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Abstract

The object of the present paper is to the study 3-dimensional f-
Kenmotsu manifolds with the Schouten-van Kampen connection.

Introduction

The Schouten-van Kampen connection is one of the most natural connections
adapted to a pair of complementary distributions on a differentiable manifold
endowed with an affine connection [2, 5, 14]. A. F. Solov’ev has investigated
hyperdistributions in Riemannian manifolds using the Schouten-van Kampen
connection [15, 16, 17, 18]. Then Z. Olszak has studied the Schouten-van
Kampen connection to adapted to an almost contact metric structure [10]. He
has characterized some classes of almost contact metric manifolds with the
Schouten-van Kampen connection and he has finded certain curvature proper-
ties of this connection on these manifolds.

On the other hand, let M be an almost contact manifold, i.e. M is connected
(2n + 1)-dimensional differentiable manifold endowed with an almost contact
metric structure (¢,&,7,g) [1]. As usually, denote by ¢ the fundamental 2-
form of M, ®(X,Y) = g(X,9Y), X, Y € x(M), x(M) being the Lie algebra
of differentiable vector fields on M.

For further use, we recall the following definitions [13], [3], [1]. The mani-
fold M and its structure (¢, &, 7, g) is said to be:

i) normal if the almost complex structure defined on the product manifold
M x R is integrable (equivalently [¢, ¢] + 2dn ® £ = 0),

ii) almost cosymplectic if dn = 0 and d® = 0,

iii) cosymplectic if it is normal and almost cosymplectic (equivalently,
V¢ = 0, V being covariant differentiation with respect to the Levi-Civita con-
nection).

The manifold M is called locally conformal, cosymplectic respectively al-
most cosymplectic if M has an open covering {U;} endowed with differen-
tiable functions o; : U; — R such that over each U; the almost contact metric
structure (¢, &, n¢, g¢) defined by

—20't

or=0, &G=¢€"E m=e"n, g=e"'g
is cosymplectic (respectively almost cosymplectic).

Olszak and Rosca [11] studied normal locally conformal almost cosymplec-
tic manifold. They gave a geometric interpretation of f-Kenmotsu manifolds
and studied some curvature properties. Amongothers they proved that a Ricci
symmetric f-Kenmotsu manifold is an Einstein manifold.

By an f-Kenmotsu manifold we mean almost contact metric manifold which
1s normal and locally conformal almost cosymplectic.

In the present paper we have studied some curvature properties of a 3-
dimensional f-Kenmotsu manifold with the Schouten-van Kampen connec-
tion. The paper has been organized as follows: After introduction we have
given the Schouten-van Kampen connection and f-Kenmotsu manifolds. Then
we have adapted the Schouten-van Kampen connection on a 3-dimensional
f-Kenmotsu manifold. In section 5, we have studied projectively flat a 3-
dimensional f-Kenmotsu manifold with the Schouten-van Kampen connec-
tion. In section 6, we have considered a conharmonically flat 3-dimensional
f-Kenmotsu manifold with the Schouten-van Kampen connection. Finally
we have given an example of a 3-dimensional f-Kenmotsu manifold with the
Schouten-van Kampen connection which is verified Theorem 1 and Theorem
2.

The Schouten-van Kampen
connection

Let M a connected pseudo-Riemannian manifold of an arbitrary signature
(p,n—p),0 <p<n,n=dmM > 2. By g will be denoted the pseudo-
Riemannian metric on M, and by V the Levi-Civita connection coming from
the metric g. Assume that / and V' are two complementary, orthogonal distri-
butions on M such that dimH = n — 1, dimV = 1, and the distribution V' is
non-null. ThusT7M = He&V,HNV = {0} and H L V. Assume that ¢ is
a unit vector field and 7 is a linear form such that (§) = 1, g(£,£) = e = +1
and

H =kern, V =span{¢}. (1)

We can always choose such & and 7 at least locally (in a certain neighborhood
of an arbitrary chosen point of M). We also have n(X) = £g(X, £). Moreover,

it holds that Vx¢& € H.
For any X € TM, by X" and X" we denote the projections of X onto H
and V, respectively. Thus, we have X = X h 4 XV with

X'"=X-n(X)¢& X' =nX). (2)

The Schouten-van Kampen connection V associated to the Levi-Civita con-
nection V and adapted to the pair of the distributions (H, V') is defined by [2]

VxY = (VxY") 4 (VxY")?, (3)

and the corresponding second fundamental form B is defined by B = V — V.
Note that condition (3) implies the parallelism of the distributions A and V'
with respect to the Schouten-van Kampen connection V.

From (2), one can compute

(VxY"" = VyY —n(VxY)E —n(Y)VxE,
(VxY")" = (Vxn)(Y)§ +n(VxY)E,

which enables us to express the Schouten-van Kampen connection with help of
the Levi-Civita connection in the following way [15]

VxY = VxY —n(Y)Vxé + (Vxn)(Y)E. )
Thus, the second fundamental form B and the torsion 7" of V are [15, 16]

B(X,Y) =n(Y)Vx& = (Vxn)(Y)E,

T((X,Y) =n(X)Vy& —n(Y)VxE+2dn(X,Y)E.

With the help of the Schouten-van Kampen connection (4), many properties of
some geometric objects connected with the distributions /H, V' can be charac-
terized [15, 16, 17]. Probably, the most spectacular is the following statement:
g, & and 7 are parallel with respect to @, that is, @5 =0, @g =0, @77 = 0.

f-Kenmotsu manifolds

Let M be a real (2n + 1)-dimensional differentiable manifold endowed with
an almost contact structure (¢, &, 7, g) satisfying

¢o* = —I+n®E k) =1,
P = 0, noop=0, n(X)=g(X,9, (5)
9(¢X,0Y) = g(X,Y) —n(X)n(Y),

for any vector fields X, Y € x(M), where [ is the identity of the tangent bun-
dle T'M, ¢ is a tensor field of (1, 1)-type, 1 is a 1-form, £ is a vector field and
g is a metric tensor field. We say that (M, ¢, &, n, g) is a f-Kenmotsu manifold
if the Levi-Civita connection of g satisfy [9]:

(Vxo)(Y) = fg(oX,Y)E —n(Y)oX}, (6)

where f € C°(M) such that df An = 0. If f = a = constant # 0 then
the manifold is a-Kenmotsu manifold [6]. 1-Kenmotsu manifold is Kenmotsu
manifold [7]. If f = 0, then the manifold is cosymplectic [6]. An f-Kenmotsu
manifold is said to be regular if f> + f # 0, where f = £(f).

For an f-Kenmotsu manifold from (5) it follows that

Vx§ = X —n(X)¢} (7)
Then using (7), we have
(Vxn)(Y) = f{g(X,Y) = n(X)n(Y)}. (8)

The condition df A n = 0 holds if dim M > 5. This does not hold in general if
dim M = 3 [11].
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As is well known a 3-dimensional Riemannian manifold, we always have

R(X,Y)Z = g(Y,2)QX — g(X,Z)QY + S(Y, Z)X — S(X, Z)Y
~SH9(V.2)X — (X, Z)Y}, ©
In a 3-dimensional f-Kenmotsu manifold M, we have [11]
RX,Y)Z = (% L 22 1 2f M g(Y, 2)X — g(X, Z)Y)
—(Z 432+ 31 ){g(Y. 2n(X)€ — g(X, Z)n(Y )¢ (10)

2
+n(Y)n(Z2)X —n(X)n(Z)Y },

SCLY) = (G 4+ £+ g Y) = (G432 +3f mOn(Y), (D

QX = (5 + 7+ 1)X = (5 +3 +3f (X (12)

where R denotes the curvature tensor, S is the Ricci tensor, () is the Ricci
operator and 7 is the scalar curvature of M.
From (10), we obtain

RX.Y)¢=—(f+ f){n(Y)X —n(X)Y}, (13)

and (11) yields
S(X,€) = =2(f*+ [ )n(X). (14)

3-dimensional f-Kenmotsu
manifolds with the Schouten-
van Kampen connection

Let M be a 3-dimensional f-Kenmotsu manifold with the Schouten-van Kam-
pen connection. Then using (7) and (8) in (4), we get

VxY =VxY + f(g(X, V)¢ —n(Y)X). (15)

Let R and R be the curvature tensors of the Levi-Civita connection V and the
Schouten-van Kampen connection V,

R(X,Y)=[Vx,Vy] = Vixy, R(X,Y)=[Vx,Vy]=Vixy

Using (15), by direct calculations, we obtain the following formula connecting
R and R on a 3-dimensional f-Kenmotsu manifold M

R(X,Y)Z = R(X,Y)Z
+/g(Y, 2)X — g(X, Z)Y} (16)
+f{9(Y, Z)n(X)§ — g(X, Z)n(Y)E +n(Y)n(Z2)X —n(X)n(Z)Y }.

We will also consider the Riemann curvature (0, 4)-tensors R, R, the Ricci
tensors S, S, the Ricci operators (), () and the scalar curvatures 7, 7 of the con-
nections V and V are defined by

R(X,Y,Z,W) = R(X.,Y,Z,W)
+f2{g(Y7 Z)g(X> W) - g(X7 Z)g(Y7 W)}

+f{g(Y, Z)n(X)n(W) — g(X, Z)n(Y)n(W) (17)
+9(X, W)n(Y)n(Z) — g(Y, W)n(X)n(Z)},
S(Y,Z) = S(Y,Z)
+22+ 9(Y, Z) + (Y )n(Z)), (18)
QX = QX + (2f* + )X + fn(X)E, (19)
T=T+6f>+4f (20)

respectively, where R(X,Y, Z, W) = ¢(R(X,Y)Z, W) and R(X,Y, Z,W) =
g(R(X,Y)Z,W).

Projectively flat 3-dimensional
f-Kenmotsu manifolds with
the Schouten-van Kampen
connection

In this section, we study projectively flat 3-dimensional f-Kenmotsu mani-
folds with respect to the Schouten-van Kampen connection. In a 3-dimensional
f-Kenmotsu manifold the projective curvature tensor with respect to the
Schouten-van Kampen connection is given by

P(X,Y)Z =R(X,Y)Z — %{S’(Y, )X - 5(X,2)Y}. 21)

If P = 0, then the manifold M is called projectively flat manifold with respect
to the Schouten-van Kampen connection.

Let M be a projectively flat manifold with respect to the Schouten-van Kam-
pen connection. From (21), we have

R(X,Y)Z = %{é(Y, Z)X - 5(X,2)Y}. (22)
Using (17) and (18) in (22), we get

g(R(X, Y)Zv W) + fz{g(Yv Z)g(X, W) - Q(Xv Z)Q(Ya W)}

+f{9(Y, Z)n(X)n(W) — g(X, Z)n(Y )n(W)

+g(X, W)n(Y)n(Z) — g(Y, W)n(X)n(Z)} (23)
= {50V, 2)g(X,W) = S(X, Z)g(, W)

+217 + flg(Y, Z2)g(X, W) — g(X, Z)g(Y, W)]

+f (Y )n(Z)g(X, W) —n(X)n(Z)g(Y, W)]}.

Now putting W = £ in (23), we obtain

(f?+ H9(X, Z)n(Y) — g(Y, Z)n(X)}
+(f?+ MY, Z)n(X) — g(X, Z)n(Y)}
= %{S(Y, Zn(X) = S(X, Z)n(Y) + 2+ (Y, Z)n(X) — g(X, Z)n(Y)]},

which gives that

S<Yv Z)U()Q T S(X7 Z)U(Y) (24)
+(22 4+ P)g(Y, Zm(X) — g(X, Z)n(Y)] = 0.

Again putting X = ¢ in (24), we get

SY,.Z)=—=2f+ f9(Y.Z) — fn(Y)n(Z). (25)

Thus M is an n-Einstein manifold with respect to the Levi-Civita connection.
Also using (25) in (18), we obtain

S(Y,Z) =0. (26)

Hence the manifold M is a Ricci-flat manifold with respect to the Schouten-van
Kampen connection.

Conversely, let M be a Ricci-flat manifold with respect to the Schouten-van
Kampen connection. Then from (26), we have

7 =0,
which implies that
T=—6f>—4f" (27)
Using (26) in (21), we obtain

P(X,Y)Z = R(X,Y)Z
= R(X,Y)Z + fHg(Y.2)X — g(X, Z2)Y} (28)
+f{9(Y, Z)n(X)§ — g(X, Z)n(Y)§ +n(Y)n(Z)X —n(X)n(Z)Y }.

Now using (10) in (28), we get

P(X.Y)Z = (5437242 ){g(Y. 2)X - (X, 2)Y = g(V. Z)n(X)¢
+9(X, Z)n(Y)E —n(Y)n(Z2)X +n(X)n(2)Y'}. (29)

Again using (27) in (29), we have

P(X,Y)Z =0.

Thus we have the following:

Theorem 1. Let M be a 3-dimensional f-Kenmotsu manifold with respect to
the Schouten-van Kampen connection. Then M is a projectively flat manifold
with respect to the Schouten-van Kampen connection if and only if M is a
Ricci-flat manifold with respect to the Schouten-van Kampen connection.

Conharmonically flat 3-
dimensional f-Kenmotsu
manifolds with the Schouten-
van Kampen connection

In this section, we study conharmonically flat 3-dimensional f-Kenmotsu
manifolds with respect to the Schouten-van Kampen connection. In a 3-
dimensional f-Kenmotsu manifold the conharmonic curvature tensor with re-
spect to the Schouten-van Kampen connection is given by

K(X,Y)Z = R(X,Y)Z—{S(Y,Z2)X-S(X, Z)Y +9(Y, Z)QX —g(X, Z)QY}.
(30)
If K = 0, then the manifold M is called conharmonically flat manifold with
respect to the Schouten-van Kampen connection.
Let M be a conharmonically flat manifold with respect to the Schouten-van
Kampen connection. From (30), we have

RX,Y)Z=S8(Y,2)X —S5(X,2)Y +g9(Y, 2)QX — g(X,Z)QY. (31)
Using (17), (18) and (19) in (31), we get

R(X,Y)Z + f{g(Y. Z)X — g(X, Z)Y'}

+f{9(Y, Z)n(X)§ — g(X, Z)n(Y)§ +n(Y)n(Z) X —n(X)n(Z)Y}
= S(Y,2)X - S(X,2)Y (32)

AP 20 5+ P+ P9V 2)X - (X, 2)Y'}
+M{nY)n(Z2)X = n(X)n(2)Y'}
I =5 =3 =319V, 2n(X)E — 9(X. Z)n(YV)é).

Now putting X = £ in (32), we obtain

REY)Z + (f*+ f){g(Y. 2)s —n(2)Y'}
— S(Y,2)6 - S(¢, 2)Y

AP 2 + 5+ P+ V.2 —n2)Y) 33
+H{n(Y)n(2)§ = n(2)Y
HI = 5 =302 = 3){9(Y. )¢ — n(Z (Y},

Using (10) and (14) in (33), we get

0 = S(V.2)6 = S(E2)Y + (@4 +2f + 5+ >+ I ){9(Y. 2)§ = n(2)Y)
+H{nY)n(2)§ = n(2)Y'} (34)
(= 5 =3 =3 ){9(V. 2)¢ — n(Z)n(Y )&},

Taking the inner product with £ in (34), we have

0 = S(Y.2)+2(f*+ fIn¥)n(2)
+2f+ (Y. Z) = n(Y)n(Z)},

which gives that

S, Z)=—2f*+ Mg(Y. Z) — fn(Y)n(Z). (35)

Thus M is an n-Einstein manifold with respect to the Levi-Civita connection.
Using (35) in (18), we obtain

S(Y,Z) = 0. (36)

Hence the manifold M is a Ricci-flat manifold with respect to the Schouten-van
Kampen connection.

Conversely, let M be a Ricci-flat manifold with respect to the Schouten-van
Kampen connection. Then from (26), again we have (27).

Now using (36) in (30), we obtain

K(X,Y)Z = R(X,Y)Z
= R(X,Y)Z+ fH{g(Y.2)X — g(X, Z)Y}

+f{9(Y, Z)n(X)§ — g(X, Z)n(Y)E +n(Y)n(Z2)X — n(X)n(Z

= (5 +372+ 2/ Hg(Y. 2)X = g(X, 2)Y — (Y, Z)n(X)¢
+9(X, Z)n(Y )€ = n(Y)n(Z)X +n(X)n(Z)Y}.

Again using (27) in (37), we have

K(X,Y)Z =0.

Thus we have the following:

Theorem 2. Let M be a 3-dimensional f-Kenmotsu manifold with respect to
the Schouten-van Kampen connection. Then M is a conharmonically flat man-
ifold with respect to the Schouten-van Kampen connection if and only if M is
a Ricci-flat manifold with respect to the Schouten-van Kampen connection.

An example of a 3-dimensional
f-Kenmotsu manifold with
the Schouten-van Kampen
connection

We consider the 3-dimensional manifold M = {(z,y, z) € R?, z # 0}, where
(z,y, z) are the standard coordinates in R®. The vector fields

, 0 , 0 0

ox’ oy’ 0z

are linearly independent at each point of M. Lat g be the Riemannian metric
defined by

gler,e3) = glez, e3) = gler,ea) =0,
gler,er) = glez, e2) = gles, e3) = 1.

Let 1 be the 1-form defined by n(Z) = ¢(Z, e3) for any Z € x(M). Let ¢ be
the (1, 1) tensor field defined by ¢(e1) = —eq, @(e2) = e1, ¢(e3) = 0. Then
using linearity of ¢ and g we have

n(es) =1, ¢*°Z=—7+n(Z)es,

902, 0W) = g(Z, W) — n(Z)n(W),

for any Z, W € x(M). Now, by direct computations we obtain

2 2
s = 0’ y = —— , , = —— .
[61 62] [62 63] Z@g [61 63] 261

The Riemannian connection V of the metric tensor g is given by the Koszul’s
formula which is

2(VxY,2) = Xg(Y,2)+Yg(Z,X)— Zg(X,Y) (38)
—g9(X, [V, Z]) = g(V, [X, Z]) + 9(Z, [X, Y]).

Using (38), we have

2
2g(V,,e3,e1) = 2g(—;el, e1),

2g(Vee3,e0) =0 and 2¢g(V,.es,e3) =0.

)Y}
(37)
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Hence V. e3 = —%el. Similarly, V., e3 = —%62 and V.,e3 = 0. (38) further
yields
2
v€162 - O) velel — _637
z
2
V6262 — 2637 v62€1 - 07 (39)
Vegeg = O, Ve3€1 = 0.

From (39), we see that the manifold satisfies Vx¢ = f{X—n(X)¢} for = e,
where f = —%. Hence we conclude that M is an f-Kenmotsu manifold. Also
f2+ f # 0. Hence M is a regular f-Kenmotsu manifold [20].

It is known that

R(X,Y)Z =VxVyZ = VyVxZ — Vixy 2. (40)

With the help of the above formula and using (40), it can be easily verified that

6
R(e1,e2)ez = 0, R(ey, e3)es = — 26
6 4
R(ey, e3)es = ¢ R(e1,ez)es = — 2
6
R(e37 62)62 — _§€37 R(€17 63)62 — 07 (41)
4
R(ej,ex)er = 2 R(es, e3)er =0,
6
R(el, 63)61 = ?63.
The Schouten-van Kampen connection on M is given by
~ 2 ~ 2
Ve 3 = (—; - f)€17 Ve, €3 = (—; - f)€2,
66363 = —f(eg — f), 66162 = 0,
- 2 -
Veer = —(e3 =€), Ve,ea =0, (42)
- 2 -
velel = _(63 - 6)7 v62€1 =0,
z
66361 = 0.

From (42), we can see that @eiej =0(1<i4j5<3)forf =ezand f = —%.
Hence M is a 3-dimensional f-Kenmotsu manifold with the Schouten-van
Kampen connection. Also using (41), it can be seen that R = 0. Thus the
manifold M is a flat manifold with respect to the Schouten-van Kampen con-
nection. Since a flat manifold is a Ricci-flat manifold with respect to the
Schouten-van Kampen connection, the manifold M is both a projectively flat
and a conharmonically flat 3-dimensional f-Kenmotsu manifold with respect
to the Schouten-van Kampen connection. So, from Theorem 1 and Theorem 2,
M 1s an n-Einstein manifold with respect to the Levi-Civita connection.
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