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Abstract. In this paper we describe a family of locally conformal Kähler metrics on class1
Hopf surfacesHα,β containing some recent metrics constructed in [GO98]. We study some
canonical foliations associated to these metrics, in particular a2-dimensional foliationEα,β

that is shown to be independent of the metric. We prove with elementary tools thatEα,β has
compact leaves if and only ifαm = βn for some integersm andn, namely in the elliptic
case. In this case we prove that the leaves ofEα,β give explicitly the elliptic fibration of
Hα,β , and we describe the natural orbifold structure on the leaf space.
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1. Introduction

The study of metrics on complex surfaces arose in the sixties out of Kodaira’s clas-
sification of minimal complex surfaces in seven classes I0,. . .,VII 0 (see [Kod64,
Kod66,Kod68a,Kod68b]): which complex surfaces, with respect to this classifica-
tion, admit a Kähler metric? The surfaces in classes I0, III 0 and V0 are easily seen
to be Kähler, while the surfaces in classes VI0 and VII0 are not, due to topological
obstructions. (O. Biquard showed that elliptic surfaces in classes VI0 and VII0 are
also non-symplectic, see [Biq98].) The surfaces in class IV0 are Kähler as shown
by Miyaoka and in1983, when Todorov and Siu proved that every surface of class
II0 is Kähler, the question was at last settled: only the surfaces of classes VI0 and
VII 0 are not Kähler (see for instance [BPV84]). This theorem has been recently
proved by direct methods independently by N. Buchdahl and A. Lamari in [Buc99]
and [Lam99] respectively.

Is there a weakened version of the Kähler hypothesis that we can hope to prove
for surfaces in classes VI0 and VII0? The notion of locally conformal Kähler
manifold was introduced in this context by I. Vaisman in [Vai76]; in [Vai79] he
thoroughly studied locally conformal Kähler metrics with parallel Lee form; sub-
sequently F. Tricerri in [Tri82] gave an example of a locally conformal Kähler
metric with non-parallel Lee form. Further properties of locally conformal Käh-
ler manifolds were proved by B. Y. Chen and P. Piccinni in [CP85]; in particular,
the existence on them of some canonical foliations. Until1998, there were very
few examples of locally conformal Kähler manifolds, namelysomeHopf surfaces,
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some Inoue surfaces and manifolds of type(G/Λ) × S1 whereG is a nilpotent
or solvable group. Recent results were obtained by P. Gauduchon and L. Ornea in
the paper [GO98], where they showed thateveryprimary Hopf surface is locally
conformal Kähler by finding a (family of) locally conformal Kähler metric (with
parallel Lee form) on those of class1 and then deforming it; and by F. A. Belgun
in [Bel00] where he classified the locally conformal Kähler surfaces with paral-
lel Lee form and showed that also secondary Hopf surfaces are locally conformal
Kähler.

In this paper we show that the metrics written in [GO98] for Hopf surfaces of
class1 belong to a family of locally conformal Kähler metrics that are parametrized
by the smooth positive functions defined on the circleS1. Among all these lo-
cally conformal Kähler metrics, the only ones with parallel Lee form are those of
[GO98]. Then we explicitly study the canonical foliations associated to the metrics
of this family. Class1 Hopf surfacesHα,β are elliptic if and only if an algebraic
condition is satisfied, that isαm = βn for some integersm andn (see [Kod64, 2]):
we find that, whenever this condition is satisfied, one of the canonical foliations
gives exactly the elliptic fibration. Finally, we look at the regularity of this foliation
and at the natural orbifold structure on the leaf space: we find that this foliation
is quasi-regular if and only ifαm = βn, and that in this case the leaf space is an
orbifold with two conical points of orderm andn.

In section 2 we give some basic preliminaries and we state more precisely the
theorem of [GO98] we used (see theorem 2). Firstly, we develop some tools we
shall need, namely a diffeomorphism betweenHα,β andS1×S3 (see formula (5)),
a parallelization onS1 × S3 (see formulas (6)) and the explicit description of the
induced complex structure onS1 × S3 via the diffeomorphism (see formulas (8)).
This is the point of view we adopt to studyHα,β . Secondly, we look at the simplest
case, that is|α| = |β|: we deform the classical locally conformal Kähler metric
(dz1⊗ dz̄1 + dz2⊗ dz̄2)/(z1z̄1 + z2z̄2) onC2 \ 0 by means of a positive function
k : S1 → R obtaining a family of locally conformal Kähler metrics, with parallel
Lee form if and only ifk is constant (see theorem 3). Thirdly, we apply our method
to the metric of [GO98] to obtain a family of locally conformal Kähler metrics on
Hα,β (see theorem 6) parametrized by the real positive functions onS1. Then we
verify that the only metrics with parallel Lee form in this family are the ones of
[GO98] (see theorem 9).

In section 4 we begin by recalling the definitions of three canonical distribu-
tions on a locally conformal Kähler manifold, as given in [CP85], then we study
each of them in detail, and we defineEα,β . We remark that they are all integrable
and explicitly find the leaves, then we study their properties obtaining necessary
and sufficient conditions for compactness (see theorems 13, 14 and 15).

In section 5 we recall the definition of elliptic surface, as given in [Kod64].
Then we show that when the foliationEα,β has all compact leaves -and this hap-
pens, according to theorem 15, if and only ifαm = βn for some integersm and
n-, we can identify the leaf space withP1C in such a way that the canonical pro-
jection is a holomorphic map (see theorem 19). This means that, wheneverHα,β

is elliptic, the ellipticity is explicitly given by the foliationEα,β .
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In the same section we recall the definitions of regularity and quasi-regularity,
and we show thatEα,β is quasi-regular if and only ifHα,β is elliptic, and it is
regular if and only ifα = β (see theorem 20). The quasi-regularity gives the leaf
space a natural structure of orbifold with two conical points.

2. Preliminaries

A Hermitian manifold(M2n, J, g) is said to belocally conformal Kähler, briefly
l.c.K., if there exist an open covering{Ui}i∈I of M and a family{fi}i∈I of smooth
functionsfi : Ui → R such that the metricsgi onUi given by

gi:= exp (−fi) g|Ui

are Kählerian metrics. The following relation holds onUi between the fundamental
formsΩi andΩ respectively ofgi andg:

Ωi = exp (−fi)Ω|Ui
,

so theLee formω locally defined by

ω|Ui
:=dfi (1)

is in fact global, and satisfiesdΩ = ω∧Ω. The manifold(M, J, g) is then l.c.K. if
and only if there exists a global closed1-form ω such that

dΩ = ω ∧Ω

(see for instance the recent book [DO98]).
As Kodaira defined in [Kod66, 10], aHopf surfaceis a complex compact sur-

faceH whose universal covering isC2 \ 0. If π1(H) ' Z then we say thatH is
a primary Hopf surface. Kodaira showed that every primary Hopf surface can be
obtained as

C2 \ 0
< f >

, f(z1, z2):=(αz1 + λzm
2 , βz2),

wherem is a positive integer andα, β andλ are complex numbers such that

(α− βm)λ = 0 and |α| ≥ |β| > 1.

These relations will be assumed throughout this paper.
We writeHα,β,λ,m for the generic primary Hopf surface. Ifλ 6= 0 we have

f(z1, z2) = (βmz1 + λzm
2 , βz2)

and the surfaceHβ,λ,m:=Hβm,β,λ,m is calledof class0, while if λ = 0 we have

f(z1, z2) = (αz1, βz2)

and the surfaceHα,β :=Hα,β,0,m is calledof class1 (this terminology refers to the
notion ofKähler rankas given in [HL83, § 9]).
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A globally conformal Kähler metric onC2 \ 0 (that is, of the formexp (−f) g
whereg is Kähler andf : C2 \ 0 → R), which is invariant for the map(z1, z2) 7→
(αz1 + λzm

2 , βz2), defines a l.c.K. metric onHα,β,λ,m: this is the case for the
metric

dz1 ⊗ dz̄1 + dz2 ⊗ dz̄2

z1z̄1 + z2z̄2
(2)

which is invariant for the map(z1, z2) 7→ (αz1, βz2) (and so defines a l.c.K. metric
onHα,β) whenever|α| = |β|. The Lee form of this metric is parallel for the Levi-
Civita connection (see [Vai79]).

In [Vai82], I. Vaisman calledgeneralized Hopf (g.H.)manifolds those l.c.K.
manifolds(M, J, g) with a parallel Lee form. Recently, since F. A. Belgun proved
that primary Hopf surfaces of class0 do not admit any generalized Hopf structure
(see [Bel00]), some authors (see for instance [DO98,GO98]) decided to use the
termVaisman manifoldinstead. We shall adher to this terminology and thus give
the following

Definition 1. A Vaisman manifoldis a l.c.K. manifold(M,J, g) with parallel Lee
form with respect to the Levi-Civita connection ofg.

Define the operatordc by dc(f)(X):= − df(J(X)) for f ∈ C∞ andX ∈
X(M). LetU be an open set of a complex manifold(M, J). We call apotentialon
U a mapf : U → R such that the2-form onU of type(1, 1) given by(ddcf)/2 is
positive: namely, such that the bilinear mapg onX(U)× X(U) given by

g(X, Y ):=− ddcf

2
(J(X), Y )

is a (Kählerian) metric onU .
Take the mapΦα,β : C2 − 0 → R given by

Φα,β(z1, z2):= exp
(

(log |α|+ log |β|)θ
2π

)
(3)

whereθ is given by

|z1|2

exp
(

θ log |α|
π

) +
|z2|2

exp
(

θ log |β|
π

) = 1. (4)

In [GO98] the following theorem is proved:

Theorem 2([GO98, Proposition 1 and Corollary 1]). The mapΦα,β given by
(3) is a potential onC2 \ 0 with respect to the standard complex structureJ . The
metricgα,β onC2 \ 0 given by

gα,β(X,Y ):=− ddcΦα,β

2Φα,β
(J(X), Y ), X, Y ∈ X(C2 \ 0)

is invariant for the map(z1, z2) 7→ (αz1, βz2). Moreover, the induced metric on
Hα,β is Vaisman for everyα andβ.
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3. Metrics on S1 × S3

We define the3-sphere by

S3:=
{
(ξ1, ξ2) ∈ C2 : |ξ1|2 + |ξ2|2 = 1

}

andS1 by the quotient ofR by the mapθ 7→ θ + 2π. The manifoldsS1 × S3 and
Hα,β are diffeomorphic (see [Kat75, theorem 9]) by means of the mapFα,β given
by F in the diagram

R× S3 F−−−−→ C2 \ 0

h

y
yf

R× S3 F−−−−→ C2 \ 0

where

h(θ, ξ1, ξ2):=(θ + 2π, ξ1, ξ2),
f(ξ1, ξ2):=(αξ1, βξ2),

F (θ, ξ1, ξ2):=(exp
(

θ log α

2π

)
ξ1, exp

(
θ log β

2π

)
ξ2).

Here and henceforth, we fix the arguments ofα, β andα/β in such a way that

log(α/β) = log α− log β.

If [z1, z2] is the element inHα,β corresponding to(z1, z2) ∈ C2 \ 0, we have

Fα,β(θ, ξ1, ξ2):=[exp
(

θ log α

2π

)
ξ1, exp

(
θ log β

2π

)
ξ2] (5)

and the inverse is

F−1
α,β([z1, z2]) = (θ, exp

(
−θ log α

2π

)
z1, exp

(
−θ log β

2π

)
z2)

whereθ is given by (4).
Via this diffeomorphismHα,β induces a complex structure onS1×S3, which

we denote byJα,β ; in particular, all complex structures of the formJα,α were
studied and classified by P. Gauduchon in [Gau81, propositions 2 and 3, pages 138
and 140], by means of the parallelizability ofS1 × S3.

Let θ be the point inS1 ⊂ C given by the embeddingθ 7→ exp (iθ), and let
(ξ1, ξ2) be a point inS3 ⊂ C2. The parallelizationE :=(e1, e2, e3, e4) onS1 × S3

and its dualE∗ = (e1, e2, e3, e4) are given by:

e1(θ, ξ1, ξ2):=i exp (iθ) ∈ Tθ(S1),

e2(θ, ξ1, ξ2):=(iξ1, iξ2) ∈ T(ξ1,ξ2)(S
3),

e3(θ, ξ1, ξ2):=(−ξ̄2, ξ̄1) ∈ T(ξ1,ξ2)(S
3),

e4(θ, ξ1, ξ2):=(−iξ̄2, iξ̄1) ∈ T(ξ1,ξ2)(S
3).

(6)
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The differential structure of this frame is given by the following formulas:

de1 = 0, de2 = 2e3 ∧ e4, de3 = −2e2 ∧ e4, de4 = 2e2 ∧ e3,

and the non-zero brackets are

[e2, e3] = −2e4, [e2, e4] = 2e3, [e3, e4] = −2e2.

One finds that

dF =
(

log α

2π
exp

(
θ log α

2π

)
ξ1dθ + exp

(
θ log α

2π

)
dξ1

)
⊗ ∂z1

+
(

log β

2π
exp

(
θ log β

2π

)
ξ2dθ + exp

(
θ log β

2π

)
dξ2

)
⊗ ∂z2 .

(7)

Letting G be the complex function onS1 × S3 given by (see [GO98, for-
mula 45])

G(θ, ξ1, ξ2):=|ξ1|2 log α + |ξ2|2 log β

= |ξ1|2 log |α|+ |ξ2|2 log |β|+ i(|ξ1|2 arg α + |ξ2|2 arg β),

the complex structureJα,β with respect to the basisE is given by

Jα,β(e1) = −ImG

ReG
e1

+
|G|2

2π ReG
e2 −

Re
(
iξ1ξ2G log (α/β)

)

2π ReG
e3 −

Im
(
iξ1ξ2G log (α/β)

)

2π ReG
e4,

Jα,β(e2) = − 2π

ReG
e1

+
ImG

Re G
e2 − Re (ξ1ξ2 log (α/β))

ReG
e3 − Im (ξ1ξ2 log (α/β))

Re G
e4,

Jα,β(e3) = e4,

Jα,β(e4) = −e3,

(8)

(see [GO98, formulas 49], where the notationsT , Z, E, iE, z1, z2 andF are used
instead respectively of2πe1, e2,−e3,−e4, ξ1, ξ2 andG).

SinceS1 × S3 is parallelizable, the choice of twoJα,β-independent vector
fields gives an isomorphism betweenT (S1 × S3) andS1 × S3 × C2, such that
a Jα,β-Hermitian metric onS1 × S3 is given by a Hermitian2 × 2 matrix. We
choosee2 ande3 as suchJα,β-independent vector fields.

We now examine the case|α| = |β|.
Let k be any positive real function onS1. By a direct computation we obtain:

Theorem 3.Let |α| = |β|. The Hermitian matrix
(

k 0
0 1

)

gives a family of l.c.K. metrics onHα,β which is parametrized by the positive
functionsk on S1. In this family the Vaisman ones are given exactly by constant
functionsk.
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Remark 4.k = 1 gives just the classical metric (2).

Remark 5.A family {gt}t>−1 of l.c.K. metrics (in the case|α| = |β|) can be found
in [Vai82, formula 2.13]. The metrics of this family coincide (up to coefficients)
with the metrics of our family withk constant, wherek = t + 1. The claim, on
page240 of [Vai82], that onlyg0 has parallel Lee form is incorrect. The author uses
the Weyl connection with the hypothesisωt(Bt) = |ωt|2 = 1, before proving that
ωt is parallel: in such a way, what is in fact proved is thatg0 is the only metric with
∇ω = 0 and|ωt| = 1. Actually, by using(2.14) and(2.17), one can check that
|ωt| = 1 + t, hence the same computation proves that all thegt have parallel Lee
form. The author acknowledges a useful conversation and an exchange of e-mail
messages with I. Vaisman.

We now go to general case, that is, no restrictions onα andβ.
Let l : U → R be a real function defined on an open setU of R, and

Φl :
U

2πZ
× S3 → R+

the real positive function given by

Φl(θ, ξ1, ξ2):= exp (l(θ)) . (9)

The local2-form Ω:=(1/2)ddcΦl gives the Hermitian bilinear form

2Φlπl′A (10)

where

A:=




π

Re2 G

l′2 + l′′

l′
+
|ξ1|2|ξ2|2 log2(|α|/|β|)

Re3 G

ıξ1ξ2 log(|α|/|β|)
Re2 G

ıξ1ξ2 log(|α|/|β|)
Re2 G

1
ReG


 (11)

The condition thatΩ be positive translates then intol′ andl′2 + l′′ both positive.
So we have a local generalization of the proposition1 in [GO98], that is we can
take the local functionexp (l) as a potential, wherel is increasing andl′2 + l′′ > 0
onU .

In the matrixA the dependance onθ is only given by(l′2 + l′′)/l′. Consider a
family {lU}U∈U of local functions, whereU is an open covering ofR, all satisfying
l′ > 0 and l′2 + l′′ > 0 and such that the quantities(l′2 + l′′)/l′ paste to a
well defined functionh on S1. The matrix (11) then gives a global Hermitian
l.c.K. metric on(S1 × S3, Jα,β). In fact such a family can be found, as we show
in the following

Theorem 6.Given any real positive functionh with period2π on R, the metric
gh

α,β given in the complex basis(e2, e3) of T (S1 × S3) by the Hermitian matrix



πh

Re2 G
+
|ξ1|2|ξ2|2 log2(|α|/|β|)

Re3 G

ıξ1ξ2 log(|α|/|β|)
Re2 G

ıξ1ξ2 log(|α|/|β|)
Re2 G

1
ReG




is (well defined and) l.c.K. on(S1 × S3, Jα,β).
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Proof: For fixedh, the Cauchy problem




l′2 + l′′

l′
= h

l′(θ0) > 0
(12)

satisfies the local existence theorem for anyθ0 ∈ R. This means we can find
an open coveringU of R and functionslU : U → R which satisfy the equation.
MoreoverU can be chosen so thatlU is increasing for anyU ∈ U ; finally, note
that, sinceh is positive, so isl′U

2 + l′′U , and this gives the required family. ut
The previous theorem extends the corollary1 of [GO98].

Remark 7.If h : S1 → R+ is constant, a (global) solution of the Cauchy problem
(12) is given byl(θ) = hθ, and the potential of the correspondinggh

α,β is given
by (see (9))exp (hθ). In [GO98] the potential isexp (l(log |α|+ log |β|)θ/(2π)),
wherel is any positive real number (see [GO98, after remark 3]): thus, forh con-
stant, the constantl of [GO98] is given by

l =
2πh

log |α|+ log |β| .

Remark 8.If |α| = |β|, we getReG = log |α|, log(|α|/|β|) = 0 and

gh
α,β =

1
log |α|




πh

log |α| 0

0 1


 .

Thus in the case|α| = |β| the family given by the theorem 6 coincide up to a
constant with the family given by theorem 3, wherek = πh/ log |α|.

Using the “six terms formula” ([KN63, proposition 2.3]), we obtain:

Theorem 9.The metricgh
α,β of theorem 6 is Vaisman if and only ifh is constant.

4. Foliations onS1 × S3

On any l.c.K. manifold(M, J, g) with a nowhere-vanishing Lee formω, the fol-
lowing canonical distributions are given (see [CP85] and [Pic90]):

1. the flow of the Lee vector fieldB, dual viag of ω: that is, defined by

g(B, X):=ω(X) for everyX ∈ X(M);

2. the flow of the vector fieldJ(B);
3. the2-dimensional distribution spanned byB andJ(B): whenever the Lee form

is parallel, this distribution is integrable (see e.g. [CP85, theorem 4.3], but
this condition is not necessary, as we shall see), and moreover, it defines a
Riemannian foliation (see [DO98, Theorem 5.1]).
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By (1) and (10) we obtain the Lee formωh
α,β = −he1 of the metricgh

α,β

defined in theorem 6, and a direct computation shows that the Lee vector field and
its dual do not depend onh:

Bα,β = −4πe1

+ 2 ImGe2 + 2 Im(ξ1ξ2) arg(α/β)e3 − 2 Re(ξ1ξ2) arg(α/β)e4,

Jα,β(Bα,β) = −2 ReGe2 − 2 Im(ξ1ξ2) log |α/β|e3 + 2 Re(ξ1ξ2) log |α/β|e4.

(13)

Thus the following holds:

Theorem 10.The distribution spanned byBα,β andJα,β(Bα,β) is integrable.

Proof: It is well known (see [CP85]) that if the Lee form is parallel then the dis-
tribution is integrable: sinceBα,β andJα,β(Bα,β) are independent of the function
h, we get a unique distribution onS1 × S3. This coincides with the one induced
by the Vaisman metric given by constanth, and is thus integrable. ut

Definition 11. We callEα,β the unique foliation given by theorem 10.

We now introduce some notation.
Let us consider the torusS1 × S1 with coordinates(t1, t2). The following is

well known:

Lemma 12.The curve inS1 × S1 given by the linear functions

t1(t) = γ1 + δ1t mod 2π, t2(t) = γ2 + δ2t mod 2π (14)

is compact ifδ2/δ1 ∈ Q, dense inS1 × S1 otherwise.

In the compact case of the previous lemma, the curve (14) is called atoral knot
of typeδ2/δ1.

For all (Ξ1, Ξ2) in S3 there is a submanifoldT (Ξ1, Ξ2) in S3 defined as the
product of two circles of radius respectively|Ξ1| e |Ξ2|:

T (Ξ1, Ξ2):=S1
|Ξ1| × S1

|Ξ2| ⊂ C× C

and we denote byt1 andt2 the coordinates on the torusT (Ξ1, Ξ2) given by

ξ1(t1) = Ξ1 exp (it1) , ξ2(t2) = Ξ2 exp (it2) . (15)

Thus, a curve in the3-torusS1 × T (Ξ1, Ξ2) is given by

θ = θ(t) mod 2π, t1 = t1(t) mod 2π, t2 = t2(t) mod 2π. (16)

We can visualizeS1 × T (Ξ1, Ξ2) as a cube with identifications.

Theorem 13.The1-dimensional foliation onS1 × S3 spanned byBα,β has the
following properties:
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1. for everyα and β the leaf through(Θ, Ξ1, 0) (respectively(Θ, 0, Ξ2)) is a
subset ofS1 × {(ξ1, ξ2) ∈ S3 : ξ2 = 0} (respectivelyS1 × {(ξ1, ξ2) ∈ S3 :
ξ1 = 0}). This leaf is

– compact ifarg α ∈ Qπ (respectivelyarg β ∈ Qπ);
– dense inS1 × {(ξ1, ξ2) ∈ S3 : ξ2 = 0} (respectively inS1 × {(ξ1, ξ2) ∈

S3 : ξ1 = 0}) otherwise;
2. for everyα andβ the leaf through(Θ,Ξ1, Ξ2), whereΞ1Ξ2 6= 0, is a subset

of S1 × T (Ξ1, Ξ2), whereT (Ξ1, Ξ2) is the torus in the factorS3 of S1 × S3

given by (15). This leaf is
– compact if any two of the relations

arg α ∈ Qπ; arg β ∈ Qπ; arg α/ arg β ∈ Q, (17)

hold;
– non compact otherwise;

if the leaf is not compact, then its projection onT (Ξ1, Ξ2) is
– a toral knot of typearg α/ arg β if this ratio is rational;
– dense inT (Ξ1, Ξ2) otherwise.

Proof: Fix (Θ, Ξ1, Ξ2) in S1×S3, and let[Z1, Z2]:=Fα,β(Θ, Ξ1, Ξ2). Using
formula (7), the Lee vector field given by (13) becomes (see also [GO98, for-
mula (23)])

Bα,β = −2(z1 log |α|, z2 log |β|). (18)

The flow ofBα,β carries the point[Z1, Z2] to

[z1(t), z2(t)] = [Z1 exp (−2t log |α|) , Z2 exp (−2t log |β|)] t ∈ R. (19)

A computation gives the following equation forθ(t):

|Z1|2 exp
(
− log |α|(4t +

θ(t)
π

)
)

+ |Z2|2 exp
(
− log |β|(4t +

θ(t)
π

)
)

= 1;

and finally the equations for the leaf:

θ(t) = Θ−4πt mod 2π, ξ1(t) = Ξ1 exp (2it arg α) , ξ2(t) = Ξ2 exp (2it arg β) .
(20)

We distinguish two kinds of points inS1 × S3. If Ξ1Ξ2 = 0, sayΞ2 = 0, the
leaf given by (20) is contained inS1 × {(ξ1, ξ2) ∈ S3 : ξ2 = 0}. According to
lemma 12, ifarg α is a rational multiple ofπ, the leaf is compact; otherwise it is
dense inS1 × {(ξ1, ξ2) ∈ S3 : ξ2 = 0}. If Ξ1Ξ2 6= 0, from equations (20) we
obtain thatξ1(t) andξ2(t) have a constant positive length for everyt, so the leaf is
contained in the real3-torusS1×T (Ξ1, Ξ2) defined at page 9. According to (16),
the equations (20) can be written as

θ(t) = Θ−4πt mod 2π, t1(t) = 2t arg α mod 2π, t2(t) = 2t arg β mod 2π.
(21)

In order to study the compactness of the leaves we remark that:
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θ

t2

t1

Fig. 1. projection of the leaf of the foliation spanned byBα,β to T (Ξ1, Ξ2): case
arg α/ arg β ∈ Q.

θ

t2

t1

Fig. 2. projection of the leaf of the foliation spanned byBα,β to {t2 = 0}: case
(arg α)/π ∈ Q.

1. the leaf projected onT (Ξ1, Ξ2) is given by

t1(t) = 2t arg α mod 2π, t2(t) = 2t arg β mod 2π, (22)

and by lemma 12 this is a compact set if the ratio ofarg α to arg β is rational;
otherwise it is dense inT (Ξ1, Ξ2). Since the projection fromS1 × T (Ξ1, Ξ2)
on T (Ξ1, Ξ2) is a closed map, we can infer that if the ratio ofarg α to arg β
is not rational then the leaf is not compact. If this ratio is rational, then the
projected set is a toral knot of typearg α/ arg β (see figure 1);

2. the projection of the leaf on the facet2 = 0 is given by

θ(t) = Θ − 4πt mod 2π, t1(t) = 2t arg α mod 2π,

and lemma 12 gives the condition(arg α)/π ∈ Q (see figure 2);
3. in the same way, if we consider the projection on the facet1 = 0, we obtain

(arg β)/π ∈ Q (see figure 3).

We have thus obtained that the three conditions (17) are necessary for the com-
pactness of the leaf. Let us show that they are also sufficient. If the (17) hold, we
can choose coprime integersl andk such that

arg α

arg β
=

l

k
.

The equations (22) define a closed curve with periodlπ/ arg α(=kπ/ arg β), and
the leaf is closed whenever theθ(t) given by equations (21) also has a period
that is an integer multiple oflπ/ arg α. If we choose integersp andq such that
(arg α)/π = p/q, it is straightforward to check thatplπ/ arg α is a period ofθ(t),
and the proof is complete. ut
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θ

t2

t1

Fig. 3. projection of the leaf of the foliation spanned byBα,β to {t1 = 0}: case
(arg β)/π ∈ Q.

Theorem 14.The1-dimensional foliation onS1×S3 spanned byJα,β(Bα,β) has
the following properties:

1. for everyα andβ the leaf through(Θ, Ξ1, 0) (respectively(Θ, 0, Ξ2)) is{Θ}×
{(ξ1, ξ2) ∈ S3 : ξ2 = 0} (respectively{Θ} × {(ξ1, ξ2) ∈ S3 : ξ1 = 0}), so it
is compact;

2. for everyα andβ the leaf through(Θ,Ξ1, Ξ2), whereΞ1Ξ2 6= 0, is a subset
of {Θ}×T (Ξ1, Ξ2), whereT (Ξ1, Ξ2) is the torus in the factorS3 of S1×S3

given by (15). This leaf is
– a toral knot of typelog |α|/ log |β| if this ratio is rational;
– dense in{Θ} × T (Ξ1, Ξ2) otherwise.

Proof: The proof is similar to (and actually easier than) that of previous theo-
rem. ut

In the following theorem we look at the most interesting distribution, that is
Eα,β . In the case of compact leaves, we also give a description of the (constant)
complex structure on them.

Theorem 15.The foliationEα,β onS1 × S3 is described by the following proper-
ties:

1. for everyα andβ the leaf through(Θ,Ξ1, 0) (respectively(Θ, 0, Ξ2)) is S1×
{(ξ1, ξ2) ∈ S3 : ξ2 = 0} (respectivelyS1 × {(ξ1, ξ2) ∈ S3 : ξ1 = 0}), and it
is thus compact;

2. for everyα andβ the leaf through(Θ,Ξ1, Ξ2), whereΞ1Ξ2 6= 0, is a subset
of S1 × T (Ξ1, Ξ2), whereT (Ξ1, Ξ2) is the torus in the factorS3 of S1 × S3

given by (15). This leaf is
– compact if there exist integersm andn such thatαm = βn: in this case

the leaf is a Riemann surfaceC/Λ of genus one, whereΛ is the lattice in
C generated by the vectorsv andw given by (26);

– non compact otherwise, and in this case it is dense inS1 × T (Ξ1, Ξ2).

Proof: Look at the2-dimensional real distribution as a field of1-dimensional
complex lines generated byB. In the expression (19) substitute with the real pa-
rametert a complex parameterw, then, as for (20), we obtain

θ(w) = Θ − 4π Rew mod 2π,

ξ1(w) = Ξ1 exp (2i arg α Re w) exp (−2i log |α| Imw) ,

ξ2(w) = Ξ2 exp (2i arg β Re w) exp (−2i log |β| Imw) .

(23)
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The simplest caseΞ1Ξ2 = 0 easily follows. So we can supposeΞ1Ξ2 6= 0, and in
this case the leaf is a subset ofS1×T (Ξ1, Ξ2), whereT (Ξ1, Ξ2) is given by (15).
By means ofFα,β , and setting(t, s):=(Re w, Imw), the equations (23) become

θ(t, s) = Θ − 4πt mod 2π,

t1(t, s) = 2(arg αt− log |α|s) mod 2π,

t2(t, s) = 2(arg βt− log |β|s) mod 2π.

(24)

Call N the leaf given by (24), and considerN ∩ ({Θ} × T (Ξ1, Ξ2)). We
observe thatθ(t) = Θ is equivalent tot = j/2 wherej is an integer: callNj the
curve given by the equations

θ(
j

2
, s) = Θ mod 2π,

t1(
j

2
, s) = 2(arg α

j

2
− log |α|s) mod 2π,

t2(
j

2
, s) = 2(arg β

j

2
− log |β|s) mod 2π.

ClearlyN∩({Θ}×T (Ξ1, Ξ2)) is the union of the curvesNj for j ∈ Z. By lemma
12 we know thatNj is dense in{Θ} × T (Ξ1, Ξ2) wheneverlog |α|/ log |β| is
irrational:N∩({Θ}×T (Ξ1, Ξ2)) is thena fortiori dense (and properly contained)
in {Θ} × T (Ξ1, Ξ2). We can repeat this argument for allθ, so in this caseN is
dense inS1 × T (Ξ1, Ξ2). Otherwise iflog |α|/ log |β| is rational, the intersection
of N with {θ} × T (Ξ1, Ξ2) is the union of toral knots of typelog |α|/ log |β|.

Let us now consider the intersection ofN with the surface given byt2 = 0:
after observing thatt2 = 0 is equivalent tos = (t arg β−jπ)/ log |β| for j integer,
let us callNj the curve given by

θ(t,
t arg β − jπ

log |β| ) = −π log x− 4πt mod 2π,

t1(t,
t arg β − jπ

log |β| ) = 2(arg αt− log |α| t arg β − jπ

log |β| ) mod 2π,

t2(t,
t arg β − jπ

log |β| ) = 0 mod 2π,

(see figure 2). In this case lemma 12 shows that everyNj is dense inS1×{(t1, 0) ∈
T (Ξ1, Ξ2)}whenever(arg α−arg β log |α|/ log |β|)/π is irrational: the argument
used fort2 6= 0 shows that in this caseN is dense inS1 × T (Ξ1, Ξ2).

We are then left to the case

arg α− arg β log |α|/ log |β|
π

∈ Q,
log |α|
log |β| ∈ Q

namely
k arg α− l arg β

π
=

p

q
,

log |α|
log |β| =

l

k
(25)
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θ

t2

t1

Fig. 4. intersection of the leafN with the faces ofS1 × T (Ξ1, Ξ2): caseαm = βn.

θ

t2

t1

Fig. 5. the compact leafN in the caseαm = βn.

wherel, k, p and q are integers and(p, q) = (l, k) = 1: by lemma 16 this is
equivalent to the existence of integersm andn such thatαm = βn. In this case
the intersection ofN with the faces of the cube is a union of closed curves (see
figure 4).

Choose two integersb andc such thatbk − cl = 1. Set

q′:=
{

q if p is odd
q/2 if p is even

, p′:=
{

p if p is odd
p/2 if p is even

and remark that in this case the map

F : R2 −→ N ⊂ S1 × T (Ξ1, Ξ2)
(t, s) 7−→ (θ(t, s), t1(t, s), t2(t, s))

is invariant with respect to the action onR2 of the latticeΛ:=vZ⊕wZ (see figure 5)
where

v = (q′,
q′ arg β − p′cπ

log |β| ), w = (0,
kπ

log |β| ). (26)

So we may consider the diagram

C
F

ÀÀ<
<<

<<
<<

<<

p
²²
C
Λ F̄

// N

(27)

wherep is the canonical projection ofC ontoC/Λ andF̄ is the quotient map of
F . ObviouslyF̄ is onto, and the leafN = F̄ (C/Λ) is compact. Moreover, since
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F ′ = Bα,β 6= 0, F̄ is a local diffeomorphism; this implies thatN is a submanifold
of Hα,β . ThusN is a compact Riemann surface of genus one. FurthermoreF̄
is holomorphic, because, with the chosen parametrization, the horizontal and the
vertical axes ofC are the integral curves respectively ofBα,β andJα,β(Bα,β);
finally it is straightforward to check that̄F is injective, so it is a biholomorphism.

ut
Lemma 16.The conditions (25) are equivalent to the existence of integersm and
n, wherem/n = k/l, such thatαm = βn.

Proof: The existence of integersm andn such thatm/n = k/l andαm = βn

is equivalent to

log |α|
log |β| =

n

m
=

l

k
and {m arg α + 2rπ}r∈Z = {n arg β + 2sπ}s∈Z.

(28)
These conditions obviously imply (25).

Vice versa, from (25) we obtain

2qk arg α + 2rπ = 2ql arg β + 2π(p + r) for every integerr;

so, settingm:=2qk andn:=2ql, we get (28). ut
The proof of theorem 15 allows us to complete the description of the foliation

when the leaves are not compact:

Corollary 17. Whenα andβ do not satisfy (25), the saturated components ofEα,β

are of two kinds:

1. S1 × {(ξ1, ξ2) ∈ S3 : ξ2 = 0} andS1 × {(ξ1, ξ2) ∈ S3 : ξ1 = 0};
2. S1 × T (ξ1, ξ2).

Remark 18.Because of (18),Eα,β is linear in the classification recently given by
D. Mall in [Mal98].

5. Elliptic fibrations and orbifolds

By the definition of Kodaira in [Kod64, 2], anelliptic surfaceis a complex fi-
bre space of elliptic curves over a non singular algebraic curve, namely a map
Ξ : S → ∆ whereS is a complex surface,∆ is a non singular algebraic curve,Ψ
is a holomorphic map and the generic fibre is a torus. The curve∆ is called the
base spaceof S.

In theorem 15 we showed that, ifαm = βn for some integersm andn, then
S1 × S3 is a fibre space of elliptic curves over a topological space∆ -the leaf
space. In this section we show that such a∆ is a non singular algebraic curve (ac-
tually P1C) and that the projectionΨ is holomorphic with respect to this complex
structure.

A quasi-regular foliationis a foliationF on a smooth manifoldM such that
for each pointp of M there is a natural numberN(p) and a Frobenius chartU
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(namely, aF-flat cubical neighborhood) where each leaf ofF intersectsU in N(p)
slices, if any. IfN(p) = 1 for all p, thenF is called aregular foliation (see for
instance [BG98]). For a compact manifoldM , the assumption that the foliation is
quasi-regular is equivalent to the assumption that all leaves are compact. A Rie-
mannian foliation with compact leaves induces a natural orbifold structure on the
leaf space (see [Mol88, Proposition 3.7]). This is the case we are concerned with,
since by [DO98, Theorem 5.1]Eα,β is Riemannian. In this section we show that
Eα,β is quasi-regular if and only ifαm = βn for some integersm andn, and this
gives an orbifold structure to the leaf space. This does not contradict the structure
of complex curve, it simply means that the two structures are not isomorphic in
the orbifold category. In fact, any2-dimensional orbifold with only conical points
is homeomorphic to a manifold.

Theorem 19.If αm = βn for some integersm and n, the leaf space∆ of the
foliation in tori given onS1 × S3 by the theorem 15 is homeomorphic toP1C,
and the projectionΨ : S1 × S3 → ∆ is holomorphic with respect to the induced
complex structure.

Proof: By lemma 16 we can suppose that (25) holds. Choose then the integers
m andn minimal with respect to the propertyαm = βn, and observe that this
impliesm arg α = n arg β +2πc, wherec is an integer such that GCD(m,n, c) =
1, and consider the following map:

h̃ : S1 × S3 −→ P1C
(θ, ξ1, ξ2) 7−→ [exp (θic) ξm

1 : ξn
2 ].

It is an easy matter to verify that onHα,β this map is nothing but the quotient of
φ(z1, z2):=[zm

1 : zn
2 ], and we obtain the diagram

C2 \ 0

zzuuuuuuuuu

φ

¹¹

Hα,β
F−1

α,β

// S1 × S3

Ψ

²²

h̃

$$IIIIIIIII

∆
h // P1C

(29)

We show that̃h is well defined on the leaf space, and that its quotienth is in
fact the homeomorphism we are looking for:

1. h is well defined: if(θ, ξ1, ξ2) is on the leaf passing through(Θ, Ξ1, Ξ2), then
θ, ξ1 andξ2 are of the form (see (23))

θ(t, s) = Θ − 4πt mod 2π,

ξ1(t, s) = Ξ1 exp (2i arg αt) exp (−2i log |α|s) ,

ξ2(t, s) = Ξ2 exp (2i arg βt) exp (−2i log |β|s) ,
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and we obtain that(θ(t, s), ξ1(t, s), ξ2(t, s)) is mapped to

[exp (i(Θ − 4πt)c) Ξm
1 exp (2itm arg α) : Ξn

2 exp (2itn arg β)]
=[exp (i(Θ − 4πt)c + 2it(m arg α− n arg β))Ξm

1 : Ξn
2 ]

=[exp (iΘc)Ξm
1 : Ξn

2 ],

and the last member does not depend ont ands. Namely,h̃ is constant on
every leaf andh is well defined on∆;

2. h is onto: (θ, 1, 0) 7→ [1 : 0] and if we puth(θ, ξ1, ξ2) = [z1 : z2] where
z2 6= 0 we obtainz1z

−1
2 = exp (iθc) ξm

1 ξ−n
2 . Using polar coordinates, that

is, choosing real numbersρ1, ρ2, θ1 andθ2 such thatξ1 = ρ1 exp (iθ1) and
ξ2 = ρ2 exp (iθ2), the last member becomesexp (iθc + mθ1 − nθ2)) ρm

1 ρ−n
2

whereρ2
1 +ρ2

2 = 1. The exponentθc+mθ1−nθ2 covers all the real numbers,
and the map

+∞

ρm
1 ρ−n

2 |
ρ1=
√

1−ρ2
2

= (1− ρ2
2)

m
2 ρ−n

2

ρ2→0+

AA¤¤¤¤¤¤¤¤¤¤

ρ2=1 ;;
;;

;;
;;

;;

;;
;;

;;
;;

;;

0

covers all the positive real numbers, soh̃ -and, consequently,h- is onto;
3. h is injective: suppose thath(θ, ξ1, ξ2) = h(Θ, Ξ1, Ξ2) for (θ, ξ1, ξ2) and

(Θ,Ξ1, Ξ2) in S1 × S3. If ξ1Ξ1 = 0, thenξ1 andΞ1 must both be zero,
whence(θ, ξ1, ξ2) and(Θ, Ξ1, Ξ2) lie on the same leaf. Ifξ1Ξ1 6= 0, we can
write

ξn
2

exp (iθc) ξm
1

=
Ξn

2

exp (iΘc) Ξm
1

. (30)

Let ξ1 = ρ1 exp (iη1), ξ2 = ρ2 exp (iη2), Ξ1 = P1 exp (iH1) and Ξ2 =
P2 exp (iH2); the equation (30) becomes

ρn
2 exp (iη2n)

ρm
1 exp (i(θc + η1m))

=
Pn

2 exp (iH2n)
Pm

1 exp (i(θc + H1m))
,

that is




ρn
2

ρm
1

=
Pn

2

Pm
1

,

(θ −Θ)c + m(η1 −H1)− n(η2 −H2) = 0 mod 2π.
(31)

The first equation in (31), together withρ2
1 + ρ2

2 = 1 = P 2
1 + P 2

2 , easily gives

ρ1 = P1 and ρ2 = P2. (32)
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In order to show that(θ, ξ1, ξ2) and(Θ,Ξ1, Ξ2) lie on the same leaf, we want
to find two real numberst ands such that

θ = Θ − 4πt mod 2π,

ξ1 = Ξ1 exp (2(arg αt− log |α|s)) ,

ξ2 = Ξ2 exp (2(arg βt− log |β|s)) ,

(33)

that is, by using (32), we want to find two real numberst ands satisfying




4πt = Θ − θ mod 2π,
2 arg αt− 2 log |α|s = η1 −H1 mod 2π,
2 arg βt− 2 log |β|s = η2 −H2 mod 2π.

The determinant of



4π 0 Θ − θ
2 arg α −2 log |α| η1 −H1

2 arg β −2 log |β| η2 −H2




is zero, because the second equation of (31) gives

m(second row)− n(third row) = c(first row),

and the injectivity ofh is proved.

From 1, 2 and 3 we obtain thath : ∆ → P1C is a bijective continous map, and so
is a homeomorphism because of the compactness of∆. At least,Ψ is holomorphic
with respect to the induced complex structure -that is,h̃ is holomorphic- because
the mapφ in the diagram (29) is holomorphic. ut
Theorem 20.The foliationEα,β is quasi-regular if and only ifαm = βn for some
integersm andn; in this case, choosingm andn minimal positive such integers,
N(Θ, Ξ1, Ξ2) = 1 if Ξ1Ξ2 6= 0, whereasN(Θ, 0, Ξ2) = m andN(Θ,Ξ1, 0) =
n. In particular, the foliationEα,β is regular if and only ifα = β.

Proof: By theorem 15 we know that all leaves are compact if and only if
αm = βn, and for the points(Θ, Ξ1, Ξ2) whereΞ1Ξ2 6= 0 the thesis is given
by the figure 5. We are then left to the points(Θ, 0, Ξ2) and (Θ, Ξ1, 0), when
αm = βn. We look at the points(Θ, Ξ1, 0), the study of the other ones being
analogous.

We remark that the figure 5 is3-dimensional, and in order to visualize the4-
dimensional neighborhood of a point ofS1 × S3 we need another3-dimensional
description of the foliationEα,β : consider the stereographic projection

φ : S3 \ (0, 0, 0, 1) −→ R3

(x1, x2, x3, x4) 7−→ 1
1− x4

(x1, x2, x3).

It is easy to check thatφ(T (ξ1, ξ2)) is generated by the revolution around the
y3-axis of the circleC(ξ1, ξ2) in they2y3-plane centered in(1/|ξ1|, 0) with radius
|ξ2|/|ξ1|. We are thus led to the figure 6.
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y3

y2

Fig. 6.On the left, the partition ofR3 in tori T (ξ1, ξ2); on the right, the circles that generate
the tori.

By refining the computation in the proof of theorem 15, we see that any leaf
intersectsT (ξ1, ξ2) alongr toral knots of typel/k, r being the greatest common
divisor of m andn. This means that each leaf contained inT (ξ1, ξ2) intersects
C(ξ1, ξ2) in exactlyn = rl points. Now let

Dρ:=
⋃

|ξ2|/|ξ1|<ρ

C(ξ1, ξ2)

and letUδ,ρ the piece of solid torus given by the revolution of angle(−δ, δ) of Dρ.
The neighborhoods of(Θ,Ξ1, 0) of the form(Θ − ε,Θ + ε)× Uδ,ρ contain each
leaf inn = rl distinct connected components, and this ends the proof. ut

Remark 21.We thus have an orbifold structure on the leaf space∆, with two coni-
cal points of orderm andn, respectively (see [Mol88, Proposition 3.7]). In partic-
ular, a local chart around the leaf through(Θ, Ξ1, 0) is given byDρ/Γn, Γn being
the finite group generated by the rotation of angle2π/n.
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