The topology of limits of embedded minimal disks. (joint work with Jacob Bernstein)

Giuseppe Tinaglia
King's College London

- Notations;
- Background;
- Main result;
- Possible questions;
- Another proof.

Let \mathbf{M} be an oriented surface in \mathbf{R}^{3}, let ξ be the unit vector field normal to M :

$$
\mathbf{A}=-d \xi: T_{p} \mathbf{M} \rightarrow T_{\xi(p)} \mathbf{S}^{2} \simeq T_{p} \mathbf{M}
$$

is the shape operator of M.

Definition

- The eigenvalues k_{1}, k_{2} of \mathbf{A}_{p} are the principal curvatures of M at p.
- $\mathrm{H}=\frac{1}{2} \operatorname{tr}(\mathbf{A})=\frac{k_{1}+k_{2}}{2}$ is the mean curvature.
- $|\mathbf{A}|=\sqrt{k_{1}^{2}+k_{2}^{2}}$ is the norm of the second fundamental form.

Minimal Surface: critical points for the area functional.

$$
\mathrm{H}=0
$$

Surface given as a graph of a function

$$
\text { - } \frac{\mid \text { Hess }\left.(u)\right|^{2}}{\left(1+|\nabla u|^{2}\right)^{2}} \leq|\mathbf{A}|^{2} \leq 2 \frac{\mid \text { Hess }\left.(u)\right|^{2}}{1+|\nabla u|^{2}}
$$

Minimal Graph

- $0=\operatorname{div} \frac{\nabla \mathrm{u}}{\sqrt{1+|\nabla \mathrm{u}|^{2}}} \quad$ Quasi-linear elliptic PDE

Motivational Question:

What classes of smooth minimal surfaces have good (pre-)compactness properties?

Suppose

- $\Omega_{1} \subset \Omega_{2} \subset \Omega_{3} \subset \ldots$ are open subsets of $\mathbf{R}^{3} ; \Omega=\bigcup_{i} \Omega_{i}$. (take $\Omega_{i}=\Omega$)

Suppose

- $\Omega_{1} \subset \Omega_{2} \subset \Omega_{3} \subset \ldots$ are open subsets of $\mathrm{R}^{3} ; \Omega=\bigcup_{i} \Omega_{i}$. (take $\Omega_{i}=\Omega$)
- $\underline{D}_{i} \subset \Omega_{i}$ is a sequence of properly (relatively closed, $\bar{D}_{i}=D_{i}$) embedded minimal surfaces.

Suppose

- $\Omega_{1} \subset \Omega_{2} \subset \Omega_{3} \subset \ldots$ are open subsets of $R^{3} ; \Omega=\bigcup_{i} \Omega_{i}$. (take $\Omega_{i}=\Omega$)
- $D_{i} \subset \Omega_{i}$ is a sequence of properly (relatively closed, $\bar{D}_{i}=D_{i}$) embedded minimal surfaces.

Well-known compactness result:

If for each K, compact subset of Ω, there exist constants $C_{1}(K), C_{2}(K)<\infty$ so that

$$
\sup _{K \cap D_{i}}|\mathbf{A}| \leq C_{1}(K), \operatorname{Area}\left(D_{i} \cap K\right)<C_{2}(K)
$$

then, up to passing to a subsequence, D_{i} converges, with finite multiplicity, a minimal surface D properly embedded in Ω.

What does a uniform bound on $|\mathbf{A}|$ imply?

What does a uniform bound on $|\mathbf{A}|$ imply?

- In general, a neighborhood of a point $p \in \mathrm{M}$ is always a graph over $T_{p} \mathrm{M}$. However, the size of such neighborhood depends on p.

What does a uniform bound on $|\mathbf{A}|$ imply?

- In general, a neighborhood of a point $p \in \mathbf{M}$ is always a graph over $T_{p} \mathrm{M}$. However, the size of such neighborhood depends on p.
- If $\sup _{\mathbf{M}}|\mathbf{A}|=\sup _{\mathbf{M}}|d \xi| \leq \mathbf{C}$ then the size of such neighborhood only depends on \mathbf{C} and NOT on p :

$$
d_{\mathbf{S}^{2}}(\xi(p), \xi(q)) \leq \int_{\gamma_{p, q}}|\nabla \xi| \leq \text { length }\left(\gamma_{p, q}\right) \sup _{\gamma_{p, q}}|\mathbf{A}| \leq R \mathbf{C}
$$

if $q \in \mathcal{B}_{R}(p)$. Take $R \mathbf{C}<\frac{\pi}{10}$.

What does a uniform bound on $|\mathbf{A}|$ imply?

- In general, a neighborhood of a point $p \in \mathrm{M}$ is always a graph over $T_{p} \mathrm{M}$. However, the size of such neighborhood depends on p.
- If $\sup _{\mathbf{M}}|\mathbf{A}|=\sup _{\mathrm{M}}|d \xi| \leq \mathbf{C}$ then the size of such neighborhood only depends on \mathbf{C} and NOT on p :

$$
d_{\mathbf{s}^{2}}(\xi(p), \xi(q)) \leq \int_{\gamma_{p, q}}|\nabla \xi| \leq \operatorname{length}\left(\gamma_{p, q}\right) \sup _{\gamma_{p, q}}|\mathbf{A}| \leq R \mathbf{C},
$$

if $q \in \mathcal{B}_{R}(p)$. Take $R \mathbf{C}<\frac{\pi}{10}$.

- Let \mathbf{u} be such graph then
- $\|\boldsymbol{u}\|_{C^{2}} \leq 10 C$

What does a uniform bound on $|\mathbf{A}|$ imply?

- In general, a neighborhood of a point $p \in \mathbf{M}$ is always a graph over $T_{p} \mathbf{M}$. However, the size of such neighborhood depends on p.
- If $\sup _{\mathbf{M}}|\mathbf{A}|=\sup _{\mathbf{M}}|d \xi| \leq \mathbf{C}$ then the size of such neighborhood only depends on \mathbf{C} and NOT on p :

$$
d_{\mathbf{S}^{2}}(\xi(p), \xi(q)) \leq \int_{\gamma_{p, q}}|\nabla \xi| \leq \text { length }\left(\gamma_{p, q}\right) \sup _{\gamma_{p, q}}|\mathbf{A}| \leq R \mathbf{C}
$$

if $q \in \mathcal{B}_{R}(p)$. Take $R \mathbf{C}<\frac{\pi}{10}$.

- Let u be such graph then
- $\|\mathbf{u}\|_{c^{2}} \leq 10 \mathbf{C}$
- if \mathbf{u} is a minimal graph then $\operatorname{div} \frac{\nabla \mathbf{u}}{\sqrt{1+|\nabla \mathbf{u}|^{2}}}=0 \Longrightarrow$ $\|\mathbf{u}\|_{C^{2, \alpha}}$ is uniformly bounded independently of p.

Proof of the well-known compactness result:

- $\sup _{D_{i}}|\mathbf{A}| \leq \mathbf{C}$ uniformly \Longrightarrow nearby a point be we have a sequence of graphs \mathbf{u}_{i} with $\left\|\mathbf{u}_{i}\right\|_{C^{2, \alpha}}$ uniformly bounded.

Proof of the well-known compactness result:

- $\sup _{D_{i}}|\mathbf{A}| \leq \mathbf{C}$ uniformly \Longrightarrow nearby a point be we have a sequence of graphs \mathbf{u}_{i} with $\left\|\mathbf{u}_{i}\right\|_{C^{2, \alpha}}$ uniformly bounded.
- Arzela-Ascoli \Longrightarrow subsequence converging C^{2} to a graph that is minimal.

Proof of the well-known compactness result:

- $\sup _{D_{i}}|\mathbf{A}| \leq \mathbf{C}$ uniformly \Longrightarrow nearby a point be we have a sequence of graphs \mathbf{u}_{i} with $\left\|\mathbf{u}_{i}\right\|_{C^{2, \alpha}}$ uniformly bounded.
- Arzela-Ascoli \Longrightarrow subsequence converging C^{2} to a graph that is minimal.
- Area bound \Longrightarrow there are finitely many of such graphs nearby p (properness).

Proof of the well-known compactness result:

- $\sup _{D_{i}}|\mathbf{A}| \leq \mathbf{C}$ uniformly \Longrightarrow nearby a point be we have a sequence of graphs \mathbf{u}_{i} with $\left\|\mathbf{u}_{i}\right\|_{C^{2, \alpha}}$ uniformly bounded.
- Arzela-Ascoli \Longrightarrow subsequence converging C^{2} to a graph that is minimal.
- Area bound \Longrightarrow there are finitely many of such graphs nearby p (properness).
- Embeddedness is preserved by the maximum principle.

Natural question:
What happens if we remove such bounds?

Minimal Lamination

A subset \mathcal{L} is a proper minimal lamination of Ω (open set) if - \mathcal{L} is relatively closed in Ω;

Minimal Lamination

A subset \mathcal{L} is a proper minimal lamination of Ω (open set) if

- \mathcal{L} is relatively closed in Ω;
- $\mathcal{L}=\bigcup_{\alpha} L_{\alpha}$ where L_{α} are connected pair-wise disjoint embedded minimal surfaces in Ω - called leaves of \mathcal{L};

Minimal Lamination

A subset \mathcal{L} is a proper minimal lamination of Ω (open set) if

- \mathcal{L} is relatively closed in Ω;
- $\mathcal{L}=\bigcup_{\alpha} L_{\alpha}$ where L_{α} are connected pair-wise disjoint embedded minimal surfaces in Ω - called leaves of \mathcal{L};
- For each $p \in \mathcal{L}$ there is an open subset U_{p} of Ω, a closed subset K_{p} of $(-1,1)$ and a Lipschitz diffeomorphism, "straightening map,"

$$
\begin{aligned}
& \psi_{p}:\left(U_{p}, p\right) \rightarrow\left(B_{1}, 0\right) \text { so } \\
& \psi_{p}\left(\mathcal{L} \cap U_{p}\right)=B_{1} \cap\left\{x_{3}=t\right\}_{t \in K_{p}}
\end{aligned}
$$

Minimal Lamination

A subset \mathcal{L} is a proper minimal lamination of Ω (open set) if

- \mathcal{L} is relatively closed in Ω;
- $\mathcal{L}=\bigcup_{\alpha} L_{\alpha}$ where L_{α} are connected pair-wise disjoint embedded minimal surfaces in Ω - called leaves of \mathcal{L};
- For each $p \in \mathcal{L}$ there is an open subset U_{p} of Ω, a closed subset K_{p} of $(-1,1)$ and a Lipschitz diffeomorphism, "straightening map,"

$$
\begin{aligned}
& \psi_{p}:\left(U_{p}, p\right) \rightarrow\left(B_{1}, 0\right) \text { so } \\
& \psi_{p}\left(\mathcal{L} \cap U_{p}\right)=B_{1} \cap\left\{x_{3}=t\right\}_{t \in K_{p}}
\end{aligned}
$$

If $\mathcal{L}=\Omega$, then this is a minimal foliation of Ω.

Well-known compactness result:

If for each K, compact subset of Ω, there is a constant $C(K)<\infty$ so that

$$
\sup _{K \cap D_{i}}|\mathbf{A}| \leq C(K)
$$

then, up to passing to a subsequence, the D_{i} converge to \mathcal{L}, a smooth minimal lamination of Ω.

In light of the previous result, we say that the curvatures of the D_{i} blow-up at $p \in \Omega$ if there is a sequence of points $p_{i} \in D_{i}$ such that

$$
p_{i} \rightarrow p \quad \text { and } \quad|\mathbf{A}|\left(p_{i}\right) \rightarrow \infty
$$

Blow-up points or singular points.
and by passing to a subsequence we may assume that there is a relatively closed subset $\mathcal{S} \subset \Omega$ such that

- the curvatures of the D_{i} blow-up at each $p \in \mathcal{S}$;
- $D_{i} \backslash \mathcal{S}$ converges on $\Omega \backslash \mathcal{S}$ to a minimal lamination \mathcal{L} of $\Omega \backslash \mathcal{S}$.

Natural question:
What sets \mathcal{S} and laminations \mathcal{L} can arise in this way?
$\frac{1}{i}$ (triply periodic minimal surface)

Rescalings of a triply periodic minimal surfaces in \mathbf{R}^{3}.
$\mathcal{S}=\mathbf{R}^{3}, \mathcal{L}=\emptyset$.
$\frac{1}{i}$ (triply periodic minimal surface)

Rescalings of a triply periodic minimal surfaces in \mathbf{R}^{3}. $\mathcal{S}=\mathbf{R}^{3}, \mathcal{L}=\emptyset$.

Let us focus on sequence of surfaces with finite topology.
$\frac{1}{i}$ (Catenoid)

Rescalings of a catenoid.
$\mathcal{S}=\overrightarrow{0}, \mathcal{L}$ has a single leaf $\{z=0\} \backslash \overrightarrow{0}$.
NB: The leaf extends smoothly to a surface in \mathbf{R}^{3}.
$\frac{1}{i}$ (Helicoid)

Rescalings of a helicoid.
$\mathcal{S}=z-$ axis, \mathcal{L} is a foliation of \mathbf{R}^{3} minus the z-axis by horizontal planes.
NB: The leaves extend smoothly to surfaces in \mathbf{R}^{3}. Likewise, the lamination \mathcal{L} extends to a proper foliation of \mathbf{R}^{3}.
$\frac{1}{i}$ (Catenoid)

Rescalings of a catenoid.
$\mathcal{S}=\overrightarrow{0}, \mathcal{L}$ has a single leaf $\{z=0\} \backslash \overrightarrow{0}$.
NB: The leaf extends smoothly to a surface in \mathbf{R}^{3}.

Theorem (Anderson, White (1985))

If the total curvatures of the surfaces D_{i}, i.e. $\int_{D_{i}}|\mathbf{A}|^{2}$, are uniformly bounded, then

- \mathcal{S} is finite;
- \mathcal{L} extends smoothly across \mathcal{S}.

If the D_{i} are disks then $\mathcal{S}=\emptyset$.

Theorem (Anderson, White (1985))
If the total curvatures of the surfaces D_{i}, i.e. $\int_{D_{i}}|\mathbf{A}|^{2}$, are uniformly bounded, then

- \mathcal{S} is finite;
- \mathcal{L} extends smoothly across \mathcal{S}.

If the D_{i} are disks then $\mathcal{S}=\emptyset$.

What if the D_{i} have unbounded total curvatures?

Theorem (Anderson, White (1985))

If the total curvatures of the surfaces D_{i}, i.e. $\int_{D_{i}}|\mathbf{A}|^{2}$, are uniformly bounded, then

- \mathcal{S} is finite;
- \mathcal{L} extends smoothly across \mathcal{S}.

If the D_{i} are disks then $\mathcal{S}=\emptyset$.

What if the D_{i} have unbounded total curvatures?

Let us assume that the D_{i} are (properly embedded) DISKS.

Key example

Rescalings of a helicoid
$\mathcal{S}=z-$ axis, \mathcal{L} is a foliation of R^{3} minus the z -axis by horizontal planes.
NB: The leaves extend smoothly to surfaces in \mathbf{R}^{3}. Likewise, the lamination \mathcal{L} extends to a proper foliation of \mathbf{R}^{3}.

Colding-Minicozzi Theory

Theorem (Colding-Minicozzi, 2004)
Suppose each D_{i} is a properly embedded disk and $\Omega=\mathbf{R}^{3}$. If $\mathcal{S} \neq \emptyset$ then

- \mathcal{L} is a foliation of $\mathbf{R}^{3} \backslash \mathcal{S}$ by parallel planes;
- \mathcal{S} is a line perpendicular to those planes. (Meeks)

The situation is very different when $\Omega \varsubsetneqq \mathbf{R}^{3}$. What can be said about the set \mathcal{S} and about the leaves of \mathcal{L} ? (reminder $D_{i} \mathrm{~s}$ are embedded DISKS)

The situation is very different when $\Omega \varsubsetneqq \mathbf{R}^{3}$.
What can be said about the set \mathcal{S} and about the leaves of \mathcal{L} ? (reminder $D_{i} s$ are embedded DISKS)

The set \mathcal{S} can be:

- a point (Colding-Minicozzi);

The situation is very different when $\Omega \varsubsetneqq \mathbf{R}^{3}$.
What can be said about the set \mathcal{S} and about the leaves of \mathcal{L} ? (reminder $D_{i} s$ are embedded DISKS)

The set \mathcal{S} can be:

- a point (Colding-Minicozzi);
- a line segment (Dean);

The situation is very different when $\Omega \varsubsetneqq \mathbf{R}^{3}$.
What can be said about the set \mathcal{S} and about the leaves of \mathcal{L} ? (reminder $D_{i} s$ are embedded DISKS)

The set \mathcal{S} can be:

- a point (Colding-Minicozzi);
- a line segment (Dean);
- an arbitrary finite subset of a line segment (Kahn);

The situation is very different when $\Omega \varsubsetneqq \mathbf{R}^{3}$.
What can be said about the set \mathcal{S} and about the leaves of \mathcal{L} ? (reminder $D_{i} \mathrm{~s}$ are embedded DISKS)

The set \mathcal{S} can be:

- a point (Colding-Minicozzi);
- a line segment (Dean);
- an arbitrary finite subset of a line segment (Kahn);
- any closed subset of the z-axis (Hoffman-White, later Kleene).
In contrast to the other constructions, Hoffman-White use variational methods which carry over to $\Omega=\mathbb{H}^{3}$.
- an arbitrary $C^{1,1}$ curve (Meeks-Weber).

Sequence of minimal annuli in a solid torus of revolution whose singular set is the central circle of the solid torus.

The set \mathcal{S} can be:

- a point (Colding-Minicozzi);
- a line segment (Dean);
- an arbitrary finite subset of a line segment (Kahn);
- any closed subset of the z-axis (Hoffman-White, later Kleene);
- an arbitrary $C^{1,1}$ curve (Meeks-Weber).

In the local case, Colding-Minicozzi (essentially) show

Theorem (Colding-Minicozzi 2004)

The structure of \mathcal{S}

- \mathcal{S} is contained in a properly embedded Lipshitz curve \mathcal{S}^{\prime} of Ω.
- For any $p \in \mathcal{S}$ there exists a leaf L such that $p \in \bar{L}$ and \bar{L} is a properly embedded minimal surface.
- If \bar{L} is a properly embedded minimal surface, and $\bar{L} \cap \mathcal{S} \neq \emptyset$, then \bar{L} meets \mathcal{S} transversely.

In the local case, Colding-Minicozzi (essentially) show

Theorem (Colding-Minicozzi 2004)

The structure of \mathcal{S}

- \mathcal{S} is contained in a properly embedded Lipshitz curve \mathcal{S}^{\prime} of Ω.
- For any $p \in \mathcal{S}$ there exists a leaf L such that $p \in \bar{L}$ and \bar{L} is a properly embedded minimal surface.
- If \bar{L} is a properly embedded minimal surface, and $\bar{L} \cap \mathcal{S} \neq \emptyset$, then \bar{L} meets \mathcal{S} transversely.
- Meeks showed that if $\mathcal{S}=\mathcal{S}^{\prime}$ (i.e., \mathcal{S} has no "gaps"), then it is a $C^{1,1}$ curve (tangent to curve is orthogonal to leaves)
- White showed that \mathcal{S} is contained in a C^{1} curve.

What can be said about the the leaves of \mathcal{L} ?

What can be said about the the leaves of \mathcal{L} ?

In all known examples, the leaves of \mathcal{L} are either disks or annuli. Indeed, if L is a leaf of an example then it can be

- a non-proper disk in $\Omega \backslash \mathcal{S}$;

What can be said about the the leaves of \mathcal{L} ?

In all known examples, the leaves of \mathcal{L} are either disks or annuli. Indeed, if L is a leaf of an example then it can be

- a non-proper disk in $\Omega \backslash \mathcal{S}$;
- a proper disk or annulus (Hoffman-White) in Ω;

What can be said about the the leaves of \mathcal{L} ?
In all known examples, the leaves of \mathcal{L} are either disks or annuli. Indeed, if L is a leaf of an example then it can be

- a non-proper disk in $\Omega \backslash \mathcal{S}$;
- a proper disk or annulus (Hoffman-White) in Ω;
- a proper annulus in $\Omega \backslash \mathcal{S}$ with $\bar{L} \cap \mathcal{S} \neq \emptyset$ and \bar{L} is a proper disk in Ω.

What can be said about the the leaves of \mathcal{L} ?
In all known examples, the leaves of \mathcal{L} are either disks or annuli. Indeed, if L is a leaf of an example then it can be

- a non-proper disk in $\Omega \backslash \mathcal{S}$;
- a proper disk or annulus (Hoffman-White) in Ω;
- a proper annulus in $\Omega \backslash \mathcal{S}$ with $\bar{L} \cap \mathcal{S} \neq \emptyset$ and \bar{L} is a proper disk in Ω.

Question (Hoffman-White)

Can a surface of genus >0 occur? A planar domain with more than two ends?

What can be said about the the leaves of \mathcal{L} ?
In all known examples, the leaves of \mathcal{L} are either disks or annuli. Indeed, if L is a leaf of an example then it can be

- a non-proper disk in $\Omega \backslash \mathcal{S}$;
- a proper disk or annulus (Hoffman-White) in Ω;
- a proper annulus in $\Omega \backslash \mathcal{S}$ with $\bar{L} \cap \mathcal{S} \neq \emptyset$ and \bar{L} is a proper disk in Ω.

Question (Hoffman-White)

Can a surface of genus >0 occur? A planar domain with more than two ends?

Answer (Bernstein-T.)

No, under natural geometric condition on Ω it cannot.

Let Ω be the interior of an oriented compact three-manifold with boundary so that:

- $\partial \Omega$ is strictly mean convex;
- There are no closed minimal surfaces in Ω.

Let Ω be the interior of an oriented compact three-manifold with boundary so that:

- $\partial \Omega$ is strictly mean convex;
- There are no closed minimal surfaces in Ω.

Theorem

Let L be a leaf of \mathcal{L} then:

- L is either a disk or an annulus.
- If \bar{L} is a properly embedded minimal surface, then L is either a puncture disk, or a disk or an annulus disjoint from \mathcal{S}.

Let Ω be the interior of an oriented compact three-manifold with boundary so that:

- $\partial \Omega$ is strictly mean convex;
- There are no closed minimal surfaces in Ω.

Theorem

Let L be a leaf of \mathcal{L} then:

- L is either a disk or an annulus.
- If \bar{L} is a properly embedded minimal surface, then L is either a puncture disk, or a disk or an annulus disjoint from \mathcal{S}.

Second bullet: Colding-Minicozzi \Longrightarrow the set of singular points meeting \bar{L} is a discrete set in \bar{L}.

Example
Example of a torus being the limit of (non-minimal) disks.

Idea of proof

- The disks D_{i} in the sequence act as an "effective" universal cover of L.

Idea of proof

- The disks D_{i} in the sequence act as an "effective" universal cover of L.
- Specifically, one can "lift" closed curves in L to curves in the D_{i}.

Idea of proof

- The disks D_{i} in the sequence act as an "effective" universal cover of L.
- Specifically, one can "lift" closed curves in L to curves in the D_{i}.
- The geometry of the D_{i} - minimally embedded and in a mean convex set - restricts the topology of the L, essentially forcing it to have abelian fundamental group.

Idea of proof

- The disks D_{i} in the sequence act as an "effective" universal cover of L.
- Specifically, one can "lift" closed curves in L to curves in the D_{i}.
- The geometry of the D_{i} - minimally embedded and in a mean convex set - restricts the topology of the L, essentially forcing it to have abelian fundamental group.
- A more complicated geometric feature we use: the conditions on Ω ensure - by a result of White - that minimal surfaces in Ω satisfy an isoperimetric inequality.

Definition

If $\gamma: S^{1} \rightarrow L$ is a piece-wise C^{1} closed curve, then γ has the closed-lift property if there exists a sequence of closed "lifts" $\gamma_{i}: S^{1} \rightarrow D_{i}$ converging to γ. Otherwise, γ has the open-lift property.

Definition

If $\gamma: S^{1} \rightarrow L$ is a piece-wise C^{1} closed curve, then γ has the closed-lift property if there exists a sequence of closed "lifts" $\gamma_{i}: S^{1} \rightarrow D_{i}$ converging to γ. Otherwise, γ has the open-lift property.

If γ is embedded so are its lifts.

Separating Lemma

If $\gamma: S^{1} \rightarrow L$ is a closed embedded curve in L with the closed lift property, then γ is separating.

Separating Lemma

If $\gamma: S^{1} \rightarrow L$ is a closed embedded curve in L with the closed lift property, then γ is separating.

Proof

- Let $\gamma_{i}: S^{1} \rightarrow D_{i}$ be a sequence of embedded closed lifts converging to γ;

Separating Lemma

If $\gamma: S^{1} \rightarrow L$ is a closed embedded curve in L with the closed lift property, then γ is separating.

Proof

- Let $\gamma_{i}: S^{1} \rightarrow D_{i}$ be a sequence of embedded closed lifts converging to γ;
- Each γ_{i} is the boundary of a close minimal disk $\Delta_{i} \subset D_{i}$;

Separating Lemma

If $\gamma: S^{1} \rightarrow L$ is a closed embedded curve in L with the closed lift property, then γ is separating.

Proof

- Let $\gamma_{i}: S^{1} \rightarrow D_{i}$ be a sequence of embedded closed lifts converging to γ;
- Each γ_{i} is the boundary of a close minimal disk $\Delta_{i} \subset D_{i}$;
- Area $\left(\Delta_{i}\right)<C_{1}$ Length $\left(\gamma_{i}\right)<C_{2}$ Length (γ);

Separating Lemma

If $\gamma: S^{1} \rightarrow L$ is a closed embedded curve in L with the closed lift property, then γ is separating.

Proof

- Let $\gamma_{i}: S^{1} \rightarrow D_{i}$ be a sequence of embedded closed lifts converging to γ;
- Each γ_{i} is the boundary of a close minimal disk $\Delta_{i} \subset D_{i}$;
- Area $\left(\Delta_{i}\right)<C_{1}$ Length $\left(\gamma_{i}\right)<C_{2}$ Length (γ);
- $\Delta_{i} \rightarrow \Delta$ in $C_{\text {loc }}^{\infty}(\Omega)$ and $\Delta \subset L \backslash \gamma$ is open and close;

Separating Lemma

If $\gamma: S^{1} \rightarrow L$ is a closed embedded curve in L with the closed lift property, then γ is separating.

Proof

- Let $\gamma_{i}: S^{1} \rightarrow D_{i}$ be a sequence of embedded closed lifts converging to γ;
- Each γ_{i} is the boundary of a close minimal disk $\Delta_{i} \subset D_{i}$;
- Area $\left(\Delta_{i}\right)<C_{1}$ Length $\left(\gamma_{i}\right)<C_{2}$ Length (γ);
- $\Delta_{i} \rightarrow \Delta$ in $C_{\text {loc }}^{\infty}(\Omega)$ and $\Delta \subset L \backslash \gamma$ is open and close;
- If γ does not separate L then $\Delta=L \backslash \gamma$;

Separating Lemma

If $\gamma: S^{1} \rightarrow L$ is a closed embedded curve in L with the closed lift property, then γ is separating.

Proof

- Let $\gamma_{i}: S^{1} \rightarrow D_{i}$ be a sequence of embedded closed lifts converging to γ;
- Each γ_{i} is the boundary of a close minimal disk $\Delta_{i} \subset D_{i}$;
- Area $\left(\Delta_{i}\right)<C_{1}$ Length $\left(\gamma_{i}\right)<C_{2}$ Length (γ);
- $\Delta_{i} \rightarrow \Delta$ in $C_{\text {loc }}^{\infty}(\Omega)$ and $\Delta \subset L \backslash \gamma$ is open and close;
- If γ does not separate L then $\Delta=L \backslash \gamma$;
- Contradiction because $\partial \Omega$ strictly mean convex implies Δ_{i} cannot get close to $\partial \Omega$.

Commutator Lemma

Let L be two-sided and let

$$
\alpha:[0,1] \rightarrow L \text { and } \beta:[0,1] \rightarrow L
$$

be closed piece-wise C^{1} Jordan curves. If α and β have the open lift property and $\alpha \cap \beta=p_{0}$ where $p_{0}=\alpha(0)=\beta(0)$, then

$$
\nu:=\alpha \circ \beta \circ \alpha^{-1} \circ \beta^{-1}
$$

has the closed lift property.

Proposition

If L is two-sided then L has genus zero.

Proposition

If L is two-sided then L has genus zero.

Proof

Otherwise,

- Let α and β be two non-separating curves in L meeting at one point.

Proposition

If L is two-sided then L has genus zero.

Proof

Otherwise,

- Let α and β be two non-separating curves in L meeting at one point.
- Each curve has the open-lift property by the separating lemma.

Proposition

If L is two-sided then L has genus zero.

Proof

Otherwise,

- Let α and β be two non-separating curves in L meeting at one point.
- Each curve has the open-lift property by the separating lemma.
- $\alpha \circ \beta \circ \alpha^{-1} \circ \beta^{-1}$ has the closed lift property but it is non-separating.

Proposition

If L is two-sided then L has genus zero.

Proof

Otherwise,

- Let α and β be two non-separating curves in L meeting at one point.
- Each curve has the open-lift property by the separating lemma.
- $\alpha \circ \beta \circ \alpha^{-1} \circ \beta^{-1}$ has the closed lift property but it is non-separating.
- Contradiction.

Proposition [No pants]

If L is two-sided then L is either a disk or an annulus.

Proposition [No pants]

If L is two-sided then L is either a disk or an annulus.

Proof

We have already shown that L must be a planar domain. Assume L is not an annulus.

Proposition [No pants]

If L is two-sided then L is either a disk or an annulus.

Proof

We have already shown that L must be a planar domain.
Assume L is not an annulus. Then,

- There exist embedded closed curves α and β separating L in 3 connected components, L_{1}, L_{2} and L_{3}.

Proposition [No pants]

If L is two-sided then L is either a disk or an annulus.

Proof

We have already shown that L must be a planar domain.
Assume L is not an annulus. Then,

- There exist embedded closed curves α and β separating L in 3 connected components, L_{1}, L_{2} and L_{3}.
- Let L_{3} be the component such that $\alpha \cup \beta \subset \partial L_{3}$ and L_{3} is not an annulus.

Proposition [No pants]

If L is two-sided then L is either a disk or an annulus.

Proof

We have already shown that L must be a planar domain.
Assume L is not an annulus. Then,

- There exist embedded closed curves α and β separating L in 3 connected components, L_{1}, L_{2} and L_{3}.
- Let L_{3} be the component such that $\alpha \cup \beta \subset \partial L_{3}$ and L_{3} is not an annulus.
- α and β must have the open lift property.

Proposition [No pants]

If L is two-sided then L is either a disk or an annulus.

Proof

We have already shown that L must be a planar domain.
Assume L is not an annulus. Then,

- There exist embedded closed curves α and β separating L in 3 connected components, L_{1}, L_{2} and L_{3}.
- Let L_{3} be the component such that $\alpha \cup \beta \subset \partial L_{3}$ and L_{3} is not an annulus.
- α and β must have the open lift property.
- Let σ be an embedded arc in L_{3} with endpoints in α and β and consider the two curves $\sigma \circ \alpha \circ \sigma^{-1}$ and β.

Proposition [No pants]

If L is two-sided then L is either a disk or an annulus.

Proof

We have already shown that L must be a planar domain.
Assume L is not an annulus. Then,

- There exist embedded closed curves α and β separating L in 3 connected components, L_{1}, L_{2} and L_{3}.
- Let L_{3} be the component such that $\alpha \cup \beta \subset \partial L_{3}$ and L_{3} is not an annulus.
- α and β must have the open lift property.
- Let σ be an embedded arc in L_{3} with endpoints in α and β and consider the two curves $\sigma \circ \alpha \circ \sigma^{-1}$ and β.
- By the Commutator Lemma $\sigma \circ \alpha \circ \sigma^{-1} \circ \beta \circ\left(\sigma \circ \alpha \circ \sigma^{-1}\right)^{-1} \circ \beta^{-1}$ has the closed lift property.
- A sequence of embedded minimal disks Δ_{i} must converge to an open and close subset of $L \backslash(\beta \circ \sigma \circ \alpha)$.

Proof

- A sequence of embedded minimal disks Δ_{i} must converge to an open and close subset of $L \backslash(\beta \circ \sigma \circ \alpha)$.
- In particular, the limit must contain either L_{1}, or L_{2} or L_{3}.

Proof

- A sequence of embedded minimal disks Δ_{i} must converge to an open and close subset of $L \backslash(\beta \circ \sigma \circ \alpha)$.
- In particular, the limit must contain either L_{1}, or L_{2} or L_{3}.
- Contradiction because $\partial \Omega$ strictly mean convex implies Δ_{i} cannot get close to $\partial \Omega$.

Proposition
A leaf L is two-sided.

Proposition

A leaf L is two-sided.
Proof

- If L is one-sided, then there is a closed non-separating curve along which L does not have well defined normal;

Proposition

A leaf L is two-sided.
Proof

- If L is one-sided, then there is a closed non-separating curve along which L does not have well defined normal;
- Non-separating \Longrightarrow lift of this curve is open;

Proposition

A leaf L is two-sided.

Proof

- If L is one-sided, then there is a closed non-separating curve along which L does not have well defined normal;
- Non-separating \Longrightarrow lift of this curve is open;
- Following lift around in a D_{i} violates either properness or embeddedness.

Understanding Geometric Conditions

Question

- Is our theorem sharp?
- To what extent can the assumptions on Ω be relaxed?

Understanding Geometric Conditions

Question

- Is our theorem sharp?
- To what extent can the assumptions on Ω be relaxed?

Let D be an embedded but NOT properly embedded minimal disk in Ω with the property that the closure, \bar{D}, of D in Ω is a proper minimal lamination of Ω. (In fact more general.)

Topology of Minimal Disk Closures

The leaves of \bar{D} behave almost identically to those of the limit leaves of a sequence of minimal disks.

Theorem

Let Ω be the interior of an oriented compact three-manifold with boundary so that:

- $\partial \Omega$ is strictly mean convex;
- There are no closed minimal surfaces in Ω.

Then each leaf L of \bar{D} is either a disk, an annulus or a Möbius band.

Sharpness

The preceding theorem is sharp in the following sense:

Sharpness

The preceding theorem is sharp in the following sense:

- There is an embedded minimal disk D that contains a Möbius band in its closure. Note: the lamination \bar{D} cannot occur as the lamination that is the limit of a sequence of minimal disks.

Sharpness

The preceding theorem is sharp in the following sense:

- There is an embedded minimal disk D that contains a Möbius band in its closure. Note: the lamination \bar{D} cannot occur as the lamination that is the limit of a sequence of minimal disks.
- There is an embedded minimal disk D whose closure contains a minimal torus in Ω.

Further Questions

Some further questions:

- To what extent are both theorems true even for regions which contain closed minimal surfaces?
- To what extent is the theorem for a sequence of minimal disks sharp? For instance, it is hard to picture a minimal torus arises in this context.

Commutator Lemma

Let L be two-sided and let

$$
\alpha:[0,1] \rightarrow L \text { and } \beta:[0,1] \rightarrow L
$$

be closed piece-wise C^{1} Jordan curves. If α and β have the open lift property and $\alpha \cap \beta=p_{0}$ where $p_{0}=\alpha(0)=\beta(0)$, then

$$
\nu:=\alpha \circ \beta \circ \alpha^{-1} \circ \beta^{-1}
$$

has the closed lift property.

Proof

Let $\alpha_{i}^{+}\left(\beta_{i}^{+}\right)$be a lift of $\alpha(\beta)$ and let $\alpha_{i}^{-}\left(\beta_{i}^{-}\right)$be a lift of $\alpha^{-1}\left(\beta^{-1}\right)$.

Proof

Let $\alpha_{i}^{+}\left(\beta_{i}^{+}\right)$be a lift of $\alpha(\beta)$ and let $\alpha_{i}^{-}\left(\beta_{i}^{-}\right)$be a lift of $\alpha^{-1}\left(\beta^{-1}\right)$.

- Using embeddedness, the graphs converging to a small neighborhood of p_{0} can be order by "height."

Proof

Let $\alpha_{i}^{+}\left(\beta_{i}^{+}\right)$be a lift of $\alpha(\beta)$ and let $\alpha_{i}^{-}\left(\beta_{i}^{-}\right)$be a lift of $\alpha^{-1}\left(\beta^{-1}\right)$.

- Using embeddedness, the graphs converging to a small neighborhood of p_{0} can be order by "height."
- If α_{i}^{+}moves "upward" m_{i} sheets, α_{i}^{-}moves "downward" m_{i} sheets.

Proof

Let $\alpha_{i}^{+}\left(\beta_{i}^{+}\right)$be a lift of $\alpha(\beta)$ and let $\alpha_{i}^{-}\left(\beta_{i}^{-}\right)$be a lift of $\alpha^{-1}\left(\beta^{-1}\right)$.

- Using embeddedness, the graphs converging to a small neighborhood of p_{0} can be order by "height."
- If α_{i}^{+}moves "upward" m_{i} sheets, α_{i}^{-}moves "downward" m_{i} sheets.
- If β_{i}^{+}moves "upward" n_{i} sheets, β_{i}^{-}moves "downward" n_{i} sheets.

