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Abstract
The object of the present paper is to the study 3-dimensional f -

Kenmotsu manifolds with the Schouten-van Kampen connection.

Introduction
The Schouten-van Kampen connection is one of the most natural connections
adapted to a pair of complementary distributions on a differentiable manifold
endowed with an affine connection [2, 5, 14]. A. F. Solov’ev has investigated
hyperdistributions in Riemannian manifolds using the Schouten-van Kampen
connection [15, 16, 17, 18]. Then Z. Olszak has studied the Schouten-van
Kampen connection to adapted to an almost contact metric structure [10]. He
has characterized some classes of almost contact metric manifolds with the
Schouten-van Kampen connection and he has finded certain curvature proper-
ties of this connection on these manifolds.

On the other hand, let M be an almost contact manifold, i.e. M is connected
(2n+ 1)-dimensional differentiable manifold endowed with an almost contact
metric structure (φ, ξ, η, g) [1]. As usually, denote by Φ the fundamental 2-
form of M, Φ(X, Y ) = g(X,φY ), X, Y ∈ χ(M), χ(M) being the Lie algebra
of differentiable vector fields on M.

For further use, we recall the following definitions [13], [3], [1]. The mani-
fold M and its structure (φ, ξ, η, g) is said to be:

i) normal if the almost complex structure defined on the product manifold
M × R is integrable (equivalently [φ, φ] + 2dη ⊗ ξ = 0),

ii) almost cosymplectic if dη = 0 and dΦ = 0,
iii) cosymplectic if it is normal and almost cosymplectic (equivalently,

∇φ = 0,∇ being covariant differentiation with respect to the Levi-Civita con-
nection).

The manifold M is called locally conformal, cosymplectic respectively al-
most cosymplectic if M has an open covering {Ut} endowed with differen-
tiable functions σt : Ui → R such that over each Ut the almost contact metric
structure (φt, ξt, ηt, gt) defined by

φt = φ, ξt = eσtξ, ηt = e−σtη, gt = e−2σtg

is cosymplectic (respectively almost cosymplectic).
Olszak and Rosca [11] studied normal locally conformal almost cosymplec-

tic manifold. They gave a geometric interpretation of f -Kenmotsu manifolds
and studied some curvature properties. Amongothers they proved that a Ricci
symmetric f -Kenmotsu manifold is an Einstein manifold.

By an f -Kenmotsu manifold we mean almost contact metric manifold which
is normal and locally conformal almost cosymplectic.

In the present paper we have studied some curvature properties of a 3-
dimensional f -Kenmotsu manifold with the Schouten-van Kampen connec-
tion. The paper has been organized as follows: After introduction we have
given the Schouten-van Kampen connection and f -Kenmotsu manifolds. Then
we have adapted the Schouten-van Kampen connection on a 3-dimensional
f -Kenmotsu manifold. In section 5, we have studied projectively flat a 3-
dimensional f -Kenmotsu manifold with the Schouten-van Kampen connec-
tion. In section 6, we have considered a conharmonically flat 3-dimensional
f -Kenmotsu manifold with the Schouten-van Kampen connection. Finally
we have given an example of a 3-dimensional f -Kenmotsu manifold with the
Schouten-van Kampen connection which is verified Theorem 1 and Theorem
2.

The Schouten-van Kampen
connection
Let M a connected pseudo-Riemannian manifold of an arbitrary signature
(p, n − p), 0 ≤ p ≤ n, n = dimM ≥ 2. By g will be denoted the pseudo-
Riemannian metric on M , and by ∇ the Levi-Civita connection coming from
the metric g. Assume that H and V are two complementary, orthogonal distri-
butions on M such that dimH = n − 1, dimV = 1, and the distribution V is
non-null. Thus TM = H ⊕ V , H ∩ V = {0} and H ⊥ V . Assume that ξ is
a unit vector field and η is a linear form such that η(ξ) = 1, g(ξ, ξ) = ε = ±1
and

H = ker η, V = span{ξ}. (1)

We can always choose such ξ and η at least locally (in a certain neighborhood
of an arbitrary chosen point of M ). We also have η(X) = εg(X, ξ). Moreover,
it holds that∇Xξ ∈ H.

For any X ∈ TM , by Xh and Xv we denote the projections of X onto H
and V , respectively. Thus, we have X = Xh +Xv with

Xh = X − η(X)ξ, Xv = η(X)ξ. (2)

The Schouten-van Kampen connection ∇̃ associated to the Levi-Civita con-
nection ∇ and adapted to the pair of the distributions (H,V ) is defined by [2]

∇̃XY = (∇XY
h)h + (∇XY

v)v, (3)

and the corresponding second fundamental form B is defined by B = ∇− ∇̃.
Note that condition (3) implies the parallelism of the distributions H and V
with respect to the Schouten-van Kampen connection ∇̃.

From (2), one can compute

(∇XY
h)h = ∇XY − η(∇XY )ξ − η(Y )∇Xξ,

(∇XY
v)v = (∇Xη)(Y )ξ + η(∇XY )ξ,

which enables us to express the Schouten-van Kampen connection with help of
the Levi-Civita connection in the following way [15]

∇̃XY = ∇XY − η(Y )∇Xξ + (∇Xη)(Y )ξ. (4)

Thus, the second fundamental form B and the torsion T̃ of ∇̃ are [15, 16]

B(X, Y ) = η(Y )∇Xξ − (∇Xη)(Y )ξ,

T̃ ((X, Y ) = η(X)∇Y ξ − η(Y )∇Xξ + 2dη(X, Y )ξ.

With the help of the Schouten-van Kampen connection (4), many properties of
some geometric objects connected with the distributions H, V can be charac-
terized [15, 16, 17]. Probably, the most spectacular is the following statement:
g, ξ and η are parallel with respect to ∇̃, that is, ∇̃ξ = 0, ∇̃g = 0, ∇̃η = 0.

f -Kenmotsu manifolds
Let M be a real (2n + 1)-dimensional differentiable manifold endowed with
an almost contact structure (φ, ξ, η, g) satisfying

φ2 = −I + η ⊗ ξ, η(ξ) = 1,

φξ = 0, η ◦ φ = 0, η(X) = g(X, ξ), (5)
g(φX, φY ) = g(X, Y )− η(X)η(Y ),

for any vector fields X, Y ∈ χ(M), where I is the identity of the tangent bun-
dle TM , φ is a tensor field of (1, 1)-type, η is a 1-form, ξ is a vector field and
g is a metric tensor field. We say that (M,φ, ξ, η, g) is a f -Kenmotsu manifold
if the Levi-Civita connection of g satisfy [9]:

(∇Xφ)(Y ) = f{g(φX, Y )ξ − η(Y )φX}, (6)

where f ∈ C∞(M) such that df ∧ η = 0. If f = α = constant 6= 0 then
the manifold is α-Kenmotsu manifold [6]. 1-Kenmotsu manifold is Kenmotsu
manifold [7]. If f = 0, then the manifold is cosymplectic [6]. An f -Kenmotsu
manifold is said to be regular if f 2 + f

′ 6= 0, where f
′
= ξ(f).

For an f -Kenmotsu manifold from (5) it follows that

∇Xξ = f{X − η(X)ξ}. (7)

Then using (7), we have

(∇Xη)(Y ) = f{g(X, Y )− η(X)η(Y )}. (8)

The condition df ∧ η = 0 holds if dimM ≥ 5. This does not hold in general if
dimM = 3 [11].

As is well known a 3-dimensional Riemannian manifold, we always have

R(X, Y )Z = g(Y, Z)QX − g(X,Z)QY + S(Y, Z)X − S(X,Z)Y

−τ
2
{g(Y, Z)X − g(X,Z)Y }. (9)

In a 3-dimensional f -Kenmotsu manifold M , we have [11]

R(X, Y )Z = (
τ

2
+ 2f 2 + 2f

′
){g(Y, Z)X − g(X,Z)Y }

−(
τ

2
+ 3f 2 + 3f

′
){g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ (10)

+η(Y )η(Z)X − η(X)η(Z)Y },

S(X, Y ) = (
τ

2
+ f 2 + f

′
)g(X, Y )− (

τ

2
+ 3f 2 + 3f

′
)η(X)η(Y ), (11)

QX = (
τ

2
+ f 2 + f

′
)X − (

τ

2
+ 3f 2 + 3f

′
)η(X)ξ, (12)

where R denotes the curvature tensor, S is the Ricci tensor, Q is the Ricci
operator and τ is the scalar curvature of M .

From (10), we obtain

R(X, Y )ξ = −(f 2 + f
′
){η(Y )X − η(X)Y }, (13)

and (11) yields
S(X, ξ) = −2(f 2 + f

′
)η(X). (14)

3-dimensional f -Kenmotsu
manifolds with the Schouten-
van Kampen connection
Let M be a 3-dimensional f -Kenmotsu manifold with the Schouten-van Kam-
pen connection. Then using (7) and (8) in (4), we get

∇̃XY = ∇XY + f(g(X, Y )ξ − η(Y )X). (15)

Let R and R̃ be the curvature tensors of the Levi-Civita connection ∇ and the
Schouten-van Kampen connection ∇̃,

R(X, Y ) = [∇X ,∇Y ]−∇[X,Y ], R̃(X, Y ) = [∇̃X , ∇̃Y ]− ∇̃[X,Y ].

Using (15), by direct calculations, we obtain the following formula connecting
R and R̃ on a 3-dimensional f -Kenmotsu manifold M

R̃(X, Y )Z = R(X, Y )Z

+f 2{g(Y, Z)X − g(X,Z)Y } (16)
+f p{g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ + η(Y )η(Z)X − η(X)η(Z)Y }.

We will also consider the Riemann curvature (0, 4)-tensors R̃, R, the Ricci
tensors S̃, S, the Ricci operators Q̃, Q and the scalar curvatures τ̃ , τ of the con-
nections ∇̃ and∇ are defined by

R̃(X, Y, Z,W ) = R(X, Y, Z,W )

+f 2{g(Y, Z)g(X,W )− g(X,Z)g(Y,W )}
+f p{g(Y, Z)η(X)η(W )− g(X,Z)η(Y )η(W ) (17)
+g(X,W )η(Y )η(Z)− g(Y,W )η(X)η(Z)},

S̃(Y, Z) = S(Y, Z)

+(2f 2 + f p)g(Y, Z) + f pη(Y )η(Z)), (18)

Q̃X = QX + (2f 2 + f p)X + f pη(X)ξ, (19)

τ̃ = τ + 6f 2 + 4f p, (20)

respectively, where R̃(X, Y, Z,W ) = g(R̃(X, Y )Z,W ) and R(X, Y, Z,W ) =
g(R(X, Y )Z,W ).

Projectively flat 3-dimensional
f -Kenmotsu manifolds with
the Schouten-van Kampen
connection
In this section, we study projectively flat 3-dimensional f -Kenmotsu mani-
folds with respect to the Schouten-van Kampen connection. In a 3-dimensional
f -Kenmotsu manifold the projective curvature tensor with respect to the
Schouten-van Kampen connection is given by

P̃ (X, Y )Z = R̃(X, Y )Z − 1

2
{S̃(Y, Z)X − S̃(X,Z)Y }. (21)

If P̃ = 0, then the manifold M is called projectively flat manifold with respect
to the Schouten-van Kampen connection.

LetM be a projectively flat manifold with respect to the Schouten-van Kam-
pen connection. From (21), we have

R̃(X, Y )Z =
1

2
{S̃(Y, Z)X − S̃(X,Z)Y }. (22)

Using (17) and (18) in (22), we get

g(R(X, Y )Z,W ) + f 2{g(Y, Z)g(X,W )− g(X,Z)g(Y,W )}
+f p{g(Y, Z)η(X)η(W )− g(X,Z)η(Y )η(W )

+g(X,W )η(Y )η(Z)− g(Y,W )η(X)η(Z)} (23)

=
1

2
{S(Y, Z)g(X,W )− S(X,Z)g(Y,W )

+[2f 2 + f p][g(Y, Z)g(X,W )− g(X,Z)g(Y,W )]

+f p[η(Y )η(Z)g(X,W )− η(X)η(Z)g(Y,W )]}.

Now putting W = ξ in (23), we obtain

(f 2 + f p){g(X,Z)η(Y )− g(Y, Z)η(X)}
+(f 2 + f p){g(Y, Z)η(X)− g(X,Z)η(Y )}

=
1

2
{S(Y, Z)η(X)− S(X,Z)η(Y ) + (2f 2 + f p)[g(Y, Z)η(X)− g(X,Z)η(Y )]},

which gives that

S(Y, Z)η(X)− S(X,Z)η(Y ) (24)
+(2f 2 + f p)[g(Y, Z)η(X)− g(X,Z)η(Y )] = 0.

Again putting X = ξ in (24), we get

S(Y, Z) = −(2f 2 + f p)g(Y, Z)− f pη(Y )η(Z). (25)

Thus M is an η-Einstein manifold with respect to the Levi-Civita connection.
Also using (25) in (18), we obtain

S̃(Y, Z) = 0. (26)

Hence the manifoldM is a Ricci-flat manifold with respect to the Schouten-van
Kampen connection.

Conversely, let M be a Ricci-flat manifold with respect to the Schouten-van
Kampen connection. Then from (26), we have

τ̃ = 0,

which implies that
τ = −6f 2 − 4f p. (27)

Using (26) in (21), we obtain

P̃ (X, Y )Z = R̃(X, Y )Z

= R(X, Y )Z + f 2{g(Y, Z)X − g(X,Z)Y } (28)
+f p{g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ + η(Y )η(Z)X − η(X)η(Z)Y }.

Now using (10) in (28), we get

P̃ (X, Y )Z = (
τ

2
+ 3f 2 + 2f

′
){g(Y, Z)X − g(X,Z)Y − g(Y, Z)η(X)ξ

+g(X,Z)η(Y )ξ − η(Y )η(Z)X + η(X)η(Z)Y }. (29)

Again using (27) in (29), we have

P̃ (X, Y )Z = 0.

Thus we have the following:

Theorem 1. Let M be a 3-dimensional f -Kenmotsu manifold with respect to
the Schouten-van Kampen connection. Then M is a projectively flat manifold
with respect to the Schouten-van Kampen connection if and only if M is a
Ricci-flat manifold with respect to the Schouten-van Kampen connection.

Conharmonically flat 3-
dimensional f -Kenmotsu
manifolds with the Schouten-
van Kampen connection
In this section, we study conharmonically flat 3-dimensional f -Kenmotsu
manifolds with respect to the Schouten-van Kampen connection. In a 3-
dimensional f -Kenmotsu manifold the conharmonic curvature tensor with re-
spect to the Schouten-van Kampen connection is given by

K̃(X, Y )Z = R̃(X, Y )Z−{S̃(Y, Z)X−S̃(X,Z)Y+g(Y, Z)Q̃X−g(X,Z)Q̃Y }.
(30)

If K̃ = 0, then the manifold M is called conharmonically flat manifold with
respect to the Schouten-van Kampen connection.

Let M be a conharmonically flat manifold with respect to the Schouten-van
Kampen connection. From (30), we have

R̃(X, Y )Z = S̃(Y, Z)X − S̃(X,Z)Y + g(Y, Z)Q̃X − g(X,Z)Q̃Y. (31)

Using (17), (18) and (19) in (31), we get

R(X, Y )Z + f 2{g(Y, Z)X − g(X,Z)Y }
+f p{g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ + η(Y )η(Z)X − η(X)η(Z)Y }

= S(Y, Z)X − S(X,Z)Y (32)

+(4f 2 + 2f p +
τ

2
+ f 2 + f

′
){g(Y, Z)X − g(X,Z)Y }

+f p{η(Y )η(Z)X − η(X)η(Z)Y }
+(f p − τ

2
− 3f 2 − 3f

′
){g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ}.

Now putting X = ξ in (32), we obtain

R(ξ, Y )Z + (f 2 + f p){g(Y, Z)ξ − η(Z)Y }
= S(Y, Z)ξ − S(ξ, Z)Y

+(4f 2 + 2f p +
τ

2
+ f 2 + f

′
){g(Y, Z)ξ − η(Z)Y } (33)

+f p{η(Y )η(Z)ξ − η(Z)Y }
+(f p − τ

2
− 3f 2 − 3f

′
){g(Y, Z)ξ − η(Z)η(Y )ξ}.

Using (10) and (14) in (33), we get

0 = S(Y, Z)ξ − S(ξ, Z)Y + (4f 2 + 2f p +
τ

2
+ f 2 + f

′
){g(Y, Z)ξ − η(Z)Y }

+f p{η(Y )η(Z)ξ − η(Z)Y } (34)

+(f p − τ

2
− 3f 2 − 3f

′
){g(Y, Z)ξ − η(Z)η(Y )ξ}.

Taking the inner product with ξ in (34), we have

0 = S(Y, Z) + 2(f 2 + f p)η(Y )η(Z)

+(2f 2 + f p){g(Y, Z)− η(Y )η(Z)},

which gives that

S(Y, Z) = −(2f 2 + f p)g(Y, Z)− f pη(Y )η(Z). (35)

Thus M is an η-Einstein manifold with respect to the Levi-Civita connection.
Using (35) in (18), we obtain

S̃(Y, Z) = 0. (36)

Hence the manifoldM is a Ricci-flat manifold with respect to the Schouten-van
Kampen connection.

Conversely, let M be a Ricci-flat manifold with respect to the Schouten-van
Kampen connection. Then from (26), again we have (27).

Now using (36) in (30), we obtain

K̃(X, Y )Z = R̃(X, Y )Z

= R(X, Y )Z + f 2{g(Y, Z)X − g(X,Z)Y }
+f p{g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ + η(Y )η(Z)X − η(X)η(Z)Y }

= (
τ

2
+ 3f 2 + 2f

′
){g(Y, Z)X − g(X,Z)Y − g(Y, Z)η(X)ξ (37)

+g(X,Z)η(Y )ξ − η(Y )η(Z)X + η(X)η(Z)Y }.

Again using (27) in (37), we have

K̃(X, Y )Z = 0.

Thus we have the following:

Theorem 2. Let M be a 3-dimensional f -Kenmotsu manifold with respect to
the Schouten-van Kampen connection. Then M is a conharmonically flat man-
ifold with respect to the Schouten-van Kampen connection if and only if M is
a Ricci-flat manifold with respect to the Schouten-van Kampen connection.

An example of a 3-dimensional
f -Kenmotsu manifold with
the Schouten-van Kampen
connection
We consider the 3-dimensional manifold M = {(x, y, z) ∈ R3, z 6= 0}, where
(x, y, z) are the standard coordinates in R3. The vector fields

e1 = z2
∂

∂x
, e2 = z2

∂

∂y
, e3 =

∂

∂z

are linearly independent at each point of M . Lat g be the Riemannian metric
defined by

g(e1, e3) = g(e2, e3) = g(e1, e2) = 0,

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1.

Let η be the 1-form defined by η(Z) = g(Z, e3) for any Z ∈ χ(M). Let φ be
the (1, 1) tensor field defined by φ(e1) = −e2, φ(e2) = e1, φ(e3) = 0. Then
using linearity of φ and g we have

η(e3) = 1, φ2Z = −Z + η(Z)e3,

g(φZ, φW ) = g(Z,W )− η(Z)η(W ),

for any Z,W ∈ χ(M). Now, by direct computations we obtain

[e1, e2] = 0, [e2, e3] = −2

z
e2, [e1, e3] = −2

z
e1.

The Riemannian connection ∇ of the metric tensor g is given by the Koszul’s
formula which is

2g(∇XY, Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X, Y ) (38)
−g(X, [Y, Z])− g(Y, [X,Z]) + g(Z, [X, Y ]).

Using (38), we have

2g(∇e1e3, e1) = 2g(−2

z
e1, e1),

2g(∇e1e3, e2) = 0 and 2g(∇e1e3, e3) = 0.

Hence ∇e1e3 = −2
ze1. Similarly, ∇e2e3 = −2

ze2 and ∇e3e3 = 0. (38) further
yields

∇e1e2 = 0, ∇e1e1 =
2

z
e3,

∇e2e2 =
2

z
e3, ∇e2e1 = 0, (39)

∇e3e2 = 0, ∇e3e1 = 0.

From (39), we see that the manifold satisfies∇Xξ = f{X−η(X)ξ} for ξ = e3,
where f = −2

z . Hence we conclude that M is an f -Kenmotsu manifold. Also
f 2 + f

′ 6= 0. Hence M is a regular f -Kenmotsu manifold [20].
It is known that

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z. (40)

With the help of the above formula and using (40), it can be easily verified that

R(e1, e2)e3 = 0, R(e2, e3)e3 = − 6

z2
e2,

R(e1, e3)e3 = − 6

z2
e1, R(e1, e2)e2 = − 4

z2
e1,

R(e3, e2)e2 = − 6

z2
e3, R(e1, e3)e2 = 0, (41)

R(e1, e2)e1 =
4

z2
e2, R(e2, e3)e1 = 0,

R(e1, e3)e1 =
6

z2
e3.

The Schouten-van Kampen connection on M is given by

∇̃e1e3 = (−2

z
− f)e1, ∇̃e2e3 = (−2

z
− f)e2,

∇̃e3e3 = −f(e3 − ξ), ∇̃e1e2 = 0,

∇̃e2e2 =
2

z
(e3 − ξ), ∇̃e3e2 = 0, (42)

∇̃e1e1 =
2

z
(e3 − ξ), ∇̃e2e1 = 0,

∇̃e3e1 = 0.

From (42), we can see that ∇̃eiej = 0 (1 ≤ i, j ≤ 3) for ξ = e3 and f = −2
z .

Hence M is a 3-dimensional f -Kenmotsu manifold with the Schouten-van
Kampen connection. Also using (41), it can be seen that R̃ = 0. Thus the
manifold M is a flat manifold with respect to the Schouten-van Kampen con-
nection. Since a flat manifold is a Ricci-flat manifold with respect to the
Schouten-van Kampen connection, the manifold M is both a projectively flat
and a conharmonically flat 3-dimensional f -Kenmotsu manifold with respect
to the Schouten-van Kampen connection. So, from Theorem 1 and Theorem 2,
M is an η-Einstein manifold with respect to the Levi-Civita connection.
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