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Introduction

It is a classical result in Algebraic Topology that spheres S™ are parallelizable if and only if their
dimension is n = 1, 3 or 7. For products of two or more spheres the class of parallelizable manifolds
is much wider. In fact, a striking result in this respect is the following theorem of M. Kervaire

(see [Kerb6]):

Theorem The manifold S™ x --- x 8™ r > 2, is parallelizable if and only if at least one of the

n; is odd.

Unlikely the case of a single sphere, where an explicit parallelization is given by the corresponding
structure of division algebra of R"*!, an explicit parallelization on S™ x --- x S™ is not straight-
forward. The only results known to the author in this direction were obtained by M. Bruni in
[Bru92|, where explicit parallelizations are provided only in the cases when one of the spheres is

of dimension 1, 3, 5 or 7, using specific properties of these low dimensions.

In this thesis the problem of writing an explicit parallelization on $™ x --- x S™" is solved in the
general case, that is, an explicit (m + n)-uple of orthonormal vector fields is obtained on S™ x S™,
in terms of the standard coordinates in R™*! x R™"*!: for products of more than two spheres an

inductive argument is used to extend the construction.

This parallelization is then exploited to define some significant G-structures on the products of

spheres of suitable dimension, and to describe their differential properties.

The groups G considered are: G = U((m +n)/2), if both the dimensions are odd (that is, almost-
Hermitian structures on S™ x S™); G = Sp((m + n)/4), if both the dimensions are odd and
m+mn =0 mod 4 (that is, almost-hyperhermitian structures on S x S™); G = Gg, Spin(7) and
Spin(9) on the 7-dimensional, 8-dimensional and 16-dimensional products S™ x S™ respectively.
In some cases, the structures associated with the parallelization turn out to be classical structures,
of which is then provided an explicit description (for instance, when G is the unitary group this
approach recover the Calabi-Eckmann Hermitian structures). In the other cases, this construction

provides new structures on products of spheres.
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The action of the symmetric group on the parallelization gives rise to new structures. For each
of the above groups G, the elements of this symmetric orbit of G-structures are described, and
some remarkable differential properties are obtained; in some cases the whole orthogonal orbit is

considered.

Among all parallelizable products of two spheres, S3 x S! is the lowest dimensional non toral case:
its Lie group structure gives an explicit parallelization that was used in [Gau81] by P. Gauduchon to
describe all diagonal Hopf complex structures S3 x S' can be equipped of. The same parallelization
turns out to be useful to describe a family of locally conformal Kihler metrics on S3 x S* equipped

with the structure of diagonal Hopf surface.

Locally conformal Kahler metrics on Hopf surfaces

The study of metrics on complex surfaces arose in the sixties out of the following question: which
compact complex surfaces admit a Kéhlerian metric? It is a classical theorem (see for instance
[BPV84, pages 266-269]) of Complex Geometry that all the complex surfaces with even first
Betti number do admit a K&hler metric. This theorem, whose classical approach was through
Kodaira’s classification of minimal complex surfaces, has been recently proved by direct methods

independently by N. Buchdahl and A. Lamari in [Buc99] and [Lam99] respectively.

Is there a weakened version of the Kahler hypothesis that one can hope to prove for surfaces with
odd first Betti number? The notion of locally conformal Kahler manifold was introduced in this
context by I. Vaisman in [Vai76]. Nevertheless, until 1998 there were very few examples of locally
conformal Kéhler manifolds, namely some Hopf surfaces, some Inoue surfaces and manifolds of
type (G/A) x S, where G is a nilpotent or solvable group. Recent relevant results were obtained
by P. Gauduchon and L. Ornea in the paper [GO98], where they showed that every primary Hopf
surface is locally conformal Kéhler by writing a (family of) locally conformal Kahler metric (with
parallel Lee form) for diagonal Hopf surfaces, and then deforming it for those of class 0 (as remarked
by the authors, the argument used in [GO98] follows some suggestions of C. LeBrun). Even more
recent results were obtained by F. A. Belgun in [Bel99] and [Bel00] where he classified the locally
conformal Kéhler surfaces with parallel Lee form, showed that also secondary Hopf surfaces are
locally conformal Kéhler and proved that some Inoue surfaces do not admit any locally conformal
Kéhler metric, settling thus at the same time a question raised by F. Tricerri in [Tri82], and
the question whether any non-Kéahler complex surface admits a locally conformal Kéahler metric,
raised by I. Vaisman in [Vai87]. A reference to local conformal Kahler geometry is the book [DO9S]

written by S. Dragomir and L. Ornea.

In chapter 1 it is shown that the metrics written in [GO98] for diagonal Hopf surfaces H, g are the
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only ones with parallel Lee form in a family of locally conformal K&hler metrics parametrized by
the smooth positive functions on S! (theorem 1.2.4, remark 1.2.5 and theorem 1.2.7). This result
is obtained by a slight modification of a technique developed for the simpler case |a| = |3], that
leads to the family of locally conformal Kéhler metrics given by formula (1.13), and, for any k£ > 0,

to the following invariant metric on C? — 0 with parallel Lee form (see theorem 1.2.2):
(H21”2 + H22H2)’2 ( (k:zlz?l + 2’252) dz1 ® dz1 + (/C — 1) 29Z21dz1 ® dZs

+ (k — 1) 2129dz0 @ dZ1 + (2’121 + k‘ZQEQ) dzg ® dZQ) .

In section 1.3 four distributions canonically associated to the family of locally conformal K&hler
metrics are described in detail. They are all shown to be integrable, and necessary and sufficient
conditions for compactness of leaves are written (theorems 1.3.2, 1.3.3 and 1.3.6). In section 1.4
it is shown that when the foliation &, g has all compact leaves -and this happens, according to
theorem 1.3.6, if and only if o' = " for some integers n and m-, the leaf space can be identified
with CP! in such a way that the canonical projection is a holomorphic map (theorem 1.4.1). This
means that, whenever H, g is elliptic, the ellipticity is explicitly given by the foliation &, 3. In
section 1.5 it is shown that &, g is quasi-regular (regular) if and only if the Hopf surface is elliptic
(diagonal), and the corresponding structure of orbifold with two conical points on the leaf space

is described (theorem 1.5.1).

Explicit parallelizations on products of spheres

As pointed out by M. Bruni in [Bru92], it is useful to write explicit parallelizations on parallelizable
products of spheres: chapter 2 is devoted to solve this problem, that is, to write explicit paralleliza-
tions on S™ x S", for any odd n. The never-vanishing vector field on the odd-dimensional sphere
is used to write an explicit isomorphism between T'(S™ x S™) and S™ x S™ x R™*" following a
hint of [Hir88]. An explicit orthonormal parallelization P on S x S™ is then obtained pulling
back the standard basis of R™*" (theorem 2.4.1). Whenever S™ is itself parallelizable, a similar
construction provides a frame B simpler than P: this is exploited for n = 1, 3 (definition 2.1.3
and theorem 2.1.4 for S™ x S!, theorem 2.2.1 for S™ x S3), and coincide with the parallelizations
given in [Bru92|. The last part of the chapter is devoted to write the structure equations for the

parallelizations, and to exploit the relations between B and P, whenever both are defined.
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Structures on products of spheres

In the classical paper [Ber55], M. Berger showed that the holonomy group of a not locally symmetric

Riemannian manifold must act transitively on a sphere. Together with the isomorphisms
Go/SU(3) ~ S5, Spin(7)/Gy ~ ST,

this theorem gave rise to the problem, recently solved by D. Joyce, of finding examples of compact

manifolds with holonomy Gg and Spin(7) (see [Joy00]).

From a general point of view, given any Riemannian manifold M? and a Lie group G that is the

stabilizer of some tensor 77 on R%, that is,
G = {g € SO(d) such that g -n = n},

a G-structure on M defines a global tensor n on M, and it can be shown that V7 (the so-called
intrinsic torsion of the G-structure) is a section of the vector bundle W def s ® g+, where
so(d) = g @ gt. The action of G splits W into irreducible components, say W = Wy @ - - - & W
G-structures on M can then be classified in at most 2¥ classes, each class being given by the

G-structures on M whose intrinsic torsion lifts to some subspace W;, @ --- ® W;, of W:

Wi @ - B Wy e Wy

|

M

In this framework, the holonomy condition is the most restrictive, since M has holonomy group

contained in G if and only if its intrinsic torsion is zero.

The first to deal in a systematic way with this kind of classification have been A. Gray and L.
Hervella in [GH80], where they considered the case G = U(n), that is, almost-Hermitian structures.
The space W splits in this case into four U(n)-irreducible components, that give rise to exactly
sixteen classes of almost Hermitian manifolds. Afterwards, M. Fernandez and Gray in [FG82] have
treated the case G = Gg, and Fernandez in [Fer86] the case G = Spin(7). In the former case, the
Go-irreducible components of W are four, giving rise to at most sixteen classes of Gg-manifolds,
of which only nine was shown in [FG82] to be distinct; in the latter case, the Spin(7)-irreducible
components of W are two, giving rise to exactly four classes of Spin(7)-manifolds. F. Cabrera (see
[Cab96] and [Cab95a]) completed and refined the Gg and Spin(7) classification: in particular, he
showed that there are exactly fifteen distinct classes in the Gy case (for connected manifold), and
using the fact that the intrinsic torsion depends only on dn and d * 7, for the Go case, and only
on dn, for the Spin(7) case, he characterized each class in a way simpler than in [FG82] and in

[Fer86]. For instance, a Ge-structure belongs to the class Wy if and only if there exists a closed
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1-form 7 such that dn = 37 A n and d *n = 47 A n; a Spin(7)-structure belongs to the class Wh
if and only if there exists a closed 1-form 7 such that dn = 7 A n (these are the locally conformal

parallel structures).

The following table (compare with [Sal00]) summarizes the situation (the weird Go and Spin(7)

forms depend on the choice of the representation of Gy and Spin(7) on R” and R® respectively):

d d G k | # of classes
2n Kéhler form U(n) |4 16
7 locally: ) hit1its Gy |4 15
1€Z/(7)
8 |locally: A A Z ehitlitd _ Z eIt 2it3i+4 | Qpin(7) | 2 4
1€Z/(7) 1€Z/(7)

At first, also Spin(9) appeared in Berger’s list; but D. Alekseevskij stated and R. Brown, A. Gray
proved (see [Ale68] and [BGT72]) that any complete 16-dimensional Riemannian manifold with
holonomy group contained in Spin(9) is either flat or isometric to the Cayley plane F4/Spin(9)
or its noncompact dual. The study of Spin(9)-structures has been then neglected until december
1999, when T. Friedrich in [Fri99] pointed out that this is one of the three cases in which there is a
notion of weak holonomy different from the classical notion of holonomy, the other two being U(n)
and Go. He started then to study such weak holonomy structures, developing a Gray-Hervella-
like classification of Spin(9)-structures on sixteen-dimensional manifolds. This classification starts
from the remark that the intrinsic torsion of a Spin(9)-structure can be replaced by a 1-form I’
taking values in A3(V?), for a suitable defined vector bundle V? locally spanned by 9 auto-adjoint,
anti-commuting real structures. The key point is that with this replacement one does not lose any
information about the geometric type of the original Spin(9)-structure. The same point of view
could be used to study Ge and Spin(7)-structures, but it is especially useful for Spin(9)-structures,

since the definition of the Spin(9)-invariant 8-form given in [BG72] is not easy to handle.

Chapter 3 is devoted to study some properties of G-structures on products of two spheres. More
precisely, these properties are integrability for almost-Hermitian and almost-hyperhermitian struc-
tures, and Gray-Hervella-like classification for G, Spin(7) and Spin(9)-structures. It turns out
that on S$?"~! x S! the frames B and P defined in chapter 2 give rise to the same integrable Her-
mitian structure of diagonal Hopf complex manifold (remark 3.3.1), and on $?"~3 x S3 the frames
B, P give rise to the same integrable Hermitian structure of Calabi-Eckmann manifold (theorem
3.4.2 and remark 3.4.3). This facts suggest that the frame P could be used to give an alternative
definition of Calabi-Eckmann Hermitian structures, and this is the matter of theorem 3.5.1. The
theorems for the Hermitian case are then applied to the hyperhermitian case, showing that the
almost-hyperhermitian structure canonically associated to B on S~ x S1 is the integrable hyper-

hermitian structure of diagonal Hopf hypercomplex manifold, whereas all other Sp(n)-structures
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canonically associated to the parallelizations are non integrable (remark 3.6.1 and theorem 3.6.2).
The frame B defines locally conformal parallel Gg, Spin(7), Spin(9)-structures on S% x S1, §7x S,
S15 x S! respectively (theorems 3.8.5, 3.9.5, 3.11.1). In the theorems 3.10.11 and 3.11.2 it is shown
that these are the same structures defined in [Cab97], [Cab95a] and [Fri99]: the frame B provides
then an alternative definition for classical special structures on S¢ x S!, S7 x S' and S'® x S*.
Theorems 3.8.11 and 3.9.11 provide examples of Go and Spin(7)-structures of general type (that is,
structures whose intrinsic torsion does not lift to any proper invariant subbundle of W) on S% x S,
S% x 83, 5% x §° (Go-structures) and on S7 x S, 85 x §3, 93 x §5 St x ST (Spin(7)-structures).

These examples are new, to the knowledge of the author.

In chapter 4 the standard orthogonal representation of O(m +n) on R™*™ is used to provide more
G-structures on S™ x S", odd n, using a fixed orthonormal parallelization. Since the frame B on
S™ x St is conformally induced by the standard frame on the universal covering space R™+! — 0,
the orthogonal action gives isomorphic structures (theorems 4.4.2, 4.4.3). This argument is specific
for the frame B on S™ x S, and it does not fit for other parallelizations. Nevertheless, in theorem
4.4.4 it is proved that the Gag-structures on S% x S! in the orthogonal orbit O(7) - ¢p are all of
general type.

In the rest of the chapter the attention is restricted to the symmetric group &4, C O(m+n): one
obtains in this way the families Zp, Hp, Gp, Sp, Np of almost-Hermitian, almost-hyperhermitian,
Ga, Spin(7), Spin(9)-structures respectively, on products S™ x S™ of suitable dimension. If n =1,
3, the corresponding families 7, Hg, Gs, Sg, N are also defined. The statements about properties
of G-structures in the above symmetric orbits are obtained by a computer calculation, and in the

typical but simplest cases a classical proof is also given.

It should be remarked that, except for the cases S™ x S1 with the frame B, at least in the U(n) case
the symmetric orbit does not contain all isomorphic structures, since it contains both integrable
and non-integrable Hermitian structures (theorems 4.1.2; 4.1.4, 4.1.7, 4.1.9). The symmetric orbits
Hp on S43 x §3 and Hp on S™ x S™, m +n = 0 mod 4, provide examples of non-integrable
hyperhermitian structures (theorem 4.2.2), and the symmetric orbits Gz, Sg on S* x $3, % x §3
respectively, Gp, Sp on S™ x 8™, (n odd) m +n = 7, 8 respectively, provide examples of Gy and
Spin(7)-structures of general type (theorems 4.3.2, 4.3.3).

About computations

The following theorems were conjectured using experimental data obtained by a computer calcu-
lation, and then proved by classical arguments: 3.4.1, 3.4.2, 3.5.1, 3.8.10, 4.1.2, 4.1.4, 4.1.7, 4.1.9,
4.3.2,4.4.4.
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Since #(67 N Ga) = 21 and #(Sg N Spin(7)) = 168, the symmetric orbits G and S contains
both 7!/21 = 8!/168 = 240 different structures. This remark is useful to obtain an efficient
implementation of all the computation involved in the following theorems, that are proved by such

a computation: 3.8.11, 3.9.11, 4.3.3.
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Chapter 1

Locally conformal Kahler metrics and

elliptic fibrations

1.1 Preliminaries

A Hermitian manifold (M?",.J, g) is called locally conformal Kdihler, briefly I.c.K., if there exists
an open covering {U; }ier of M and a family { f;}icr of smooth functions f;: U; — R such that the
metrics g; on U; given by
def —f;
gi = € g|U7,
are Kéahlerian metrics. The following relation holds on U; between the fundamental forms €2; and
&

u. Tespectively of g; and g, :

O =efq,
so the Lee form w locally defined by
Wy, < dfi (1.1)
is in fact global, and satisfies dQ2 = w A Q2. The manifold (M, J, g) is then l.c.K. if and only if there
exists a global closed 1-form w such that
dQY=wAN

(see for instance the recent book [DO9S]).

As Kodaira defined in [Kod66, 10], a Hopf surface is a complex compact surface H whose universal

covering is C? — 0. If 71 (H) ~ Z, then H is called a primary Hopf surface. Kodaira showed that
every primary Hopf surface can be obtained as

Cc?-0

fy -

ef m
Flz1,22) & (@21 + A2, Ba),



LOCALLY CONFORMAL KAHLER METRICS AND ELLIPTIC FIBRATIONS 2
where m is a positive integer and «, 3, A are complex numbers such that

(a—=pB™MA=0 and la| > |6] > 1.
Write H, g x,m for the generic primary Hopf surface. If A # 0, then

f(Zl, ZQ) = (ﬁmzl + /\Zén, ﬁZQ)

and the surface Hg ) def Hpgmn g\ m is called of class 0, while if A = 0, then

f(z1,22) = (a2, Bz2)

and the surface H, g def H,, 5,0,m is called of class 1 (this terminology refers to the notion of Kdhler
rank as given in [HL83, § 9]).

A globally conformal Kéhler metric on C? — 0 (that is, of the form e~/¢ where f: C2 — 0 — R and
g is Kéahler), which is invariant for the map (21, 22) — (az1 + A28, Bz2), defines a l.c.K. metric on
H, g xm: this is the case for the metric

dz1 @ dzZ1 + dzo ® dZo
2121 + 2272

(1.2)

which is invariant for the map (z1, 22) — (az1, B22) (and so defines a l.c.K. metric on H, g) when-

ever |a| = |B]. The Lee form of this metric is parallel for the Levi-Civita connection (see [Vai79]).

In [Vai82], I. Vaisman called generalized Hopf (g.H.) manifolds those 1.c.K. manifolds (M, J,g)
with a parallel Lee form. Recently, since F. A. Belgun proved that primary Hopf surfaces of
class 0 do not admit any generalized Hopf structure (see [Bel00]), some authors (see for instance

[DO98, GO98]) decided to use the term Vaisman manifold instead.

Definition 1.1.1 A Vaisman manifold is a l.c.K. manifold (M, J, g) with parallel Lee form with
respect to the Levi-Civita connection of g.

Define the operator d¢ by d°(f)(X) % —df(J(X)) for f € C®(M) and X € X(M), and call
potential on the open set U of the complex manifold (M,.J) a map f: U — R such that the 2-
form on U of type (1,1) given by (dd°f)/2 is positive: namely, such that the bilinear map g on
X(U) x X(U) given by

def dd°f

(J(X),Y)
is a (Ké&hlerian) metric on U.

Take the potential ®, 3: C* — 0 — R given by

def (logla|+log|B])6
27



LOCALLY CONFORMAL KAHLER METRICS AND ELLIPTIC FIBRATIONS 3

where 6 is given by
2
22" _
Olog [B]
™

|21/
0log ||
™

+

e

In [GO98] the following theorem is proved:

Theorem 1.1.2 ([GO98, Proposition 1 and Corollary 1]) The metric associated to the 2-

form of type (1,1) on C? —0
dd“®, g

20,3
is invariant for the map (21, 22) — (az1, Bz2). The induced metric on Hy g is Vaisman for every

o and (3.

1.2 Some metrics on S x S3

1.2.1 Definitions, notations and preliminary tools

Look at the 3-sphere as
def
S E{E,e) eCal +el =1}

and at S' as the quotient of R by the map 6 — 6 + 27. The manifolds S' x S% and H, 3 are
diffeomorphic (see [Kat75, theorem 9]) by means of the map F, g induced by F' by the diagram

Rxs$3 2. ¢c2_p
hl lf
Rxs3 2. ¢2_p
where
h(o, (€1,6)) = (0 + 2, (£1,6)),
f(€1,6) € (a1, BE),

def 6log o 6log B

F(0,(&1,&)) = (e 2 &i,e7 20 &),

If [21, 22] is the element in H, g corresponding to (21, 22) € C% — 0, then

def 6log flog B

Fop(0,(&1,&2)) = [e v &,e 2 & (1.5)

and the inverse map is
_bloga 6log B

Fop([z1,22]) = (0, (e 20 21,67 2r 2))

where 6 is given by (1.4).
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This diffeomorphism induce a complex structure J, g on Sl x §3. In particular, Ja,a Were studied

and classified by P. Gauduchon in [Gau81, propositions 2 and 3, pages 138 and 140], using an

explicit parallelization of ST x §3.

Let H be the non-commutative field of quaternions, identified with C2 by (&1, &) +— &1 + jéo. Let

SLcChy i e?
The Lie frame £ % (e1,e2,e3,e4) on St x S3 is then given by:
= ie" e Ty(SY),

= (i&1,1&2) =
= (—&2,6) =
= (—ifp,i&1) =

(_a23 a1, —0y, Oég) S TQ(53)7
) € T(S?),

(_a37 a4, 01, —Q2

I
333

(—au, —as, az,a1) € Tp(S?).

The structure equations are:

de! =0, de? = 2¢3 A e, de® = —2¢% A et de* = 2¢% A €3,

and the non-zero brackets are

[e2, e3] = —2ey, [e2, e4] = 2es, e3, e4] = —2es.

One finds that

1 .
= e1d0 + e d§1)®azl+((;iﬁ T35 e d) +

log (6 Gloga

dF = ( o

0log B

+e 2 dbs) ® 0,

where d&q, d€s and df are given by

If G denotes the complex function on S x S given by (see [GO98, formula 45))

def
G0, (61,6)) = | loga + [&[* log 8
= |&1[* log |a| + [€a[* log |B] + i(|&1* arg a + [€2[* arg 3),
the complex structure J, g with respect to the basis £ is given by

ImG |G|?  Me (i&1&Glog (o/P)) o5

Im (i£16,Glog (/)

Japler) = _D‘ieGel QW%eGez

2w +3mG B
iﬁeGel %6G62

Jo,5(e3) = ey,

27 Re G
Re (£18210g (a/ﬁ))e _
Re G °

21 Re G
m (&1&21og (a/3))

Ja,ﬁ(€2) - — %eG €4,

Jo,p(es) = —es,

,and let Q = Q(ay, ag, a3, a4) € S C H given by &1 = a1 +iag, & = ag +iay.

(1.8)

€4,

(1.10)
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(see [GO98, formulas 49|, where the notations T', Z, E, iE, z;1, z2 and F are used instead of 27ey,

€2, —€3, —€4, 517 52 and G)

The real vector bundle T'(S! x S3) of rank 4 becomes a complex vector bundle of rank 2 by means
of Jog: the vector fields es and e3 are C-independent with respect to J, g. A Hermitian metric

on S! x §3 is given then by a Hermitian 2 x 2 matrix.

1.2.2 Case |o| = |

First, consider the well-known case oo = .

It can be checked that the pull-back of (1.2) by Fj, o is the identity matrix in the Hermitian basis
(ea,e3) of T(S' x §3). It is then reasonable to wonder whether there exist other l.c.K. metrics

given by Hermitian matrices of the form

(1.11)

where k: S' x §2 — R* is any real positive function; the Lee form is given by

1
0g|04|61
™

w=—k

and the l.c.K. condition dw = 0 gives

e2(k) =0, log |a|es(k) + meq <63lik)> =0, log |arlea(k) + meq (64](:{:)) = 0. (1.12)

This is a differential system of the second order, and it is trivially solved by any function & satisfying
e2(k) = e3(k) = es(k) = 0, namely, by any function & which depends only on 6; using F,  in the

opposite direction the following invariant metrics on C? — 0 are obtained:

(‘Z1’2 + ’22‘2)72 < (k(9)2’121 + ZQEQ) dz1 @ dz1 + (k?(@) — 1) 29Z21dz1 ® dZs
(1.13)
+ (/C(Q) — 1) Z120dzo ® dZ1 + (2’121 + k‘(@)ZQEQ) dzo ® dEQ)

where
) _ log(s1 2 +|2P%)
2log |a]

and k is a positive function on S, i.e. a positive 2r-periodic real variable function.

Remark 1.2.1 If k # 1, the above metrics are not conformally equivalent to the classical invariant

metric (1.2).
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Let us call 0;-“ the 1-forms

4
k def k i
0y = ) The

i=1

of the Levi-Civita connection. Using Cartan’s structure equations one obtains

ol K (log?|a| —arg?a) |, kK arga , 1 k! arga 22k’ 2
= —_ e s = — — N
! 2k log? o klog? |af klog? || klog? |a|
2 _ K'|logal?>arga ;  K'|logal? 2 9 _ K'|log a? ol k! arga
! 4rklog? | 2klog?|a| 27 2klog? |a] klog? ||
k
0f=c', 03 =—ke', O3=ke’, 0f=—c) 6]=-"TD%cl (2 k),
T
karga karg o karga 4 9
63 = S et, 0} = 5 e3, 05 = “or € + (k= 2)e”,
03 =05 = 03 = 01 = 0.
A straightforward calculation thus gives
Vow = K'|logal? _ Karga , Vosw Karga | 27k 5

_27rlog\a\e log || “ log|al ¢ log]a\e ’

Ve,w = Ve,w = 0.

So, in the family of l.c.K. metrics given by (1.13), the Vaisman ones are those in which k is a

constant function:

(|21‘2 + ‘22|2)_2 ( (k‘lel + 2222) le %) le + (k‘ — 1) Zgzldzl X dZQ

+ (k‘ — 1) 21Z9dzo ® dZ1 + (2’121 + kZZQEQ) dzo ® dZQ) .

Can this method be applied also if only the weaker relation |a| = |3| holds? Answer is positive.

Again the pull-back via F, g of the metric (1.2) is the identity matrix in the Hermitian basis

(e2,€3), and the same construction can be repeated: the Hermitian matrix

E 0
01

where k: S! x §3 — R* is a real positive function, is a l.c.K. metric if and only if it is a solution
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of

e

m(&i&2)es ( > + Re(€162)e3 64](€k)

k ()
+2<log|a|63 +we1<e3](f >> 0,
( ()
)

N

(k) =0,
es(k)

e § (- o) 4 -

e S (6 - 16 20— me(crgaes (2] + am(aiggen (10
+arg 3 3m(51€2) (log |a|e4(k)];;2_ Dea(es(k)) _ 2 <log |alea(k) + mey <64l(€k >

Computations are now much harder, due to the factor arg(a/(): nevertheless, any function
k: ST c S x 83 — RT is trivially again a solution, and the covariant derivative of the Lee form
of the corresponding l.c.K. metric is given by

KIG> | KImG , _KOmG o 27k’

Ve w=— e — e, Ve,w = e,
“ 27T10g|a] log | 2 log || log ||
Vesw = Ve,w =
that is, the l.c.K. metric given in the complex basis (ez, e3) by is a Vaisman metric if
1

and only if k is constant:

Theorem 1.2.2 The formula (1.11) gives a family of l.c.K. metrics on Hy g, in the case |o| = |3].

In this family the Vaisman ones are given exactly by constant functions k.

Remark 1.2.3 A family {g;}+~—_1 of l.c.K. metrics (in the case |a| = |3|) can be found in [Vai82,
formula 2.13]. This family coincide (up to coefficients) with the Vaisman metrics of the above
family given by k =t 4+ 1. The claim, on page 240 of [Vai82], that only gy has parallel Lee form
is uncorrect. The Weyl connection is used with the hypothesis w;(B;) = |w¢|> = 1, before proving
that w; is parallel: in such a way, what is in fact proved is that gy is the only metric with Vw =0
and |w| = 1. Actually, by using (2.14) and (2.17), one can check that |w;| = 1+ ¢, hence the same
computation proves that all the g, have parallel Lee form. I acknowledge a useful conversation and

an exchange of e-mail messages with I. Vaisman. U

1.2.3 General case

Unfortunately the same construction does not apply to the general case since the metric (1.2) is

not (f)-invariant, hence is not defined on H, g.

The starting point in this case is the l.c.K. metric given by P. Gauduchon and L. Ornea in the recent

work [GO98]. At the beginning of their paper they explicitly find a family of Vaisman metrics on
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H, 3 by modifying the potential of (1.2). In what follows, the same techniques used in previous

sections are applied to further modify the potential of (1.2).
Let I: U4 — R be a real function defined on an open set I/ of R, and
Papi 5= X 53 Rt

the real positive function given by

o 5((6, (£1,62))) & ). (1.14)

The local 2-form Q = 1ddCCI>a 3 is

q_ Zapml (741" 15 Re(&18)(logalarg § —log|Blarga) 14
 ReqG U TRe G
_ Iml&6)(os|ofare f — log || arga) 1y 2Re(€16o) loa(|ol/|5])
TRe G Re G
23m(§1§2)log(|al/|ﬁ|) 24 34
R G et + 2e

where e denotes the wedge product e’ A /. The matrix of the Hermitian bilinear form™) in the

complex basis (ez, e3) of S x S3 is

20, sl A (1.15)
where
™ +1" |§1| & Tog?(Jel/18])  1£1&210g(lal/|B])
q &f 9%2(; U Re® G Re? G
lflézlog(\M/WD 1
Re? G Re G

I’ + 1" both positive. This results

The condition that Q be positive translates then in !’ and
in a local generalization of the proposition 1 of [GO98], that is, the local function e!, where [ is

increasing and I'* + 1" > 0 on U, define a potential D, 5.

The matrix A does not depend directly on 6, but only by (I’* 41”)/I’. Consider a family {l; }ycr
of local functions, where U is an open covering of R, all satisfying I/ > 0 and I'> +1” > 0 and such
that the quantities (I’> 4 ")/l paste to a well-defined function i on S'. The matrix (1.15) then
gives a global Hermitian l.c.K. metric on (5! x S3,.J, 3). In fact such a family can be found, as it

is shown in the following theorem:

Theorem 1.2.4 Given any real positive function h with period 2w on R, the metric 92,[3 given in

the complex basis (e, e3) of T(S' x S3) by the Hermitian matrix
wh_ el |2 og?(|al/18]) €12 log(larl/|6])

meQG Re® G Re? G
1618 10%(\04/\5\) 1
Re2 G Re G

is (well defined and) l.c.K on (S* x S3,J,.5).

MGiven by H(X,Y) & —Q(JX,Y) —iQ(X,Y).
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Proof: For fixed h, the Cauchy problem

l/2 "
U,
I (1.16)
ll(eo) >0

satisfies the local existence theorem for any 6y € R. This means one can find an open covering U
of R and functions [y : U — R which satisfy the equation. Moreover, U and {lys}sev can be chosen
so that h is increasing for any U € U finally, note that, since h is positive, so is I’ Sy , and this

gives the required family. |
The previous theorem extends the corollary 1 of [GO98].

The Lee form of the metric ggﬂ associated to a function h is given by (see (1.1) and (1.15))

l/2 "

w = —dlog (2@, g7l') = 7 = —he'.

Remark 1.2.5 If h: S — RT is constant, a (global) solution of the Cauchy problem (1.16) is
given by [(6) = hf, and the potential of the corresponding g’;ﬂ is given by (see (1.14)) €. In
[GO98] the potential is el(loglal+1oglBN0/(2) \where [ is any positive real number (see [GO98, after
remark 3]): thus, for h constant, the constant [ of [GO98] is given by

- 2mh
log |a] + log | 8|

g
Remark 1.2.6 If |o| = |5] then Re G = log |af, log(|a|/|3]) = 0 and
wh
1 -
h = log |«
9
gl |,
Thus in the case |a| = |G| the family given by the theorem 1.2.4 coincide up to a constant with
the family given by (1.11), where k = wh/log |a|. O

For a general h(? the Lee vector field B of gg 5 is
B = —4me; +23Im Geg + 2Tm(&1&2) arg(a/B)es — 2Re(&162) arg(a/B)eq

and the six terms formula gives

]”L/|G|2 thﬂ'z

h h

V., (B),e1) = — g (Ve(B)ey = 2T

gOC’B( 1( ) 61) 2%62G g 7/6( 2( ) 62) %QQG
K Im Gr

96.5(er (B): €2) = 90,5 (Voo (B), 1) = = =5 2=,

gg,ﬁ(vei (B),e;) =0 otherwise.
Then the following holds:

1f h is not constant the metric ggﬁ restricted to the fibre S® of the projection S* x % — S' does depend on 6,
so the argument of [GO98, proposition 3 and corollary 2] doesn’t apply.
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Theorem 1.2.7 The metric 925 of theorem 1.2.4 is Vaisman if and only if h is constant.

1.3 Some foliations on S! x S3

On any l.c.K. manifold (M, J, g) with a never-vanishing Lee form w, the following canonical dis-

tributions are given:

i) The kernel of the Lee form: since dw = 0, and
dw(X,Y) = Xw(Y) —Yw(X) —w([X,Y]) X, Y e X(M)
such a distribution is integrable. This codimension 1 foliation is denoted by F;
ii) the flow of the Lee vector field B, dual via g of w: since
9(B,X)=w(X)=0 for every X € kerw
this foliation is in fact F;
iii) the flow of the vector field JB: this foliation is denoted by JF=;

iv) the 2-dimensional distribution spanned by B and JB is F+ @ JF: whenever the Lee form is
parallel, this distribution is integrable (see e.g. [CP85, theorem 4.3], but this condition is not
necessary, see theorem 1.3.4), and moreover, it defines a Riemannian foliation (see [DO9S8,

Theorem 5.1]).

The notation is taken from [CP85] and [Pic90], where these and other related distributions are
studied.

Referring to gZ 3 remark that w = he', where h is strictly positive, implies that w is never-

vanishing.

1.3.1 The foliation F

The foliation F is simply the S2 spheres foliation given by the diffeomorphism F, 3: so in the
parallel case -namely, for h constant- these S? are totally geodesic submanifolds of (S x S3, gg’ ﬁ)

(see [CP85, lemma 4.1]).
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to

t1

3
Figure 1.1: toral knot of type —%

1.3.2 The foliations F*, JF: and F*+ ¢ JF*+

Consider the torus S x S! with coordinates (t1,t2). The following is well-known:
Lemma 1.3.1 The curve in S* x S' given by the linear functions
tl(t) =~ + 6t mod 27, tg(t) = 9 + 09t  mod 27 (117)

18

i) compact if §3/61 € Q;

ii) dense in S' x S otherwise.
In the case i) of the previous lemma, the curve (1.17) is called a toral knot of type d2/1 (see figure
1.1).

Let (©,21,52) € S x93, and suppose 2125 # 0. To study the leaves of F+, JF+ passing through

(©,Z1,Z3), define the submanifold 7' C S® product of two circles of radius |Z], |Za|:

def — =y def
TéT(:.17\:2) ;

Sﬂgl‘ X S|152\ cCxC,
and denote by t1, {2 the coordinates on the torus 7' given by

fl(tl) = Eleitl, ﬁg(tg) = EgeitQ. (1.18)
Consider in S* x S3 the real 3-dimensional torus S x T', containing the point (6,Z1,Z5); a curve
in this 3-torus is given by

6 =06(t) mod 2, t1 = t1(t) mod 2, to = ta(t) mod 2.

The 3-torus S! x T can be visualized as a cube with identifications (see figure 1.2).
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Figure 1.2: the 3-torus S' x T.

The foliation F+

The Lee vector field of gﬁ} 518
B = —4me; +2Tm Geg + 2Tm(&1&2) arg(a/B)es — 2Re(&1€2) arg(a/B)eq
-it does not depend on h- and using (1.6) one obtains
B = —4me; + 2i(& arg o, & arg 3).

By means of F, g (formula (1.8)) the Lee vector field induces a vector field in C? — 0, where it
becomes (see also [GO98, formula (23)])

B = —2(z1 log |al, z2log|4]). (1.19)
The flow of B is then
(z1(t), 22(t)) = (21(0)e 2 081el 2y (0)e 20818l ¢ e R, (1.20)
where (21(0), 22(0)) and (©,Z1,Z3) are related by

O log o Olog B

=ie om 221(0), Ege 27 :ZQ(O). (1.21)

Pull now the integral curve back to S' x S? via F, s: setting
6(t) log o 9(t)log B
E(te B =z (0)e 2l8l0l gy()em T = zp(0)e 2 og 1Bl (1.22)
one obtains the following implicit expression of 6(t):
|21 (0)’267 log \a|(4t+@) + ‘22(0)|2€f log |ﬁ|(4t+$) —
if z = x(0,Z1,Z3) denotes the unique solution of the equation

|21 (0) 221081l 4 |25 (0) 228 181 = 1, (1.23)

one gets

0(t) = —m(logz + 4t), (1.24)
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Figure 1.3: projection of the leaf of JFL to T: case arga/arg 8 € Q.

that, together with (1.22) and (1.21), gives the following parametric equations for the integral

curve of F+ through z:

log z 1 . . logzlogB o, .
51(t) _ z1(0)e%62narga _ Ele%targa7 52(0 _ 22(0)6%621targ5 — 52621targ[3. (1‘25)

There are two types of points in S' x S3. If 2155 = 0, say Z3 = 0, the leaf given by (1.24)
and (1.25) is contained in S x {(&,&) € 93 : & = 0}. According to lemma 1.3.1, if arga is a
rational multiple of 7, the leaf is compact; otherwise it is dense in St x {(&1,&2) € S2 : & = 0}. If
=122 # 0, equations (1.25) implies that &;(¢) and &(¢) have a constant positive length for every ¢,
therefore the leaf is contained in the real 3-torus S' x T defined at page 11. Once observed that
© = —7mlogz mod 27, the equations (1.24) and (1.25) can be written as

0(t) =0 —4nt mod 27, t1(t) =2targa mod 2w, to(t) =2targS mod 2. (1.26)

In order to study the compactness of the leaves it should be remarked that:

i) the leaf projected on T is given by
ti1(t) = 2targa mod 2, to(t) = 2targ 3 mod 2, (1.27)

and by lemma 1.3.1 this is a compact set if the ratio of arga to arg § is rational; otherwise
it is dense in 7". Since the projection from S' x T on T is a closed map, it can be inferred
that if the ratio of arg o to arg § is not rational then the leaf is not compact. If this ratio is

rational, then the projected set is a toral knot of type arga/arg 3 (see figure 1.3);
ii) the projection of the leaf on the face to = 0 of the cube in figure 1.2 is given by
0(t) = © —4nt mod 2, t1(t) = 2targa  mod 27,
and lemma 1.3.1 gives the condition (arga)/m € Q (see figure 1.4);

iii) in the same way, consider the projection on the face t; = 0 to obtain (arg3)/7m € Q (see

figure 1.5).
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to
b | .0

Figure 1.4: projection of the leaf of JF* to {ty = 0}: case (arga)/m € Q.

to
b p

Figure 1.5: projection of the leaf of JF* to {t; = 0}: case (arg3)/m € Q.

Then, the following three conditions are necessary for the compactness of the leaf:

arg a € Qm; arg B € Qm; arga/arg 3 € Q, (1.28)
and any two of them obviously imply the third. The conditions (1.28) are also sufficient: if (1.28)
hold, one can choose coprime integers [ and k such that

arga |

arg3 k'
The equations (1.27) define a closed curve with period I7/ arg o(=kn/ arg 3), and the leaf is closed
whenever (t) given by equations (1.26) has a period that is an integer multiple of I7/arg a.
Choosing integers p and ¢ such that (arg«)/m = p/q, it is straightforward to check that pln/arg «

is a period of 6(t), and the proof is complete. To summarize:

Theorem 1.3.2 Given the 1-dimensional foliation F+ on (S' x S3, o B 92,,@') the following holds:

i) for every a and (3 the leaf through the point (©,Z1,0) (respectively (0,0,Z2)) is a subset of
St x {(€1,&) € 83 : & = 0} (respectively S* x {(&1,&2) € S : & = 0}). This leaf is

e compact if arga € Qm (respectively arg f € Qm);
e dense in St x {(£1,&) € 83 : & = 0} (respectively in S* x {(£&1,&) € 83 : & = 0})

otherwise;

ii) for every a and [ the leaf through the point (©,Z1,Z3), where 2129 # 0, is a subset of
SY x T, where T is the torus in the factor S® of S' x S% given by (1.18). This leaf is

e compact if any two of (1.28) hold;
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Figure 1.6: the leaf of JF*, case log|al|/log|3| € Q.

e non compact otherwise;
if the leaf is mot compact, then its projection on T is

e a toral knot of type arg o/ arg (3 if this ratio is rational;

o dense in T otherwise.

The foliation JF=+

The anti Lee vector field JB is given by
JB = —2Re Geg — 2TIm(&1€2) log |a/Bles + 2Re(€1€2) log |/ Bles
-it is independent of h- and again by (1.6) and (1.8) one obtains
JB = —2i(& log|al, &2 log |B]) = —2i(z1 log ||, 22 log [B]),
thus the integral curves are
(21(5), 22(s)) = (21(0)e 210812,z (0) o108 A1),

These formulas are profoundly different from the previous ones, because of the complex exponent:
in fact

0(s) = —mlogz,

where z is a solution of (1.23), and

log 1 A A
& (s) = Zl(o)ewe—Zzslog\(ﬂ _ Ele—2zslog\o¢|’

52(8) _ z2(0)elog z;ogﬁe—%s log |B] _ 526—2i8 log |ﬁ|

If 2125 = 0, say =9 = 0, the leaf through (6,Z1,0) is {0} x {(£1,&2) € S2 : & = 0}, so it is closed.
If 2129 # 0, then &;(s) and &»(s) have constant positive length, so the leaf through (0©,Z;,E9) is
a subset of {O} x T', where T is given by (1.18) (see figure 1.6):

Theorem 1.3.3 Given the 1-dimensional foliation JF+ on (S' x S3,Ja75,ggﬂ), the following
holds:



LOCALLY CONFORMAL KAHLER METRICS AND ELLIPTIC FIBRATIONS 16

i) for every o and [ the leaf through the point (©,Z1,0) (respectively (©,0,Z3)) is {O} x
{(€1,&) € 83 : & = 0} (respectively {©} x {(£1,&) € S3: & = 0}), so it is compact;

it) for every a and [ the leaf through the point (0©,Z1,Z2), where 2129 # 0, is a subset of
{©} x T, where T is the torus in the factor S of S* x S% given by (1.18). This leaf is

e a toral knot of type log ||/ log |B| if this ratio is rational;

e dense in {O} x T otherwise.

The foliation F+ & JF+

The most interesting distribution is the one generated by both the Lee and the anti Lee vector
fields: these planes are closed with respect to J, thus if the distribution is integrable then the

integral surfaces are complex curves with a never-vanishing vector field:

Theorem 1.3.4 The distribution F-@®JFL is integrable. Moreover this distribution only depends

on « and 3.
Proof: It is well known (see [CP85]) that if the Lee form is parallel then the distribution is
integrable: now recall that

B = —2(z log|a|, 22 log | 5]), JB = —2i(z; log |af, z2log | 8]),

and these expressions are independent of the function h. Then, fixing a and (3, one obtains a
unique distribution on S' x S3, that coincides with the distribution induced by any constant h,

and is thus integrable. |

Definition 1.3.5 Call &, g the unique foliation given by theorem 1.3.4.

The following theorem gives an explicit description of the leaves of &, g:

Theorem 1.3.6 The foliation £, 3 on St x S3 is described by the following properties:

i) for every a and (3 the leaf through the point (©,Z1,0) (respectively (0,0,Z3)) is St x
{(€1,&) € 83 : & = 0} (respectively S* x {(&1,&) € S3 : & = 0}), and it is thus com-
pact;

ii) for every a and [ the leaf through the point (©,Z1,Z3), where 2129 # 0, is a subset of
St x T, where T is the torus in the factor S of S* x S given by (1.18). This leaf is
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e compact if there exist integers m and n such that o™ = (": in this case the leaf is a
Riemann surface of genus one C/A, where A is the lattice in C generated by the vectors

v and w given by (1.33);

e non compact otherwise, and in this case it is dense in S* x T.

Proof: The 2-dimensional real distribution is a 1-dimensional complex distribution generated by

B. By a formal substitution of ¢ € R with w € C in (1.20), one obtains
(21(w), 22(w)) = (21(0)e w18l 25(0)e~ 2w e 1), (1.29)

which results in a complex parametrization of the integral surface of &, 3 that passes through
(©,E1,E9), in the coordinates [z1, z2]. As in the proof of theorem 1.3.2, one obtains the following
parametrization:

O(w) =0 —4xRew mod 2,

fl(’w) _ e2iarga9{ewe—2ilog\a|jmw’ (1‘30)

Eo(w) =

(1]

1

6% argﬁmewe—%log |8] Imw

[1]

2

The simplest case =129 = 0 follows from equations (1.30). Suppose =125 # 0. In this case the
leaf is a subset of S1 x T', where T is the 2-torus given by (1.18). Let (¢, s) &f (Rew,Imw). Then
equations (1.30) become
0(t,s) = O —4nt mod 2,
ti(t,s) = 2(argat — log |ar|s) mod 2, (1.31)
ta(t,s) = 2(arg St — log |B]s) mod 2.
Call N this leaf, and consider N N ({©} x T'). Observe that 6(t) = O is equivalent to ¢t = m/2

where m is an integer, and call N,, the curve given by the equations

0(—,s) =© mod 2m,

SRS

t1(—,s) = 2(arg a% —log |als) mod 27,

S

tz(E,S) = Q(argﬁ% —log|B]s) mod 2.

Clearly N N ({©} x T) is the union of the curves N,, for m € Z. Lemma 1.3.1 says that N,, is
dense in {©} x T whenever log|«a|/log|S] is irrational: N N ({O} x T') is then a fortiori dense in

{©} x T, and it is not {©} x T since it does not contain for instance the points

/=0 mod 2,
2m +1

ti1(s) = 2(arg —log |arls) mod 2,
2m+1

4

ta(s) = 2(arg 8 —log|B|s) mod 2.
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Figure 1.7: intersection of the leaf with the faces of S x T case arg o — arg 3log |a|/log|3| € Qn
and log |a|/log |B] € Q.

One can use this argument for all §, so in this case N is dense in S x T'. Otherwise if log ||/ log | 3]

is rational, the intersection of N with {6} x T is the union of toral knots of type log|a|/log|B|.

Consider now the intersection of N with the surface to5 = 0: recall that to = 0 is equivalent to

s = (targ B — mm)/log |B| for m integer, and call N,, the curve given by

t _
o(t, M) = —7wlogz — 4rt mod 27,
log | 8|
targ 8 — mm targ B —mmw
t1(t, ————) = 2(argat — log || —=———) mod 2,
& o ) gt
targ 5 —mm
ta(t, ————=——) =0 mod 27,
S

(see figure 1.4). In this case lemma 1.3.1 shows that every N,, is dense in S x {(¢1,0) € T}
whenever (arg o — arg #log |a|/log |3|)/7 is irrational: the same argument for ¢3 # 0 shows that

in this case N is dense in S x T.

One is then left with the case

arg o — arg Blog |a|/ log | B| log |a|
€ Q, €
p Q log || E
namely
_ 1
karga — larg§ _ P ogla| 1 (1.32)
s q log | 5| k

where [, k, p and ¢ are integers and (p,q) = (I, k) = 1: in this case the intersection of N with the

faces of the figure 1.2 is a union of closed curves (see figure 1.7).

Choose two integers b and ¢ such that bk — ¢l = 1. Set

Sdef | 4 if p is odd ydef | P if p is odd

q/2 if pis even ’ p/2 if p is even
and remark that in this case the map

F: R2 — NcS'xT
(t,s) +—— (0(t,s),t1(t,s),ta(t,s))
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Figure 1.8: the compact leaf in the case arg v — arg flog ||/ log | 8| € Qn and log |a|/log|5] € Q.

is invariant with respect to the action on R? of the lattice A oz o wz (see figure 1.8) where

/ /
, qargf —pem km
v= (¢, ——————), w= (0, ——). 1.33
W gl © Tog 17 139
Consider the diagram
C (1.34)
0| \
g — N

where p is the canonical projection of C on C/A and F is the quotient map of F. The map F is onto,
and the leaf N = F(C/A) is compact. Moreover, since F' = B # 0, F is a local diffeomorphism;
this implies that IV, being the image of a compact manifold via a local diffeomorphism, is a
submanifold of H, 3. Thus N, being closed with respect to J, g, is a compact Riemann surface
and its genus is one, since it supports a non-vanishing vector field. Furthermore F is holomorphic,
because, with the chosen parameterization, the horizontal and the vertical axes of C are just the
integral curves respectively of B and JB. It follows that F is a non ramified covering. But it is

straightforward to check that F is injective also, so it is a biholomorphism.

Lemma 1.3.7 shows that the conditions (1.32) coincide with the condition &’ = " and the theorem

is proved. |

Lemma 1.3.7 The conditions (1.32) are equivalent to the existence of integers m and n, where

m/n = k/l, such that ™ = 3".

Proof: The existence of integers m and n such that m/n = k/l and o™ = 3" is equivalent to

1 l
122 :g: = % =1 and {marga + 2rn},cz = {narg 5 + 2s7} ez, (1.35)

and these conditions imply (1.32).

Vice versa, from (1.32) one obtains that

2qk arg oo + 2rm = 2qlarg B+ 2w (p + 1) for every integer r;
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set m 2qk, n def 2¢l to obtain (1.35) and complete the proof. |

The proof of theorem 1.3.6 complete the description of the foliation when the leaves are not

compact:

Corollary 1.3.8 When a and [ do not satisfy (1.32), the saturated components of £ 5 are of two
kinds:

Z) Sl X {(51,62) S SS : 52 = 0} and Sl X {(51,62) S S3 : 51 = 0},‘
i) ' x T (&1, ).

Remark 1.3.9 Because of (1.19), &, g is linear in the classification recently given by D. Mall in
[Malog]. O

1.4 Elliptic fibrations on S' x S3

By the definition of Kodaira in [Kod64, 2], an elliptic surface is a complex fibre space of elliptic
curves over a non singular algebraic curve, namely a map =Z: S — A where S is a complex surface,
A is a non singular algebraic curve, ¥ is a holomorphic map and the generic fibre is a torus. The

curve A is called the base space of S.

In theorem 1.3.6 it is showed that, if @™ = 8" for some integers m and n, then S! x S3 is a fibre
space of elliptic curves over a topological space A -the leaf space. In this section it is shown that
such a A is a non singular algebraic curve (actually (C]P’l) and that the projection ¥ is holomorphic

with respect to the induced complex structure.

Theorem 1.4.1 If o™ = 8" for some integers m and n, the leaf space A of the foliation in tori
given on ST x S3 by the theorem 1.3.6 is homeomorphic to CP', and the projection ¥: S x §3 — A

18 holomorphic with respect to the induced complex structure.

Proof: By lemma 1.3.7 the hypothesis is equivalent to (1.32). Choose then the integers m and n
minimal with respect to the property o™ = ", and observe that this implies marga = narg 3 +

27e, where c is an integer such that MCD(m,n,c) = 1, and consider the following map:

h: Slxs3 — CpP!
(0,€1,&) —  [efegm - &h).

It is an easy matter to verify that on H, g this map is nothing but the quotient of ¢(z1, 22) dof
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[2]" : 2], and one gets the diagram

C2-0 (1.36)

e

Hop——> 51 x §3

F -
a,B

A e h ...... > (C]Pl

i) h is well defined: if (6,&1,&2) belongs to the leaf passing through (0,Z1,=2), then 6, £ and
&2 satisfy (see (1.30))

0(t,s) = O —4nt mod 2,

& (t, S) _ 5162iargo¢t672i10g|a|s’
52 (t, S) _ 526% argﬁte—% 1og|ﬁ\s7
and one obtains
(O(t, S),fl(t, 5)752(75’ S)) s [ei(6—47rt)cE'irLe2itmarga . Ege%tnargﬁ]
that is
(9(75, 8)761 (t, 8)752(75’ S)) — [ei(®—47rt)c+2it(marga—nargB)Egn . 5121] — [ez@caqln . EEL]’

where the last member does not depend on ¢ and s. Namely, h is constant on every leaf and

h is well defined on A;
ii) his onto: (6,1,0) — [1:0] and if h(6,&1,&2) = [21 : 22|, where z3 # 0, then
2122—1 _ €i90§§n§2—n.

Using polar coordinates, that is, choosing real numbers p1, pa, #1 and 65 such that & = p;e'®r

and & = ppe'®?, the last member becomes

e(i@c—l—mOl —nbs) n

pilpy"  where  pf+pi =1
The exponent fc + mb; — nby covers all the real numbers, and the map

+0o0

covers all the positive real numbers, so h -and consequently h- is onto;
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iii) A is injective: suppose that h(0, &1, &) = h(©,Z1,Zs) for (0, £1,&2) and (0,21, Z5) on S x 53,
If 21 = 0, then & and Z; must both of them be zero, hence (6,&1,&2) and (0,21, Z,) lie

on the same leaf. If £,=; # 0, it can be written

53 :3
, =2 1.37
ewcgin eZeCET ( )

Let & = p1e, & = pae E = Pttt and 2y = Pre’’2; the equation (1.37) becomes

pgeingn P2n engn
pTei(06+n1 m) - le ei(fct+Him)’

that is
py _ B3

pr P (1.38)
(0 —0O)c+m(m — Hi) —n(ny — He) =0 mod 27.

The first equation in (1.38), together with p? + p3 = 1 = P2 + P2 easily gives
p1 = P1 and p2 = PQ. (139)

In order to show that (6,&1,&2) and (©, =, Z2) lie on the same leaf, find two real numbers ¢
and s such that

0 =0 —4nt mod 2,

& = 5162(argozt—log|oz|s)7 (1.40)

& = 5262(argﬁt—log\ﬁ|8)’
that is, by using (1.39), find two real numbers ¢ and s satisfying

47t =0 -0 mod 27,
2argat — 2log|als =m — H; mod 2,
2arg ft —2log |Bls =m2 — Hy mod 27.

The determinant of
47 0 -0

2arga —2loglal m — H;
2argf —2log|8 m— Hy

is zero, because the second equation of (1.38) gives
m(second row) — n(third row) = c(first row),

and the injectivity of h is proved.

From i), ii) and iii) one obtains that h: A — CP! is a bijective continous map, and so is a home-
omorphism because of the compactness of A. At least, ¥ is holomorphic with respect to the
induced complex structure -that is, & is holomorphic- because the map ¢ in the diagram (1.36) is

holomorphic. [
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1.5 Regularity of £, 3 and orbifold structure on A

A quasi-regular foliation is a foliation F on a smooth manifold M such that for each point p of M
there is a natural number N(p) and a Frobenius chart U (namely, a F-flat cubical neighborhood)
where each leaf of F intersects U in N(p) slices, if any. If N(p) = 1 for all p, then F is called a
reqular foliation (see for instance [BG98]). For a compact manifold M, the assumption that the
foliation is quasi-regular is equivalent to the assumption that all leaves are compact. A Riemannian
foliation with compact leaves induces a natural orbifold structure on the leaf space (see [MolS88,

Proposition 3.7]). Since by [DO98, Theorem 5.1] &, g is Riemannian, this is the case.

Theorem 1.5.1 The foliation &, 5 is quasi-reqular if and only if o™ = B" for some integers m
and n; in this case N(0,Z1,52) = 1 if 2125 # 0, whereas N(©,0,Z2) = m and N(0,Z1,0) = n.
In particular, the foliation &, g is regular if and only if o = 3.

Proof: By theorem 1.3.6, all the leaves are compact if and only if o™ = (", and for (©,Z=;, Z9)
where Z1Z9 # 0 the thesis follows by figure 1.8. One is then left with (0,0,Z5) and (0,Z1,0),

when o = ™. It is now described the case (0,Z1,0), the other case being analogous.

To visualize the 4-dimensional neighborhood of a point of S' x S3, another 3-dimensional descrip-
tion of the foliation &, s is needed: consider the stereographic projection
¢: S*-(0,0,0,1) — R3

1
1—$4

(l’l,$2,$3,$4) L ($1,$2,$3).
It is easy to check that ¢(7(&1,&2)) is generated by the revolution around the ys-axis of the circle
C(&1,£&2) in the yays-plane, centered in (1/[€1],0) with radius |{2]/[€1]|. One is thus led to figure 1.9.

Refining the computation in the proof of theorem 1.3.6, one sees that any leaf intersects T'(&1, &2)
along r toral knots of type [/k, r being the greatest common divisor of m and n. This means that

each leaf contained in T'(£1,&2) intersects C'(&1,&2) in exactly n = rl points. Now let

D, < |J C. &)
€21/1€11<p

and let Us , the piece of solid torus given by the revolution of angle (—d,¢) of D,. The neighbor-
hoods of (©,Z1,0) of the form (© —¢,0 + ¢) x Us, contain each leaf in n = rl distinct connected

components, and this ends the proof. |

Remark 1.5.2 The previous theorem defines an orbifold structure on the leaf space A, with two

conical points of order m and n, respectively (see [Mol88, Proposition 3.7]). In particular, a local
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Figure 1.9: On the left, the partition of R? in tori T'(&;,&2); on the right, the circles that generate
the tori.
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chart around the leaf through (©,Z1,0) is given by D,/T',, T, being the finite group generated by
the rotation of angle 27 /n. O

Remark 1.5.3 In the preceding section A was equipped with a structure of complex curve; this
does not contradict the orbifold structure, it simply means that the two structures are not iso-
morphic in the orbifold category. In fact, any 2-dimensional orbifold with only conical points is

homeomorphic to a manifold. O



Chapter 2

Explicit parallelizations on products

of spheres

2.1 An explicit parallelization B on S™ x S!

Denote by x = (z;) the coordinates on R™*! and let S™ c R™*! be given by

gm et {z = (21,...,2my1) € R™ such that |z|? = 22 +-

The orthogonal projection of the standard coordinate frame {0y, }i=1

important role in the game, and deserves its own definition:

Definition 2.1.1 The " meridian vector field M; on S™ is

M; def orthogonal projection of 9, on S™ t=1,...

Let M be the normal versor field of S™ C R™*!, that is,

m+1
def
i=1
Since

(O, MY =2;  i=1,...,m+1,

one obtains the following expression for M;:

Mi = 8% — xiM 1

1,....m+1,

26

™

g = 1},

m+1 to the sphere plays an

,m+ 1.
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X;i M
Sout h pol e

Sout h pol e
North pol e

Figure 2.1: Meridian vector field M;.

and thus

<MZ‘,M]'> :51‘3' — T;T; t,5=1,...,m+ 1. (2.2)

Let T be the cyclic infinite group of transformations of R™*! — 0 generated by the map x —
e?"x. Denote by H the corresponding diagonal real Hopf manifold, that is, the quotient manifold
(R™+1 —0)/T: H turns out to be diffeomorphic to S™ x S! by means of the map induced by the
projection p:

R0 £ gm xSt

x —  (z/|z],log|z| mod 2m).

The standard coordinate frame {8xi}i:17_,_7m+1 on R™*! —( becomes I'-equivariant when multiplied
by the function |z|, hence it defines a parallelization on S™ x S!'. This proves the following

proposition. . .

Proposition 2.1.2 S™ x S! is parallelizable.

...and suggests to give the following definition:

Definition 2.1.3 Denote by B = {b;}i=1, .. m+1 the frame on S™ x S1 induced by the I'-equivariant

frame {|2|0z, }i=1, m+1 on the universal covering R™*1 of ™ x St

b € p.(|2)0s)  i=1,...,m+1.
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O
The following theorem explicitly describes the frame B:
Theorem 2.1.4 Let M; be the i meridian vector field on S™ C R™*L. Then

Proof: Look at S™ x S! as a Riemannian submanifold of R™*! x S', and in particular look at
T(S™x S') = TS™ x TS! as a Riemannian subbundle of TRT’;::I x T'S1; this last is a trivial vector
bundle and an orthonormal frame is {0z, ...,0z,,.,,09}. A computation then shows that

1
= m ((dxl - 331(4}) & Qm + -+ (dmerl - .',Um+1w> ® ax'rn+1 + |$|UJ ® 80) ’

where w is the 1-form given by

1 1
w g (m) = FE (x1dz1 + - + T 1dTm41) -

Hence, the frame B in the point p(z) = (z/|z|,log|z| mod 27) is given by

EE (—212i02, + - + (|2> = 27)0r, + -+ — T4 12i00,,,, + |2|2ibs)  i=1,...,m+1,

that is, the frame B in the point (z,0) € S™ x S! is given by

b = (_xlwiaacl do bt (L =220y, + - — Trm10i0z,, 4, + xi(?g)

2.1
= 8% — a:i(aslc‘)m + 4 $m+1axm+1) + 2,09 (:) M; + z;09.

Remark 2.1.5 The notion of meridian vector field was given in [Bru92|: it was used to describe
a parallelization on products of spheres by parallelizable manifolds. In this context, theorem 2.1.4

shows that the frame B given by definition 2.1.3 coincide with that of [Bru92]. O

Remark 2.1.6 The frame B is orthonormal with respect to the product metric on S™ x S! (use

theorem 2.1.4 and formula (2.2)). O

The brackets of B are
[bi,bj] :ZEibj —l’jbi 1, 5=1,...,m+ 1. (2.5)

def

Since B is orthonormal, the coframe B* = {bi}i:17,,,7m+1 dual to B on S™ x S is given by

b =dr;+xdd  i=1,....m+1 (2.6)
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Remark 2.1.7 Since

bi = p«(|z|0z;) i=1,....m+1,
the coframe B* can be also described as the quotient of the I'-invariant coframe on R™*! — 0 given
by

{|=| " d2iYic1,.. mr-

O
A straightforward computation gives the structure equations for B:
av = de nd0 v Ade i=1,... m+1, (2.7)
where the 1-form df is related to B* by
m—+1 )
o ="z’
i=1
The following lemma is trivial to prove, but will be useful:
Lemma 2.1.8 For each permutation 7 of {1,...,m+1}, the automorphism of R™*! —0 given by
(1, s Tma1) = (Ta(1)s -+ > Tr(me1)) 8 [-equivariant. The induced diffeomorphism is
fr: Sm % St —s Sm xSt
(:Ela--‘ 7xm+179) — ($F(1)7‘ . 'axw(m—&-l)ag)a

and dfﬁ(bﬂ(z)) = b;.

2.2 An explicit parallelization B on S™ x S3

Denote by y = (y;) the coordinates on R*, and let S3 C R* be given by

S?’Cléf{y:(yl,...,y4)€R4 such that \y|2:y%+-'-+yz:1}.

Let T = Ty, T, T3 be the vector fields on S3 given by multiplication by i, j, k € H = R*
respectively, that is,
=1 = _y28y1 + ylayz - y48y3 + y3ay47
15 = —y30y, + Y10y, + Y10y, — y20y,, (2.8)

T3 = _y46y1 - y3ay2 + y26y3 + ylay4-

The Hopf fibration S3—S? defines a foliation of S™ x S2 in 8™ x S'’s, and section 2.1 gives m + 1
vector fields tangent to the leaves: they can be completed to a parallelization of S™ x S? by means

of a suitable parallelization of S3, as it is now going to be shown in the following proposition:
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Theorem 2.2.1 ([Bru92]) S™ x S3 is parallelizable.

Proof: The proof of theorem 2.1.4 needs a unitary and tangent to fibers vector field on S3: this is

just what T is. Hence, define B def {bi}i=1,...m+3 by

def

b, = M; + x;T 1=1,....m+1,
def . (29)
bm+j = 7} J= 2737
where M; is the !" meridian vector field on S™, to obtain the wished frame on S™ x S3. |

Remark 2.2.2 The frame B is orthonormal with respect to the product metric on S™ x S3 (use

formulas (2.9) and formula (2.2)). O

The same argument used in section 2.1 gives the brackets of B:

[bi,bj]:xibj—a:jbi t,=1,...,m+1,
[bi, bm+2] = _2$ibm+3 1=1,....m+1,
[bis bm+3] = 22y 42 i=1,...,m+1, (2.10)

m—+1
[bm+2, bm+3] =2T=-2 Z J,’Zbl
=1

Let 7 = 71, T, 73 be the 1-forms on S™ x 83 dual to T = Ty, T, T3 respectively. The coframe

B {b'}i=1,...m+s3 is given by

b = z;7 + dx; i=1,...,m+1,
' (2.11)
bV =1 j=2,3.

Differently from S™ x S', the 1-form 7 is not closed, so structure equations are a bit more com-

plicated:
db' = b AT+ 2 bmTEANTT =1, m+1,
db™? = 263 A 7, (2.12)
Ayt = 20" A7,

where the 1-form 7 is related to B* by

m+41

T = E x;b'.
i=1

Remark 2.2.3 The same argument used above for S™ x S3 can be applied to the Hopf fibration
S7 — CP? to obtain a frame on S™ x S7. Nevertheless, formulas in this case are much more

complicated. O
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Theorem 2.2.1 and the previous remark can be easily generalized:

Theorem 2.2.4 ([Bru92]) Let Y™ be any parallelizable n-dimensional manifold. Then S™ xY

1s parallelizable.

Proof: Let T'=11,15,...,T, be a frame on Y. The required parallelization is thus given by

b M T =1, m 1,

def .
berjéT_’j ]:2a"'an>

where M; is the «*® meridian vector field on S™. |

2.3 The general problem: when is a product of spheres paralleliz-

able?

The proof of the theorem of Kervaire cited in the introduction is here sketched:

Sketch of proof:

i) Show by induction there exists an embedding of S™ x - - x §™ in R™ 1+l Thig is true

for r = 1. Let
f = (f17 ey fn1+"'+nr71+1): ST ox v x STr-1 Rn1+---+nr_1+1

be the embedding given by the inductive hypothesis, where f is chosen in such a way that
f1>0. Let u e 8™ x---x S™-1 and let (&1,...,&,+1) € S™: the embedding f is thus
given by

SN o . ..x Shr f; Rn1+-~~+nr+1

(uv (51, s ’gnr+1)) — (fQ(u)v ce fnl+"'+nr—l+1 (u)v£1 V fl(u)7 s ’énr‘i’l V fl(u))v

ii) suppose without any loss of generality that the odd dimension is not nj, and observe that

the degree of the Gauss map of the embedding f built in i) is given by
X(D™MFE X 872 5 §77) = x (D™ (8™2) .. x(S™) =0,
where D™*! denotes a topological disk of dimension n; + 1;

ili) denote by G}, and Vi, the Grassmannian and the Stiefel-Whitney manifold of oriented

k-planes and oriented orthonormal frames in R¥*™, respectively. The tangential map
S™Mox ... x 8" — Gn1+--~+nr,1

is null-homotopic, since by ii) the Gauss map is;
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iv) last, denote by P(S™ x --- x S™) the principal bundle of S™ x --- x S™ and look at the

following diagram to end the proof:

P(Snl NERED % Sn'r) ......... S 1t 1

|

S™M X oo x S Gry4etng 1

Note that, due to the homotopy theory considerations, the above proof is not very suitable to write

down explicit parallelizations on products of spheres.

Another proof of Kervaire’s theorem can be developed using a series of hints contained in the book
[Hir88, exercises 3,4,5 and 6 of section 4.2]. Details of such a proof, as developed by the author,

are given in the following.

In what follows, E% denotes the trivial vector bundle of rank k& with base space B; moreover,
whenever « is a vector bundle, E(«), pa, B(a) denote the total space, the projection and the base

space of « respectively.
Lemma 2.3.1 Let a be a vector bundle. The Whitney sum o @ 6%(a) 1s described by
Ela® eg(a)) ~ E(a) x R¥,

pa@g%(a) (8, U) = pa(e)a

B(a® efq) = Bla).
Proof: The Whitney sum a @ 5%((1) is given by the pull-back of a x 5%(01) by means of the diagonal
map B(a) — B(a) x B(a) (see for instance [MS74, page 27]). Then
Ela® 6%((1)) = {(e,b,v,b) € E(a) x B(a) x R*¥ x B(a) such that p,(e) = b}
and the thesis follows. |

Corollary 2.3.2 Let a, 3 be vector bundles. Then, for any k > 0,

a X (/8@5%(6)) ~ (« @5%(04)) X 3.

Proof: Observe that

Bax (8@ ehys)) = E(a) x B(B@ cly5) 2 E(a) x E(B) x R,

2

E(a® elyq) x B~ Bla®ely ) x B(B) = E(a) x RF x B(B),

and use the obvious isomorphism. |
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Theorem 2.3.3 Suppose X™ and Y™ satisfy the following properties:

i) T(X)®el is trivial;
i) T(Y) ® e} is trivial;

ii1) there is a non-vanishing vector field on Y .
Then X XY 1is parallelizable.

Proof: Let v be a complement in T'(Y') of the non-vanishing vector field on Y, that is,
TY)~v®et.

Then

Remark 2.3.4 Theorem 2.3.3 was proven in the same way by E. B. Staples in [Sta67].

Remark 2.3.5 Whenever Y is itself parallelizable, formula (2.14) can be shortened:

T(X xY) = T(X) x T(Y) = T(X) x &}

~ (T(X) @ek) x et elpth s gt

33

(2.13)

(2.14)

(2.15)

O

The embedding S™ C R"*! gives the triviality of T/(S™) @ 5}971; whenever n is odd, a non-vanishing

vector field on S ¢ C("1t1)/2 ig given by the complex multiplication. Thus, the following:

Corollary 2.3.6 Let n be any positive odd integer. Then the manifold S™ x S™ is parallelizable.

And finally:

Second proof of Kervaire’s theorem: Apply r — 1 times the corollary 2.3.2 to show that T'(S™2 x

e x S @ E}gn“,,,xsm is a trivial vector bundle, and use theorem 2.3.3.
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2.4 An explicit parallelization P for products of 2 spheres

An explicit parallelization B has already been found on S™ x S™, for n = 1, 3, 7 in the previous
sections. Can one use theorem 2.3.3 to explicitly find a parallelization on any parallelizable S™ x

S™? Answer is positive.

The trick in theorem 2.3.3 is simple: split TY by means of the never-vanishing vector field, then
use the trivial summand to parallelize T'X, and last detach a rank 2 trivial summand to parallelize
the remaining part of TY. Remark 2.3.5 simply says that if YV is itself parallelizable, one can avoid

to detach the rank 2 trivial summand from X, using the parallelization of Y instead.
Here and henceforth, n is supposed to be the odd dimension in S™ x S™.
Denote by y = (y;) the coordinates on R"™!, and let S C R"*! be given by

f
S"E {y = (y1,---,yns1) € R such that 4 + - +y2,, =1},

Being n odd, a never-vanishing vector field, and hence a versor field, is defined on S™: here and

henceforth, T denotes the versor field on S™ given by multiplication by i in CTD/2 namely,

def
T = —y20y, + Y10y, + -+ — Ynt10y, + YnOy,,1- (2.16)

When a shorter form of T is needed, ¢; denotes the coordinates of T', that is,

n+1

T =>"t;0, (2.17)
j=1

where ¢; is given by
—Y; if j is odd,
;=4 (2.18)
yj—1 if j is even.

Moreover, denote by N the normal versor field of S C R™"! (recall that M denotes the normal
versor field of §™ C R™*1):

n+1
def
N =Y g0, (2.19)
=1

It is convenient to think of T'(S™ x S™) = T'S™ x T'S™ as a Riemannian subbundle of TR?;;:I X

TRrStl; this last is trivial, and an orthonormal frame is {0z,,..., 0z y1>Oyrs- -5 Oypiy }-

Denote by N; the 7™ meridian vector field on S™ (recall that M; denotes the ¢ meridian vector

field on S™):

N; def orthogonal projection of d,, on S" j=1...,n+1.



CHAPTER 2. EXPLICIT PARALLELIZATIONS ON PRODUCTS OF SPHERES 35

The tangent space in a point (z,y) € S™ x S™ is thus given by an Euclidean vector subspace
T.S™ @ T,S™ Cc R™! @ R™H1,

which is generated by the m + n + 2 vectors {M;(x), ..., Mpmt1(x), N1(y), .., Nnt1(y)}-

One also has

T.S™ @ (M(z))g = R™™  and  T,5" @ (N(y))r = R"".. (2.20)

As in formula (2.1), one obtains

OIZ:MZ—i—xZM 1=1,....m+1,

(2.21)
8y, = Nj+yN  j=1,....n+1.
Moreover, denote by T(y)* the vector subspace of T} (S™) which is orthogonal to T'(y):
(T(y)m @ T(y)" =T,s". (2.22)

In what follows, some computation on the vector space T,(S™) @ T,(S™) is done. For the sake of
simplicity, the argument of vector fields is omitted, that is, T stands for T'(y), M stands for M (x)

ete. ..

Formula (2.14) in theorem 2.3.3 gives the following chain of pointwise isomorphisms:

T,(5™) @ T,(5") “22 T,(s™) & (T)g & T+

2 T,(S™) @ (M & T
(2:20) pm+1 gy L
5 1 N (2.23)
~ R™ '@ <N>R D <T>R eT

(222) Rm_l D <N>R D Tysn

(220) R g Rn'H,

where a and (8 are defined by

Pulling back to T;(S™) & T, (S™) the m — 1 generators {9y, .., 0y, ,} of R™~1 one obtains

i=1,... m—1, (2.24)

a-1
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whereas pulling back to T5,(S™) & T, (5™) the n+1 generators {9y, ..., dy,,, } of R"! one obtains

the more complicated formulas

(2.1)
ayj = Nj+yjN

= <Nj,T>T+ (Nj — <Nj T)T) + yjN
671
—— (N}, T)04,, 1 + (Nj — (N;, T)T') + y;0

2.1
E N TY (Mot + 2ms1 M) + (N — (Nj, TVT) + 3 (M + 2 M)

[0}

(NG T) (M + @ T) + (Nj — (Nj, T)T) + g (M + 0 T)

The following theorem applies the above argument to S™ x 5", odd n, in order to obtain an explicit

frame on it:

Theorem 2.4.1 Let n be odd, and let T' = Z;‘;Lll tj0y; be the tangent versor field on S™ given by
formula (2.18). Also, let {M;}i—1, m+1 and {N;}j=1,. nt1 be the meridian vector fields on S™
and S™ respectively. Last, let M and N be the normal versor fields of S™ C R™*! and S™ ¢ R*H!

respectively. The product S™ x S™ is parallelized by the frame P def {P1,- - Pmin} given by

pidéfMi—i—xiT i=1,....m—1,
(2.26)

def .
Pm—t14j = YiMm + t;jMmi1 + (tjTmet + Yjam — t))T + N; Jj=1L...,n+ 1L

Moreover, P is orthonormal with respect to the standard metric on S™ x S™.

Proof: Observe that

(2.1)

(Nj T) = (8yj—yjN,T>:<6yj,T>:tj j=1...,n+1

and use formulas (2.24) and (2.25) to obtain (2.26). The orthonormality can be proved by observing
that both « and 8 in (2.23) are isometries. But one can also directly check the p;’s, taking into

account formula (2.2). [ |

Remark 2.4.2 To obtain a parallelization in the general case, use induction in the following
way: suppose that S™2 x --- x S§™ r > 2, has at least one odd-dimensional factor, hence it is

parallelizable; then

T(S™ x - x §") = T(Snl) w ghettnr

= (T(Snl) @ 61) X €n2+”.+n7‘_1 = €n1+1 X €n2+"'+nr—1‘
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2.5 The frames P and B on S x S' and S™ x S°

If n=1, 3 or 7, remark 2.3.5 can be used to obtain a parallelization simpler than P on S™ x S™. If
n = 1, 3 this parallelization is just the one given in sections 2.1, 2.2 respectively, which was called

B. In this section relations between B and P are exploited.

Let n = 1. Formula (2.26) gives the frame P = {p1,...,pms1} on S™ x S, whereas the frame B
is given by formula (2.3). Clearly,

pi:bi izl,...,m—l.
Since 0y = —y20y, + Y10y, = T', one obtains

(N1,00) = (Oy; — 1N, —y20y, +y10y,) = —y2,
(N2,09) = (Oy, — Y2 N, —y20y, + y10y,) = 1,
and thus
Ny = —yoT,
Ny =y T.
Whence
Pm = Y1(Mm + 2mT) — y2o(Mii1 + Tm1T) + y2T — yoT = y1bm — y2bm1,
Pmt1 = Y2(Mm + 2mT) + y1 (Mnt1 + T1 1) — T + 1T = yobm + y1bm1,

and one gets

0 0
I : :
P=B 0 0 (2.27)
0 - 0y ¥
0 - 0]=-y2 n

Brackets of P are thus easily obtained by means of formulas (2.27), (2.5):

[Dis Pm] = (—Zm¥Y1 + Timg1Y2)Di + TiPm — TiPm1 t=1,...,m—1 (2.28)
[Dis Pmt1] = (—Zm¥Y2 — Ty 191)Di + TiDm + TiPm41 t=1,...,m—1

[pmvpm—i-l] = (xm(yl - 3/2) - wm—i—l(yl + y2))pm + (xm(yl + Z/Q) + xm—i—l(yl - y2))pm+1

Formula (2.27) gives the frame P* dual to P:
p=b  i=1,...,m—1,
P = yib™ — g™,

P = gb™ 4 o™
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The structure equations for P are thus obtained by a straightforward computation:

dpt =dey AT =p' AT i=1,....,m—1,

dp™ =p" AT+ AT,

dp™tt = pm AT —p AT
where 7 is given by
m+1 m—1
T = Z xib' = Z CUZ'pZ + (xmyl - SUm-HyQ)pm + ('TmyQ + Jf‘m-i-lyl)pm—i_l-
=1 =1

38

(2.29)

Let n = 3. Formula (2.26) gives the frame P = {p1,...,pmi3} on S™ x S3, whereas the frame B

is given by formula (2.9). Clearly,
pi = b; i=1,...,m—1.
Denote by “<*)Jth” the s coordinate of *. Since

(Nj —t;,T,T) =0
<Nj B th’ bm+2> = (bm+2)]°ha J=1....4,
(Nj =T, bmy3) = (bmy3) jm,

one gets

Pm—145 = yjbm + t]’bm+1 + (bm+2)1thbm+2 + (bm+3)]ﬂlbm+3 ] = 1, cen ,4.

Whence

Y1 Y2 Y3 Ya
—Y2 Y1 —Ys+ Y3
—Y3 Y4 Y1 —Y2
—Ys4 —Y3s Y2 Y1

o o o O
o o o O

(2.30)

Brackets of P can be obtained by means of a not straightforward computation using formulas

(2.30), (2.10).One can also refer to the next section, where general formulas for P are given.



CHAPTER 2. EXPLICIT PARALLELIZATIONS ON PRODUCTS OF SPHERES

Formula (2.30) gives the frame P* dual to P:

0 0 0 0
Imfl
0 0 0 0
P*=B"] 0 O v1. v Y3 4
0 Ol —-y2 w1 —Ys ¥3
0 O|—-ys ya Y1 —Y2
0 Ol —-ya —ys y2 w01
2.6 General formulas for P
Recall that T' = Z?;l t;0y,;. Set
X 0+ 2T,
def
Xmt1 = Myi1 + 2T,
C],kdéfyjtk_yktj j?kzlv"'an+1a
def .
Djy = ZCM :F(Sk:,j:l:l :t5j7k11 5 k=1,...,n+1.
N — N —
j odd odd

Formulas (2.26) easily give

n+1
Z YjPm—1+5 = Mm + T = va
i=1

n+1

Z tipm-1+j = Mpmy1 + Ty T = Xopgq.
=1

39
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A hard calculation then gives

[Pi Pm—1+j] = —(YjTm + tjTmy1)pi

FTiPm—1+j+1 T2y Xm + Titj Xmi1 i=1,....m—-1,7=1,...
—_————

- odd
‘7 even

m—1
[Pm—145, Pm—1+k] = Djk Z TiDi + YiPm—1+k — YkPm—1+j
i=1
+ (mij,k — :L’m_:,_le,k)Xm + ((CEm_H — 1)Dj,k + mej,k)Xm—&-l

+ (FYjTm F tjTms1 T ) Pm—14k+1

odd
even

+ (£YkTm £ thTms1 F te)Pm—14j+1 Jk=1,...,n+1

- odd
‘j even

40

7n+17

(2.31)



Chapter 3

Special structures on products of

spheres

3.1 A motivating example

Let T' be the cyclic infinite group of transformations of R* — 0 generated by the map z —
e?™x. Denote by B = {by,...,bs} the frame on S3 x S! given by the I'-equivariant vector fields
{|2|0zy, -, |2|0z,} on R* — 0 by means of the map

R*—0 — S3x9!

x —  (x/|z|,log|z| mod 2m).

Define the almost-Hermitian structures Iz = I, Jg = J and Kz = K on S x S! by

I(b1) € b, I(3) E g, J(01) Ebg, J(02) E by, K(by) € by, K(by) < b

Then Ig coincide with the integrable Hermitian structure of diagonal Hermitian Hopf surface
H 2x c2x. Moreover, the almost-hyperhermitian structure (I5, Js, K5) on 53 x St coincide with the

integrable hyperhermitian structure of hyperhermitian Hopf manifold (H — 0)/T.
One can summarize:

Proposition 3.1.1 The almost-Hermitian structure Iz on S3 x S' is integrable and the associated
Hermitian structure coincide with that of standard Hermitian Hopf surface Hox g2x. The same is
true for (I, Jg, Kg), whose integrability allows to identify S® x S' with (H — 0)/T, where T is the
infinite cyclic group generated by h — e>™h.

41
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3.2 Preliminaries

Recall now the definitions of the frames B and P given in chapter 2. Denote by x = (z;), y = (y;)
the coordinates on R™*1 R™*! and let S™, S™ be the unit spheres in R™*!, R"*! respectively.
Look first to the case n = 1. Let I' be the cyclic infinite group of transformations of R™+! — 0

27, The corresponding diagonal real Hopf manifold, that is, the quotient

generated by = — e
manifold (R™*1 —0)/T, is diffeomorphic to S™ x S1. The frame {|z|0x, }i=1,. m+1 on R™H —0is

I'-equivariant, and hence it defines a parallelization B on S™ x S1.

If n = 3, the Hopf fibration S? — S? defines a family of S x S'’s into S™ x S3, and the frame B on
each S™ x S' can be completed using the Lie frame {T', Ty, T3} of S®. The resulting parallelization
on S™ x S3 is denoted again by B.

If n is odd, the complex multiplication in C"+1)/2 = R"+! induces a tangent unit vector field T
on S™:
def s, def
(S e
T = thayj = —y20y, + Y10y, + -+ — Yn+10y, + ynOy, ;-
=1

Also, let {M;}i—1,...m+1 and {N;}j=1 . n4+1 be the meridian vector fields on S™ and S™ respectively,

1. €.

M; def orthogonal projection of 95, on S™ t=1,....m+1,

N; def orthogonal projection of 9,, on S" j=1....n+1

Denote by P the parallelization on 5™ x S™ given by the vector fields

pidéfMi-l-CCiT 1=1,....m—1,

(3.1)
def .
Pm—1+j = ijm + tij+1 + (tjxm—l-l + YjTm — tj)T + Nj j=1....,n+1

Of course, the frames B and P (the first defined only for n = 1,3) are orthonormal with respect

to the product metric.

3.3 Almost-Hermitian structures on S?"~ ! x S!

Let ¢ % {e1,...,c2,} be an ordered orthonormal basis of an Euclidean vector space V2", The

Hermitian structure Ic on V' canonically associated to C is given by

def .
Ie(caimt) S e i=1,...,n.
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Let z; def To;_1 + ixe;, for i = 1,...,n, be complex coordinates in C" = R27. The cyclic infinite
group I' of transformations of C* — 0 generated by z — e?"z defines the diagonal Hermitian Hopf

manifold H = (C" — 0)/I". The map

Cr—0 —s g§2n—1y gl
(3.2)
z —  (z/|z|,log|z| mod 27)

is T-invariant, and induces a Hermitian structure I,2- on its diffeomorphic product $?"~! x S*.

Consider on S?"~1 x St the frames B = {b1,..., by, } and P = {p1,...,p2n} given by

bi = ps(|x|0,) i=1,...,2n,
pi = M; + x;T i1=1,...,2n — 2,
P2n—1 = Y1 Map—1 — y2 Moy + (—y22n + y1720-1 + y2)T + N1,
Pon = Y2Mon—1 + y1 Moy + (Y1220 + Y2221 — y1)T + Na,

where p is the map given by formula (3.2). The almost-Hermitian structures I and Ip on $27~1 x

S1 canonically associated to B and P respectively, are then defined.

Remark 3.3.1 Note that Ig coincides with I,2~, and it is therefore integrable. Moreover, since

the change of basis from B to P is given by a unitary matrix (see formula (2.27)), Ip = Ig. O

3.4 Almost-Hermitian structures on S?" 3 x S

Consider now on products S?"~3 x S3 the frames B = {by,...,b2,} and P = {p1,...,pon} given
in section 2.2. More explicitly, using the meridian vector fields M;, N; on S§2n=3 83 respectively

and the Lie frame {T, T, T3} on S? given by the quaternionic multiplication, one gets
g y

b; = M; + x;T i=1,...,2n— 2,
bon—1 = T3,
bon, = T3,
p; = M; + x; T 1=1,...,2n —4,
Pon—3 = Y1 Mop—3 — yaMon—2 + (—y22n—2 + y122n—3 + y2)T + Ni,
P2n—2 = YaMap—3 + y1 Mon—2 + (Y1722 + Y2Ton—3 — y1)T + Na,
Pon—1 = Y3May_3 — ysMop_o 4+ (—yazon—2 + y3r2n—3 + y4)T + N3,
Pon = YaMaop—3 + ysMan—2 + (Y32on—2 + YaTon—3 — y3)T + Na.

The almost-Hermitian structures Iz and Ip on S?"~3 x S3 canonically associated to B and P

respectively, are then defined.
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Theorem 3.4.1 The almost-Hermitian structure Iz on S?" 3 x 83 is integrable.

Proof: The differentials of the (1,0)-type forms are (use formulas (2.12))
d(b?" 7 4 ib?) = —2i(b*" T i) AT,
d(b" +ib) = iz + iz (VT b A (D —ib*™)
+ (b i)Y AT 0 =1,...,2n—2.
This shows that
A1) ¢ Q20 g o),

hence Ig is integrable. |

On each product S™ x S™ of two odd-dimensional spheres is defined a family of Calabi-Eckmann
complex structures, parametrized by the moduli space of the torus S' x S! (see [CE53]). The
Calabi-Eckmann complex structure on S™ x S™ given by the non-real complex number 7 is defined
as follows: denote by S, T the unit vector field given by the complex multiplication on S, S™
respectively, and remark that the complex Hopf fibration induces a complex structure on their

orthogonal complement (with respect to the product metric); then map S into Re 7S + Im 77T

Only 7 = +i gives thus Calabi-Eckmann Hermitian structures: here and henceforth, denote by I™"™

the Calabi-Eckmann Hermitian structure on S™ x S™ given by 7 = —i. Therefore, I"™"™(T) = S.
It is well-known that Calabi-Eckmann complex structures are a generalization of Hopf complex

structures: in particular, using our notation,

I™ =[x,

One is thus lead to the following question regarding 52" x §3: the Hermitian structure I is one

of the Calabi-Eckmann Hermitian structures? The answer is given by the following:

Theorem 3.4.2 The Calabi-Eckmann Hermitian structure I*"=33 on S?"=3 x §3 coincide with

the almost-Hermitian structure Ig on S?" 3 x 83 canonically associated to B.

Proof: Remark that, since {T’, ba,,_1, b, } is the Lie Frame on S? (ba,_1, ba, are the multiplication
by j, k € H respectively), ba,—1, ba, span the horizontal bundle of the Hopf fibration 93 — (CIP’l,

hence

P33 (b 1) = bay,.

The vector fields {by, ..., ba,_2} span the tangent bundle of 527=3 5 ST where S denotes the fiber
of the above Hopf fibration. Then

I733(by) = 123 (by) = Lax (b)) = I(b) = biy1  foroddi=1,...,2n—2,

and this ends the proof. |
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Remark 3.4.3 Since the change of basis from B to P is given by a unitary matrix (see formula

(2.27)), then Ip = I. O

3.5 Calabi-Eckmann revisited

In the general case of products 5™ x S", n odd, only the parallelization P is defined:

p &M+ mT  i=1,...,m—1,

def .
Pm—1+j = ijm -+ tij_H + (tj$m+1 + YjTm — tj)T + Nj j=1....n+1.
If both m, n are odd, then the almost-Hermitian structure I» on S™ x S™ is defined.

Theorem 3.5.1 Let m, n > 1 be odd. Then the Calabi-Eckmann Hermitian structure I™™ on

S™ x S™ coincide with the almost-Hermitian structure Ip on S™ x S™ canonically associated to P.

Proof: Let S! be the fiber of the Hopf fibration of S”. Define the frame B = {by,...,by,11} on

S™ x S by

b M T =1, m 1,

and write B in the basis P:

bi:pi izl,...,m—l,
n+1
bn =) YiPm—1+j
> o

n+1
bn+1 = § tiDm—1+j-
=1

Then
Ip(b;) = Ig(b;) = Lox(b;) = I™Y (b)) = T™"(b;)  i=1,...,m+1,

The same way, denoting by S' the fiber of the Hopf fibration of S™, and using the frame B =
{b1,...,bpy1} on S' x S™ given by

i)jdéfNj*ij j=1,...,n+1,
one obtains

Ip(b;) = Ig(b;) = Lax(by) = I'(b;) = I™"(b;)  j=1,....n+1,

and this completes the proof, since BU B spans T(S™ x S™). |
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3.6 Almost-hyperhermitian structures

Let C def {c1,...,can} be an ordered orthonormal basis of an Euclidean vector space V4 There

are, besides I¢, the Hermitian structures Je, K¢ given by
def def
Je(caims) = cai Ke(caims) = cu .
i=1,...,n.
def def A
Je(caimz) = —cui Ke(csimz) = caic
The identity IcJe = —Jcle shows that (¢, Je, K¢) is a hyperhermitian structure on V, that is

referred to as the hyperhermitian structure canonically associated to C.

Let h; def Tyi—3 +i%ai—9 + jaai—1 + kxa;, for i = 1,...,n, be quaternionic coordinates in H"” = R*",
The cyclic infinite group I of transformations of H” — 0 generated by h +— e?>™h defines the diagonal
hyperhermitian Hopf manifold H = (H" — 0)/T". The map

H'-0 — & 1xs!

(3.4)
h —— (h/|h|,log|h| mod 2m)

is I-invariant, and induces a hyperhermitian structure (I 2r, Jo2r, K 2<) on its diffeomorphic prod-

uct -1 x g1,

Remark 3.6.1 On S~ ! x S! the almost-hyperhermitian structure (Ig,.Jg, K5) coincides with
(I.2x, Jo2r, K 2x), and it is therefore integrable. On S4"~3 x S3, since the change of basis from B

to P is given by a symplectic matrix (see formula (2.27)), (Ig, Jg, Kg) = (Ip, Jp, Kp). O

The following theorem is a consequence of the integrability theorems for the Hermitian symmetric

orbits 4.1.2, 4.1.4, 4.1.7, 4.1.9 and is stated here for completeness:

Theorem 3.6.2 On S¥~1 x S'  the almost-hyperhermitian structure (Ip,Jp, Kp) is non-in-
tegrable. On S*=3 x S3 the almost-hyperhermitian structure (Ig, Jg, Kg) = (Ip,Jp, Kp) is
non-integrable. On S™ x S™, for m, n odd and m +n = 0 mod 4, the almost-hyperhermitian

structure (Ip, Jp, Kp) is non-integrable.

Remark 3.6.3 Almost-hypercomplex structures on products of spheres were considered in [Bon65,

Bon67].

3.7 Algebraic preliminaries: structures related to the octonions

Call {e1,...,er} the standard basis of R”, and {e!,... e’} the corresponding dual basis. Let
R8 = RGR". Then the standard basis of R® is {1,e1,...,e7}. Call {\ e!,..., e’} the corresponding

dual basis, with an obvious misuse of notation.
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1 el €2 es €4 es5 €6 er
11| e ) es e4 es e er
e1ler| =1 | eq er | —es| eg | —es | —es
es|lea| —eqs| —1 | e5 e1 | —e3| er | —eg
ez |e3| —er| —es | —1 | eg es | —e4| el
esles| ea | —e1 | —eg| —1 | er es | —es
es | es | —eg| e3 | —ea | —er | —1 | e e4
egleg| es | —er| eqs | —e3| —e1 | —1 | ea
e7|er| es eg | —e1| es | —eq | —ea | —1

Figure 3.1: Multiplication table of the Cayley numbers, as given by formulas (3.5).

Let @ be the non-associative normed algebra of Cayley numbers, that is, R® equipped with the
standard scalar product (-,-), and with multiplicative structure defined by the following relations
(see [BGT2]):

2 .o . .
e; = —1, eieir1 =€i13, €ip1€i43 =€, €136 =€i11, eie; = —e;e; fori,j€ Ly, j#1i.
(3.5)

The multiplication table of @ is given in figure 3.1.

Remark 3.7.1 The standard quaternion subalgebra H of O is generated by 1, e1, e2 and e4. This
choice is made (following for instance [BG72|, [Gra77], [Mar8la], [FG82] or [Cab97]) in order to
have a simpler definition of the forms associated to the Go and Spin(7) structures, to be considered
on our products of spheres. An orthonormal basis {1,e1,...,e7} of O satisfying (3.5) is called in
many different ways: a Cayley basis (see [FG82], [Cab95a], [Cab95b], [Cab96] or [Cab97]), or also
an adapted basis (see [Mar8la] or [Mar81b]) or again a canonical basis (see [BGT72]). Last, some

authors use the more classical (though more asymmetric) multiplication table given by choosing

{1,i,7,k,e,ie, je, ke} in place of {1,e1,...,e7} (see [Mur89], [Mur92], [CMS96] or [FKMS97]). O

Definition 3.7.2 Given x = xg + x1e1 + - - - + x7er € O, define the imaginary and the real parts
as

Im(x) C orer 4+ x7er, Re(z) = o,

and the conjugate of x as

As usual, the scalar product and the multiplicative structure are related by

(x,z) = xZ. (3.6)
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Definition 3.7.3 The exceptional Lie group Go is the automorphism group of Q, that is,
Gy« {o € GL(R®) such that a(zy) = a(z)a(y)}.
O

Proposition 3.7.4 Denote by SO(7) the Lie group of orthogonal orientation-preserving transfor-
mations of O that fix the real part Re(Q): then

Ga C SO(7).

Proof: Clearly, any o € Gg fixes 1. Let z € IJm(Q). Since

for all o € Gy one obtains

a(z)? = —(z,z). (3.7)
From the other side,

a(z)? = (Re(a(z)) + Im(a(x)))*
= Re*(a(x)) — (Im(a(x)), Im(a(z)))? + 2 Re(a(z)) Im(a(z)).

Comparing equations (3.7) and (3.8), one obtains Re(a(x)) = 0, hence
(a(z), a(x)) = (x, z), for any x € Im(Q0).
A standard polarization argument gives
(az), aly)) = (x,y),  for any z,y € Im(0),

that is, a is an orthogonal transformation. The action of Ga on S¢ C Im(Q) is transitive: let
y1 € S8 extend {1,41} to any Cayley basis {1,1,...,y7} of O, and remark that the map sending
e; to y;, i = 1,...,7, belongs to Go. Hence, Go is a connected subgroup of the orthogonal

transformations of Jm(Q), and this completes the proof. [ |
Remark 3.7.5 The trilinear map ¢ defined by
def ~
p(e,y,2) = (z,yz)  x,y,2 € Im(0)
is actually alternating, thus ¢ is a 3-form, and one can prove that (see [Mur89])

Gy = {a € GL(R") such that a*p = ¢}. (3.9)
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The 3-form of remark 3.7.5 can be easily computed using formulas (3.5) and the multiplication
table of figure 3.1:
p= Z et AetTh A etts, (3.10)
1€ZL7
The 3-form ¢ is called the standard Gg-form on R7. If C is any ordered orthonormal basis on

an Euclidean vector space V' of dimension 7, the above equation defines a Go-structure pc on V.

canonically associated to C.

Denote by * the Hodge star operator on (RS, (-,-)), where the positive orientation is given by

{1,e1,...,e7}. Since {1,e1,...,er} is orthonormal, one obtains
s(AA @) = — Z P2 A pith p pit5 A g6 Z ol A 2 A i3 A pitd (3.11)
i€Z7 €Ly

Define the 4-forms ¢ and ¢~ on R® by
ot AN +x0Ne), 0T EANp—x(AAy).
Using (3.10) and (3.11) one gets

ot = AN Z ol A e+l A pit3 Z N et A 3 p it

(b_ —AA Z ei A ei-i—l A ei+3 + Z ei A ei+2 A ei+3 A 6i+4.
€Ly 1€

The following definition is equivalent to the classical one, but more useful to us:

Definition 3.7.6

Spin(7) o {a € GL(R®) such that a*¢' = ¢T}(~ {a € GL(R®) such that a*¢~ = ¢~ }).

O

The 4-form ¢+ is called the standard positive Spin(7)-form on R®, and the 4-form ¢~ is called
the standard negative Spin(7)-form on R®. If C is any ordered orthonormal basis on an Euclidean
vector space V' of dimension 8, the above equations define a positive Spin(7)-structure ¢¢ = qbér on

V' canonically associated to C and a negative Spin(7)-structure ¢, on V canonically associated to

C.

3.8 Ggy-structures on products of spheres

A Ga-structure on a seven-dimensional manifold M is a reduction of the structure group GL(7) to

Ga. Since Go C SO(7) (proposition 3.7.4), a Go-structure canonically defines a metric.
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A Gy-structure gives a canonical identification of each tangent space with R7, in such a way that
the local 3-form defined by (3.10) is actually global, because of (3.9). Vice versa, if there exists on
M a global 3-form that can be locally written as in (3.10), then M admits a Ge-structure. Hence,
the Go-structure is often identified with the 3-form.

Definition 3.8.1 Let M be a seven-dimensional manifold with a Gg-structure. Let ¢ be its 3-
form and V the Levi-Civita connection of the metric defined by ¢. The Ga-structure is then said

to be

e parallel if Vo = 0;

e locally conformal parallel if o is locally conformal to local Go-structures ¢, which are parallel

with respect to the local Levi-Civita connections they define.

O

A Go-structure is parallel if and only if dp = d *x ¢ = 0 ([Sal89]). This fact can be used to

characterize locally conformal parallel Go-structures:

Proposition 3.8.2 A Go-structure ¢ on M is locally conformal parallel if and only if there exists

a closed T € QY (M) such that dp = 37 A @, d* @ = 4T A x@.

Proof: Let ¢ be locally conformal parallel. Then for each x € M, there exist a neighborhood U

—30

of x and a map o: U — R such that the local Ga-structure oy def |, 1s parallel with respect

to its local Levi-Civita connection. One then obtains dyy = d *xy py = 0, where xy is the local
Hodge star-operator associated to ¢, and using these relations together with e??+;; = €37, one
obtains

dp), = 3do A, d* g, =4do A x|,

The closed 1-form 7 locally defined by do is easily seen to be global. The reverse implication is
obtained the same way, once observed that a closed 1-form 7 is locally exact, that is, for each

x € M there exist a neighborhood U of z and a map o: U — R such that 7, = do. |

Remark 3.8.3 Using the local expression of ¢, it can be shown that o A ¢ = 0 if and only if
a = 0, for any 2-form « on the Gg-manifold (M,p). This means that the requirement of 7 to be
closed in the previous proposition can be dropped. Moreover, one can also modify the statement
in “[...] if and only if there exist a, 3 € QY(M) such that dp = a A ¢, d* ¢ = B A *p”, and then
prove that —4a = =30 = *(xdp A ). O

Remark 3.8.4 The 3-form ¢ of a parallel Ga-structure on a compact M represents a non trivial

element in 3-dimensional cohomology (see [Bon66]). O
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Any parallelizable seven-dimensional manifold trivially admits a Ga-structure. As usual, denote

27, and consider

by T the cyclic infinite group of transformations of R” — 0 generated by = +— e
the induced frame B on S® x S'. Let g be the Go-structure on S% x S! canonically associated to
B, that is,
o D B AT AL
€727
Theorem 3.8.5 The Ga-structure on S® x S given by ¢g is locally conformal parallel. The local

parallel Go-structures are induced by the standard Go-structure on R” by means of the canonical

projection R” — 0 — (R” — 0)/T.

Proof: The standard G-structure on R is given by

= Z dx; N dxiv1 Adziys.
i€l7

It is parallel, and on R” — 0 it is globally conformal to the I'-invariant 3-form

¢ = |m|3 Z dzi AN dzip1 A dziqs.
1€l7

Observe that R7 — 0 is locally diffeomorphic to S® x S, and that ¢’ induces just g, to end the
proof. |

Remark 3.8.6 By remark 3.8.4, S x S! has no parallel Gy-structure. O

Remark 3.8.7 Since B is orthonormal, the metric induced on S% x S! by means of g is the

product metric. O

The same construction can be done on S% x S, 5% x §2 and S? x S® for the frame P. On S* x S3
also the frame B is available. One obtains Go-structures of general type. The rest of the section is

devoted to explain what is a Ge-structure of general type on a Ga-manifold (M, ¢).

Look at V¢ as belonging to Q'(A3M) = T'(T*M ® A3M). The Ga-structure allows one to identify
each tangent space with the standard 7-dimensional orthogonal representation of Ge given by
proposition 3.7.4. The induced action of Gy splits each fiber of 7*M ® A3M into irreducible
components, giving rise to a splitting of T*M ® A3M, and if Vi lifts to a particular component
of this splitting, one says that ¢ belongs to the corresponding particular class. Actually, due to
special properties of ¢, it can be shown that Ve lifts always to a Geo-invariant subbundle W of
T*M @ A*M:

W——T*M

N

A3M
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As a consequence, the above splitting must be done on fibers of W. The irreducible components of
W turn out to be four, and they are classically denoted by Wy, Ws, W3, Wy for the components
of rank 1, 14, 27, 7 respectively. The Ga-structure ¢ is then said of type W;, @ --- @& W;, if Vo lifts
to Wi, @ --- W,
Wi, @ @ W, —— W
N ve Q

For more details, the standard reference is [FG82].

Definition 3.8.8 If V¢ does not lift to any of the spaces Wi & Wa & Ws, Wi & Wy & Wy,
Wi @ Ws @ Wy, Wa @ Ws @ Wy then ¢ is said to be of general type.

In [FG82] the irreducible components of W are explicitly given, but the defining relations are

rather complicated. These relations can be simplified by looking at the Ga-equivariant maps

T*M @ A*M  — A*M
a@FBAYANS — aABAYAD
and
T*"M Q@AM — AM
a®@BAYANG — x({a, B)y NS+ {a,¥)0 A B+ {a,5)B N 7).
This is done in [Cab96]. Here is a list of the resulting simplified relations restricted to the ones

that will be useful in the following:

Theorem 3.8.9 A Ga-structure ¢ on a manifold M is of type:

e W; if and only if there exist a, 3 € QY (M) such that dp = a A @ and d* o = B A *p (this

class is needed in section 3.10);

Wi @ Wa & Wy if and only if (xdp) N\ ¢ = 0;

W1 ©&Wo@W; if and only if there exists o € QY (M), f € C%°(M) such that dp = aAp+ f*p;

Wi @ W3 @ W if and only if there exists 3 € QY(M) such that d x ¢ = B N xg;

Wa @ Ws & Wy if and only if dp N p = 0.

Therefore, to check that a Go-manifold is of general type, one must verify that none of the above

relations is satisfied.

Theorem 3.8.10 The Go-structure pp canonically associated to the frame P on S® x St is of

general type.
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Proof: The 3-form pp and the 4-form xpp are given by

op= > pAPTIAPTE

1€Z/(T)
*pp = — Z pi /\pz‘+2 /\pi+3 /\pi+4‘
1€Z/(7)
Using formulas (2.29) one obtains
dop = 3pp AT — (P15 4 ph30 _ pBAT BTy A 1

A op = —4%op AT — (pD13 4 pBT 4 p346 L 561y A p2 p 7

A hard computation then shows that no relation of the previous theorem is satisfied, and ¢p is of

general type. |

The same result holds for S* x $2 and S? x S°, but computation, being based on the general
formulas (2.31), is much harder than before. Therefore, the following theorem was proved by a

computer calculation:

Theorem 3.8.11 The Go-structures canonically associated to the frames B and P on S* x S°
are both of general type. The Go-structure canonically associated to the frame P on S? x S° is of

general type.

3.9 Spin(7)-structures on products of spheres

A Spin(7)-structure on an eight-dimensional manifold M is a reduction of the structure group
GL(8) to Spin(7). Since Spin(7) C SO(8) (see [Mur89]), a Spin(7)-structure canonically defines a

metric.

A Spin(7)-structure gives a canonical identification of each tangent space with R®, in such a way
that on each connected component of M one (and only one) of the two local 4-forms defined by
(3.12) is actually global, because of definition (3.7.6). Vice versa, if there exists on M a global
4-form that can be locally written as in (3.12), the sign being fixed on each connected component,
then M admits a Spin(7)-structure (see [Gra69, theorem 2.4] and [Cab97, page 238]). Hence, the
Spin(7)-structure is often identified with its 4-form.

Definition 3.9.1 Let M be an eight-dimensional manifold with a Spin(7)-structure. Let ¢ be its
4-form and V the Levi-Civita connection of the metric defined by ¢. The Spin(7)-structure is then
said to be

e parallel if V¢ = 0;
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e locally conformal parallel if ¢ is locally conformal to local Spin(7)-structures ¢,, which are

parallel with respect to the local Levi-Civita connections they define.

A Spin(7)-structure is parallel if and only if d¢ = 0 ([Sal89]). This fact can be used to characterize

locally conformal parallel Spin(7)-structures:

Proposition 3.9.2 A Spin(7)-structure ¢ on M? is locally conformal parallel if and only if there
exists a closed T € QY(M) such that d¢ =7 A .

Proof: The same of proposition 3.8.2. |

Remark 3.9.3 Using the local expression of ¢, it can be shown that a A¢ = 0 if and only if @ = 0,
for any 2-form « on the Spin(7)-manifold (M ,¢). This means that the requirement of 7 to be closed

in the previous proposition can be dropped. Moreover, one can prove that —7a = *(xdp A ¢). O

Remark 3.9.4 The 4-form ¢ of a parallel Spin(7)-structure on a compact M represents a non

trivial element in 4-dimensional cohomology (see [Bon66]).

Any parallelizable eight-dimensional manifold trivially admits a Spin(7)-structure. As usual, de-

27, and consider

note by I the cyclic infinite group of transformations of R® —0 generated by z — e
the induced frame B on S” x S'. Let ¢ be the Spin(7)-structure on S7 x S! canonically associated
to B, that is,
o5 def AA Z bl A bt A B3 Z bi A bIT2 A B3 A pitd
i€Z7 1€ZL7
Theorem 3.9.5 The Spin(7)-structure on S™ x St given by ¢ is locally conformal parallel. The
local parallel Spin(7)-structures are induced by the standard positive Spin(7)-structure on RS, by

means of the canonical projection R® —0 — (RS —0)/T.

Proof: The same of proposition 3.8.5. |
Remark 3.9.6 By remark 3.9.4, S” x S! has no parallel Spin(7)-structure.

Remark 3.9.7 Since B is orthonormal, the metric induced on S7 x S! by means of ¢p is the

product metric.

Remark 3.9.8 All the section can be repeated using
o5 def AA Z bi A BT A B 4 Z bi A bIT2 A B3 A pitd
€Ly 1€ 27
to obtain a Spin(7)-structure on S7 x S! that is locally conformal to the negative standard Spin(7)-

structure on R® — 0.
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The same construction can be done on S7 x S, S° x §2 and S3 x S® for the frame P. On S° x S°
also the frame B is available. As in the case Gg, one obtains Spin(7)-structures of general type.
The rest of the section is devoted to explain what is a Spin(7)-structure of general type on a

Spin(7)-manifold (M, ¢). The discussion is formally identical to the case Ga.

Look at V¢ as belonging to Q'(A*M) = I'(T*M ® A*M). The Spin(7)-structure allows one to
identify each tangent space with the standard 8-dimensional orthogonal representation of Spin(7)
given by the inclusion Spin(7) C SO(8). The induced action of Spin(7) splits each fiber of T*M ®
A*M into irreducible components, giving rise to a splitting of T*M @ A*M, and if V¢ lifts to a
particular component of this splitting, one says that ¢ belongs to the corresponding particular class.
Actually, due to special properties of ¢, it can be shown that V¢ lifts always to a Spin(7)-invariant
subbundle W of T*M @ A*M:
W——T*M @ A*M

NN

As a consequence, the above splitting must be done on fibers of W. The irreducible components
of W turn out to be two (this is the main difference from the Go case), and they are classically
denoted by Wi, W, for the components of rank 48, 8 respectively. The Spin(7)-structure ¢ is then
said of type Wi, Wy if Vo lifts to Wi, Wy respectively:

W W <~—W;
N A
ol

For more details, the standard reference is [Fer86].

Definition 3.9.9 If V¢ does not lift to neither W nor W then ¢ is said to be of general type.
In [Fer86] the irreducible components of W are explicitly given, but the defining relations are

rather complicated. These relations can be simplified by looking at the Spin(7)-equivariant map

T*M @ A*M  — AM
a@BAYANINE — aANBAYANIAe.

This is done in [Cab95a]. Here is the list of the resulting simplified relations:

Theorem 3.9.10 A Spin(7)-structure ¢ on a manifold M is of type:

o Wi if and only if (xdp) N ¢ = 0;

o Wy if and only if there exists a € Q' (M) such that d¢ = a A ¢.
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Therefore, to check that a Spin(7)-manifold is of general type, one must verify that none of the

above relations is satisfied.

The following theorem is based on the general formulas (2.31), and it was proven by a computer

calculation:

Theorem 3.9.11 The Spin(7)-structures canonically associated to the frame P on ST x S* is of
general type. The Spin(7)-structures canonically associated to the frames B and P on S° x S3 are
both of general type. The Spin(7)-structure canonically associated to the frame P on S x S° is of
general type.

3.10 Relations among the structures

A unified treatment of Go and Spin(7)-structures can be done by means of the vector cross product

notion. A beautiful reference is [Gra69).

Definition 3.10.1 Let (V,(-,-)) be an n-dimensional Euclidean real vector space. An r-linear

map P: V" — V (1 <r <n) is said to be an r-fold vector cross product on V' if

e (P(vy,...,v.),v;) =0, forany i =1,...,r;
[ ] <P(1}1, e ,Ur),P(Ul, ey Ur)> = det((vi, 'Uj>)i,j:1,.,.,r-

Given two r-fold vector cross product P and P’ on V, one says that P and P’ are isomorphic if

there is an isometry f: V — V such that f,P = P’.

In [BG67] vector cross products together with their automorphism groups are classified. They

span four classes:

(I) » = 1, and n even: P is a complex structure on V', the automorphism group of P is the

corresponding unitary group U(n/2);
(IT) » =n —1: P is the Hodge star operator on V"~ !, the automorphism group is SO(n);

(II1) r =2,and n =T7: V ~ Im(0) in such a way that P(z,y) = IJm(zy), and the automorphism
group is Go;

(IV) r=3,and n =8: V ~ O in such a way that

P(CC,y, Z) = P+($,y, Z) = _x(gz) + <w,y>z + <y72>x - <Z7$>y
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P(xvyvz) = P_(.T,y, Z) = _(xg)z + <:L“,y>2’+ <y72>$ - <va>yv

and the automorphism group is Spin(7).

An r-fold vector cross product P defines an (r 4+ 1)-form w on V' by the formula

def
W1, .. Upy1) = (P(v1y...y00), Upg1).

The form w is called the fundamental form of P.

Vector cross products of class (I) are nothing else than complex structures, and w is just the Kéhler
form. Vector cross products of class (II) are orientations, and w is the volume form. For classes

(III) and (IV):

Proposition 3.10.2 The 3-form w defined by a vector cross product P of class (III) is just the
standard Go-form ¢ on R7. The 4-form wy defined by a vector cross product Py of class (IV) is
just the standard Spin(7)-form ¢+ on R®.

Proof: As for w, look at the definition of ¢ given in remark 3.7.5, to obtain
p(z,y,2) = (z,y2) = (z,Im(yz)) = (z, P(y, 2)) = w(z,y,2)  for z,y,z € Im(0).

In the Spin(7)-case, a straightforward calculation using the multiplication table of figure 3.1 is all

is needed. |

Requiring all objects to be smooth, one obtains the notion of a differentiable vector cross product:

w is then a global differential form of degree r + 1.
The following proposition gives the link between vector cross product and G-structures:

Proposition 3.10.3 ([Gra69, Proposition 2.2]) Let M be n-dimensional. Then M has a dif-
ferentiable vector cross product of class I, II, III, IV if and only if M has a G-structure, where
G =U(n/2), SO(n), Ga, Spin(7) respectively.

Recall now the following characterization of G and Spin(7)-structures:

e A Ga-structure ¢ on a manifold M is of type Wj if and only if there exist o, 8 € QY(M)
such that dp = a A p and d* @ = B A *xp;

e a Spin(7)-structure ¢ on a manifold M is of type W if and only if there exists a € Q(M)
such that d¢ = a A ¢.
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Using remarks 3.8.3 and 3.9.3, one obtains:

Proposition 3.10.4 A Gy-structure ¢ is of type Wy if and only if ¢ is locally conformal parallel.
A Spin(7)-structure ¢ is of type Wa if and only if ¢ is locally conformal parallel.

The following theorem gives a method of constructing new vector cross products from old:

Theorem 3.10.5 ([Gra69, Theorem 2.6]) Let M be an oriented hypersurface of M, and let N
be its unit normal vector field. Let P a differentiable (r + 1)-fold vector cross product on M. Then
the map P given by

P(X1,... . X)) ¥ PN, X1,....X,),  Xi,...,X, € X(M)
defines a differentiable cross vector product on M.

In this way the standard Spin(7)-structure on R® induces a Go-structure on S7 C R®, that is
described in [FG82]:

Theorem 3.10.6 ([FG82, Theorem 7.5]) Let pgr be the Go-structure on ST given by theorem
3.10.5. Then

dogr =k x pgr, k a mon zero constant.

Definition 3.10.7 A Ga-structure on M satisfying the thesis of theorem 3.10.6, is called a nearly
parallel Go-structure ([Gra69], [FG82] or [FKMS97]), or also, M is said to have weak holonomy Ga
([Gra7l]). Last, in the classification of [FG82], it is called of type W;.

The nearly parallel Go-structure g7 on S7 is used in [Cab95a] to give a Spin(7)-structure on
ST x S': let ¢pg7y g1 be the 4-forms given on S7 x S by

¢S7><Sl déf de/\g05'7+*9057. (313)
Proposition 3.10.8 ([Cab95a, first example at page 278]) The 4-form ¢g7 g1 given by for-
mula (3.18) is a locally conformal parallel Spin(7)-structure.
Proof: By theorem 3.10.6,

dogryst = dO Ndpgr +d x pgr = kdf N xpgr = kdf N ¢pg7y g1,

and proposition 3.10.4 ends the proof. |

Theorem 3.10.5 gives a canonical Go-structure on any orientable hypersurface of a Spin(7)-manifold.
In [Cab97] the following relation between the Spin(7)-manifold and the induced Ga-structure is

proved:
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Theorem 3.10.9 ([Cab97, Theorem 4.4]) Let ¢ be a Spin(7)-structure of class Wa on a man-
ifold M. Let M be an oriented hypersurface of M with unitary normal vector field N and mean

curvature H. Then the induced Go-structure on M is of class Wy if and only if M is totally umbilic
in M and *((xdg) A ¢)(N) = 28(H, N).

Theorem 3.10.9 defines the following Go-structure on S¢ x S*:

Example 3.10.10 ([Cab97, first example at page 245]) Look at S® x S! as a hypersurface
of 87 x S'. Let pgsyg1 be the Go-structure induced by ¢gry g1. Since S x S is totally geodesic
in S” x S, and

*#((+dosrys1) N dgrysr) = —Tkdb,
one obtains *((xdpgryg1) A Pgryg1)(IN) =0 = 28(H, N). Then, by theorem 3.10.9 and proposition

3.10.4, pg6 51 is locally conformal parallel.

S6 x S comes then equipped with two locally conformal parallel Go-structures: ¢p given by
theorem 3.8.5, and @ge, g1 given by example 3.10.10. Also, on S” x S' are defined two locally
conformal parallel Spin(7)-structures: ¢g (theorem 3.9.5 and remark 3.9.8), and ¢g7, g1 (formula
(3.13)). Are these structures really different each other?

Theorem 3.10.11 The locally conformal parallel Spin(7)-structures ¢p and ¢pgry g1 on ST x St
are the same. Also, the locally conformal parallel Go-structures o and @gox g1 on S x S are the

same.

Proof: Let p be the projection R® —0 — S7 x S! given by = + (z/|z|,log |z| mod 27). By theorem
3.9.5, p*(¢5) = |z|"*¢, where ¢ denotes the standard positive Spin(7)-form on R8. Since p is a
local diffeomorphism, it is sufficient to prove that p*(¢g7yg1) = |z|~*¢. Define the unitary vector
field N on R® — 0 by

def 210z, + -+ + 28044

N
]

€ X(R®-0),

and use the metric to define its dual 1-form n € Q'(R® — 0). Then a straightforward computation

gives
* nAiN¢+*(nAiN¢)
p (¢S7><Sl) = ’CL’|4 9

and using the fact that the action of Spin(7) on S” is transitive, one obtains
nAiNG +x(nANind) = ¢.

This completes the proof of the statement about Spin(7). To complete the proof, choose the
embedding S¢ x St C 7 x St given by xg = 0. The normal vector field is then 8,, = bs, and one

obtains

P56x 51 = 10, PsTx 51 = lbgPB = PB-
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3.11 Spin(9)-structures on products of spheres

A Spin(9)-structure on a sixteen-dimensional manifold M is a reduction of the structure group of

M to Spin(9). Since Spin(9) C SO(16), a Spin(9)-structure canonically defines a metric.

In [BG72] it is shown that Spin(9) is the stabilizer of a Spin(9)-invariant 8-form ® € A3(R1°), that

is called the standard Spin(9)-structure on R16:
Spin(9) = {g € SO(16) such that g*® = ®}.

This allows one to think a Spin(9)-structure on M6 as a global 8-form that can be locally written
as ®. In particular, on any parallelizable M6, an explicit parallelization gives such a global 8-form.
Therefore one can define Spin(9)-structures on S x St §13 x §3 Sl x §5 89 x §7 §7 x §9
S5 x S 83 x §13 and S x S°, canonically associated to the frames P and B. Let as usual T

denote the cyclic infinite group of transformations of R'6 — 0 generated by x — e*"z.

Theorem 3.11.1 The Spin(9)-structure on S'°x S* given by ® is locally conformal parallel. The
local parallel Spin(9)-structures are induced by the standard Spin(9)-structure on R'® by means of

the canonical projection R —0 — (R0 —0)/T.

Proof: Tt follows by the fact that |z|~8® is a T-invariant, globally conformal to ® 8-form that

induces just ®z. |

Unfortunately, the 8-form @ is not easy to handle, and this is probably one of the reasons why a

Gray-Hervella-like classification of Spin(9)-structures was lacking until [Fri99].

In what follows, the construction given in [Fri99] is briefly described. Let R be a Spin(9)-structure
on a 16-dimensional Riemannian manifold M'6, and denote by F(M) the principal orthonormal

frame bundle. Then R is a subbundle F(M):

R F(M

\/

The Levi-Civita connection

Z : T(F(M)) — s0(16) = spin(9) & spin(9)*+
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restricted to T'(R) decomposes into Z* @ T', where Z* is a connection in the principal Spin(9)-fibre
bundle R, and

9 def

I' € Q' (R Xspin(9) spin(9)T) = QN (A3 (V)), Vv R Xspin(9) R.

The irreducible components of A'(M) ® A3(V) are described in [Fri99]. In particular, one compo-
nent is just the standard 16-dimensional representation A'(M), and this defines the nearly parallel
Spin(9)-structures. The action of Spin(9) on S is transitive, with isotropy subgroup Spin(7), and

this allows to define the principal Spin(7)-fibre bundle Rgis, g1
Spin(9) x St — S5 x §1,
that in [Fri99] is shown to be actually a nearly parallel Spin(7) C Spin(9)-structure on S x S1.

Theorem 3.11.2 The nearly parallel Spin(9)-structure Rgisy g1 and the locally conformal parallel
Spin(9)-structure ®5 on S'° x St are the same.

Proof: Consider the following diagram of Spin(7) C Spin(9)-structures:

Spin(9) x RT —— Spin(9) x S!

ln
_a Spin 9) B Spin(9) gl
Spln(?) Spin(7)

R —0—
where a(z) = (z/]z], [2]) and 8([g], p) = ([g], logp mod 27). The map
Boa:R®—0— S x st
is the canonical projection R6 — 0 — S1° x S and the map
altoR :Spin(9) x RT — R —0

is a Spin(7) C Spin(9)-structure on R'® —0. The pull-back (8o a)*®z € Q¥(R® —0) gives by
definition the admissible frame {|z|0y,,...,|z|0z,,}. Check that this frame is admissible also for

~1 o R’ to complete the proof. u



Chapter 4

Orthogonal and symmetric action

Let C def {c1,...,¢n} be an ordered orthonormal basis of the Euclidean vector space V. The orbit

of C by the action of O(V) is a family of ordered orthonormal basis of V. Canonically associated
to any of them there is a corresponding structure. One can of course act by any subgroup of O(V):
in particular, the techniques developed in previous chapters are suitable to treat the action of the

symmetric group &,, of permutations of C.

Define the following families of G-structures on products of spheres S™ x S™:

e if m+n is even and G = U((m + n)/2), let Zp denote the family of almost-Hermitian
structures on 5" x S™ canonically associated to permutations of P. If n = 1, 3, define in

the similar way the family Zg;

e if m+n=0 mod 4 and G = Sp((m + n)/4), let Hp denote the family of almost-hyperher-
mitian structures on S™ x S™ canonically associated to permutations of P. If n = 1, 3, define

in the similar way the family Hpg;

e if m+mn =7 8 16 and G = Gg, Spin(7), Spin(9), let Gp, Sp, Np denote the families of
Go, Spin(7), Spin(9)-structures on S™ x S™ canonically associated to permutations of P. If

n =1, 3, define in the similar way the families Gg, S, Nz.

4.1 The symmetric orbit of almost-Hermitian structures

First, consider the simplest case S?"~1 x S1.

Theorem 4.1.1 On products S*"~1 x S, all almost-Hermitian structures in I are biholomorphic

to the Hopf Hermitian structure I 2=, and hence they are integrable.

62
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Proof: Let I gy € Ip, where 7 is a permutation of {1,...,2n}. By lemma 2.1.8, the map
fﬂ_ . SQn—l % Sl _ SQn—l % Sl
(xl, ey L2, 9) [ — (xw(l), ce ,Z'W(Qn), 9)

is a biholomorphism between I (5) and I = I.2x. |

The following theorem describes the symmetric orbit Zp of almost-Hermitian structures on $2"~! x

St

Theorem 4.1.2 On products S~ x St one gets:

i) I € Ip is integrable if and only if I(pan—1) = £pon;

i) if Lz(py is integrable, then I ipy = I (p).

Proof: Let A be the matrix of the change of basis from B to P (see formula (2.27)). To prove
sufficiency in i) suppose I(p2n—1) = £pa,. Then

dp' +ip)) = ' + i) AT dj=1. 20—,
d(anfl + ,l-p2n) — (p2n71 + Z-p2n) A (7_ _ iT),
that is,
d(QH0) ¢ Q20 g 01,

where Q(®%) denotes complex (a,b)-type forms, with respect to I. Thus I is integrable. Now
suppose that I(pan—1) # £pan. Then, taking —I if necessary, there exist i # j € {1,...,2n — 2}
such that

I(pon—1) = pi,
I(p2n) = %pj.

The torsion tensor N(X,Y') of I can then be computed for the vector fields X = pap—1, Y = pap.

One obtains
<N(p2nflap2n)7pj> = _2$j 7& 0,

that complete the proof of i). To prove ii) one has only to remark that if P = A - B, then
m(P) = w(A) - m(B), where 7(A) is just A with rows and columns permuted by means of 7. In

particular, I(p2,—1) = £p2, implies 7(A) € U(n). [ |
The following corollary then follows (see also remark 3.3.1):

Corollary 4.1.3 All integrable almost-Hermitian structures in Ip are biholomorphic to the Hopf

Hermitian structure I2= on S?"~1 x S'. Moreover, Ip coincide with I 2.
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Consider now the case 273 x §3.

Theorem 4.1.4 An almost-Hermitian structure I € Ig on S?"~3 x 83 is integrable if and only if
I(ban—1) = £bap.

Proof: Suppose that I(ba,—1) # £bay,. Then, as in the proof of theorem 4.1.2, there exist i # j €
{1,...,2n — 2} such that

I(bap—1) = b,
I(bsn) = £b;.

Then

N (b2n—1,b2n) = 2([L(b2n—1), I (b2n)] — [b2n—1,b2n] — I([b2n—1,1(b2n)]) — I([L(b2n—1),b24]))

= 2([b;, £b;5] — [b2n—1, ban] — I([b2n—1,£b;]) — I([bi, b2n]))
2n—2

= 2(:|:.7Uibj F .%'jbi +2 Z b — ijbj — 2$ibi) 7'5 0,
k=1

showing that I is non-integrable. In order to prove the reverse implication, suppose I(ba,_1) =

+bg,,. Since the differentials of the (1,0)-type forms are
d(b*" 7 +ib?) = F2i(b* 7 £ i) AT,
d(b" +ib) = iz + iz (VT £ib2) A (D2 Fib*)
+ @ +iYAT  dj=1,...,2n—2,

then
A1) ¢ Q20 g 01,

hence I is integrable. |
The following lemma is similar to the lemma 2.1.8, and can be proven using formulas (2.9).

Lemma 4.1.5 Let w be a permutation of {1,...,2n —2}. The map
fr: §2n=3 x §3 — S35 83
(1, 02m-2,Y) = (Ta(1)s-- > Tr(2n—2)>Y)
s a diffeomorphism and

dfr(beiy) =bi  i=1,...,2n—2.

Corollary 4.1.6 All integrable almost-Hermitian structures on S?"~3 x S3 in the family Ig are

biholomorphic to the Calabi-Eckmann Hermitian structure 1°7=33,
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Proof: Let Iy € Ip be integrable. By theorem 4.1.4, taking —I in case, one can suppose
LBy (ban—1) = bap, that is, there exists an odd i € {1,...,2n} such that m(i) = boy—1, (i+1) = bap.
Define a permutation 7 on {1,...,2n — 2} by

The previous lemma implies that

dfz o Iy = Ip o dfx,

hence I(p) is biholomorphic to I?7=33 by theorem 3.4.2. |

The following theorem describes the symmetric orbit Zp of almost-Hermitian structures on S$2"73 x

S3.

Theorem 4.1.7 On products S*™=3 x S3 one gets:

i) I € Ip is integrable if and only if
I(p2n—3) = £pan—2 and  I(p2n-1) = £pan, (4.1)
where the sign is the same in the two equalities;
i) if Iy(p is integrable, then I py = L.
Proof: Let A be the matrix of the change of basis from B to P (see formula (2.30)). To prove the

only if part of i) suppose that (4.1) is not satisfied, and for the sake of simplicity suppose that
I(p2n—1) # £pon. Then, taking —1I in case,

I(pon—1) =pi and  I(pen) ==£p; i#je{l,...,2n—2}.

Use formulas (2.31) to check that N(pap—1,p2n) # 0 (see also proof of theorem 4.1.9). To prove ii)
and the if part of i) remark that, if (4.1) holds, then 7(A) € U(n). Therefore I(py = I(3), and
I(p) is integrable by theorem 4.1.2. |

Corollary 4.1.6 and theorems 3.4.2, 4.1.7 gives the following corollary:

Corollary 4.1.8 All integrable almost-Hermitian structures on S?"~3 x S3 in the symmetric or-

IQn—S,S IQn—3,3

bit Ip are biholomorphic to the Calabi-Eckmann Hermitian structure . Moreover,

coincide with Ip.

In the general case S™ x S™, m, n odd, only the symmetric orbit Zp is defined.
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Theorem 4.1.9 An almost-Hermitian structure I € Ip on S™ x 8™, m, n odd, is integrable if
and only if
I(pmflJrj) = :l:pm+] J Odd)j =1,...,n+1, (42)

where the sign is the same for all j.

Proof: Firstly, the if part. Suppose that I = I (py for some permutation 7 of {1,...,m + n}.

Taking —1I in case, one can suppose all signs in (4.2) to be positive:

IW(P)(pm—l-i-j) = Pm+j j Odd?j =1,...,n+ 1.

The same way as in proof of corollary 4.1.6, build a permutation 7 of {1,...,m 4 1}, #(m) =
m,7(m + 1) =m + 1. Let S! be the fiber of the Hopf fibration of S”, and let B = {by,...,bni1}

be the frame on S™ x S! given by

b; déf M; + x;T 7

1,...,m+ 1.

Use formulas (3.3) to show that

I7r(’P) (bm) = bm-‘rla

hence I (p) coincide with Iz ) on S™ xS 1. Since theorem 4.1.1 implies that Iz s) is integrable, it
follows that I(p) is integrable on 5™ x S'. Define the versor field 7(S) on S™ by

~ def

W(S) = _‘Tfr(Z)aZ‘;r(l) + xﬁ'(l)amﬁ.(g) + = xﬁ'(m+1)aﬂ€ﬁ.(m) + xﬁ(m)amfr(7,L+l> .
Let now S! be the orbit of #(S) in ™, and let B = {b1,...,by41} be the frame on S* x S™ given
by

b N, —y®(S)  j=1,...,n+1.

One obtains
Nj = y;7(S) = pm—1+j — Yjbm — tjbmi1 + ;T — y;7(S).

Then, since Ip)(T) = 7(5),

Leipy(b) = Lgpy(N; — y;7(S))

= Pmtj — Yibmi1 — Yj+1bm — Y17 (S) +y; T odd j=1,...,n+ 1.

= Pm—14(j+1) — Yj+1bm — tj110mi1 + 11T — Y17 (S) = bjpa

Namely, I(p) coincide with I3 = I.2~ on S 1'% 8™, and it follows that I+ (p) is integrable on S Lx gm,
Since BU B spans T (S™ x S™), the proof of the if part is completed. Secondly, the only if part: it
is given by a case by case computation, here sketched, which uses formulas (2.31). Suppose that
condition (4.2) is not satisfied. Then, taking —I in case, there exist an odd j € {1,...,n+ 1} such

that one of the following conditions holds:
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i) there exist i, k € {1,...,m — 1}, i # k such that
I(pm-145) =pi  and  I(pmyj) = £pi;
ii) there exist i € {1,...,m—1}, k€ {l,...,n+ 1}, k # j, j + 1 such that
I(pm-1+j) =pi  and  I(pmij) = £Dm-14k;
iii) there exist i € {1,...,n+ 1}, k€ {1,...,m — 1}, i # j, 7 + 1 such that
I(pm-14j) =Pm-14+i  and  I(Pm4;) = £pi;
iv) there exist i, k € {1,...,n+ 1}, 4, k # j, j + 1, i # k such that

I(pm—1+j) = Pm—1+i and  I(Ppmij) = EPm—1+4k-

The torsion tensor can then be computed in each case, using formulas (2.31), and in particular

one obtains:

1) (N(Prm—14j, Pmtg)s P = 2(F2i(1 — 47 — y74q) + zr(l = 2(y7 +y714))) # 0
i) (N(Pm—1+4j:Pm+5),Pi)(Yj = Yjr1 =y = 0,tp = 1) = 2(2; F Tmy1) # 0
i) (NPm—145>Pm+5),Pe)(¥j = Yj+1 =¥ = 0,t; = 1) = 2(x, £ xpq1) #0

iv) (N(Pm—144>Pm+j)s Pm—14i)(Yj = Yj41 =ti = Tm =0,y = Tpp1 = 1) = F2, # 0

The following lemma is a particular case of lemma 2.1.8:

Lemma 4.1.10 Let w be a permutation of {1,...,m + 1}. The map
fr: S™ x S" — ST x S"
(xlv" . 7$m+17y) — (':ETF(I)’“‘?:BTF(W-FI)?:U)
18 a diffeomorphism and
dfﬂ(pﬂ.(i)) = D; 1= 1,...,m—1.

Theorem 4.1.11 All integrable almost-Hermitian structures on S™ x S™, m, n odd, in the sym-

metric orbit Ip are biholomorphic to the Calabi-Eckmann Hermitian structure I"™™.
Proof: Let I (py € Ip be a Hermitian structure. Let 7 be the permutation of {1,...,m+ 1} built
in proof of theorem 4.1.9. Then the above lemma implies dfz o I(py = Ip o dfz, and theorem 3.5.1

completes the proof. [ |
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4.2 The symmetric orbit of almost-hyperhermitian structures

The following theorem describes the symmetric orbit Hg on S~ x S

Theorem 4.2.1 On products S*™~ 1 x S, all almost-hyperhermitian structures in Hp are equiv-

alent with the Hopf hyperhermitian structure (I2x, Jo2x, K2 ), and hence they are integrable.

Proof: The proof is the same of theorem 4.1.1. |
All remaining dimensions are described in the following theorem:

Theorem 4.2.2 On S~ x S', all hyperhermitian structures in Hp are non-integrable. On
S4n=3 % 83 both Hp and Hp are families of non-integrable hyperhermitian structures. On S™ x S™,

form, n odd, m4+mn =0 mod 4, all hyperhermitian structures in Hp are non-integrable.

Proof: Remark that a 2-dimensional distribution can’t be closed for a hyperhermitian structure.
Then observe that in theorems 4.1.2, 4.1.4, 4.1.7, 4.1.9, the conditions for an almost-Hermitian
structure [ in the families 7p and Zp to be integrable, implies that a 2-dimensional distribution is

closed with respect to I, to end the proof. |

Remark 4.2.3 Let B and P be the frames on S4"~3 x S3, and let A be the matrix of the change
of basis from B to P. One obtains (Ir(), JrB): KrB)) = (Lrp), Jrp)s Krp)) for all permutations
mof {1,...,4n} such that 7(A) € Sp(n). O

4.3 The symmetric orbit for the special structures

This section describes the symmetric orbits of the G and Spin(7)-structures on products of spheres
canonically associated to B, whenever defined, and P. It should be remarked that, since an
expression for the Spin(9)-invariant 8-form similar to the Gy and Spin(7)-case is still lacking, it

was not possible to apply these techniques to Spin(9)-structures in the symmetric orbits Nz and

Np.

The classification problem for structures in the orbits G, Gp, Hi and Hp can be tackled by a
computer using the characterizations of the various classes given in theorems 3.8.9 and 3.9.10,
together with the structure equations of B and P. All statements in this section concerning the
symmetric action have been verified by a computer calculation, and proved by a classical argument

in a typical case.
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Theorem 4.3.1 On S% x S, all Go-structures in Gg are isomorphic to pg, and hence they are
locally conformal parallel. On S x S', all Spin(7)-structures in Sg are isomorphic to ¢g, and
hence they are locally conformal parallel. On S' x S1, all Spin(9)-structures in N are isomorphic

to ®p, and hence they are locally conformal parallel.

Proof: The Gg case. Let o) € Gp. Then the map
fr 1 (8% % 8 on) — (5% x S o)
of lemma 2.1.8 is the required isomorphism. The same for the Spin(7) and Spin(9)-cases. |

Theorem 4.3.2 On S® x S, all Go-structures in Gp are of general type.

Proof: See theorem 4.4.4 for the whole orthogonal orbit in the following section. |

Theorem 4.3.3 The Go-structures in Gg on S*x S3, the Ga-structures in Gp on S* x 83, 52 x S5
are all of general type. The Spin(7)-structures in Sg on S° x S3, the Spin(7)-structures in Sp on
ST x 81,85 x 83, 83 x S%, ST x ST are all of general type.

Proof: Calculation. [ ]

4.4 The orthogonal orbit

The classification problem for structures in the orthogonal orbit by a computer calculation is much
harder, and it is not still developed. This section is devoted to prove results about the orthogonal
orbits of Iz, (Ip,Js, KB), ¢B, ¢8, 5 on §2n=1 5 St San—1 St ST x Sl 68 x g1 515 » g1

respectively, and about the orthogonal orbit of ¢p on S% x S1.

Let T’ be the cyclic infinite group of transformations of R™*! — 0 generated by = + e?"x. The

following lemma is the natural extension of lemma 2.1.8, and its proof is trivial:

Lemma 4.4.1 Let A € O(m +1). Then A : R™*1 — 0 — R™* — 0 is T-equivariant, and the
induced diffeomorphism is
fa: Smx 8 — gmx St
(x,0) +— (A(x),0).

Moreover, the matriz of df 4 with respect to the basis B on S™ x S' is A.

Theorem 4.4.2 The almost-Hermitian structures of the orthogonal orbit O(2n)-Ig on S?"~1 x St

are biholomorphic to the Hopf Hermitian structure I 2x.
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Proof: Let 153 € O(2n) - Ig. Then the matrix [I4g) o dfa]s of I4p) o dfa with respect to the
basis B is

[La@) o dfals = AIA™YA = Al = [df4 o Ig]s,

and the conclusion follows by remark 3.3.1. |
Clearly, the proof does not rely on properties of U(n), and it works for all the other G-structures:

Theorem 4.4.3 The almost-hyperhermitian structures of the orthogonal orbit O(4n)-(Ig, Jg, Ki)
on 841 x Sl are equivalent to the Hopf hyperhermitian structure (Iax,J,ox, Ko2x). The Ga,
Spin(7), Spin(9)-structures of the orthogonal orbit O(7) - pg, O(8) - ¢5, O(16) - 5 on SO x S,

ST x 81, 815 % S are isomorphic to g, ¢, ®p respectively.

The lemma does not hold for the frame P on S™ x S', because of the twisting of P, Pmi1.-

Therefore the following theorem is not trivial:

Theorem 4.4.4 The Ga-structures of the orthogonal orbit O(7) - pp on S® x S are of general
type.

Proof: Let A = (a;;) € SO(7), and denote by {q!,...,q"} the coframe on S x S! induced by A:
. 7 .
qu:efZai,jp] iZl,...,7.
=1

Let 7 = —yady; + y1dy2 be the usual 1-form on S® x S!, and w; its coordinates with respect to

{¢",....q"}:
T=uiq + - +urq.

Then
PAP) = Z g, AP = — Z GBIt
i€Z/TL i€L)TZ

and using the structure equations one obtains

doarp) =3pap) N T

+ Z ((a¢,6p7 _ a,i77p6>qi+1,i+3 _ (ai+1,6p7 _ ai+177p6)qi,i+3
i€Z/TL

+ (ai36p" — aivs7p®)g" T AT
dxpap)y = —4*pap) AT
+ Z ((%6]07 _ a¢77p6)qi+2’i+3’i+4 _ (ai+2,6p7 _ ai+277p6)qi,i+3,i+4
i€Z)TZ

7 6\ 1,i+2,14+4 7 6\ 1,0+2,14+3
+ (aips,60" — @it 70%)q" T — (@ira6p” — aivarp®)g ) AT
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. . f .
The 3-form xdp 4(p) is not easy to write. Let a; ; ! a;eaj7 — a;7aj6. Then by a long calculation
one obtains
wdpapy= Y |
1E€EL)TL
(=3tit2 — ui(—iive + Qitairs + Qitsir1) + Uirs(—Qit6ir1 + Qitsire + Qita)

4,145,146
+ w1 (Qige,its + Qip1ir2 + Qigsi))g T

+ (Btipa — ui(iita + Qig2,i43 + Vig6i+1) + Uit (—Qig1,i44 — Qigs,i+3 + Qite,i)

i+2,145,14+6
— Ui3(—Qig5i41 — Qo + Qigs,i4a))q T

+ (—3uits + w3 (Qigditn + Qigeq + Qirsits) + Uil Qiivs T Qip2,ir1 — Qiteit3)

i+2,i44,i+6
— Ui 1(Qigo, + Qiydi13 — Qig1i45))q

+ (Buiye — Uz’+3(—04i+5,z' + Qi1 + ai+3,i+6) - uz’(%’+5,z‘+3 + Qive — Oéz'+4,z'+1)

birdits
+ U1 (—Qirai — Qi1 + Qigoits))g T

+ (Uire (=it + Qigaivs + Qigsit1) — Wirs(Qigsive + QGip1 + Qitdive)

it 4,i45
+ Uit2(Qit5i48 + Qi ite — Qitdit1) — Wit1(— 043 — Qitdir2 + it5i46))q ).

Now use theorem 3.8.9 to check which classes ¢ 4(p) belongs to. As for the class Wh & W3 & W,

one obtains
0=dpap) Npap) =0 NT

where o is a 6-form on S® x S! whose coefficients with respect to P are constant, and this is easily
seen to be impossible. The existence of a 1-form 3 on S% x S! such that d * vap) = BAoarp
implies that

Qi1 + Q5,42 — Xit6,i44 = 0 i€ ZLJTL.

But this system has no solution, hence ¢ 4(py does not belong to the class Wi & W3 © Wy. The
above system comes out also requiring the existence of a 1-form « and a function f on S® x S!
such that dp 4p) = @A)+ [ *@acp), hence p 4¢p) does not belong to Wi & Wa & Wy. Finally,
*dp A(p) N pacp) # 0 by a direct computation.

If det A = —1, some signs in formulas are reversed, but the same impossible conditions are obtained.
|
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