n − 2 dim G) on GL(E) commute, that is, if g ∈ G, γ ∈

GL(n− 2 dimG) and p ∈ GL(E), then g∗(pγ) = (g∗p)γ. This means that Lt
µ−1(0)/G is isomorphic to Lt

E/G,
the isomorphism being explicitly given by sending an element l of L2

µ−1(0)/G,x̄ to [l ◦ π∗,x], where π(x) = x̄,
and the action of G on Lt

E being given by (9).
Now remark that the canonical splitting TM = E ⊕ g⊕ Jg gives an isomorphism of L2

M |µ−1(0) with L2
E ,

by formula (4), and this isomorphism is G-equivariant.
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We therefore think of elements of L2
µ−1(0)/G as equivalence classes of elements of L2

M |µ−1(0).
During the proof of this theorem, we denote by V̄ , W̄ , . . . vector fields on µ−1(0)/G, and by V, W, . . .

their lifts to E. Note that V, W, . . . are G-invariant vector fields.
Define c̄(V̄ , W̄ ) to be the projection to L2

M |µ−1(0)/G of the section c(V, W ), that is

(c̄(V̄ , W̄ ))x̄
def= [c(V, W )x] ∈ (L2

M |µ−1(0))x/G ' (L2
µ−1(0)/G)x̄

where x is an element in π−1(x̄). The choice of x is irrelevant, since h∗(c(V, W )) = h∗(c(h∗V, h∗W )) =
(h∗c)(V,W ) = c(V, W ).

We have thus defined an almost-Hermitian conformal manifold (µ−1(0)/G, c̄, J̄). In order to show that it
is locally conformal Kähler we compute its canonical Weyl connection, and then use corollary 5.4.

Let ∇E be the orthogonal projection of ∇ from T (µ−1(0)) to E. Since by Lemma 5.7 the Weyl connection
∇ is invariant for Aut(M), we have that ∇E

V W is a projectable vector field. Define

∇̄V̄ W̄
def= π∗∇E

V W. (10)

The torsion T ∇̄̄
V ,W̄

of ∇̄ is just π∗T∇
E

V,W = 0. Moreover, ∇̄ is compatible with J̄ :

(∇̄V̄ J̄)W̄ = ∇̄V̄ (J̄W̄ )− J̄∇̄V̄ W̄

= π∗∇E
V (JW )− J̄π∗∇E

V W

= π∗(∇E
V (JW )− J∇E

V W ) = π∗(∇V J)EW = 0.

Eventually, Theorem 5.3 proves that J̄ is integrable.
Look at the Weyl connection ∇ on L2

M as a map ∇V : Γ(L2
M |µ−1(0)) → Γ(L2

M |µ−1(0)), and remark that
the Aut(M)-invariance of V implies that ∇V is G-equivariant, thus defines a connection on L2

µ−1(0)/G. We
denote it again by ∇̄:

∇̄V̄ [l] def= [∇V l] ∈ L2
M |µ−1(0)/G.

Using the conformal six-terms formula (5) and corollary 5.8, we see that the connection ∇̄ on µ−1(0)/G
defined by (10) is the associated Weyl connection, which is therefore the canonical Weyl connection of
(µ−1(0)/G, c̄, J̄).

The curvature R∇̄ is given by

R∇̄̄
V ,W̄ [l] = −d∇̄∇̄[l](V̄ , W̄ ) = −[d∇∇l(V,W )] = [R∇

V,W ] = 0.

Finally, denoting by Ω̄ the L2
µ−1(0)/G-valued fundamental form of (µ−1(0)/G, c̄, J̄), we have π∗(d∇̄Ω̄) =

d∇Ω = 0, thus d∇̄Ω̄ = 0, and corollary 5.4 says that (µ−1(0)/G, c̄, J̄) is locally conformal Kähler. ¥

6 Compatibility with Kähler reduction

In this section we analyze the relation between locally conformal Kähler reduction of a manifold and Kähler
reduction of a covering. We refer to [Fut88] for the Kähler reduction.

As a first step we show that the two notions of reduction on globally conformal Kähler manifolds are
compatible.

Proposition 6.1 Let (M, [g], J) be a globally conformal Kähler manifold and denote by g a Kähler metric.
Let G ⊂ Aut(M) a subgroup satisfying the hypothesis of the reduction theorem and which moreover is composed
by isometries with respect to g. Denote by (µ−1(0)/G, [ḡ], J̄) the reduced locally conformal Kähler manifold.
Then the action of G is Hamiltonian for g, the submanifold µ−1(0) is the same as in the Kähler reduction
and the conformal class of the reduced Kähler metric is [ḡ]. So, in particular, the reduced manifold is globally
conformal Kähler.

Proof: As the action of G is twisted Hamiltonian for [g] Remarks 2.4 and 3.2 imply that it is Hamiltonian
for g. Moreover, the subspace µ−1(0) is the same for both notions. The construction of the almost-complex
structure on the quotient is the same in the two cases, so J̄ is defined. Denote by Ω̃ the Kähler form that
the Kähler reduction provides on µ−1(0)/G. Then π∗Ω̃ = i∗Ω, so the claim follows by the uniqueness part of
the reduction theorem. ¥

12



Example 6.2 If (M, [g], J) is a globally conformal Kähler manifold the reduced structure is not necessarily
globally conformal Kähler. Actually, any locally conformal Kähler manifold (M, [g], J) can be seen as a
reduction of a globally conformal manifold. Indeed, consider the universal covering M̃ of M equipped with
its pulled-back locally conformal Kähler structure, which is globally conformal Kähler since M̃ is simply
connected. This covering manifold can be considered to be acted on by the discrete group of holomorphic
conformal maps G

def= π1(M), which, having trivial associated infinitesimal action, is clearly Hamiltonian,
with trivial momentum map: hence µ−1(0) = M̃ and µ−1(0)/G = M .

We now concentrate our attention to the structure of the universal cover M̃ of a locally conformal Kähler
manifold (M, [g], J).

Remark 6.3 The pull-back by the covering map p of any metric of [g] is globally conformal Kähler since M̃
is simply connected. It is easy to show that on any complex manifold Z such that dimC(Z) ≥ 2 if two Kähler
metrics are conformal then their conformal factor is constant. In our case remark that the pull-back of any
metric in [g] is conformal to a Kähler metric g̃ by

g̃ = e−τp∗g

where τ satisfies dτ = ωg̃ = p∗ωg and is then only defined up to adding a constant. What is remarkable is
that the action of π1(M) on M̃ is by homotheties of the Kähler metrics (we fix points in M and in M̃ in
order to have this action well-defined). Moreover any element of Aut(M) lifts to a homothety of the Kähler
metrics of M̃ , if dimC(M) ≥ 2. This is in fact an equivalent definition of locally conformal Kähler manifolds
(see [Vai82] and [DO98]).

With this model in mind, we define a homothetic Kähler manifold as a triple (K, 〈g〉, J), where (K, g, J)
is a Kähler manifold and 〈g〉 denotes the set of metrics differing from g by multiplication for a positive factor.
We define H(K) to be the group of biholomorphisms of K such that f∗g = λg, λ ∈ R+, and we call such a
map a homothety of K of dilation factor λ. The dilation factor does not depend on the choice of g in 〈g〉,
so a homomorphism ρ is defined from H(K) to R+ associating to any homothety its dilation factor (see also
[KO01]). Note that ker ρ is the subgroup of H(K) containing the maps that are isometries of one and then
all of the metrics in 〈g〉. If K is given as a globally conformal Kähler manifold (K, [g], J), then H(K) can be
considered as the well-defined subgroup of Aut(K) of homotheties with respect to the Kähler metrics in [g].
We now give a condition for a locally conformal Kähler manifold covered by a globally conformal one to be
globally conformal Kähler.

Proposition 6.4 Given a globally conformal Kähler manifold (M̃, [g̃], J) and a subgroup Γ of Aut(M̃) acting
freely and properly discontinuously, the quotient M

def= M̃/Γ (with its naturally induced complex structure)
comes equipped with a locally conformal Kähler structure [g] uniquely determined by the condition [p∗g] = [g̃],
where p denotes the covering map M̃ → M .

Assume now that Γ ⊂ H(M̃). Then the induced structure is globally conformal Kähler if and only if
ρ(Γ) = 1.

Proof: The action of Γ can be seen as satisfying the hypothesis of the reduction theorem, so the first claim
follows. However we give a straightforward construction.

Let g̃ be one of the Kähler metrics of the structure of M̃ . Given an atlas {Ui} for the covering map p,
induce a local Kähler metric gi on any Ui by projecting g̃ restricted to one of the connected components
of p−1(Ui). Then gi and gj differ by a conformal map on Ui ∩ Uj , hence by a partition of unity of {Ui}
one can glue the set {gi} to a global metric g which is locally conformal the gi’s, see Lemma 3.5, hence is
locally conformal Kähler. The conformal class of g is uniquely defined by this construction. Moreover, p∗g
is conformal to g̃, as they are conformal on each component of the covering {p∗(Ui)} and again Lemma 3.5
holds. If g′ is a Hermitian metric on M such that p∗g′ is conformal to g̃, then on each Ui the restricted metric
g′|Ui is conformal to gi hence to g|Ui , so g and g′ are conformal, again see Lemma 3.5.

Now assume that Γ ⊂ H(K), and that ρ(Γ) 6= 1. Then Γ is not contained in the isometries of any Kähler
metric of M̃ . If in the class of [g] there existed a Kähler metric ḡ then its pull-back p∗ḡ would belong to
〈g̃〉. But p∗ḡ being a pull-back implies that Γ acts with isometries with respect to it, which is absurd since
ρ(Γ) 6= 1. Conversely, if ρ(Γ) = 1 then p is a Riemannian covering space and g itself is Kähler. Hence the
induced locally conformal Kähler structure is globally conformal Kähler if and only if ρ(Γ) = 1. ¥

This allows, under a natural condition, to compute locally conformal Kähler reduction as having a Kähler
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reduction as covering space. First remark that any group G ⊆ Aut(M) lifts to subgroups G̃ ⊆ H(M̃) all
having the property that p ◦ G̃ = G.

Theorem 6.5 Let (M, [g], J) be a locally conformal Kähler manifold, let G ⊂ Aut(M) be a subgroup satisfying
the hypothesis of the reduction theorem, and admitting a lifting G̃ such that ρ(G̃) = 1. Then the Kähler
reduction is defined, with momentum map denoted by µM̃ , G̃ commutes with the action of π1(M), and the
following equality of locally conformal Kähler structures holds:

µ−1(0)/G ' (µ−1
M̃

(0)/G̃)/π1(M). (11)

Conversely, let G̃ be a subgroup of isometries of a homothetic Kähler manifold (M̃, 〈g̃〉, J) of complex
dimension bigger than 1 satisfying the hypothesis of Kähler reduction and commuting with the action of a
subgroup Γ ⊂ H(M̃) acting freely and properly discontinuously and such that ρ(Γ) 6= 1. Moreover, assume
that Γ acts freely and properly discontinuously on µ−1

M̃
(0)/G. Then G̃ induces a subgroup G of Aut(M), M

being the locally conformal Kähler manifold M̃/Γ, which satisfies the hypothesis of the reduction theorem, and
the isomorphism (11) holds.

Proof: To show that Kähler reduction is defined, one has to show that the action of G̃ is Hamiltonian with
respect to the globally conformal Kähler structure of M̃ . First remark that the Lie algebra of G̃ coincides
with that of G, that we denote by g as usual, and that the fundamental vector field associated with X ∈ g

on M̃ is p∗X, where, as we claimed, we identify X with its associated fundamental field on M . Fix a metric
g ∈ [g] with Lee form ω and fundamental form Ω and let µ be the momentum map for g. Then we claim
that

µ·
M̃

: g −→ C∞(M̃)
X 7−→ p∗µX

is a momentum map for the action of G̃ on M̃ with respect to the globally conformal Kähler metric p∗g.
Indeed

dp∗ωµX
M̃

= dp∗ω(p∗µX)

= p∗dωµX

= p∗ιXΩ
= ιp∗Xp∗Ω.

The same way one shows that µM̃ is a homomorphism of Poisson algebras, since such is µM . But now recall
that from Remark 3.2 the property of an action to be twisted Hamiltonian is a conformal one, so the action
of G is also twisted Hamiltonian for the Kähler metrics conformal to p∗g, and is then ordinarily Hamiltonian
for these Kähler metrics from Proposition 6.1. This in turn implies, since ρ(G) = 1, that Kähler reduction is
defined and µ−1(0) is diffeomorphic to µ−1

M̃
(0)/π1(M).

As the action of G̃ is induced by p, it commutes with the action of π1(M), so the following diagram of
differentiable manifolds commutes:

µ−1
M̃

//

p

²²

µ−1
M̃

(0)/G̃

²²

µ−1(0) // (µ−1
M̃

(0)/G̃)/π1(M) ' µ−1(0)/G.

Moreover the locally conformal Kähler structures induced on µ−1(0)/G, as covered by the Kähler reduction
µ−1

M̃
(0)/G and as locally conformal Kähler reduction, are easily seen to coincide, and this ends the first part

of the proof.
Conversely note that, as in Remark 6.3, if τ is such that p∗ω = dτ , then e−τp∗g is Kähler, hence conformal

to g̃. So Γ acts as isometries of eτ g̃. We claim that eτµM̃ is Γ-invariant, where by µM̃ we denote the Kähler
momentum map. Postponing for the moment the proof, this defines the locally conformal Kähler momentum
map as µX def= (eτµX

M̃
)/Γ, where we identify the Lee algebra of G with that of G̃. This induced momentum map

is easily shown to be a homomorphism with respect to the Poisson structure. Moreover µ−1
M (0) ' µ−1

M̃
(0)/Γ.
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Finally since the action of Γ on µ−1
M̃

(0)/G is free and properly discontinuous, (µ−1
M̃

(0)/G)/Γ is a manifold,
and since the diagram

µ−1
M̃

(0) //

p

²²

µ−1
M̃

(0)/G

²²

µ−1
M (0) // (µ−1

M̃
(0)/G)/Γ = µ−1

M (0)/G

commutes, the action of G on µ−1
M (0) is proper and free, that is, G satisfies the hypothesis of the reduction

theorem. So the first part of the theorem implies the second.
We are left to prove the claim. For simplicity we write µ instead of µM̃ . First we show that for any γ ∈ Γ

and X ∈ g we have γ∗µX = ρ(γ)µX . Indeed, recalling that γ∗X = X

dγ∗µX = γ∗dµX

= γ∗ιXΩ̃

= ιXγ∗Ω̃

= ρ(γ)ιXΩ̃

= ρ(γ)dµX ,

hence γ∗µX−ρ(γ)µX is constant on M , and is equal to 0 since it is so on µ−1(0). So γ∗(eτµX) = eγ∗τρ(γ)µX .
But now recall that, from one side, the formula γ∗eτ Ω̃ = eγ∗τρ(γ)Ω̃ holds true, from the other that Γ acts as
isometries of eτ g̃, hence eγ∗τρ(γ) = 1, so the claim is true. ¥

7 Reduction of compact Vaisman manifolds

7.1 A conformal definition of compact Vaisman manifolds

The original definition of Vaisman manifold is relative to a Hermitian manifold: the metric of a Hermitian
manifold (M, g, J) is a Vaisman metric if it is locally conformal Kähler with ω non-exact and if ∇gωg = 0,
where ∇g is the Levi-Civita connection.

Definition 7.1 A conformal Hermitian manifold (M, [g], J) is a Vaisman manifold if it is a locally conformal
Kähler manifold, non globally conformal Kähler and admitting a Vaisman metric in [g].

The condition on the parallelism of the Lee form is not invariant up to conformal changes of metric, and
there is not in the literature a conformally invariant criterion to decide whether a given locally conformal
Kähler manifold is Vaisman.

Such a criterion was recently given in [KO01] in the case of compact locally conformal Kähler manifolds.
Here we shall use it to derive a presentation for compact Vaisman manifolds that behaves effectively with
respect to reduction.

The construction strictly links Vaisman geometry with Sasaki geometry. We start with the following
definition-proposition, which is equivalent to the standard one. On this subject see [Bla02, BG99].

Definition 7.2 Let (W, gW , η) be a Riemannian manifold of odd dimension bigger than 1 with a contact
form η such that on the distribution η = 0 the (1, 1)-tensor J that associates to a vector field V the vector
field ]gιV dη satisfies J2 = −1. Call ζ the Reeb vector field of η. Define on the cone W × R the metric
g = etdt ⊗ dt + etπ∗gW and the complex structure that extends J associating to dt the vector field π∗ζ,
π being the projection of W × R to W . This is equivalent to assigning to W × R the same J and the
compatible symplectic form Ω def= d(etπ∗η). Then we say that (W, gW , η) is a Sasaki manifold if its cone
(W × R, etdt⊗ dt + etπ∗gW , J) is Kähler.

The standard example is that of the odd-dimensional sphere contained in Cn r 0, with n ≥ 2. The
usual Kähler metric

∑
dzi ⊗ dz̄i associated to the complex structure of Cn r 0 restricts to the sphere to a

Riemannian metric and a CR-structure, respectively, that give to S2n−1 the Sasaki structure whose cone is
Cn r 0 itself, via the identification (x, t) 7→ et/2x.

It is well-known that the conformal metric |z|−2
∑

dzi⊗ dz̄i has parallel Lee form. This property extends
to every Kähler cone, as is implicit in [KO01].
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Lemma 7.3 The Kähler cone (W×R, g, J) of a Sasaki manifold admits the metric g̃ = 2e−tg in its conformal
class such that ∇g̃ωg̃ = 0. In particular the Lee form of g̃ is −dt.

Proof: Recall that the fundamental form Ω of g is Kähler, so the fundamental form Ω̃ = 2e−tΩ of g̃ is such
that dΩ̃ = −2e−tdt ∧ Ω = −dt ∧ Ω. So −dt is the Lee form of g̃. Remark that

g̃ = 2dt⊗ dt + 2π∗gW

This shows that ∂t is twice the metric dual of −dt. Recall that for any 1-form σ the following holds

2g̃(∇g̃
Xσ], Z) = (Lσ] g̃)(X, Z) + dσ(X, Z)

where L denotes the Lie derivative. So, in our case, since dt is closed, we only have to show that ∂t is Killing.
But this is true since L∂t g̃ = 2L∂tdt⊗ dt, and L∂tdt = dι∂tdt = 0. ¥

The following also follows from computations developed in [KO01].

Proposition 7.4 Let (W, gW , η) be a Sasaki manifold, let Γ be a subgroup of H(W × R) acting freely and
properly discontinuously on W × R, in such a way that ρ(Γ) 6= 1 and for any γ ∈ Γ

γ ◦ φt = φt ◦ γ,

that is, Γ commutes with the real flow generated by ∂t.
Then the induced locally conformal Kähler structure on M

def= (W × R)/Γ is a Vaisman structure, not
globally conformal Kähler.

Proof: Since Γ ⊂ H(W ×R) and ρ(Γ) 6= 1 the quotient has a locally non globally conformal Kähler structure,
recall Proposition 6.4.

To show that the structure is Vaisman we show that Γ acts by isometries of the metric g̃ = 2e−tgW×R,
where by gW×R we denote the cone metric on W × R. This is equivalent to show that Γ acts by symplecto-
morphisms of the conformal Kähler form 2e−td(etπ∗η).

We claim that for any γ ∈ Γ the following properties hold:

γ∗π∗η = π∗η
γ∗et = ρ(γ)et.

For this, first note that γ commuting with the real natural flow implies γ∗∂t = ∂t, it being holomorphic implies
γ∗J∂t = J∂t and it being conformal implies γ∗〈∂t, J∂t〉⊥ = 〈∂t, J∂t〉⊥. Now remark that for X ∈ 〈∂t, J∂t〉⊥
π∗X ∈ Null η, so

γ∗π∗η(X) = η(π∗γ∗X) = 0.

Moreover 1 = η(ζ) = η(π∗(J∂t)) = η(π∗(γ∗J∂t) = γ∗π∗η(J∂t) and this implies the first claim. Now recall
that π∗η = e−tι∂tΩ, so

γ∗(et)ρ(γ)ι∂tΩ = γ∗(e−tι∂tΩ)
= γ∗π∗η
= π ∗ η

= e−tι∂tΩ

which shows the second claim.
Then it follows

γ∗(2e−td(etπ∗η)) = 2ρ(γ)−1e−tdγ∗(etπ∗η)

= 2ρ(γ)−1e−tρ(γ)d(etγ∗π∗η)
= 2e−td(etπ∗η).

So g̃ factors through the action of Γ, hence inducing gM on M which, by Lemma 7.3, is Vaisman, and
belongs to the locally conformal Kähler structure of M since p∗gM = g̃ ∼ gW×R. ¥

The characterization given in [KO01] shows in fact that any compact Vaisman manifold is produced this
way. We briefly recall this construction, since some details which are less relevant in that work become
necessary in this one, so we need to express them explicitly.

Remark that a vector field V generating a 1-parameter subgroup of Aut(M) does not imply that the flow
of JV is contained in Aut(M). If this happens, the set of the flows of the subalgebra generated by V and
JV is a Lie subgroup of Aut(M) of real dimension 2 that has a structure of complex Lie group of dimension
1. This motivates the following definition:
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Definition 7.5 ([KO01]) A holomorphic conformal flow on a locally conformal Kähler manifold (M, [g], J)
is a 1-dimensional complex Lie subgroup of the biholomorphisms of (M,J) which is contained in Aut(M).

Remark 7.6 The field ∂t on a Kähler cone of a Sasaki manifold generates a holomorphic conformal flow.
Its flow φs(w, t) = (w, t + s) is in fact contained in H(W × R), and satisfies ρ(φs) = es, since πφs = π and

φ∗s(d(etπ∗η)) = d(et+sφ∗sπ
∗η)

= esd(etπ∗η).

The flow of J∂t, which is a vector field that restricts to the Reeb vector field of W , which is a Killing vector
field of W , generates isometries of W ×R. We call the real flow generated by ∂t the natural real flow and the
holomorphic conformal flow generated by ∂t the natural holomorphic flow of the Kähler cone.

Finally remark that for a biholomorphism h of a Hermitian manifold to commute with the flow of a vector
field V it is necessary and sufficient that it commutes with the whole holomorphic flow, since h∗V = V is
equivalent to h∗JV = JV . So if a holomorphic conformal flow C is defined on a locally conformal Kähler
manifold saying that it is preserved by an automorphism h is equivalent to saying that h preserves a real
generator of C.

Theorem 7.7 (Kamishima & Ornea, [KO01]) Let (M, [g], J) be a compact, connected, non-Kähler, lo-
cally conformal Kähler manifold of complex dimension n ≥ 2. Then (M, [g], J) is Vaisman if and only if
Aut(M) admits a holomorphic conformal flow.

Proof: For the technical lemmas we refer directly to the cited paper.
First, if M is a Vaisman manifold, then the dual vector field ]ω of its Vaisman metric generates a

holomorphic conformal flow, that is, both the flow of ω] and the flow of Jω] belong to Aut(M), see [DO98].
On the opposite direction let C be the holomorphic conformal flow on M . Fix a lift C̃ of C to M̃ . One

proves (Lemma 2.1) that ρ(C̃) = R+. Choose a vector field ξ on M̃ such that the flow {ψt} of −Jξ is contained
in ker ρ|C̃ . Remark that the flow {φt} of ξ is also contained in C̃, since C̃ is a holomorphic conformal flow,
and that t 7→ ρ(φt)) is surjective. Choose Ω̃ in the homothety class of Kähler forms on M̃ in such a way that
this homomorphism is t 7→ et, that is for any t

φ∗t Ω̃ = etΩ̃ ψ∗t Ω̃ = Ω̃.

In particular the subgroup {φt} of C̃ is isomorphic to R.
At this step the hypothesis of compactness of M is crucial: using this fact one proves that the action of

{φt} is free and proper (Lemma 2.2). In particular ξ is never vanishing.
Define the smooth map

s : M̃ −→ R
x 7−→ Ω̃(Jξx, ξx)

and remark that 1 is a regular value of s, that s−1(1) is non empty, hence is a regular submanifold of M̃ that
we denote by W (Proposition 2.2). Note that W is the submanifolds of those points where ξ has unitary
norm. In particular one proves that if x is in W then dxs(ξx) = 1, so ξ is transversal to W .

Denote by i the inclusion of W in M . It turns then out that (W, i∗ιξΩ̃, i∗g) is a connected Sasaki manifold,
and that

H : W × R −→ M̃
(w, t) 7−→ φt(w)

is an isometry with respect to the Kähler cone structure on W × R.
One is left to show that π1(M) satisfies the conditions of Proposition 7.4. Indeed ρ(π1(M)) 6= 1 since M

is non Kähler, and π1(M) commutes with the real flow generated by ∂t since this last factors to M . ¥
The proof of this theorem proves in particular the following fact.

Corollary 7.8 Any compact Vaisman manifold (M, [g], J) can be presented as a pair (W,Γ) where W is
a compact Sasaki manifold and Γ ⊂ H(W × R) such that M is isomorphic as a locally conformal Kähler
manifold to (W × R)/Γ. Moreover W can be chosen to be simply connected, hence W × R is the universal
covering of M and Γ is isomorphic to π1(M).
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Remark 7.9 This can be reformulated in the following way. Consider the collection of pairs (W,Γ) as in
the previous corollary. Given a Sasaki morphism one naturally induces a morphism on the Kähler cones
by composing with identity on the factor R. So define the category S of pairs (W,Γ) by considering as
morphisms between (W,Γ) and (W ′,Γ′) those Sasaki morphisms (i.e. isometries preserving the contact form)
which induce between W × R and W ′ × R morphisms which are equivariant with respect to the actions of
Γ and Γ′. Define a functor between this category and the category of Vaisman manifolds (with morphisms
given by holomorphic, conformal maps) by associating to (W,Γ) the manifold (W ×R)/Γ and to a morphism
the induced morphism between the quotients. This functor is surjective on the objects of the subcategory of
compact Vaisman manifolds, but not on the morphisms.

We say that (W,Γ) is a presentation of M if M is in the image of (W,Γ) by this functor. This construction
suggests the following definition.

Definition 7.10 Let (M, [g], J) be a compact Vaisman manifold. A locally conformal Kähler morphism is
a Vaisman morphism if it belongs to the image of the functor from S to Vaisman manifolds. In particular
Vaisman automorphisms are a subgroup of Aut(M, [g], J).

Remark that Vaisman morphisms are the set of locally conformal Kähler morphisms h that commute with
the Vaisman real flow, that is, the real flow generated by the Lee field, and that admit a lifting h̃ ∈ H(M̃)
such that ρ(h̃) = 1.

Remark 7.11 It must be noted that whenever (M, [g], J) is Vaisman and compact the Gauduchon metric is
the Vaisman metric (well-defined up to homothety). This implies that Aut(M) coincides with the holomorphic
isometries of the Vaisman metric in this case. So Vaisman automorphisms coincide with the set of those h
being isometries of the Vaisman metric that commute with the Vaisman real flow and admitting a lifting
h̃ ∈ H(M̃) such that ρ(h̃) = 1.

Remark 7.12 In passing we remark that the categories we are talking about all admit a forgetting functor
in corresponding “symplectic” categories, respectively locally conformal symplectic manifolds, homothetic
symplectic manifolds and contact manifolds (with the functor given by symplectic cone construction). By
associating to the pairs (W,Γ) the locally conformal symplectic manifolds (W×R)/Γ one obtains a subcategory
that might represent the symplectic version of Vaisman manifolds. See [Vai85] as a leading reference on locally
conformal symplectic manifolds, in particular see the notion of locally conformal symplectic manifolds of first
kind.

7.2 Reduction for compact Vaisman manifolds

It is noted in [BG98] that G acting by isometries with respect to a Vaisman metric g does not imply that the
reduced metric is Vaisman, since ωg being parallel with respect to the Levi-Civita connection of g does not
imply its restriction to µ−1(0) being parallel.

We prove that our reduction is compatible with Sasaki reduction, see [GO01], and thus show in The-
orem 7.15 that reduction of compact Vaisman manifolds by the action of Vaisman automorphisms (whose
action results to be always twisted Hamiltonian) produces Vaisman manifolds. Given a Sasaki manifold
(W,η, J) we call Sasaki isomorphisms and denote by Isom(W ) the diffeomorphisms of W preserving both the
metric and the contact form.

Theorem 7.13 Let ((W,η, J), Γ) be a pair in the category S and denote by M the associated Vaisman
manifold. Let G ⊂ Isom(W ) be a subgroup satisfying the hypothesis of Sasaki reduction. Then G can be
considered as a subgroup of H(W × R). Assume that the action of G commutes with that of Γ, and that Γ
acts freely and properly discontinuously on the Kähler cone (µ−1

W (0)/G)× R.
Then G induces a subgroup of Aut(M) satisfying the hypothesis of the reduction theorem, and the reduced

manifold is isomorphic with ((µ−1
W (0)/G)× R)/Γ. In particular the reduced manifold is Vaisman.

Proof: We first prove that the induced action satisfies the hypothesis of the Kähler reduction. The momentum
map µW is

µW : g −→ C∞(W )
X 7−→ ιXη.
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Remark that the fundamental field associated to X ∈ g on W × R is projectable, so we can define µX
W×R

def=
etπ∗ιπ∗Xη. To show that this is a momentum map for the action of G on W × R we directly compute

dµX
W×R = d(etπ∗ιπ∗Xη)

= d(etιXπ∗η)
= d(ιXetπ∗η)
= ιXd(etπ∗η)− LX(etπ∗η)
= ιXΩ

where LX(etπ∗η) = 0 comes from the properties of the action. So the action of G is weakly Hamiltonian.
Moreover

{µX
W×R, µY

W×R} = Ω(X, Y ))
= d(etπ∗η)(X, Y )
= Y (etπ∗η(X))−X(etπ∗η(Y )) + ι[X,Y ]e

tπ∗η

= 0 + 0 + etπ∗ιπ∗[X, Y ]η

= µ
[X,Y ]
W×R

where Y (etπ∗η(X)) = X(etπ∗η(Y )) = 0 is due to the properties of the action. The action of G is then
Hamiltonian, and Kähler reduction is defined.

So µ−1
W×R(0) ' (µ−1

W (0)×R), and the action of G being proper and free on µ−1
W (0) implies it having the same

properties on µ−1
W×R(0). Moreover the action of Γ being free and properly discontinuous on (µ−1

W (0)/G) ×
R = µ−1

W×R(0)/G implies one can apply Theorem 6.5, so the isomorphism is proven. Then by applying
Proposition 7.4 one sees that the reduced manifold is Vaisman. The theorem then follows. ¥

Remark 7.14 The previous theorem also applies to non-compact Vaisman manifolds of the form (W×R)/Γ.

But now recall that Sasaki reduction, as contact reduction in fact, does not need a notion of Hamiltonian
action, that is, the action of any subroup of Sasaki isometries lead to a momentum map, hence to reduction,
up to topological conditions, that is µ−1(0) being non-empty, 0 being a regular value for µ, and G acting
freely and properly discontinuously on µ−1(0). This implies the main result of this section.

Theorem 7.15 Let (M, [g], J) be a compact Vaisman manifold. Let G ⊂ Aut(M) be a subgroup of Vaisman
automorphisms. Then the action of G on M is twisted Hamiltonian. If µ−1(0) is non-empty, 0 is a regular
value for µ and G acts freely and properly on µ−1(0), then the reduced manifold is Vaisman.

Moreover for any (W,Γ) presentation of M and for any G̃ subgroup of isometries of W in the preimage
of G, the group G̃ induces a Sasaki reduction µ−1

W (0)/G̃ and the Vaisman reduced manifold is isomorphic to
((µ−1

W (0)/G̃)× R)/Γ.

Proof: The automorphisms of M lift to a subgroup G̃ of H(W × R) of maps commuting with the natural
flow and such that ρ(G̃) = 1. By definition of Vaisman automorphisms G̃ is contained in Isom(W ). So the
compatibility between Sasaki and Kähler reduction of [GO01] applies, hence µ−1

W×R(0)/G̃ is isomorphic with
the Kähler cone (µ−1

W (0)/G̃)× R.
Moreover Γ acts freely and properly discontinuously on it, since the quotient µ−1

M (0)/G is a manifold, and
commutes with its natural real flow. Then Theorem 7.13 applies, and this proves the theorem. ¥

8 A class of examples: weighted actions on Hopf manifolds

We apply the theorem in last section to the simple case when Γ = Z is contained as a discrete subgroup of
the natural holomorphic flow of W ×R. In particular the Vaisman manifold topologically is simply W × S1.
This nevertheless covers much of the already known examples of Vaisman manifolds, as was shown in [KO01].
We briefly review the definition of those manifolds.

First consider S2n−1 equipped with the CR structure J coming from Cn. The action on Cn r 0 of the
cyclic group Γα generated by z 7→ αz (for any α ∈ C such that |α| > 1) produces the so-called standard
Hopf manifolds. For any {c1, . . . , cn} ∈ (S1)n and any set A

def= {a1, . . . , an} of real numbers such that 0 <
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a1 ≤ · · · ≤ an the action of the cyclic group Γ{c1,...,cn},A ⊂ C generated by (z1 . . . zn) 7→ (ea1c1z1, . . . , e
ancnzn)

produces the complex manifolds usually called non-standard Hopf manifold.
To endow the complex Hopf manifolds with a Vaisman structure let η0 be the Sasaki structure coming

from the differential 2-form Ω = −i
∑

dzi ∧ dz̄i of Cn. The action of any Γα is by homotheties for the cone
structure, hence induces Vaisman structures ((S2n−1, η0, J), Γα) on standard Hopf manifolds. More generally,
for any A = {a1, . . . , an} of real numbers such that 0 < a1 ≤ · · · ≤ an let ηA be defined the following way:

ηA
def=

1∑
ai|zi|2 η0.

Fixed A one obtains that for any {c1, . . . , cn} ∈ (S1)n the action of Γ{c1,...,cn},A is by homotheties of the
corresponding cone structure on Cn r 0, hence inducing Vaisman structures

((S2n−1, ηA, J), Γ{c1,...,cn},A)

on the non-standard Hopf manifolds (see [KO01]).
We now analyze reduction of Hopf manifolds by means of circle actions: in fact by acting on (S2n−1, ηA, J)

by a circle of Sasaki isometries, if n > 2, we generate, for every single Γ{c1,...,cn},A, a Vaisman reduced manifold
of dimension 2n− 2, whose underlying manifold is the product of the Sasaki reduced manifold with S1.

Remark that the contact structures of the Sasaki manifolds (S2n−1, ηA, J) all coincide. Denote by
Cont(S2n−1) the set of contact automorphisms of S2n−1, which coincide with restrictions of biholomorphisms
of Cn.

For any Λ = (λ1, . . . , λn) ∈ Zn such that λ1 . . . λn 6= 0 let GΛ ⊂ Cont(S2n−1) be the subgroup of those
maps hΛ,t, t ∈ R, such that

hΛ,t(z1, . . . , zn) = (eiλ1tz1, . . . , e
iλntzn).

Remark that any GΛ is composed by holomorphic isometries of the standard Kähler structure. Moreover a
direct computation shows that its action on S2n−1 is by isometries for any of the ηA. We call the action of
GΛ weighted by the weights (λ1, . . . , λn). It is easy to see that GΛ is isomorphic to the circle R/2πZ.

The corresponding momentum map for the Sasaki manifold (S2n−1, ηA, J) is defined by:

µ1
Λ(z) = HΛ(z) def=

1
2(

∑
ai|zi|2)(λ1|z1|2 + · · ·+ λn|zn|2).

So a Sasaki reduction is defined whenever the weights are such that µ−1(0) is not empty and the action on
µ−1(0) is free and proper. The condition that µ−1(0) is not empty is equivalent to requiring that the signs of
the λi are not all the same.

Let k = k(Λ) ∈ {1, . . . , n− 1} be the number of negative weights of Λ, and assume the negative weights
are the first k. Without loss of generality we might assume that k ≤ n/2. Then there is a diffeomorphism

ΦΛ : S2k−1 × S2n−2k−1 −→ µ−1(0)
((ξ1, . . . , ξk), (ζ1, . . . , ζn−k)) 7−→ ( ξ1√−λ1

, . . . , ξk√−λk
, ζ1√

λk+1
, . . . ,

ζn−k√
λn

)

equivariant with respect to the action

wΛ,t((ξ1, . . . , ξk), (ζ1, . . . , ζn−k)) = ((eiλ1tξ1, . . . , e
iλktξk), (eiλk+1tζ1, . . . , e

iλntζn−k))

from one side and the action of GΛ on µ−1(0) from the other: hΛ,t ◦ ΦΛ = ΦΛ ◦ wΛ,t.
Call S(Λ) the quotient of this action. Since GΛ is compact for any Λ, this will generally be an orbifold.

The following holds.

Proposition 8.1 The circle GΛ acts freely on S2k−1 × S2n−2k−1 if and only if

gcd(λm, λj) = 1

for all m ≤ k and all j ≥ k +1, that is, if and only if the positive weights are coprime with the negative ones.

Then Theorem 7.13 implies the following.

Corollary 8.2 For any Λ as in Proposition 8.1, for any (a1, . . . , an) ∈ Rn such that 0 < a1 ≤ · · · ≤ an and
for any (c1, . . . , cn) ∈ (S1)n there exists a Vaisman structure on S(Λ) × S1, each being the reduction by the
action of GΛ of the complex Hopf manifold associated to ((a1, . . . , an), (c1, . . . , cn)) endowed with its Vaisman
structure.
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Quite surprisingly we were able to find very little information in literature on the topological type of the
reductions S(Λ), even though the weighted circle actions on Cn r 0 are natural examples of Hamiltonian
circle actions. In the following examples we list the topological type of some cases.

Example 8.3 Assume that n ≥ 2, k = 1, that is, λ1 < 0, λi > 0, i = 2, . . . , n. Then the space µ−1(0) is
diffeomorphic to S1 × S2n−3.

One easily shows that S(−1, 1, . . . , 1) is S2n−3. One can also show that the Sasaki structure reduced
from the standard is again the standard one, so any standard Hopf manifold comes as a reduction of the
corresponding Hopf manifold of higher dimension. This is also shown in [BG98].

In turn, as shown in [GO01], for any positive integer p, S(−p, 1, . . . , 1) is diffeomorphic to S2n−3/Zp, so
we obtain a family of Vaisman structures on (S2n−3/Zp) × S1. In particular for n = 3 we obtain Sasaki
structures on lens spaces of the form L(p, 1), hence Vaisman structures on complex surfaces diffeomorphic
with L(p, 1)× S1.

Example 8.4 If n = 4, k = 2, then µ−1(0) is diffeomorphic to S3×S3. In particular S(−1,−1, 1, 1) is known
to be S3 × S2, see [GO01]. So we obtain a family of Vaisman structures on S3 × S2 × S1. It is interesting
to note that reducing from the standard structure one obtains a manifold that also bears a semi-Kähler
structure, when seen as twistor space of the standard Hopf surface.

Example 8.5 More generally if n = 2k = 4s, µ−1(0) is diffeomorphic to S4s−1× S4s−1. In analogy with the
case n = 4 treated in [GO01] apply the diffeomorphism

S2k−1 × S2k−1 −→ S2k−1 × S2k−1

((ξ1, . . . , ξk), (ζ1, . . . , ζk)) 7−→((ξ1ζk + ξ2ζk−1, ξ1ζk−1 − ξ2ζk, . . . , ξk−1ζ2 + ξkζ1, ξk−1ζk − ξkζ2), (ζ1, . . . , ζk))

and remark that it is equivariant with respect to the action of G(−1,...,−1,1,...,1) on the first space and the
action on the second space given by the product of the trivial action on the first factor and the Hopf action
on the second factor. This proves that S(−1, . . . ,−1, 1, . . . , 1) is diffeomorphic to S4s−1 × CP2s−1. Thus we
obtain families of Vaisman structures on S4s−1 × CP2s−1 × S1.

Example 8.6 If the weights on one of the spheres coincide, then the action factors through the corresponding
projective space. For example for any positive integer p the manifold S(−p,−p,−p, λ4, λ5) is a fiber bundle
over CP2.

The general tools one might use to investigate the manifolds S(Λ) are the homotopy exact sequence and
the (co)homology Thom-Gysin sequence of the fibration S1 ↪→ S2k−1 × S2n−2k−1 → S(Λ).

From the homotopy exact sequence it is easy to obtain that for k > 1 the manifolds S(Λ) are simply
connected. In the case of Example 8.4 the manifolds S(Λ) are then simply connected 5-manifolds, which
we recall were completely classified up to diffeomorphism in [Bar65]. As for the case of n = 5, k > 1, an
important class of simply connected 7-manifold is described in [CE00].
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