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Let M be an oriented surface in R3, let ¢ be the unit vector
field normal to M:

A=—dé: T,M = TS ~ T,M

is the shape operator of M.




Definition

o The eigenvalues ki, k, of A, are the principal
curvatures of M at p.

o H = ltr(A) = 4$® is the mean curvature.

o |A| = \/k? + k3 is the norm of the second
fundamental form.

Minimal Surface: critical points for the area functional.




Surface given as a graph of a function

|Hess(u)|? 2 |Hess(u)|?
(1+|Vul?)? < |A| <2 1+|Vul?

v

Minimal Graph

o 0 =div—"_  Quasi-linear elliptic PDE
1+|Vu|?




Motivational Question:

What classes of smooth minimal surfaces have good
(pre-)compactness properties?
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D; = D;) embedded minimal surfaces.
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Well-known compactness result:

If for each K, compact subset of €2, there exist constants
G (K), G(K) < oo so that

sup |A| < Gi(K),Area(D; N K) < G(K)

KND;

then, up to passing to a subsequence, D; converges, with finite
multiplicity, a minimal surface D properly embedded in .
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What does a uniform bound on |A| imply? )

e In general, a neighborhood of a point p € M is always a
graph over T,M. However, the size of such neighborhood
depends on p.

o If supy |A| = supy, |d€| < C then the size of such
neighborhood only depends on C and NOT on p:

dse(€(p). (@) < [ V€] < length(y,.) sup |A| < RC.
Yp,q Yp,q
if g € Br(p). Take RC < {5.
@ Let u be such graph then
o |lullc: < 10C

o o . 2 Vu —
o if uis a minimal graph then dlv\/m =0 —

|lu]| c2.« is uniformly bounded independently of p.
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Proof of the well-known compactness result:

@ supp, |A| < C uniformly = nearby a point be we have
a sequence of graphs u; with ||u;||c2.« uniformly bounded.

o Arzela-Ascoli = subsequence converging C? to a graph
that is minimal.

e Area bound = there are finitely many of such graphs
nearby p (properness).

o Embeddedness is preserved by the maximum principle.




Natural question:
What happens if we remove such bounds?
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Minimal Lamination

A subset L is a proper minimal lamination of Q2 (open set) if

e L is relatively closed in Q;

o L=J, Lo where L, are connected pair-wise disjoint
embedded minimal surfaces in Q — called leaves of L;

o For each p € L there is an open subset U, of €2, a closed
subset K, of (—1,1) and a Lipschitz diffeomorphism,
“straightening map,”

Yp : (Up, p) — (Bi,0) so
¢p(£ N Up) =BN {X3 = t}ter-
If £ =Q, then this is a minimal foliation of Q.







Well-known compactness result:

If for each K, compact subset of €2, there is a constant
C(K) < oo so that

sup |A] < C(K),

KND;

then, up to passing to a subsequence, the D; converge to L, a
smooth minimal lamination of €2.




In light of the previous result,
we say that the curvatures of the D; blow-up at p € Q if there
is a sequence of points p; € D; such that

pi — p and |A|(p;) — oo.

Blow-up points or singular points.




and by passing to a subsequence we may assume that there is
a relatively closed subset S C €2 such that

e the curvatures of the D; blow-up at each p € S;

o D;\ S converges on 2\ S to a minimal lamination £ of
Q\S.




Natural question:
What sets S and laminations £ can arise in this way?
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X (triply periodic minimal surface)

Rescalings of a triply periodic minimal surfaces in R3.
S=R3L=0.

Let us focus on sequence of surfaces with finite topology.

)
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Theorem (Anderson, White (1985))

If the total curvatures of the surfaces D;, i.e. f o |A
uniformly bounded, then

2 are

o S is finite;
e L extends smoothly across S.
If the D; are disks then S = ().

v

What if the D; have unbounded total curvatures? J

Let us assume that the D; are (properly embedded) DISKS. ]




Key example

Rescalings of a helicoid

S = z — axis, L is a foliation of R3 minus the z-axis by
horizontal planes.

NB: The leaves extend smoothly to surfaces in R3. Likewise,
the lamination £ extends to a proper foliation of R3.




Colding-Minicozzi Theory

Theorem (Colding-Minicozzi, 2004)

Suppose each D; is a properly embedded disk and Q = R3. If
S # () then

o L is a foliation of R®\ S by parallel planes;
o S is a line perpendicular to those planes. (Meeks)
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The situation is very different when Q & R>.
What can be said about the set S and about the leaves of £7?
(reminder D;s are embedded DISKS)

The set S can be:

e a point (Colding-Minicozzi);

e a line segment (Dean);

e an arbitrary finite subset of a line segment (Kahn);

e any closed subset of the z-axis (Hoffman-White, later

Kleene).

In contrast to the other constructions, Hoffman-White use
variational methods which carry over to Q = H3.




e an arbitrary C*! curve (Meeks-Weber).

Sequence of minimal annuli in a solid torus of revolution
whose singular set is the central circle of the solid torus.




The set S can be:

e a point (Colding-Minicozzi);

e a line segment (Dean);

e an arbitrary finite subset of a line segment (Kahn);

e any closed subset of the z-axis (Hoffman-White, later
Kleene);

o an arbitrary C*! curve (Meeks-Weber).
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o If L is a properly “embedded minimal surface, and
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Theorem (Colding-Minicozzi 2004)
The structure of S

e S is contained in a properly embedded Lipshitz curve S’
of Q.

o For any p € S there exists a leaf L such that p € L and L
is a properly embedded minimal surface.

o If L is a properly “embedded minimal surface, and
LNS #1), then L meets S transversely.

o Meeks showed that if S = &’ (i.e., S has no “gaps”), then
it isa C1! curve (tangent to curve is orthogonal to leaves)

o White showed that S is contained in a C! curve.
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proper disk in Q.
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Can a surface of genus> 0 occur? A planar domain with more
than two ends?
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Answer (Bernstein-T.)

No, under natural geometric condition on 2 it cannot.
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o If L is a properly embedded minimal surface, then L is
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Let Q be the interior of an oriented compact three-manifold
with boundary so that:

e OS2 is strictly mean convex;
@ There are no closed minimal surfaces in €.

Theorem
Let L be a leaf of £ then:
o L is either a disk or an annulus.

o If L is a properly embedded minimal surface, then L is
either a puncture disk, or a disk or an annulus disjoint

from S.

Second bullet: Colding-Minicozzi = the set of singular
points meeting L is a discrete set in L.




Example of a torus being the limit of (non-minimal) disks.
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Idea of proof

e The disks D; in the sequence act as an “effective”
universal cover of L.

e Specifically, one can “lift” closed curves in L to curves in
the D,‘.

@ The geometry of the D; — minimally embedded and in a
mean convex set — restricts the topology of the L,
essentially forcing it to have abelian fundamental group.

@ A more complicated geometric feature we use: the
conditions on 2 ensure — by a result of White — that
minimal surfaces in €2 satisfy an isoperimetric inequality.
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If v: St — L is a piece-wise C! closed curve, then 7 has the
closed-lift property if there exists a sequence of closed “lifts"
vi: St — D; converging to . Otherwise, v has the open-lift

property.

If v is embedded so are its lifts. )
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Separating Lemma

If v: S* — Lis a closed embedded curve in L with the closed
lift property, then - is separating.

Proof

o Let v;: S' — D; be a sequence of embedded closed lifts
converging to v;

e Each ~; is the boundary of a close minimal disk A; C D;;
o Area(A;) < CiLength(~;) < GLength(~);
o A; — Ain C2(2) and A C L\ 7y is open and close;

o If v does not separate L then A = L\ ~;

e Contradiction because 0f2 strictly mean convex implies A;
cannot get close to 0f2.

v




Commutator Lemma
Let L be two-sided and let

a:[0,1]] - Land 5:[0,1] = L

be closed piece-wise C! Jordan curves. If a and 3 have the
open lift property and aN § = py where py = a(0) = £(0),
then

vi=aoBoatop!

has the closed lift property.
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Proof
Otherwise,

e Let o and [ be two non-separating curves in L meeting at
one point.

e Each curve has the open-lift property by the separating
lemma.

@ avofoatofB ! has the closed lift property but it is
non-separating.

o Contradiction.
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Proposition [No pants]
If L is two-sided then L is either a disk or an annulus.

We have already shown that L must be a planar domain.
Assume L is not an annulus. Then,

@ There exist embedded closed curves v and 3 separating L
in 3 connected components, L;,L, and L3.

o Let L3 be the component such that « U5 C dL3 and L3 is
not an annulus.

e « and 8 must have the open lift property.

@ Let o be an embedded arc in L3 with endpoints in & and
3 and consider the two curves 0 o w0 o~ and B.

e By the Commutator Lemma
cgoaooc tofBo(coaoa ) o3B! has the closed lift
property.
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Proposition
A leaf L is two-sided.

o If L is one-sided, then there is a closed non-separating
curve along which L does not have well defined normal;

e Non-separating = lift of this curve is open;

e Following lift around in a D; violates either properness or
embeddedness.

N
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Understanding Geometric Conditions ]

Question
e Is our theorem sharp?
e To what extent can the assumptions on €2 be relaxed?

Let D be an embedded but NOT properly embedded minimal
disk in £ with the property that the closure, D, of D in 2 is a
proper minimal lamination of Q. (In fact more general.)




Topology of Minimal Disk Closures

The leaves of D behave almost identically to those of the limit
leaves of a sequence of minimal disks.

| \

Theorem

Let Q2 be the interior of an oriented compact three-manifold
with boundary so that:

e 0N is strictly mean convex;
e There are no closed minimal surfaces in ().

Then each leaf L of D is either a disk, an annulus or a Mébius
band.

v
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Sharpness
The preceding theorem is sharp in the following sense:

@ There is an embedded minimal disk D that contairls a
Mobius band in its closure. Note: the lamination D
cannot occur as the lamination that is the limit of a
sequence of minimal disks.

@ There is an embedded minimal disk D whose closure
contains a minimal torus in €. |




Further Questions

Some further questions:

e To what extent are both theorems true even for regions
which contain closed minimal surfaces?

e To what extent is the theorem for a sequence of minimal
disks sharp? For instance, it is hard to picture a minimal
torus arises in this context.
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Let o (B;") be a lift of a (B) and let a; (B:) be a lift of
a—l (ﬁ_l)-
e Using embeddedness, the graphs converging to a small
neighborhood of py can be order by “height.”

o If a;” moves “upward” m; sheets, a; moves “downward”
m; sheets.

o If 8 moves “upward” n; sheets, ;" moves “downward”
n; sheets.




