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Abstract. In this paper we describe a family of locally conformal Kéhler metrics on dlass
Hopf surfaced g containing some recent metrics constructed in [GO98]. We study some
canonical foliations associated to these metrics, in particladianensional foliatior€,, s

that is shown to be independent of the metric. We prove with elementary tool&.thdtas
compact leaves if and only ™ = " for some integers: andn, namely in the elliptic
case. In this case we prove that the leavegSgp give explicitly the elliptic fibration of
H, g, and we describe the natural orbifold structure on the leaf space.
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1. Introduction

The study of metrics on complex surfaces arose in the sixties out of Kodaira’'s clas-
sification of minimal complex surfaces in seven clasges VIl (see [Kod64,
Kod66, Kod68a, Kod68b]): which complex surfaces, with respect to this classifica-
tion, admit a Kéhler metric? The surfaces in clasge#ll, and \, are easily seen

to be Kahler, while the surfaces in classeg ®ihd Vll, are not, due to topological
obstructions. (O. Biquard showed that elliptic surfaces in classgand VI, are

also non-symplectic, see [Biq98].) The surfaces in clagsdié Kéhler as shown

by Miyaoka and inl983, when Todorov and Siu proved that every surface of class
Il is Kahler, the question was at last settled: only the surfaces of classes¥|

VIl are not Kahler (see for instance [BPV84]). This theorem has been recently
proved by direct methods independently by N. Buchdahl and A. Lamari in [Buc99]
and [Lam99] respectively.

Is there a weakened version of the Kahler hypothesis that we can hope to prove
for surfaces in classes Yyland Vlly? The notion of locally conformal Kéhler
manifold was introduced in this context by I. Vaisman in [Vai76]; in [Vai79] he
thoroughly studied locally conformal Kéahler metrics with parallel Lee form; sub-
sequently F. Tricerri in [Tri82] gave an example of a locally conformal Kahler
metric with non-parallel Lee form. Further properties of locally conformal Kéh-
ler manifolds were proved by B. Y. Chen and P. Piccinni in [CP85]; in particular,
the existence on them of some canonical foliations. Uril8, there were very
few examples of locally conformal Kéhler manifolds, namsdyneHopf surfaces,
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some Inoue surfaces and manifolds of tyji&/A) x S* whereG is a nilpotent

or solvable group. Recent results were obtained by P. Gauduchon and L. Ornea in
the paper [GO98], where they showed teaeryprimary Hopf surface is locally
conformal Kahler by finding a (family of) locally conformal Kéhler metric (with
parallel Lee form) on those of clagsand then deforming it; and by F. A. Belgun

in [Bel0O] where he classified the locally conformal Kéhler surfaces with paral-
lel Lee form and showed that also secondary Hopf surfaces are locally conformal
Kéhler.

In this paper we show that the metrics written in [GO98] for Hopf surfaces of
classl belong to a family of locally conformal K&hler metrics that are parametrized
by the smooth positive functions defined on the citfe Among all these lo-
cally conformal Kéhler metrics, the only ones with parallel Lee form are those of
[GO98]. Then we explicitly study the canonical foliations associated to the metrics
of this family. Classl Hopf surfaces,, g are elliptic if and only if an algebraic
condition is satisfied, that i”* = 3" for some integers: andn (see [Kod64, 2]):
we find that, whenever this condition is satisfied, one of the canonical foliations
gives exactly the elliptic fibration. Finally, we look at the regularity of this foliation
and at the natural orbifold structure on the leaf space: we find that this foliation
is quasi-regular if and only i&™ = ™, and that in this case the leaf space is an
orbifold with two conical points of order andn.

In section 2 we give some basic preliminaries and we state more precisely the
theorem of [GO98] we used (see theorem 2). Firstly, we develop some tools we
shall need, namely a diffeomorphism betwdén ; andS* x 52 (see formula (5)),

a parallelization ors! x S2 (see formulas (6)) and the explicit description of the
induced complex structure & x S via the diffeomorphism (see formulas (8)).
This is the point of view we adopt to study,, s. Secondly, we look at the simplest
case, that isa| = |g|: we deform the classical locally conformal Kéhler metric
(dz) @dz1 +dze ® dzz) /(2171 + 2272) onC?\ 0 by means of a positive function
k: S' — R obtaining a family of locally conformal K&hler metrics, with parallel
Lee form if and only ifk is constant (see theorem 3). Thirdly, we apply our method
to the metric of [GO98] to obtain a family of locally conformal Kahler metrics on
H, s (see theorem 6) parametrized by the real positive functions'oifhen we
verify that the only metrics with parallel Lee form in this family are the ones of
[GO98] (see theorem 9).

In section 4 we begin by recalling the definitions of three canonical distribu-
tions on a locally conformal Kéhler manifold, as given in [CP85], then we study
each of them in detail, and we defifig 3. We remark that they are all integrable
and explicitly find the leaves, then we study their properties obtaining necessary
and sufficient conditions for compactness (see theorems 13, 14 and 15).

In section 5 we recall the definition of elliptic surface, as given in [Kod64].
Then we show that when the foliatidh, s has all compact leaves -and this hap-
pens, according to theorem 15, if and onlyvf* = 3™ for some integers: and
n-, we can identify the leaf space witi C in such a way that the canonical pro-
jection is a holomorphic map (see theorem 19). This means that, wheHgyer
is elliptic, the ellipticity is explicitly given by the foliatiod,, s.



Hopf surfaces: locally conformal Kahler metrics and foliations 3

In the same section we recall the definitions of regularity and quasi-regularity,
and we show thaf, g is quasi-regular if and only iff, 5 is elliptic, and it is
regular if and only ifa = 3 (see theorem 20). The quasi-regularity gives the leaf
space a natural structure of orbifold with two conical points.

2. Preliminaries

A Hermitian manifold(M?", J, g) is said to bdocally conformal Kahler briefly
l.c.K,, if there exist an open coveridd/; };cr of M and a family{ f; },cr of smooth
functionsf;: U; — R such that the metricg; on U; given by

gi=exp (= [i) 9|y,

are Kahlerian metrics. The following relation holdsi@rbetween the fundamental
forms (2; and {2 respectively ofy; andg:

2; = €xXp (7f2) “Qlyia
so thelLee formw locally defined by

Wiy, =df; (1)

is in fact global, and satisfie§?2 = w A 2. The manifold(M, J, g) is then I.c.K. if
and only if there exists a global closédorm w such that

A2 =wA 12

(see for instance the recent book [DO98]).
As Kodaira defined in [Kod66, 10], ldopf surfacds a complex compact sur-
face H whose universal covering i§2 \ 0. If w1 (H) ~ Z then we say that] is
a primary Hopf surface. Kodaira showed that every primary Hopf surface can be
obtained as
C2\0
< f>’
wherem is a positive integer and, 5 and\ are complex numbers such that

f(z1, 22):=(az1 + A28, Bz2),

(a—=F™A=0 and  |o| >8] > 1.

These relations will be assumed throughout this paper.
We write H,, g x,m for the generic primary Hopf surface. Xf# 0 we have

f(z21,22) = (B 21 + A23", Bz2)
and the surfacélg  ,,:=Hgn g m iS calledof class0, while if X = 0 we have
f(z1,22) = (az1, Bz2)

and the surfacél, g:=H, g,0.m iS calledof classl (this terminology refers to the
notion ofKahler rankas given in [HL83, § 9]).
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A globally conformal Kahler metric oft? \ 0 (that is, of the formexp (—f) ¢
whereg is Kahler andf: C?\ 0 — R), which is invariant for the mafz, z2) —
(az1 + A23", Bz2), defines a l.c.K. metric o, g x,m: this is the case for the

metric
d21 X le + dZQ (24 dig

2121 + 2222 @
which is invariant for the mafx,, z2) — (az1, 822) (and so defines al.c.K. metric
on H, g) wheneveta| = |3]. The Lee form of this metric is parallel for the Levi-
Civita connection (see [Vai79]).

In [Vai82], I. Vaisman calledheneralized Hopf (g.H.Jnanifolds those I.c.K.
manifolds(M, J, g) with a parallel Lee form. Recently, since F. A. Belgun proved
that primary Hopf surfaces of cla8slo not admit any generalized Hopf structure
(see [Bel00]), some authors (see for instance [D0O98,G098]) decided to use the
term Vaisman manifoldnstead. We shall adher to this terminology and thus give
the following

Definition 1. A Vaisman manifolds a I.c.K. manifold( M, J, g) with parallel Lee
form with respect to the Levi-Civita connectiongof

Define the operatod® by d°(f)(X):= — df(J(X)) for f € C>* and X €
X(M). LetU be an open set of a complex manif¢lty, .J). We call apotentialon
U amapf: U — R such that the-form oni/ of type(1,1) given by(dd°f)/2 is
positive: namely, such that the bilinear mapn X(U) x X(U) given by

_dd°f

g(X,Y):= 5

(J(X),Y)

is a (K&hlerian) metric oty.
Take the ma@,, 5: C? — 0 — R given by

log |a| + log | B])0
@a,ﬁ(zla«b)i—exp(( g |2 g160) ) 3)
m
whered is given by
21" BT
<eloga|) * (elogm) - (4)
eXp{——— exp | —
Q ™

In [GO98] the following theorem is proved:

Theorem 2 ([GO98, Proposition 1 and Corollary 1]). The map®,, s given by
(3) is a potential onC? \ 0 with respect to the standard complex structureThe
metricg,, 3 onC? \ 0 given by

dd°®,,

goz,ﬂ(Xa Y):: - oD 5

(J(X),Y), XY € X(C*\0)

is invariant for the mag(z1, z2) — (az1, 322). Moreover, the induced metric on
H, g is Vaisman for every and (.
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3. Metricson S* x 83
We define the3-sphere by

S$%={(&,&) € C*: |G]* + &) =1}

andS! by the quotient oR by the map — 6 + 27. The manifoldsS® x S° and
H, s are diffeomorphic (see [Kat75, theorem 9]) by means of the Fap given
by F'in the diagram

RxS* —2 C2\0

4l |7
RxS* —2 - C2\0
where

h(ev 51’ 62):(0 + 27"7 51, 62),
[(&1,82):=(ak1, BE2),

Here and henceforth, we fix the argumentspfi anda/ 5 in such a way that

log(a/3) = log a — log B.

If [21, 22] is the element i, 5 corresponding tdz1, z2) € C?\ 0, we have

0 lo
Fop(0,&1,8):=[exp < ga) §1,ex ( gﬂ) & 5)
and the inverse is

F‘;é([zhzﬂ) = (Gvexp <_GIO§Q> Z1,€Xp <_010g6) 22)

2

whered is given by (4).

Via this diffeomorphism#,, s induces a complex structure f x 53, which
we denote byJ, g; in particular, all complex structures of the forfy , were
studied and classified by P. Gauduchon in [Gau81, propositions 2 and 3, pages 138
and 140], by means of the parallelizability 8f x S3.

Let 6 be the point inS* ¢ C given by the embedding — exp (i), and let
(&1,&2) be a point inS® C (C2 The parallelizatior€:= (e, 2, €3, e4) ON S x S3
and its duak* = (e, e?, €3, e*) are given by:

e1(0, €1, &) :=iexp (i6) € Ty(Sh),

e2(0, &1, &2):=(i61, i) € T(¢, &) (5%), (©)
e3(0,£1,&2):=(—E2,&1) € Tie, ,)(S®),
ea(0,€1,82):=(—i&s,i1) € Tie, £,)(S°).
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The differential structure of this frame is given by the following formulas:
de! =0, de? = 2e3 A e, de® = —2e2 A e, de* = 2e? A €3,
and the non-zero brackets are
[e2, e3] = —2ey, [e2, e4] = 2e3, [es, e4] = —2es.

One finds that
1 1 1
dF = ( O exp (9 Ogo‘) £1d0 + exp (9 ;’go‘) dfl) ® 0,
v

2 2T

()
N (bgg - (910gﬁ) 600+ oxp (91;)g5) d&) ® 0s,.

2 2 T

Letting G' be the complex function o' x S® given by (see [GO98, for-
mula 45])

G(0,&1,&):=[€1[* log a + |&2]* log 3
= [&1|* log |a| + [&2]log | 8] + i(|&1]* arg a + |&| arg B),

the complex structurd,_ s with respect to the basisis given by

sl = e
|G|? Re (iflggélog (a/ﬁ)) Jm (i§1§2610g (a/ﬂ))
2 Re G2 21 Re G - 27 Re G “
Jasplea) = _9%2e7TG61 (8)
JmGe2 _ Re (&2 log(a/ﬁ))eg ~Im (&6 log(a/ﬁ))e4
Re G Re G Re G ’
Ja,p(e3) = e,
Ja,p(ea) = —es,

(see [GO98, formulas 49], where the notatiGhsZ, F, iE, z1, zo andF are used
instead respectively &freq, ea, —e3, —ey, &1, & andG).

Since S' x $3 is parallelizable, the choice of twd, s-independent vector
fields gives an isomorphism betwegiiS! x $3) and S x S3 x C2, such that
a J, g-Hermitian metric onS* x S3 is given by a Hermitiar2 x 2 matrix. We
choosee; andes as such/, g-independent vector fields.

We now examine the case| = |3|.

Let k& be any positive real function aft'. By a direct computation we obtain:

Theorem 3.Let |a| = |§|. The Hermitian matrix

(%)

gives a family of |.c.K. metrics ofl, g which is parametrized by the positive
functionsk on S*. In this family the Vaisman ones are given exactly by constant
functionsk.
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Remark 4% = 1 gives just the classical metric (2).

Remark 5A family {g;}:~_1 ofl.c.K. metrics (in the casg| = |3|) can be found

in [Vai82, formula 2.13]. The metrics of this family coincide (up to coefficients)
with the metrics of our family withk constant, wheré = ¢ + 1. The claim, on
page240 of [Vai82], that onlyg, has parallel Lee formis incorrect. The author uses
the Weyl connection with the hypothesig(B;) = |w;|? = 1, before proving that

wy is parallel: in such a way, what is in fact proved is thats the only metric with

Vw = 0 and|w;| = 1. Actually, by using(2.14) and(2.17), one can check that

|we] = 1 + ¢, hence the same computation proves that alltheave parallel Lee
form. The author acknowledges a useful conversation and an exchange of e-mail
messages with |. Vaisman.

We now go to general case, that is, no restrictions@md 3.
Letl!: U4 — R be areal function defined on an openiaif R, and

u

v 3 +
Gpl ol x S° — R
the real positive function given by
Py(0, 81, &2):=exp (1(6)) . 9)
The local2-form 2:=(1/2)dd*®, gives the Hermitian bilinear form
2¢,l’' A (10)
where
T P4l St |§z|21og (el /181) 2&2€2log(|evl/18])
A= | M@ U e %e G 11
o/ -
Re’ G %eG

The condition that? be positive translates then intoandi’* + I’ both positive.
So we have a local generalization of the propositian [GO98], that is we can
take the local functionxp (1) as a potential, wheris increasing andf” +1” > 0
onu.

In the matrixA the dependance ahis only given by(I’> 4 1”")/I’. Consider a
family {lys }ucv Of local functions, wheré/ is an open covering @&, all satisfying
' > 0andl’”” +1” > 0 and such that the quantitigs” + ") /I’ paste to a
well defined functionk on S. The matrix (11) then gives a global Hermitian
l.c.K. metric on(S* x S3,.J, 5). In fact such a family can be found, as we show
in the following

Theorem 6.Given any real positive functioh with period2z on R, the metric
g(’;ﬂ given in the complex basis,, e3) of T(S! x S?) by the Hermitian matrix

wh &l |€2|210g (\a|/|5|) 2516210g(|a|/\5\)

,‘ﬁeQG Re? G
16185 log( |04|/WD 1
Re? G Re G

is (well defined and) I.c.K. 065! x S3,.J, 5).



8 Maurizio Parton

Proof: For fixedh, the Cauchy problem

l/2 + 71"
g =h (12)
"(6p) >0

satisfies the local existence theorem for #@yyc R. This means we can find

an open coverind/ of R and functiond,: &/ — R which satisfy the equation.

MoreoverU can be chosen so tha} is increasing for any/ € U; finally, note

that, sinceh is positive, so iszz’/,2 + 1/,, and this gives the required family. O
The previous theorem extends the corollayf [GO98].

Remark 7If h: S' — RT is constant, a (global) solution of the Cauchy problem
(12) is given byi(#) = hé, and the potential of the correspondig@ﬁ is given

by (see (9)kxp (h0). In [GO98] the potential isxp (I(log || + log |5])0/(27)),
wherel is any positive real number (see [GO98, after remark 3]): thus fon-
stant, the constatof [GO98] is given by

. 27h
log |a| +log|B]°

Remark 8If |a| = |5], we getRe G = log |«|, log(|a|/|8]) = 0 and

ok
ga’ﬁ = 10g‘0¢| ogoa ) .

Thus in the caséx| = |3 the family given by the theorem 6 coincide up to a
constant with the family given by theorem 3, whére- 7h/ log |a|.

Using the “six terms formula” ([KN63, proposition 2.3]), we obtain:

Theorem 9.The metric:g(’;ﬁ of theorem 6 is Vaisman if and only/ifis constant.

4. Foliations onS* x S3

On any l.c.K. manifold M, J, g) with a nowhere-vanishing Lee form, the fol-
lowing canonical distributions are given (see [CP85] and [Pic90]):

1. the flow of the Lee vector field, dual viag of w: that is, defined by
9(B, X):=w(X) for everyX € X(M);

2. the flow of the vector field/(B);
3. the2-dimensional distribution spanned Byand.J (B): whenever the Lee form

is parallel, this distribution is integrable (see e.g. [CP85, theorem 4.3], but
this condition is not necessary, as we shall see), and moreover, it defines a
Riemannian foliation (see [DO98, Theorem 5.1]).
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By (1) and (10) we obtain the Lee form, ; = —he' of the metricg”: ,
defined in theorem 6, and a direct computation shows that the Lee vector field and
its dual do not depend dit

Baﬁ = 747‘(61
+23Im Gey 4 2TIm(&1&e) arg(a/B)es — 2NRe(&1&z) arg(a/f)ea,

Jo,8(Ba,g) = —2Re Gey — 2Tm(&182) log |/ Bles + 2Re(&162) log |a/Blea.
(13)

Thus the following holds:
Theorem 10.The distribution spanned b, 3 andJ, g(Ba,g) is integrable.

Proof: It is well known (see [CP85]) that if the Lee form is parallel then the dis-
tribution is integrable: sinc®, s and.J, 3(Ba,g) are independent of the function
h, we get a unique distribution afi' x S3. This coincides with the one induced
by the Vaisman metric given by constantand is thus integrable. ad

Definition 11. We call&, s the unique foliation given by theorem 10.

We now introduce some notation.
Let us consider the torus! x S! with coordinategty, t5). The following is
well known:

Lemma 12.The curve inS* x S! given by the linear functions
tl (t) =7 + 51t mod 271', tz(t) =2 + 52t mod 27 (14)
is compact ifi; /4, € Q, dense inS* x S* otherwise.

In the compact case of the previous lemma, the curve (14) is caltedl&not
of typeds /0;.

For all (21, Z3) in S3 there is a submanifol@(=;, =,) in S? defined as the
product of two circles of radius respectivély, | e | =5

T(51,52):=5|z,| X Sz, CCxC
and we denote by, andt, the coordinates on the tor¥ =, =5) given by
&1(t1) = Zrexp (ity) &a(ta) = Zqexp (ita) . (15)
Thus, a curve in tha-torusS* x T(Zy, =) is given by
0 =06(t) mod 2m, t1 =t1(t) mod 2, to =t2(t) mod 27. (16)
We can visualizes! x T(=;, Z3) as a cube with identifications.

Theorem 13.The 1-dimensional foliation or5* x S3 spanned byB, s has the
following properties:
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1. for everya and  the leaf through(©, =1, 0) (respectively(©,0, =5)) is a
subset ofS! x {(&1,&) € S3 : & = 0} (respectivelyS! x {(&;,&) € S3 -
&1 = 0}). This leaf is

—compact ifarg o € Qn (respectivelyarg 6 € Qn);
—dense inSt x {(&1,£2) € S2 : & = 0} (respectively inSt x {(&,&) €
S3 . & = 0}) otherwise;

2. for everya and g the leaf through'©, =1, =5), where= =5 # 0, is a subset
of S x T(=Z4, Z5), whereT (=1, Z») is the torus in the factos?® of ST x S3
given by (15). This leaf is

— compact if any two of the relations

arga € Qm; arg 0 € Qm; arga/arg 8 € Q, @an

hold;
— non compact otherwise;
if the leaf is not compact, then its projection 6=, =5) is
— atoral knot of typearg o/ arg 3 if this ratio is rational;
—dense inl'(Z;, =) otherwise.

Proof: Fix (0,21, 5,) in S x S3, and let{Z,, Z»):=F, 3(0, =1, =5). Using
formula (7), the Lee vector field given by (13) becomes (see also [GO98, for-
mula (23)])

B,.g = —2(z1 log |a|, z2 log | 5]). (18)
The flow of B, g carries the pointZ,, Z>] to

[21(£), 2 ()] = [Zy exp (~2tlogal), Zeexp (~2tlog [B])]  tE€R. (19)
A computation gives the following equation féft):

o(t)

| Z1|? exp (—log || (4t + w)) + | Zy)? exp (—log |8(4t + 9<t>)> =1;

S
and finally the equations for the leaf:

0(t) = O—4nt mod 2w, & (t) = =1 exp (2itarg o), & (t) = Sy exp (2it arg ) .
(20)

We distinguish two kinds of points ifi' x S3. If 515, = 0, say=,; = 0, the
leaf given by (20) is contained ifi* x {(¢1,&) € S3 : & = 0}. According to
lemma 12, ifarg «v is a rational multiple ofr, the leaf is compact; otherwise it is
dense inSt x {(&1,&) € 83 : & = 0} If =155 # 0, from equations (20) we
obtain thatt; (¢) and¢»(t) have a constant positive length for evergo the leaf is
contained in the rea-torusS* x T'(Z1, =3) defined at page 9. According to (16),
the equations (20) can be written as

0(t) = ©—4nt mod 2m,t1(t) = 2targa mod 2m,t(t) = 2targf mod 2.
(21)
In order to study the compactness of the leaves we remark that:
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to

ti -0

Fig. 1. projection of the leaf of the foliation spanned Wy, s to T'(51,5%): case
arga/arg f € Q.

to

b .9

Fig. 2. projection of the leaf of the foliation spanned Wy, s to {t2 = 0}: case
(arga)/m € Q.

1. the leaf projected off' (=4, =2) is given by
t1(t) = 2targa mod 27, to(t) =2targ 8 mod 2w, (22)

and by lemma 12 this is a compact set if the ratiagf« to arg 3 is rational,
otherwise it is dense il (=, Z»). Since the projection froms! x T(Zy, =»)
onT(Z4, Z9) is a closed map, we can infer that if the ratiocaof; « to arg 3
is not rational then the leaf is not compact. If this ratio is rational, then the
projected set is a toral knot of typeg «/ arg 5 (see figure 1);

2. the projection of the leaf on the fa¢g = 0 is given by

0(t) = @ — 4t mod 2, t1(t) =2targa mod 27,

and lemma 12 gives the conditidarg o) /7 € Q (see figure 2);
3. in the same way, if we consider the projection on the figce- 0, we obtain
(arg B) /7 € Q (see figure 3).

We have thus obtained that the three conditions (17) are necessary for the com-
pactness of the leaf. Let us show that they are also sufficient. If the (17) hold, we
can choose coprime integérandk such that

arga 1

argf k'
The equations (22) define a closed curve with petiodarg o(=kn/ arg §), and
the leaf is closed whenever tli€¢) given by equations (21) also has a period
that is an integer multiple ofr/ arg . If we choose integers andg such that
(arga)/m = p/q, itis straightforward to check thalr/ arg « is a period 0 (t),
and the proof is complete. O
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to

ti -0

Fig. 3. projection of the leaf of the foliation spanned Wy, s to {t: = O0}: case

(arg B)/m € Q.

Theorem 14.Thel-dimensional foliation ors* x S* spanned by, 3(Ba,3) has
the following properties:

1. for everya andg the leaf through©, =1, 0) (respectively©, 0, =5)) is {O} x
{(£1,6) € 5% : & = 0} (respectively{ O} x {(&1,&) € 57 : & = 0}), soit
is compact;

2. for everya and g the leaf through'©, =1, =5), where=; =5 # 0, is a subset
of {0} x T(Z1, Z2), whereT' (=1, Z3) is the torus in the factof?® of St x $3
given by (15). This leaf is

— atoral knot of typdog |a|/ log | 8| if this ratio is rational;
—dense in{@} x T(=Z1, Z5) otherwise.

Proof: The proof is similar to (and actually easier than) that of previous theo-
rem. O

In the following theorem we look at the most interesting distribution, that is
&a,5- In the case of compact leaves, we also give a description of the (constant)
complex structure on them.

Theorem 15.The foliation€, s on S* x S? is described by the following proper-
ties:

1. for everya and 3 the leaf through(©, =1, 0) (respectively©, 0, =5)) is St x
{(€&1,&) € §% : & = 0} (respectivelySt x {(&;,&) € S%: & = 0}), and it
is thus compact;

2. for everya and g the leaf through'©, =1, =5), where=; =5 # 0, is a subset
of S* x T(=Z4, Z,), whereT (=1, Z3) is the torus in the factos?® of ST x §3
given by (15). This leaf is

— compact if there exist integers andn such thata™ = §™: in this case
the leaf is a Riemann surfad&/ A of genus one, wherd is the lattice in
C generated by the vectotsandw given by (26);

— non compact otherwise, and in this case it is densglinx (=1, Z»).

Proof: Look at the2-dimensional real distribution as a field bidimensional
complex lines generated by. In the expression (19) substitute with the real pa-
rametert a complex parametes, then, as for (20), we obtain

O(w) =6 — 471 Rew mod 2,
& (w) =
§a(w) =

=5 exp (2i arg a Re w) exp (—2ilog |a| Tmw) , (23)

Sy exp (2iarg BRew) exp (—2ilog |B] Tmw) .
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The simplest cas&; =5 = 0 easily follows. So we can supposg =, # 0, and in
this case the leaf is a subset®f x T'(=, Z5), whereT' (=1, =) is given by (15).
By means off,, g, and settingt, s):=(Re w, Jm w), the equations (23) become

0(t,s) = © —4nxt mod 2,
t1(t,s) = 2(argat — log |als) mod 2, (24)
ta(t,s) = 2(arg Bt — log |B|s) mod 2.

Call N the leaf given by (24), and considéf N ({O@} x T'(=Z1, 52)). We
observe thaf(t) = © is equivalent t¢ = j/2 wherej is an integer: callV; the
curve given by the equations

9(%58):9 mod 27T,
J o J
t1(§, s5) = 2(arg ag = log|a|s) mod 27,

tQ(%a

s) = 2(arg5% —log|fBls) mod 2.
ClearlyNN({©} xT(Z1, Z2)) is the union of the curved; for j € Z. By lemma
12 we know thatV; is dense in{@} x T'(=1, =) wheneverlog |a|/log | 5] is
irrational: NN({©} xT(=1, Z5)) is thena fortiori dense (and properly contained)
in {®} x T'(=1, Z2). We can repeat this argument for dJIso in this caseV is
dense inS! x T'(Z, Z3). Otherwise iflog ||/ log | 3] is rational, the intersection
of N with {6} x T(Z7, Z9) is the union of toral knots of typleg ||/ log |5

Let us now consider the intersection &f with the surface given by, = 0:
after observing thak = 0 is equivalentte = (t arg 5—jm)/ log | 5] for j integer,
let us callN; the curve given by

targ 8 — jm
,——————) = —mlogz — 4wt mod 2,
( log |3 ) g
targ 3 — jm targ 8 — jm
t1(t, ——————) = 2(argat — log |« mod 27,
& ograr = oAl )
targ 3 — jm
to(t, ——————) =0 mod 27,
2 g g

(see figure 2). In this case lemma 12 shows that ederig dense ir6* x {(t1,0) €
T(=1, Z2)} whenevefarg a—arg (8 log |a|/ log |3|) /= is irrational: the argument
used forty # 0 shows that in this cas¥ is dense inS' x T'(Zy, Zs).

We are then left to the case

arg o — arg B log |a|/log | 5| log ||
™ €@ log 8] E
namely
karga —larg  p logla] 1

, =_ 25
™ q log|8] &k (29)
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t2
i -0
Fig. 4.intersection of the lealV with the faces o' x T'(Z1, Z»): casea™ = 3".

to

b -0

Fig. 5.the compact lealV in the casex™ = g".

wherel, k, p and ¢ are integers andp,q) = (I,k) = 1: by lemma 16 this is
equivalent to the existence of integersandn such that™ = ™. In this case
the intersection ofV with the faces of the cube is a union of closed curves (see
figure 4).

Choose two integefisandc such thabk — ¢l = 1. Set

,_Jq ifpisodd ,_Jp ifpisodd
7= q/2if pis even’ p-= p/2if pis even
and remark that in this case the map
F: R2 —Ncgst XT(El,Eg)
(t7 S) — (e(ta 3)7 (3] (t7 8)7 t2(t7 S))
is invariant with respect to the action &7 of the latticed:=vZ&wZ (see figure 5)
where . .
:(,qargﬁ—pmr) w=(0 km
T loglsl 7 "log |8

So we may consider the diagram

)- (26)

C (27)
pi X
g — N

wherep is the canonical projection ¢t ontoC/A and F is the quotient map of
F. Obviously F' is onto, and the leaV = F'(C/A) is compact. Moreover, since
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F' = B, g # 0, F is alocal difeomorphism; this implies that is a submanifold
of H, 5. Thus N is a compact Riemann surface of genus one. Furthermiore
is holomorphic, because, with the chosen parametrization, the horizontal and the
vertical axes ofC are the integral curves respectively Bf, 3 and J, s(Ba 3);
finally it is straightforward to check thaft is injective, so it is a biholomorphism.
O

Lemma 16. The conditions (25) are equivalent to the existence of integeasid
n, wherem/n = k/l, such thatx™ = (™.

Proof: The existence of integera andn such thatn/n = k/l anda™ = g"
is equivalent to
logla|] n 1

=TT 2 P 92 o
log|] m k and  {marga +2rm},.ez = {narg f+ 2s7T}ez
(28)

These conditions obviously imply (25).
Vice versa, from (25) we obtain

2qk arg o + 2rm = 2qlarg 8+ 2w (p + 1) for every integer;

S0, settingn:=2¢k andn:=2ql, we get (28). O
The proof of theorem 15 allows us to complete the description of the foliation
when the leaves are not compact:

Corollary 17. Whena and 5 do not satisfy (25), the saturated componeni&.0f
are of two kinds:

1.5t x {(51,62) € S8 & = 0} and St x {(51,52) €53 & = 0};
2.8 x T(&1,&2).

Remark 18Because of (18), s is linear in the classification recently given by
D. Mall in [Mal98].

5. Elliptic fibrations and orbifolds

By the definition of Kodaira in [Kod64, 2], aelliptic surfaceis a complex fi-
bre space of elliptic curves over a non singular algebraic curve, namely a map
Z: S — AwhereS is a complex surface] is a non singular algebraic curvg,
is a holomorphic map and the generic fibre is a torus. The cuni® called the
base spacef S.

In theorem 15 we showed that,df™ = g™ for some integersn andn, then
S1 x 83 is a fibre space of elliptic curves over a topological spacethe leaf
space. In this section we show that sucli & a non singular algebraic curve (ac-
tually P*C) and that the projectiot is holomorphic with respect to this complex
structure.

A quasi-regular foliationis a foliation 7 on a smooth manifold/ such that
for each pointp of M there is a natural numbe¥ (p) and a Frobenius chatf
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(namely, aF-flat cubical neighborhood) where each leaffointersectd’ in N (p)

slices, if any. IfN(p) = 1 for all p, thenF is called aregular foliation (see for
instance [BG98]). For a compact manifald, the assumption that the foliation is
guasi-regular is equivalent to the assumption that all leaves are compact. A Rie-
mannian foliation with compact leaves induces a natural orbifold structure on the
leaf space (see [Mol88, Proposition 3.7]). This is the case we are concerned with,
since by [DO98, Theorem 5.¥, g is Riemannian. In this section we show that
&3 18 quasi-regular if and only i = 5" for some integers: andn, and this

gives an orbifold structure to the leaf space. This does not contradict the structure
of complex curve, it simply means that the two structures are not isomorphic in
the orbifold category. In fact, arB+dimensional orbifold with only conical points

is homeomorphic to a manifold.

Theorem 19.If o™ = g" for some integersn and n, the leaf spaceA of the
foliation in tori given onS* x S3 by the theorem 15 is homeomorphicRéC,
and the projection?: S* x S3 — A is holomorphic with respect to the induced
complex structure.

Proof: By lemma 16 we can suppose that (25) holds. Choose then the integers
m andn minimal with respect to the property™ = ", and observe that this
impliesm arg « = n arg 8+ 2w¢, wherec is an integer such that GGby, n, ¢) =
1, and consider the following map:

h: Slx 83 — PIC
(9751352) — [exp (97’0) S{n : Sg]

It is an easy matter to verify that af,, g this map is nothing but the quotient of
@(z1, 22):=[2" : 27], and we obtain the diagram

C2\ 0
\\
/ s
Ha,@*)SI x §3 (29)
AN

,,,,,,,,,,, > Pl
We show that: is well defined on the leaf space, and that its quotieist in
fact the homeomorphism we are looking for:

1. his well defined: if(0, &1, &2) is on the leaf passing throud®, =, =5), then
0, &1 andé, are of the form (see (23))
0(t,s) = O —4xt mod 2,
= 5y exp (2iarg at) exp (—2ilog|als) ,
&a(t,s) = Sy exp (2iarg Ot) exp (—2ilog|f)s) ,
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and we obtain thatd (¢, s), &1 (¢, s), &2(t, s)) is mapped to

[exp (i(© — 4rnt)c) E7" exp (2itm arg «) : 55 exp (2itn arg [3)]
=lexp (i(O — 4nt)c + 2it(marga — narg §)) =7 : Z7]

—fexp (i0¢) =} : 5y,

and the last member does not depend:@md s. Namely, . is constant on
every leaf andu is well defined onA;

. hisonto:(6,1,0) — [1 : 0] and if we puth(9,&1,&2) = [21 : 22] where
2y # 0 we obtainz;z; 1 = exp (ifc) 7', ™. Using polar coordinates, that
is, choosing real numbeys, ps, 61 andfs such thatt; = p; exp (i6,) and
& = poexp (i62), the last member becomesp (ifc + mb; — nb)) pips "
wherep? + p3 = 1. The exponenic +mb; — nf> covers all the real numbers,
and the map

Pz*y
Py =(1-p3)2p"

covers all the positive real numbers,/seand, consequently;- is onto;

. h is injective: suppose thdt(0,¢1,&:) = h(O, =1, Zs) for (0,&,&) and

(0,51,5) in ST x 83.If £,.51 = 0, then¢; and =; must both be zero,
whence(d, &1, &) and (O, 51, =9) lie on the same leaf. f1 =7 # 0, we can

write

4 = = . 30
exp (i0c) & exp (iOc) E (30)

Let &1 = prexp (im), & = paexp(ing), E1 = Prexp(iH;) and = =
P, exp (iH2); the equation (30) becomes

Py exp (inzn) _ Plrexp (iHan)
prexp (i(c+mm))  P™exp (i(6c+ Hym))’
that is
o
Pl P (31)

(0 —O)c+m(m —Hy) —n(nz — Hy) =0 mod 2.
The first equation in (31), together with + p3 = 1 = P? + P%, easily gives

p1 = P1 and P2 = P2. (32)



18 Maurizio Parton

In order to show thatt, &1, &>) and(©, =1, =5) lie on the same leaf, we want
to find two real numbersands such that

0 =6 —4nt mod 2m,
&1 = Zpexp (2(arg at — log |als)), (33)
{2 = Zaexp (2(arg Bt — log[B]s)) ,
that is, by using (32), we want to find two real numbeesds satisfying

4rt =6 -0 mod 27,
2argat — 2log|als =1 — H1 mod 27,
2arg 0t — 2log |B|s = ne — Hy mod 2.

The determinant of

4m 0 6 -0
2arga —2logla| m — Hy
2arg 3 —2log|B| ne — H2

is zero, because the second equation of (31) gives
m(second row)- n(third row) = c(first row),

and the injectivity off is proved.

From 1, 2 and 3 we obtain that A — P'C is a bijective continous map, and so
is a homeomorphism because of the compactnesgs ét least,? is holomorphic
with respect to the induced complex structure -thatiis holomorphic- because
the mapy in the diagram (29) is holomorphic. O

Theorem 20.The foliation&,, s is quasi-regular if and only i&™ = g™ for some
integersm andn; in this case, choosing: andrn minimal positive such integers,
N(@, =1, 52) =1if 2155 # 0, WhereaSZV(@, 0, 52) =m andN(Q, =1, O) =
n. In particular, the foliation&, s is regular if and only ifa = 5.

Proof: By theorem 15 we know that all leaves are compact if and only if
a™ = 4", and for the point§®, =1, =) where =, =, # 0 the thesis is given
by the figure 5. We are then left to the poir{3, 0, =») and (6, =1,0), when
a™ = g™ We look at the point$®, =1, 0), the study of the other ones being
analogous.

We remark that the figure 5 Bdimensional, and in order to visualize the
dimensional neighborhood of a point 6f x S we need anothe3-dimensional
description of the foliatiorf,, 5: consider the stereographic projection

¢: 53\ (0,0,0,1) — R3
1

(w1, 2, 3, ) — (1,22, x3).

1-— Tyg

It is easy to check that(7'(&1,&2)) is generated by the revolution around the
ys-axis of the circleC'(&1, &2) in theysys-plane centered ifl /|; |, 0) with radius
|€2]/1€1]. We are thus led to the figure 6.
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Y3

Y2

Fig. 6.0n the left, the partition dR® in tori T'(¢1, £2); on the right, the circles that generate
the tori.

By refining the computation in the proof of theorem 15, we see that any leaf
intersectsT'(£;, ;) alongr toral knots of typd /k, r being the greatest common
divisor of m andn. This means that each leaf containedIift,, &) intersects
C(&1,&2) in exactlyn = rl points. Now let

Dp:: U 0(51752)
[&21/1&11<p

and letUs , the piece of solid torus given by the revolution of angle, ¢) of D,.
The neighborhoods P, =4, 0) of the form(© — ¢, 0 + ¢) x U;, , contain each
leaf inn = rl distinct connected components, and this ends the proof. O

Remark 21We thus have an orbifold structure on the leaf spAcevith two coni-
cal points of ordern andn, respectively (see [Mol88, Proposition 3.7]). In partic-
ular, a local chart around the leaf throu@h, =1, 0) is given byD, /I, I, being
the finite group generated by the rotation of arijign.
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