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Old and new structures on products of spheres

Maurizio Parton

ABSTRACT. A classical theorem of Kervaire states that products of spheres are
parallelizable if and only if at least one of the factors has odd dimension. In
this note an explicit parallelization is given, and it is then used to describe
G-structures on products of two spheres, for G = U(n), Sp(n), G2, Spin(7),
Spin(9). This approach gives an alternative description of the classical Calabi-
Eckmann structures, and of some G, Spin(7), Spin(9)-structures on S® x S!,
S7 x 81, S5 x S! respectively. In other products of spheres some new G-
structures are obtained.

1. Introduction

It is a classical result in Algebraic Topology that spheres S” are parallelizable
only in dimension n = 1, 3, 7. As for the products of two or more spheres M.
Kervaire proved in the fifties the following:

THEOREM 1.1 ([Ker56]). The manifold S"* x---x S, r > 2, is parallelizable
of and only if at least one of the n; s odd.

The paper [Bru92] is the only reference the author knows to provide explicit
parallelizations B on some products of spheres, namely, whenever one of the fac-
tors is ST, $3, S®, S7. In this note the never-vanishing vector field on the odd-
dimensional sphere is used to write an explicit isomorphism between T(S™ x S™)
and S™ x S" x R™*", Pulling back the standard basis of R™+" one obtains explicit
orthonormal parallelizations P on S™ x S™.

These parallelizations are then exploited to define some significant G-structures
on products of spheres of suitable dimension. The groups G considered here are:
G = U((m + n)/2), if both the dimensions are odd (almost-Hermitian structures
on S™ x S™); G = Sp((m + n)/4), if both the dimensions are odd and m +n =0
mod 4 (almost-hyperhermitian structures on S™ x S™); G = Gg, Spin(7), Spin(9)
on the 7-dimensional, 8-dimensional, 16-dimensional products S™ x S™ respectively.

Table 1 summarizes the properties of the orbits of these structures by the
standard action on R™*" of the orthogonal and the symmetric group O qn, Smin -
It refers to the frames B and P already mentioned, and to their associated G-
structures Iz, Hp, ..., $5. In some cases, the orbit contains classical structures,
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TABLE 1. Properties of structures. References are those where the
structures were originally introduced.

H spheres ‘ G ‘ frame ‘ orbit type H
Sn=1 x gt U(n) B 05,15 Hopf Hermitian*
SAn=1 x gt Sp(n) B O4nHp Hopf hyperhermitian*
S8 x St Gy B O7pp  |locally conformal parallel*[Cab97]
ST x St Spin(7) B Osdp |locally conformal parallel*[Cab95]
515 x St Spin(9) B 015®5 | locally conformal parallel*[Fri99]
ST X S =0 | U | P | G lp integrable if and only if...**
S™ X SP =0 Sp(mj{") P |16 nnHp non-integrable
S™ X S et Go P Grop general type
S™ X SP =g | SPIn(7) | P Ssop general type
S™ X Shin=1s| Spin(9) | P S15Pp ?

*all structures in the orbit are isomorphic (see remark 2.1).

**see theorem 3.2. All integrable structures are isomorphic to Calabi-Eckmann.

some of which were originally defined in a non-elementary way: this approach
provides then a straightforward encoding of these classical structures. In the other
cases, this construction provides new structures on products of spheres. The last
part of this note is devoted to explain Table 1, that henceforth will be referred to
as the table. More details can be found in [Par00].

2. Explicit parallelizations on S™ x S"

Let n = 1. The vector fields {2;9;, }i=1_m+1 on R™T1\ 0 are [-equivariant,
where T is the infinite cyclic group generated by multiplication by ¢?™. Hence, they
define a parallelization B = {b1,...,byy1} on S™ x St = (R™+1\ 0)/T. Denoting
by T'= —y20y, + y18y, the never-vanishing versor field on S, it is easy to see that

b; = (orthogonal projection of 8, on S™) + ;T i=1,....m+1;

hence in particular B is an orthonormal frame.

REMARK 2.1. Any orthogonal transformation of R™*! is I'-equivariant, and
the differential of the induced map on S™ x S! is given by the same orthogonal
transformation with respect to the frame B. This explains the first footnote in the
table.

Let now n be any odd integer. Denote by T the never-vanishing vector field on
S™ given by the complex multiplication, and by ¢; its coordinates:

n+1
T= Z tjﬁyj = _31263/1 + yl@yz +- = yn+16yn + ynﬁynﬂ'
j=1
A key role here is played by the meridian vector fields (see [Bru92]):
M; = orthogonal projection of d,, on S™ € X(S™), i=1,...,m+1,
N; = orthogonal projection of 9,, on S € X(S"), j=1,...,n+1,
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and by the following:

LEMMA 2.2. Let a, 8 be vector bundles, and let €* be the trivial rank k vector

bundle. Then
ax (@)~ (adef) xa.

Split T(S™) in n @ (T), then use the lemma 2.2 to shift on the left the trivial
summand. Since T(S™) & ¢! is a trivial vector bundle, a rank 2 trivial summand
can be shifted on the right: now remark that 5 @ e? is trivial. This argument gives
an isomorphism (actually an isometry) between T'(S™ x S™) and ™~ x "1, Then
pull back the sections {8z, ..., 0z,._,, Oy, -, Oypyy } of €71 x " H 0 obtain the
explicit parallelization P given by the following:

THEOREM 2.3. The vector fields {p1,...,pmin} € X(S™ x S™) given by

pi = M; + ;T 1=1,....,m—1,
Pm—1+; = ijm —|—tij+1 + (tj$m+1 + Yjm — tj)T + Nj, j=1...,n4+1.
define an orthonormal frame P of S™ x 5", for any odd n.

ProoF. Once observed that
Mizﬁxl—l‘iM, 1=1,....m+1,
szﬁyj—yjN, j=1,...,n+1,
where M and N denote the normal versor field of S C R™*+! and §» c R»t!
respectively, the proof follows from a direct computation. |

REMARK 2.4. To obtain a parallelization for more than two spheres; use in-
duction in the following way: suppose that S™2 x ---x S”r, r > 2, has at least one
odd-dimensional factor, whence it is parallelizable; then

T(S™ x - x S"r) =T(S") x gh2ttnr

_ n1 1 nat+ o 4ny—1 _ ni+1 nat+ny—1
=(T(S")ge) xe = X e .
3. Hermitian and hyperhermitian structures

The following statement is a consequence of the definition of B. It gives lines
1 and 2 of the table.

THEOREM 3.1. The almost-Hermitian structure Iz on S?*~1x St coincide with
the Hopf Hermitian structure given by the identification S*"=1 x S1 = (C* \ 0)/T.
The same way, the almost-hyperhermitian structure Hg on S*~ ! x S' coincide
with the Hopf hyperhermitian structure given by the identification S* =1 x S1 =
(H" \ 0)/T.

As for the frame P, the following statement gives line 6 of the table.

THEOREM 3.2. An almost-Hermitian structure I on S™ X S™ wn the symmetric
orbit &0 lp, m, n odd, is integrable if and only if

(31) I(pm—l-l-]) :ipm-l-ja J Oddalgjgn—i_la
where the sign is the same for all j.

Proo¥F. The “if” part relies on the following fact: there exists a covering of
S™ x S™ by submanifolds whose tangent spaces span all T(S™ x S™) and on these
submanifolds 7 is integrable.

The “only if” part is given by a case by case computation here sketched. Sup-
pose that the condition of the theorem is not satisfied. Then, taking —I in case,
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there exists an odd j € {1,...,n 4 1} such that one of the following conditions
holds true:

(1) there exist ¢, k € {1,...,m— 1}, i # k such that
I(pm-145) =pi  and  I(pmj) = £px;

(2) thereexist i€ {1,....m—1}, ke {l,...,n+ 1}, k # 4, j+ 1 such that
Ipm-145) =pi  and  I(pm4j) = £Pm—14s;

(3) thereexist i€ {1,...,n+ 1}, ke {l,...,m—1},i#j, j+ 1 such that
Hpm-1+4j) = Pm-1+i  and  I(pmyj) = %px;

(4) there exist ¢, k € {1,...,n+1},4, k# 4, j+ 1, ¢ # k such that

Hpm—14j) =pm-1+i  and  I(pmyj) = £Pm-14k-

The torsion tensor can then be computed in each case and, in particular, one
obtains:

(1) AN (Prm—14j, Pmts), o) = 2(F2i(1 = y5 — yip1) +2x (1= 2(y5 + yi41))) #0
(2) ANPm-145>Pm+5), Pi)(¥; = Yj1 = Y6 = 0,5 = 1) = 2(2; F 2in41) # 0
(3) ANPm-147>Pm+5), PE)(Y = Y1 =¥ = 0,8, = 1) = 2(xp £ 2p41) # 0
(4) (N(Pm=14j,Pmtj) s Prm—14i)(¥j = Yj41 =ti = 2y =0, = Tppq1 = 1) =
F2 75 0
O

Since an almost-hyperhermitian structure H cannot fix a 2-dimensional distri-
bution, the previous theorem gives also line 7 of the table.

Let now S be the never-vanishing vector field given by complex multiplica-
tion on S™. Denote by I”" the Calabi-Eckmann Hermitian structure given by
Im™(T)=S.

THEOREM 3.3. The Calabi-Eckmann complex structure I"™" on S™ x S” co-
wmnctdes with the almost-Hermitian structure Ip, namely

I"™"™(pi) = pig1, if 1 1s odd,
"™ (pi) = —pi-1, if 1 is even.

Proo¥. Using the Hopf fibrations of S and S, one is left to show that

7’|sz51

17)|51><sn = ls1ysmn?
n+1 n+1 .
and formulas by, = 3070 YjPm—14j, b1 = 2501 tipm—14; gives Ip|_, ., =

Ig = ™1 = mn . The same way, using the frame B on S' x S” given by

|sm><sl
by =N;—y;S,7=1,...,n+1, one gets I7>|§1X§n =Jg=1I'"= e and
this completes the proof. |

The following corollary proves the second footnote in the table.

COROLLARY 3.4. All wintegrable almost-Hermitian structures on S™ x S™ in
the symmelric orbit Spynlp, m, n odd, are biholomorphic to the Calabi-Eckmann
Hermitian structure ™" .



OLD AND NEW STRUCTURES ON PRODUCTS OF SPHERES 5

Proo¥r. Given any permutation 7 of {1,...,m + 1}, the automorphism f, of
S™ x S™ given by (x1,..., Tmy1,Y) = (Tr(1), -+, Tx(m1), y) satisfies

dfz (Pr(i)) = Pi> i=1,...,m—1.

If T is an integrable almost-Hermitian structure in &,, 4, Ip, then a permutation
m = w(I) can be defined such that f; is a biholomorphism between I and Ip. O

4. Special structures

THEOREM 4.1. The Ga-structure pg on S° x S, the Spin(7)-structure ¢ on
ST x St and the Spin(9)-structure &5 on S'° x St are locally conformal parallel.

PROOF. Denote by B the frame {x;9,,}. The proof follows from the fact that
the Go-structure 5z on R7\ 0, the Spin(7)-structure ¢z on B3\ 0 and the Spin(9)-
structure @5 on R!%\ 0 are globally conformal parallel. |

The previous theorem partially proves lines 3, 4, 5 of the table. That gz, ¢
and ®p actually coincide with the structures defined in [Cab97], [Cab95] and
[Fri99] respectively is a more ticklish question, and it is here just stated.

Only lines 8 and 9 are then left over. Recall that a G-structure of general type,
for G = Gy or Spin(7), means a structure which does not belong to any proper
subclass of W in the classifications given in [FG82] and [Fer86]. Using structure
equations for B and P, the problem of checking that a fixed structure belongs to a
particular subclass can be translated in a linear algebra problem, and can be solved
by a computer calculation. Since the symmetric group 1s finite, symmetric orbits
can be tackled this way, and this is how the following theorem was proved:

THEOREM 4.2. The Ga-structures in Grop on S* x $3 and S? x S° are all of
general type. The Spin(7)-structures in Sggp on S7 x S1, S5 x 3, 3 x S° and
St x ST are all of general type.
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