
The topology of limits of embedded minimal
disks.

(joint work with Jacob Bernstein)

Giuseppe Tinaglia
King’s College London



Notations;

Background;

Main result;

Possible questions;

Another proof.



Let M be an oriented surface in R3, let ⇠ be the unit vector
field normal to M:

A = �d⇠ : TpM ! T⇠(p)S
2 ' TpM

is the shape operator of M.



Definition

The eigenvalues k1, k2 of Ap are the principal
curvatures of M at p.

H = 1
2tr(A) =

k1+k2
2 is the mean curvature.

|A| =
p

k

2
1 + k

2
2 is the norm of the second

fundamental form.

Minimal Surface: critical points for the area functional.

H = 0



Surface given as a graph of a function
|Hess(u)|2
(1+|ru|2)2  |A|2  2 |Hess(u)|2

1+|ru|2

Minimal Graph

0 = div rup
1+|ru|2

Quasi-linear elliptic PDE



Motivational Question:

What classes of smooth minimal surfaces have good
(pre-)compactness properties?



Suppose

⌦1 ⇢ ⌦2 ⇢ ⌦3 ⇢ . . . are open subsets of R3; ⌦ =
S

i ⌦i .
(take ⌦i = ⌦)

Di ⇢ ⌦i is a sequence of properly (relatively closed,
D i = Di) embedded minimal surfaces.

Well-known compactness result:

If for each K , compact subset of ⌦, there exist constants
C1(K ),C2(K ) < 1 so that

sup
K\Di

|A|  C1(K ),Area(Di \ K ) < C2(K )

then, up to passing to a subsequence, Di converges, with finite
multiplicity, a minimal surface D properly embedded in ⌦.
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What does a uniform bound on |A| imply?

In general, a neighborhood of a point p 2 M is always a
graph over TpM. However, the size of such neighborhood
depends on p.

If supM |A| = supM |d⇠|  C then the size of such
neighborhood only depends on C and NOT on p:

dS2(⇠(p), ⇠(q)) 
Z

�p,q

|r⇠|  length(�p,q) sup
�p,q

|A|  RC,

if q 2 BR(p). Take RC < ⇡
10 .

Let u be such graph then
kukC 2  10C

if u is a minimal graph then div

rup
1+|ru|2

= 0 =)
kukC 2,↵

is uniformly bounded independently of p.
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Proof of the well-known compactness result:

supDi
|A|  C uniformly =) nearby a point be we have

a sequence of graphs ui with kuikC2,↵ uniformly bounded.

Arzela-Ascoli =) subsequence converging C

2 to a graph
that is minimal.

Area bound =) there are finitely many of such graphs
nearby p (properness).

Embeddedness is preserved by the maximum principle.
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Natural question:

What happens if we remove such bounds?



Minimal Lamination

A subset L is a proper minimal lamination of ⌦ (open set) if

L is relatively closed in ⌦;

L =
S

↵ L↵ where L↵ are connected pair-wise disjoint
embedded minimal surfaces in ⌦ – called leaves of L;
For each p 2 L there is an open subset Up of ⌦, a closed
subset Kp of (�1, 1) and a Lipschitz di↵eomorphism,
“straightening map,”
 p : (Up, p) ! (B1, 0) so
 p(L \ Up) = B1 \ {x3 = t}t2Kp .

If L = ⌦, then this is a minimal foliation of ⌦.
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Well-known compactness result:

If for each K , compact subset of ⌦, there is a constant
C (K ) < 1 so that

sup
K\Di

|A|  C (K ),

then, up to passing to a subsequence, the Di converge to L, a
smooth minimal lamination of ⌦.



In light of the previous result,
we say that the curvatures of the Di blow-up at p 2 ⌦ if there
is a sequence of points pi 2 Di such that

pi ! p and |A|(pi) ! 1.

Blow-up points or singular points.



and by passing to a subsequence we may assume that there is
a relatively closed subset S ⇢ ⌦ such that

the curvatures of the Di blow-up at each p 2 S;
Di \ S converges on ⌦ \ S to a minimal lamination L of
⌦ \ S.



Natural question:

What sets S and laminations L can arise in this way?



1
i
(triply periodic minimal surface)

Rescalings of a triply periodic minimal surfaces in R3.
S = R3, L = ;.

Let us focus on sequence of surfaces with finite topology.



1
i
(triply periodic minimal surface)

Rescalings of a triply periodic minimal surfaces in R3.
S = R3, L = ;.

Let us focus on sequence of surfaces with finite topology.



1
i
(Catenoid)

Rescalings of a catenoid.
S = ~0, L has a single leaf {z = 0} \~0.
NB: The leaf extends smoothly to a surface in R3.



1
i
(Helicoid)

Rescalings of a helicoid.
S = z � axis, L is a foliation of R3 minus the z-axis by
horizontal planes.
NB: The leaves extend smoothly to surfaces in R3. Likewise,
the lamination L extends to a proper foliation of R3.
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Theorem (Anderson, White (1985))

If the total curvatures of the surfaces Di , i.e.
R
Di
|A|2, are

uniformly bounded, then

S is finite;

L extends smoothly across S.
If the Di are disks then S = ;.

What if the Di have unbounded total curvatures?

Let us assume that the Di are (properly embedded) DISKS.
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Key example

Rescalings of a helicoid
S = z � axis, L is a foliation of R3 minus the z-axis by
horizontal planes.
NB: The leaves extend smoothly to surfaces in R3. Likewise,
the lamination L extends to a proper foliation of R3.



Colding-Minicozzi Theory

Theorem (Colding-Minicozzi, 2004)

Suppose each Di is a properly embedded disk and ⌦ = R3
. If

S 6= ; then

L is a foliation of R3 \ S by parallel planes;

S is a line perpendicular to those planes. (Meeks)



The situation is very di↵erent when ⌦ $ R3.
What can be said about the set S and about the leaves of L?
(reminder Dis are embedded DISKS)

The set S can be:

a point (Colding-Minicozzi);

a line segment (Dean);

an arbitrary finite subset of a line segment (Kahn);

any closed subset of the z-axis (Ho↵man-White, later
Kleene).

In contrast to the other constructions, Ho↵man-White use
variational methods which carry over to ⌦ = H3.
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an arbitrary C

1,1 curve (Meeks-Weber).

Sequence of minimal annuli in a solid torus of revolution
whose singular set is the central circle of the solid torus.



The set S can be:

a point (Colding-Minicozzi);

a line segment (Dean);

an arbitrary finite subset of a line segment (Kahn);

any closed subset of the z-axis (Ho↵man-White, later
Kleene);

an arbitrary C

1,1 curve (Meeks-Weber).



In the local case, Colding-Minicozzi (essentially) show

Theorem (Colding-Minicozzi 2004)

The structure of S
S is contained in a properly embedded Lipshitz curve S 0

of ⌦.

For any p 2 S there exists a leaf L such that p 2 L and L

is a properly embedded minimal surface.

If L is a properly embedded minimal surface, and

L \ S 6= ;, then L meets S transversely.

Meeks showed that if S = S 0 (i.e., S has no “gaps”), then
it is a C

1,1 curve (tangent to curve is orthogonal to leaves)

White showed that S is contained in a C

1 curve.
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What can be said about the the leaves of L?

In all known examples, the leaves of L are either disks or
annuli. Indeed, if L is a leaf of an example then it can be

a non-proper disk in ⌦ \ S;
a proper disk or annulus (Ho↵man-White) in ⌦;

a proper annulus in ⌦ \ S with L̄ \ S 6= ; and L̄ is a
proper disk in ⌦.

Question (Ho↵man-White)

Can a surface of genus> 0 occur? A planar domain with more

than two ends?

Answer (Bernstein-T.)

No, under natural geometric condition on ⌦ it cannot.
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Let ⌦ be the interior of an oriented compact three-manifold
with boundary so that:

@⌦ is strictly mean convex;

There are no closed minimal surfaces in ⌦.

Theorem

Let L be a leaf of L then:

L is either a disk or an annulus.

If L is a properly embedded minimal surface, then L is
either a puncture disk, or a disk or an annulus disjoint
from S.

Second bullet: Colding-Minicozzi =) the set of singular
points meeting L is a discrete set in L.
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Theorem
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Example

Example of a torus being the limit of (non-minimal) disks.



Idea of proof

The disks Di in the sequence act as an “e↵ective”
universal cover of L.

Specifically, one can “lift” closed curves in L to curves in
the Di .

The geometry of the Di – minimally embedded and in a
mean convex set – restricts the topology of the L,
essentially forcing it to have abelian fundamental group.

A more complicated geometric feature we use: the
conditions on ⌦ ensure – by a result of White – that
minimal surfaces in ⌦ satisfy an isoperimetric inequality.
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Definition

If � : S1 ! L is a piece-wise C

1 closed curve, then � has the
closed-lift property if there exists a sequence of closed “lifts”
�i : S1 ! Di converging to �. Otherwise, � has the open-lift

property.

If � is embedded so are its lifts.
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Separating Lemma

If � : S1 ! L is a closed embedded curve in L with the closed
lift property, then � is separating.

Proof

Let �i : S1 ! Di be a sequence of embedded closed lifts
converging to �;

Each �i is the boundary of a close minimal disk �i ⇢ Di ;

Area(�i) < C1Length(�i) < C2Length(�);

�i ! � in C

1
loc(⌦) and � ⇢ L \ � is open and close;

If � does not separate L then � = L \ �;
Contradiction because @⌦ strictly mean convex implies �i

cannot get close to @⌦.
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Commutator Lemma

Let L be two-sided and let

↵ : [0, 1] ! L and � : [0, 1] ! L

be closed piece-wise C

1 Jordan curves. If ↵ and � have the
open lift property and ↵ \ � = p0 where p0 = ↵(0) = �(0),
then

⌫ := ↵ � � � ↵�1 � ��1

has the closed lift property.



Proposition

If L is two-sided then L has genus zero.

Proof

Otherwise,

Let ↵ and � be two non-separating curves in L meeting at
one point.

Each curve has the open-lift property by the separating
lemma.

↵ � � � ↵�1 � ��1 has the closed lift property but it is
non-separating.

Contradiction.
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Proposition [No pants]

If L is two-sided then L is either a disk or an annulus.

Proof

We have already shown that L must be a planar domain.
Assume L is not an annulus. Then,

There exist embedded closed curves ↵ and � separating L

in 3 connected components, L1,L2 and L3.

Let L3 be the component such that ↵ [ � ⇢ @L3 and L3 is
not an annulus.

↵ and � must have the open lift property.

Let � be an embedded arc in L3 with endpoints in ↵ and
� and consider the two curves � � ↵ � ��1 and �.

By the Commutator Lemma
� � ↵ � ��1 � � � (� � ↵ � ��1)�1 � ��1 has the closed lift
property.
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Proof

A sequence of embedded minimal disks �i must converge
to an open and close subset of L \ (� � � � ↵).

In particular, the limit must contain either L1, or L2 or L3.

Contradiction because @⌦ strictly mean convex implies �i

cannot get close to @⌦.
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Proposition

A leaf L is two-sided.

Proof

If L is one-sided, then there is a closed non-separating
curve along which L does not have well defined normal;

Non-separating =) lift of this curve is open;

Following lift around in a Di violates either properness or
embeddedness.
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Understanding Geometric Conditions

Question

Is our theorem sharp?

To what extent can the assumptions on ⌦ be relaxed?

Let D be an embedded but NOT properly embedded minimal
disk in ⌦ with the property that the closure, D̄, of D in ⌦ is a
proper minimal lamination of ⌦. (In fact more general.)
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Topology of Minimal Disk Closures

The leaves of D̄ behave almost identically to those of the limit
leaves of a sequence of minimal disks.

Theorem

Let ⌦ be the interior of an oriented compact three-manifold

with boundary so that:

@⌦ is strictly mean convex;

There are no closed minimal surfaces in ⌦.

Then each leaf L of D̄ is either a disk, an annulus or a Möbius

band.



Sharpness

The preceding theorem is sharp in the following sense:

There is an embedded minimal disk D that contains a
Möbius band in its closure. Note: the lamination D̄

cannot occur as the lamination that is the limit of a
sequence of minimal disks.

There is an embedded minimal disk D whose closure
contains a minimal torus in ⌦.
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Further Questions

Some further questions:

To what extent are both theorems true even for regions
which contain closed minimal surfaces?

To what extent is the theorem for a sequence of minimal
disks sharp? For instance, it is hard to picture a minimal
torus arises in this context.
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i ) be a lift of
↵�1 (��1).

Using embeddedness, the graphs converging to a small
neighborhood of p0 can be order by “height.”

If ↵+
i moves “upward” mi sheets, ↵
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mi sheets.

If �+
i moves “upward” ni sheets, �
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ni sheets.
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