The topology of limits of embedded minimal disks. (joint work with Jacob Bernstein)

Giuseppe Tinaglia King's College London

- Notations;
- Background;
- Main result;
- Possible questions;
- Another proof.

Let **M** be an oriented surface in \mathbb{R}^3 , let ξ be the unit vector field normal to **M**:

$$\mathbf{A} = -d\xi \colon T_{\rho}\mathbf{M} \to T_{\xi(\rho)}\mathbf{S}^2 \simeq T_{\rho}\mathbf{M}$$

is the shape operator of M.

Definition

- The eigenvalues k₁, k₂ of A_p are the principal curvatures of M at p.
- $\mathbf{H} = \frac{1}{2} \operatorname{tr}(\mathbf{A}) = \frac{k_1 + k_2}{2}$ is the mean curvature.
- $|\mathbf{A}| = \sqrt{k_1^2 + k_2^2}$ is the norm of the second fundamental form.

Minimal Surface: critical points for the area functional.

 $\mathbf{H} = \mathbf{0}$

Surface given as a graph of a function

•
$$\frac{|\text{Hess}(u)|^2}{(1+|\nabla u|^2)^2} \le |\mathbf{A}|^2 \le 2\frac{|\text{Hess}(u)|^2}{1+|\nabla u|^2}$$

Minimal Graph

$$0 = \operatorname{div} rac{
abla \mathbf{u}}{\sqrt{1+|
abla \mathbf{u}|^2}} \quad \operatorname{Qu}$$

Quasi-linear elliptic PDE

Motivational Question:

What classes of smooth minimal surfaces have good (pre-)compactness properties?

Suppose

• $\Omega_1 \subset \Omega_2 \subset \Omega_3 \subset \ldots$ are open subsets of \mathbb{R}^3 ; $\Omega = \bigcup_i \Omega_i$. (take $\Omega_i = \Omega$)

Suppose

- $\Omega_1 \subset \Omega_2 \subset \Omega_3 \subset \ldots$ are open subsets of \mathbb{R}^3 ; $\Omega = \bigcup_i \Omega_i$. (take $\Omega_i = \Omega$)
- $D_i \subset \Omega_i$ is a sequence of properly (relatively closed, $\overline{D}_i = D_i$) embedded minimal surfaces.

Suppose

- $\Omega_1 \subset \Omega_2 \subset \Omega_3 \subset \ldots$ are open subsets of \mathbb{R}^3 ; $\Omega = \bigcup_i \Omega_i$. (take $\Omega_i = \Omega$)
- $D_i \subset \Omega_i$ is a sequence of properly (relatively closed, $\overline{D}_i = D_i$) embedded minimal surfaces.

Well-known compactness result:

If for each K, compact subset of Ω , there exist constants $C_1(K), C_2(K) < \infty$ so that

$$\sup_{K \cap D_i} |\mathsf{A}| \leq C_1(K), \operatorname{Area}(D_i \cap K) < C_2(K)$$

then, up to passing to a subsequence, D_i converges, with finite multiplicity, a minimal surface D properly embedded in Ω .

What does a uniform bound on $|\mathbf{A}|$ imply?

In general, a neighborhood of a point p ∈ M is always a graph over T_pM. However, the size of such neighborhood depends on p.

- In general, a neighborhood of a point p ∈ M is always a graph over T_pM. However, the size of such neighborhood depends on p.
- If sup_M |A| = sup_M |dξ| ≤ C then the size of such neighborhood only depends on C and NOT on p:

$$d_{\mathsf{S}^2}(\xi(p),\xi(q)) \leq \int_{\gamma_{p,q}} |\nabla\xi| \leq \operatorname{length}(\gamma_{p,q}) \sup_{\gamma_{p,q}} |\mathsf{A}| \leq R\mathsf{C},$$

if $q \in \mathcal{B}_R(p)$. Take $R\mathbf{C} < rac{\pi}{10}$.

- In general, a neighborhood of a point p ∈ M is always a graph over T_pM. However, the size of such neighborhood depends on p.
- If sup_M |A| = sup_M |dξ| ≤ C then the size of such neighborhood only depends on C and NOT on p:

$$d_{\mathsf{S}^2}(\xi(p),\xi(q)) \leq \int_{\gamma_{p,q}} |\nabla\xi| \leq length(\gamma_{p,q}) \sup_{\gamma_{p,q}} |\mathsf{A}| \leq R\mathsf{C},$$

- if $q \in \mathcal{B}_R(p)$. Take $R\mathbf{C} < rac{\pi}{10}$.
- Let **u** be such graph then
 - $\|\mathbf{u}\|_{C^2} \le 10\mathbf{C}$

- In general, a neighborhood of a point p ∈ M is always a graph over T_pM. However, the size of such neighborhood depends on p.
- If sup_M |A| = sup_M |dξ| ≤ C then the size of such neighborhood only depends on C and NOT on p:

$$d_{\mathsf{S}^2}(\xi(p),\xi(q)) \leq \int_{\gamma_{p,q}} |
abla\xi| \leq \textit{length}(\gamma_{p,q}) \sup_{\gamma_{p,q}} |\mathsf{A}| \leq R\mathsf{C},$$

- if $q \in \mathcal{B}_R(p)$. Take $R\mathbf{C} < rac{\pi}{10}$.
- $\bullet~$ Let u~ be such graph then
 - $\|\mathbf{u}\|_{C^2} \leq 10\mathbf{C}$
 - if **u** is a minimal graph then div $\frac{\nabla \mathbf{u}}{\sqrt{1+|\nabla \mathbf{u}|^2}} = 0 \implies$ $\|\mathbf{u}\|_{C^{2,\alpha}}$ is uniformly bounded independently of p.

• $\sup_{D_i} |\mathbf{A}| \leq \mathbf{C}$ uniformly \implies nearby a point be we have a sequence of graphs \mathbf{u}_i with $\|\mathbf{u}_i\|_{C^{2,\alpha}}$ uniformly bounded.

- $\sup_{D_i} |\mathbf{A}| \leq \mathbf{C}$ uniformly \implies nearby a point be we have a sequence of graphs \mathbf{u}_i with $\|\mathbf{u}_i\|_{C^{2,\alpha}}$ uniformly bounded.
- Arzela-Ascoli \implies subsequence converging C^2 to a graph that is minimal.

- $\sup_{D_i} |\mathbf{A}| \leq \mathbf{C}$ uniformly \implies nearby a point be we have a sequence of graphs \mathbf{u}_i with $\|\mathbf{u}_i\|_{C^{2,\alpha}}$ uniformly bounded.
- Arzela-Ascoli \implies subsequence converging C^2 to a graph that is minimal.
- Area bound ⇒ there are finitely many of such graphs nearby p (properness).

- $\sup_{D_i} |\mathbf{A}| \leq \mathbf{C}$ uniformly \implies nearby a point be we have a sequence of graphs \mathbf{u}_i with $\|\mathbf{u}_i\|_{C^{2,\alpha}}$ uniformly bounded.
- Arzela-Ascoli \implies subsequence converging C^2 to a graph that is minimal.
- Area bound ⇒ there are finitely many of such graphs nearby p (properness).
- Embeddedness is preserved by the maximum principle.

Natural question:

What happens if we remove such bounds?

A subset ${\mathcal L}$ is a proper minimal lamination of Ω (open set) if

• \mathcal{L} is relatively closed in Ω ;

A subset \mathcal{L} is a proper minimal lamination of Ω (open set) if

- \mathcal{L} is relatively closed in Ω ;
- *L* = ⋃_α *L*_α where *L*_α are connected pair-wise disjoint embedded minimal surfaces in Ω − called *leaves* of *L*;

A subset \mathcal{L} is a proper minimal lamination of Ω (open set) if

- \mathcal{L} is relatively closed in Ω ;
- $\mathcal{L} = \bigcup_{\alpha} L_{\alpha}$ where L_{α} are connected pair-wise disjoint embedded minimal surfaces in Ω called *leaves* of \mathcal{L} ;
- For each p ∈ L there is an open subset U_p of Ω, a closed subset K_p of (-1, 1) and a Lipschitz diffeomorphism, "straightening map,"
 ψ_p: (U_p, p) → (B₁, 0) so ψ_p(L ∩ U_p) = B₁ ∩ {x₃ = t}_{t∈K_p}.

A subset \mathcal{L} is a proper minimal lamination of Ω (open set) if

- \mathcal{L} is relatively closed in Ω ;
- $\mathcal{L} = \bigcup_{\alpha} L_{\alpha}$ where L_{α} are connected pair-wise disjoint embedded minimal surfaces in Ω called *leaves* of \mathcal{L} ;
- For each p ∈ L there is an open subset U_p of Ω, a closed subset K_p of (-1, 1) and a Lipschitz diffeomorphism, "straightening map,"

$$\psi_{p}: (U_{p}, p) \to (B_{1}, 0) \text{ so}$$

$$\psi_{p}(\mathcal{L} \cap U_{p}) = B_{1} \cap \{x_{3} = t\}_{t \in K_{p}}$$

If $\mathcal{L} = \Omega$, then this is a *minimal foliation* of Ω .

Well-known compactness result:

If for each K, compact subset of Ω , there is a constant $C(K) < \infty$ so that

 $\sup_{K\cap D_i} |\mathbf{A}| \leq C(K),$

then, up to passing to a subsequence, the D_i converge to \mathcal{L} , a smooth minimal lamination of Ω .

In light of the previous result, we say that the curvatures of the D_i blow-up at $p \in \Omega$ if there is a sequence of points $p_i \in D_i$ such that

$$p_i
ightarrow p$$
 and $|\mathbf{A}|(p_i)
ightarrow \infty$.

Blow-up points or **singular points**.

and by passing to a subsequence we may assume that there is a relatively closed subset $\mathcal{S}\subset\Omega$ such that

- the curvatures of the D_i blow-up at each $p \in S$;
- $D_i \setminus S$ converges on $\Omega \setminus S$ to a minimal lamination \mathcal{L} of $\Omega \setminus S$.

Natural question:

What sets ${\mathcal S}$ and laminations ${\mathcal L}$ can arise in this way?

$\frac{1}{i}$ (triply periodic minimal surface)

Rescalings of a triply periodic minimal surfaces in \mathbb{R}^3 . $\mathcal{S} = \mathbb{R}^3$, $\mathcal{L} = \emptyset$.

$\frac{1}{i}$ (triply periodic minimal surface)

Rescalings of a triply periodic minimal surfaces in \mathbb{R}^3 . $\mathcal{S} = \mathbb{R}^3$, $\mathcal{L} = \emptyset$.

Let us focus on sequence of surfaces with finite topology.

$\frac{1}{i}$ (Catenoid)

Rescalings of a catenoid. $S = \vec{0}, L$ has a single leaf $\{z = 0\} \setminus \vec{0}$. **NB:** The leaf extends smoothly to a surface in \mathbb{R}^3 .

Rescalings of a helicoid.

S = z - axis, \mathcal{L} is a foliation of \mathbb{R}^3 minus the z-axis by horizontal planes.

NB: The leaves extend smoothly to surfaces in \mathbb{R}^3 . Likewise, the lamination \mathcal{L} extends to a proper foliation of \mathbb{R}^3 .

$\frac{1}{i}$ (Catenoid)

Rescalings of a catenoid. $S = \vec{0}, L$ has a single leaf $\{z = 0\} \setminus \vec{0}$. **NB:** The leaf extends smoothly to a surface in \mathbb{R}^3 .

Theorem (Anderson, White (1985))

If the total curvatures of the surfaces D_i , i.e. $\int_{D_i} |\mathbf{A}|^2$, are uniformly bounded, then

- S is finite;
- \mathcal{L} extends smoothly across \mathcal{S} .

If the D_i are disks then $S = \emptyset$.

Theorem (Anderson, White (1985))

If the total curvatures of the surfaces D_i , i.e. $\int_{D_i} |\mathbf{A}|^2$, are uniformly bounded, then

- S is finite;
- \mathcal{L} extends smoothly across \mathcal{S} .

If the D_i are disks then $S = \emptyset$.

What if the D_i have unbounded total curvatures?

Theorem (Anderson, White (1985))

If the total curvatures of the surfaces D_i , i.e. $\int_{D_i} |\mathbf{A}|^2$, are uniformly bounded, then

- S is finite;
- \mathcal{L} extends smoothly across \mathcal{S} .

If the D_i are disks then $S = \emptyset$.

What if the D_i have unbounded total curvatures?

Let us assume that the D_i are (properly embedded) DISKS.
Key example

Rescalings of a helicoid S = z - axis, \mathcal{L} is a foliation of \mathbb{R}^3 minus the z-axis by horizontal planes.

NB: The leaves extend smoothly to surfaces in \mathbb{R}^3 . Likewise, the lamination \mathcal{L} extends to a proper foliation of \mathbb{R}^3 .

Colding-Minicozzi Theory

Theorem (Colding-Minicozzi, 2004)

Suppose each D_i is a properly embedded disk and $\Omega = \mathbb{R}^3$. If $S \neq \emptyset$ then

- \mathcal{L} is a foliation of $\mathbb{R}^3 \setminus \mathcal{S}$ by parallel planes;
- \mathcal{S} is a line perpendicular to those planes. (Meeks)

The set \mathcal{S} can be:

• a point (Colding-Minicozzi);

The set $\mathcal S$ can be:

- a point (Colding-Minicozzi);
- a line segment (Dean);

The set $\mathcal S$ can be:

- a point (Colding-Minicozzi);
- a line segment (Dean);
- an arbitrary finite subset of a line segment (Kahn);

The set ${\mathcal S}$ can be:

- a point (Colding-Minicozzi);
- a line segment (Dean);
- an arbitrary finite subset of a line segment (Kahn);
- any closed subset of the z-axis (Hoffman-White, later Kleene).

In contrast to the other constructions, Hoffman-White use variational methods which carry over to $\Omega = \mathbb{H}^3$.

• an arbitrary $C^{1,1}$ curve (Meeks-Weber).

Sequence of minimal annuli in a solid torus of revolution whose singular set is the central circle of the solid torus.

The set $\mathcal S$ can be:

- a point (Colding-Minicozzi);
- a line segment (Dean);
- an arbitrary finite subset of a line segment (Kahn);
- any closed subset of the z-axis (Hoffman-White, later Kleene);
- an arbitrary $C^{1,1}$ curve (Meeks-Weber).

In the local case, Colding-Minicozzi (essentially) show

Theorem (Colding-Minicozzi 2004)

The structure of ${\mathcal S}$

- S is contained in a properly embedded Lipshitz curve S' of Ω.
- For any p ∈ S there exists a leaf L such that p ∈ L and L
 is a properly embedded minimal surface.
- If \overline{L} is a properly embedded minimal surface, and $\overline{L} \cap S \neq \emptyset$, then \overline{L} meets S transversely.

In the local case, Colding-Minicozzi (essentially) show

Theorem (Colding-Minicozzi 2004)

The structure of ${\mathcal S}$

- S is contained in a properly embedded Lipshitz curve S' of Ω.
- For any $p \in S$ there exists a leaf L such that $p \in \overline{L}$ and \overline{L} is a properly embedded minimal surface.
- If \overline{L} is a properly embedded minimal surface, and $\overline{L} \cap S \neq \emptyset$, then \overline{L} meets S transversely.
- Meeks showed that if S = S' (i.e., S has no "gaps"), then it is a $C^{1,1}$ curve (tangent to curve is orthogonal to leaves)
- White showed that \mathcal{S} is contained in a C^1 curve.

What can be said about the the leaves of \mathcal{L} ?

• a non-proper disk in $\Omega \setminus S$;

- a non-proper disk in $\Omega \setminus \mathcal{S}$;
- a proper disk or annulus (Hoffman-White) in Ω ;

- a non-proper disk in $\Omega \setminus S$;
- a proper disk or annulus (Hoffman-White) in Ω ;
- a proper annulus in $\Omega \setminus S$ with $\overline{L} \cap S \neq \emptyset$ and \overline{L} is a proper disk in Ω .

- a non-proper disk in $\Omega \setminus \mathcal{S}$;
- a proper disk or annulus (Hoffman-White) in Ω ;
- a proper annulus in $\Omega \setminus S$ with $\overline{L} \cap S \neq \emptyset$ and \overline{L} is a proper disk in Ω .

Question (Hoffman-White)

Can a surface of genus> 0 occur? A planar domain with more than two ends?

- a non-proper disk in $\Omega \setminus \mathcal{S}$;
- a proper disk or annulus (Hoffman-White) in Ω;
- a proper annulus in $\Omega \setminus S$ with $\overline{L} \cap S \neq \emptyset$ and \overline{L} is a proper disk in Ω .

Question (Hoffman-White)

Can a surface of genus> 0 *occur? A planar domain with more than two ends?*

Answer (Bernstein-T.)

No, under natural geometric condition on $\boldsymbol{\Omega}$ it cannot.

Let $\boldsymbol{\Omega}$ be the interior of an oriented compact three-manifold with boundary so that:

- $\partial \Omega$ is strictly mean convex;
- \bullet There are no closed minimal surfaces in $\Omega.$

Let $\boldsymbol{\Omega}$ be the interior of an oriented compact three-manifold with boundary so that:

- $\partial \Omega$ is strictly mean convex;
- There are no closed minimal surfaces in Ω .

Theorem

Let L be a leaf of \mathcal{L} then:

- L is either a disk or an annulus.
- If *L* is a properly embedded minimal surface, then *L* is either a puncture disk, or a disk or an annulus disjoint from S.

Let $\boldsymbol{\Omega}$ be the interior of an oriented compact three-manifold with boundary so that:

- $\partial \Omega$ is strictly mean convex;
- There are no closed minimal surfaces in Ω .

Theorem

Let L be a leaf of \mathcal{L} then:

- L is either a disk or an annulus.
- If *L* is a properly embedded minimal surface, then *L* is either a puncture disk, or a disk or an annulus disjoint from S.

Second bullet: Colding-Minicozzi \implies the set of singular points meeting \overline{L} is a discrete set in \overline{L} .

Example

Example of a torus being the limit of (non-minimal) disks.

• The disks *D_i* in the sequence act as an "effective" universal cover of *L*.

- The disks *D_i* in the sequence act as an "effective" universal cover of *L*.
- Specifically, one can "lift" closed curves in *L* to curves in the *D_i*.

- The disks D_i in the sequence act as an "effective" universal cover of L.
- Specifically, one can "lift" closed curves in *L* to curves in the *D_i*.
- The geometry of the D_i minimally embedded and in a mean convex set restricts the topology of the L, essentially forcing it to have abelian fundamental group.

- The disks D_i in the sequence act as an "effective" universal cover of L.
- Specifically, one can "lift" closed curves in *L* to curves in the *D_i*.
- The geometry of the D_i minimally embedded and in a mean convex set – restricts the topology of the L, essentially forcing it to have abelian fundamental group.
- A more complicated geometric feature we use: the conditions on Ω ensure – by a result of White – that minimal surfaces in Ω satisfy an isoperimetric inequality.

Definition

If $\gamma: S^1 \to L$ is a piece-wise C^1 closed curve, then γ has the *closed-lift property* if there exists a sequence of closed "lifts" $\gamma_i: S^1 \to D_i$ converging to γ . Otherwise, γ has the *open-lift property*.

Definition

If $\gamma: S^1 \to L$ is a piece-wise C^1 closed curve, then γ has the *closed-lift property* if there exists a sequence of closed "lifts" $\gamma_i: S^1 \to D_i$ converging to γ . Otherwise, γ has the *open-lift property*.

If γ is embedded so are its lifts.

If $\gamma: S^1 \to L$ is a closed embedded curve in L with the closed lift property, then γ is separating.

If $\gamma \colon S^1 \to L$ is a closed embedded curve in L with the closed lift property, then γ is separating.

Proof

Let γ_i: S¹ → D_i be a sequence of embedded closed lifts converging to γ;

If $\gamma: S^1 \to L$ is a closed embedded curve in L with the closed lift property, then γ is separating.

- Let γ_i: S¹ → D_i be a sequence of embedded closed lifts converging to γ;
- Each γ_i is the boundary of a close minimal disk $\Delta_i \subset D_i$;

If $\gamma: S^1 \to L$ is a closed embedded curve in L with the closed lift property, then γ is separating.

- Let γ_i: S¹ → D_i be a sequence of embedded closed lifts converging to γ;
- Each γ_i is the boundary of a close minimal disk $\Delta_i \subset D_i$;
- $Area(\Delta_i) < C_1Length(\gamma_i) < C_2Length(\gamma);$

If $\gamma: S^1 \to L$ is a closed embedded curve in L with the closed lift property, then γ is separating.

- Let γ_i: S¹ → D_i be a sequence of embedded closed lifts converging to γ;
- Each γ_i is the boundary of a close minimal disk $\Delta_i \subset D_i$;
- $Area(\Delta_i) < C_1Length(\gamma_i) < C_2Length(\gamma);$
- $\Delta_i \rightarrow \Delta$ in $C^{\infty}_{loc}(\Omega)$ and $\Delta \subset L \setminus \gamma$ is open and close;

If $\gamma: S^1 \to L$ is a closed embedded curve in L with the closed lift property, then γ is separating.

- Let γ_i: S¹ → D_i be a sequence of embedded closed lifts converging to γ;
- Each γ_i is the boundary of a close minimal disk $\Delta_i \subset D_i$;
- $Area(\Delta_i) < C_1Length(\gamma_i) < C_2Length(\gamma);$
- $\Delta_i \rightarrow \Delta$ in $C^{\infty}_{loc}(\Omega)$ and $\Delta \subset L \setminus \gamma$ is open and close;
- If γ does not separate L then $\Delta = L \setminus \gamma$;

If $\gamma: S^1 \to L$ is a closed embedded curve in L with the closed lift property, then γ is separating.

- Let γ_i: S¹ → D_i be a sequence of embedded closed lifts converging to γ;
- Each γ_i is the boundary of a close minimal disk $\Delta_i \subset D_i$;
- Area $(\Delta_i) < C_1 Length(\gamma_i) < C_2 Length(\gamma);$
- $\Delta_i \rightarrow \Delta$ in $C^{\infty}_{loc}(\Omega)$ and $\Delta \subset L \setminus \gamma$ is open and close;
- If γ does not separate L then $\Delta = L \setminus \gamma$;
- Contradiction because ∂Ω strictly mean convex implies Δ_i cannot get close to ∂Ω.

Commutator Lemma

Let L be two-sided and let

$$\alpha: [\mathbf{0},\mathbf{1}] \rightarrow L \text{ and } \beta: [\mathbf{0},\mathbf{1}] \rightarrow L$$

be closed piece-wise C^1 Jordan curves. If α and β have the open lift property and $\alpha \cap \beta = p_0$ where $p_0 = \alpha(0) = \beta(0)$, then

$$\nu := \alpha \circ \beta \circ \alpha^{-1} \circ \beta^{-1}$$

has the closed lift property.

Proposition

If L is two-sided then L has genus zero.
If L is two-sided then L has genus zero.

Proof

Otherwise,

• Let α and β be two non-separating curves in L meeting at one point.

If L is two-sided then L has genus zero.

Proof

Otherwise,

- Let α and β be two non-separating curves in L meeting at one point.
- Each curve has the open-lift property by the separating lemma.

If L is two-sided then L has genus zero.

Proof

Otherwise,

- Let α and β be two non-separating curves in L meeting at one point.
- Each curve has the open-lift property by the separating lemma.
- $\alpha \circ \beta \circ \alpha^{-1} \circ \beta^{-1}$ has the closed lift property but it is non-separating.

If L is two-sided then L has genus zero.

Proof

Otherwise,

- Let α and β be two non-separating curves in L meeting at one point.
- Each curve has the open-lift property by the separating lemma.
- $\alpha \circ \beta \circ \alpha^{-1} \circ \beta^{-1}$ has the closed lift property but it is non-separating.
- Contradiction.

If L is two-sided then L is either a disk or an annulus.

If L is two-sided then L is either a disk or an annulus.

Proof

If L is two-sided then L is either a disk or an annulus.

Proof

We have already shown that L must be a planar domain. Assume L is not an annulus. Then,

 There exist embedded closed curves α and β separating L in 3 connected components, L₁,L₂ and L₃.

If L is two-sided then L is either a disk or an annulus.

Proof

- There exist embedded closed curves α and β separating L in 3 connected components, L_1, L_2 and L_3 .
- Let L₃ be the component such that α ∪ β ⊂ ∂L₃ and L₃ is not an annulus.

If L is two-sided then L is either a disk or an annulus.

Proof

- There exist embedded closed curves α and β separating L in 3 connected components, L_1, L_2 and L_3 .
- Let L₃ be the component such that α ∪ β ⊂ ∂L₃ and L₃ is not an annulus.
- α and β must have the open lift property.

If L is two-sided then L is either a disk or an annulus.

Proof

- There exist embedded closed curves α and β separating L in 3 connected components, L_1, L_2 and L_3 .
- Let L₃ be the component such that α ∪ β ⊂ ∂L₃ and L₃ is not an annulus.
- α and β must have the open lift property.
- Let σ be an embedded arc in L_3 with endpoints in α and β and consider the two curves $\sigma \circ \alpha \circ \sigma^{-1}$ and β .

If L is two-sided then L is either a disk or an annulus.

Proof

- There exist embedded closed curves α and β separating L in 3 connected components, L_1, L_2 and L_3 .
- Let L₃ be the component such that α ∪ β ⊂ ∂L₃ and L₃ is not an annulus.
- α and β must have the open lift property.
- Let σ be an embedded arc in L_3 with endpoints in α and β and consider the two curves $\sigma \circ \alpha \circ \sigma^{-1}$ and β .
- By the Commutator Lemma $\sigma \circ \alpha \circ \sigma^{-1} \circ \beta \circ (\sigma \circ \alpha \circ \sigma^{-1})^{-1} \circ \beta^{-1}$ has the closed lift property.

 A sequence of embedded minimal disks Δ_i must converge to an open and close subset of L \ (β ∘ σ ∘ α).

- A sequence of embedded minimal disks Δ_i must converge to an open and close subset of L \ (β ∘ σ ∘ α).
- In particular, the limit must contain either L_1 , or L_2 or L_3 .

- A sequence of embedded minimal disks Δ_i must converge to an open and close subset of L \ (β ∘ σ ∘ α).
- In particular, the limit must contain either L_1 , or L_2 or L_3 .
- Contradiction because ∂Ω strictly mean convex implies Δ_i cannot get close to ∂Ω.

A leaf L is two-sided.

A leaf L is two-sided.

Proof

• If *L* is one-sided, then there is a closed non-separating curve along which *L* does not have well defined normal;

A leaf L is two-sided.

Proof

- If *L* is one-sided, then there is a closed non-separating curve along which *L* does not have well defined normal;
- Non-separating \implies lift of this curve is open;

A leaf L is two-sided.

Proof

- If *L* is one-sided, then there is a closed non-separating curve along which *L* does not have well defined normal;
- Non-separating \implies lift of this curve is open;
- Following lift around in a *D_i* violates either properness or embeddedness.

Understanding Geometric Conditions

Question

- Is our theorem sharp?
- To what extent can the assumptions on Ω be relaxed?

Understanding Geometric Conditions

Question

- Is our theorem sharp?
- To what extent can the assumptions on Ω be relaxed?

Let D be an embedded but NOT properly embedded minimal disk in Ω with the property that the closure, \overline{D} , of D in Ω is a proper minimal lamination of Ω . (In fact more general.)

Topology of Minimal Disk Closures

The leaves of \overline{D} behave almost identically to those of the limit leaves of a sequence of minimal disks.

Theorem

Let Ω be the interior of an oriented compact three-manifold with boundary so that:

- $\partial \Omega$ is strictly mean convex;
- There are no closed minimal surfaces in Ω .

Then each leaf L of \overline{D} is either a disk, an annulus or a Möbius band.

Sharpness

The preceding theorem is sharp in the following sense:

Sharpness

The preceding theorem is sharp in the following sense:

• There is an embedded minimal disk *D* that contains a Möbius band in its closure. Note: the lamination \bar{D} cannot occur as the lamination that is the limit of a sequence of minimal disks.

Sharpness

The preceding theorem is sharp in the following sense:

- There is an embedded minimal disk *D* that contains a Möbius band in its closure. Note: the lamination \bar{D} cannot occur as the lamination that is the limit of a sequence of minimal disks.
- There is an embedded minimal disk *D* whose closure contains a minimal torus in Ω.

Further Questions

Some further questions:

- To what extent are both theorems true even for regions which contain closed minimal surfaces?
- To what extent is the theorem for a sequence of minimal disks sharp? For instance, it is hard to picture a minimal torus arises in this context.

Commutator Lemma

Let L be two-sided and let

$$\alpha: [\mathbf{0},\mathbf{1}] \rightarrow L \text{ and } \beta: [\mathbf{0},\mathbf{1}] \rightarrow L$$

be closed piece-wise C^1 Jordan curves. If α and β have the open lift property and $\alpha \cap \beta = p_0$ where $p_0 = \alpha(0) = \beta(0)$, then

$$\nu := \alpha \circ \beta \circ \alpha^{-1} \circ \beta^{-1}$$

has the closed lift property.

Let α_i^+ (β_i^+) be a lift of α (β) and let α_i^- (β_i^-) be a lift of α^{-1} (β^{-1}).

Let α_i^+ (β_i^+) be a lift of α (β) and let α_i^- (β_i^-) be a lift of α^{-1} (β^{-1}).

 Using embeddedness, the graphs converging to a small neighborhood of p₀ can be order by "height."

Let α_i^+ (β_i^+) be a lift of α (β) and let α_i^- (β_i^-) be a lift of α^{-1} (β^{-1}).

- Using embeddedness, the graphs converging to a small neighborhood of p₀ can be order by "height."
- If α⁺_i moves "upward" m_i sheets, α⁻_i moves "downward" m_i sheets.

Let α_i^+ (β_i^+) be a lift of α (β) and let α_i^- (β_i^-) be a lift of α^{-1} (β^{-1}).

- Using embeddedness, the graphs converging to a small neighborhood of p₀ can be order by "height."
- If α_i⁺ moves "upward" m_i sheets, α_i⁻ moves "downward" m_i sheets.
- If β_i⁺ moves "upward" n_i sheets, β_i⁻ moves "downward" n_i sheets.