The topology of limits of embedded minimal disks.
(joint work with Jacob Bernstein)

Giuseppe Tinaglia
King’s College London
- Notations;
- Background;
- Main result;
- Possible questions;
- Another proof.
Let \mathbf{M} be an oriented surface in \mathbb{R}^3, let ξ be the unit vector field normal to \mathbf{M}:

$$
\mathbf{A} = -d\xi : T_p\mathbf{M} \rightarrow T_{\xi(p)}\mathbb{S}^2 \simeq T_p\mathbf{M}
$$

is the **shape operator** of \mathbf{M}.
Definition

- The eigenvalues k_1, k_2 of A_p are the principal curvatures of M at p.
- $H = \frac{1}{2} \text{tr}(A) = \frac{k_1 + k_2}{2}$ is the mean curvature.
- $|A| = \sqrt{k_1^2 + k_2^2}$ is the norm of the second fundamental form.

Minimal Surface: critical points for the area functional.

$H = 0$
Surface given as a graph of a function

\[\frac{|Hess(u)|^2}{(1+|\nabla u|^2)^2} \leq |A|^2 \leq 2 \frac{|Hess(u)|^2}{1+|\nabla u|^2} \]

Minimal Graph

\[0 = \text{div} \frac{\nabla u}{\sqrt{1+|\nabla u|^2}} \quad \text{Quasi-linear elliptic PDE} \]
Motivational Question:
What classes of smooth minimal surfaces have good (pre-)compactness properties?
Suppose

- $\Omega_1 \subset \Omega_2 \subset \Omega_3 \subset \ldots$ are open subsets of \mathbb{R}^3; $\Omega = \bigcup_i \Omega_i$.
 (take $\Omega_i = \Omega$)
Suppose

1. $\Omega_1 \subset \Omega_2 \subset \Omega_3 \subset \ldots$ are open subsets of \mathbb{R}^3; $\Omega = \bigcup_i \Omega_i$. (take $\Omega_i = \Omega$)

2. $D_i \subset \Omega_i$ is a sequence of properly (relatively closed, $\overline{D_i} = D_i$) embedded minimal surfaces.

Well-known compactness result:

If for each compact subset of Ω, there exist constants $C_1(K)$, $C_2(K) < 1$ so that

$$\sup_{K \subseteq D_i} |\text{Area}(\partial D_i \setminus K)| < C_1(K),$$
$$\text{Area}(\partial D_i \setminus K) < C_2(K),$$

then, up to passing to a subsequence, D_i converges, with finite multiplicity, a minimal surface D properly embedded in Ω.
Suppose
- $\Omega_1 \subset \Omega_2 \subset \Omega_3 \subset \ldots$ are open subsets of \mathbb{R}^3; $\Omega = \bigcup_i \Omega_i$.
 (take $\Omega_i = \Omega$)
- $D_i \subset \Omega_i$ is a sequence of properly (relatively closed, $\overline{D_i} = D_i$) **embedded** minimal surfaces.

Well-known compactness result:
If for each K, compact subset of Ω, there exist constants $C_1(K), C_2(K) < \infty$ so that

$$\sup_{K \cap D_i} |A| \leq C_1(K), \quad \text{Area}(D_i \cap K) < C_2(K)$$

then, up to passing to a subsequence, D_i converges, with finite multiplicity, a minimal surface D properly embedded in Ω.
What does a uniform bound on $|A|$ imply?
What does a uniform bound on $|A|$ imply?

- In general, a neighborhood of a point $p \in M$ is always a graph over T_pM. However, the size of such neighborhood depends on p.

Let u be such graph then $kuk_{C^2} \leq 10^{-C}$ if u is a minimal graph then $\div u p + |ru|_2 = 0 = ku_{C^2}$, ϵ is uniformly bounded independently of p.

What does a uniform bound on $|A|$ imply?

- In general, a neighborhood of a point $p \in M$ is always a graph over $T_p M$. However, the size of such neighborhood depends on p.

- If $\sup_M |A| = \sup_M |d\xi| \leq C$ then the size of such neighborhood only depends on C and NOT on p:

$$d_{S^2}(\xi(p), \xi(q)) \leq \int_{\gamma_{p,q}} |\nabla \xi| \leq \text{length}(\gamma_{p,q}) \sup_{\gamma_{p,q}} |A| \leq RC,$$

if $q \in B_R(p)$. Take $RC < \frac{\pi}{10}$.

What does a uniform bound on $|A|$ imply?

- In general, a neighborhood of a point $p \in M$ is always a graph over $T_p M$. However, the size of such neighborhood depends on p.
- If $\sup_M |A| = \sup_M |d \xi| \leq C$ then the size of such neighborhood only depends on C and NOT on p:
 $$d_{S^2}(\xi(p), \xi(q)) \leq \int_{\gamma_{p,q}} |\nabla \xi| \leq \text{length}(\gamma_{p,q}) \sup_{\gamma_{p,q}} |A| \leq RC,$$
 if $q \in B_R(p)$. Take $RC < \frac{\pi}{10}$.
- Let u be such graph then
 - $\|u\|_{C^2} \leq 10C$
What does a uniform bound on $|A|$ imply?

- In general, a neighborhood of a point $p \in M$ is always a graph over T_pM. However, the size of such neighborhood depends on p.

- If $\sup_M |A| = \sup_M |d\xi| \leq C$ then the size of such neighborhood only depends on C and NOT on p:

$$d_{S^2}(\xi(p), \xi(q)) \leq \int_{\gamma_{p,q}} |\nabla \xi| \leq \text{length}(\gamma_{p,q}) \sup_{\gamma_{p,q}} |A| \leq RC,$$

if $q \in B_R(p)$. Take $RC < \frac{\pi}{10}$.

- Let u be such graph then
 - $\|u\|_{C^2} \leq 10C$
 - if u is a minimal graph then
 $$\text{div} \frac{\nabla u}{\sqrt{1 + |\nabla u|^2}} = 0 \implies \|u\|_{C^2,\alpha} \text{ is uniformly bounded independently of } p.$$
Proof of the well-known compactness result:

- \(\sup_{D_i} |A| \leq C \) uniformly \(\implies \) nearby a point be we have a sequence of graphs \(u_i \) with \(\|u_i\|_{C^{2,\alpha}} \) uniformly bounded.
Proof of the well-known compactness result:

- \(\sup_{D_i} |A| \leq C \) uniformly \(\implies \) nearby a point be we have a sequence of graphs \(u_i \) with \(\|u_i\|_{C^{2,\alpha}} \) uniformly bounded.
- Arzela-Ascoli \(\implies \) subsequence converging \(C^2 \) to a graph that is minimal.
Proof of the well-known compactness result:

- $\sup_{D_i} |A| \leq C$ uniformly \implies nearby a point be we have a sequence of graphs u_i with $\|u_i\|_{C^{2,\alpha}}$ uniformly bounded.
- Arzela-Ascoli \implies subsequence converging C^2 to a graph that is minimal.
- Area bound \implies there are finitely many of such graphs nearby p (properness).
Proof of the well-known compactness result:

- \(\sup_{D_i} |A| \leq C \) uniformly \implies \text{nearby a point be we have a sequence of graphs } u_i \text{ with } \|u_i\|_{C^{2,\alpha}} \text{ uniformly bounded.}

- Arzela-Ascoli \implies \text{subsequence converging } C^2 \text{ to a graph that is minimal.}

- Area bound \implies \text{there are finitely many of such graphs nearby } p \text{ (properness).}

- Embeddedness is preserved by the maximum principle.
Natural question:
What happens if we remove such bounds?
Minimal Lamination

A subset \mathcal{L} is a *proper minimal lamination* of Ω (open set) if
- \mathcal{L} is relatively closed in Ω;
A subset \mathcal{L} is a proper minimal lamination of Ω (open set) if

- \mathcal{L} is relatively closed in Ω;
- $\mathcal{L} = \bigcup_{\alpha} L_{\alpha}$ where L_{α} are connected pair-wise disjoint embedded minimal surfaces in Ω – called leaves of \mathcal{L};
Minimal Lamination

A subset \mathcal{L} is a proper minimal lamination of Ω (open set) if

- \mathcal{L} is relatively closed in Ω;
- $\mathcal{L} = \bigcup_{\alpha} L_{\alpha}$ where L_{α} are connected pair-wise disjoint embedded minimal surfaces in Ω – called leaves of \mathcal{L};
- For each $p \in \mathcal{L}$ there is an open subset U_p of Ω, a closed subset K_p of $(-1, 1)$ and a Lipschitz diffeomorphism, "straightening map,"

$$
\psi_p : (U_p, p) \to (B_1, 0)
$$

so

$$
\psi_p(\mathcal{L} \cap U_p) = B_1 \cap \{x_3 = t\}_{t \in K_p}.
$$
Minimal Lamination

A subset \mathcal{L} is a \textit{proper minimal lamination} of Ω (open set) if

- \mathcal{L} is relatively closed in Ω;

- $\mathcal{L} = \bigcup_{\alpha} L_{\alpha}$ where L_{α} are connected pair-wise disjoint embedded minimal surfaces in Ω – called \textit{leaves} of \mathcal{L};

- For each $p \in \mathcal{L}$ there is an open subset U_p of Ω, a closed subset K_p of $(-1, 1)$ and a Lipschitz diffeomorphism, “straightening map,”

$$\psi_p : (U_p, p) \rightarrow (B_1, 0)$$

so

$$\psi_p(\mathcal{L} \cap U_p) = B_1 \cap \{x_3 = t\}_{t \in K_p}.$$

If $\mathcal{L} = \Omega$, then this is a \textit{minimal foliation} of Ω.
Well-known compactness result:

If for each K, compact subset of Ω, there is a constant $C(K) < \infty$ so that

$$\sup_{K \cap D_i} |A| \leq C(K),$$

then, up to passing to a subsequence, the D_i converge to \mathcal{L}, a smooth minimal lamination of Ω.
In light of the previous result, we say that the curvatures of the D_i blow-up at $p \in \Omega$ if there is a sequence of points $p_i \in D_i$ such that

$$p_i \to p \quad \text{and} \quad |A|(p_i) \to \infty.$$

Blow-up points or singular points.
and by passing to a subsequence we may assume that there is a relatively closed subset \(S \subset \Omega \) such that

- the curvatures of the \(D_i \) blow-up at each \(p \in S \);
- \(D_i \setminus S \) converges on \(\Omega \setminus S \) to a minimal lamination \(\mathcal{L} \) of \(\Omega \setminus S \).
Natural question:
What sets S and laminations \mathcal{L} can arise in this way?
Rescalings of a triply periodic minimal surfaces in \mathbb{R}^3. $S = \mathbb{R}^3$, $L = \emptyset$.

$\frac{1}{i}$ (triply periodic minimal surface)
Rescalings of a triply periodic minimal surfaces in \mathbb{R}^3. $S = \mathbb{R}^3$, $\mathcal{L} = \emptyset$.

Let us focus on sequence of surfaces with finite topology.
Rescalings of a catenoid. $S = \tilde{0}$, \mathcal{L} has a single leaf $\{z = 0\} \setminus \tilde{0}$. **NB:** The leaf extends smoothly to a surface in \mathbb{R}^3.

\[\frac{1}{i} \text{(Catenoid)} \]
Rescalings of a helicoid.
$S = z\text{-axis},\ \mathcal{L}$ is a foliation of \mathbb{R}^3 minus the z-axis by horizontal planes.
NB: The leaves extend smoothly to surfaces in \mathbb{R}^3. Likewise, the lamination \mathcal{L} extends to a proper foliation of \mathbb{R}^3.
Rescalings of a catenoid.

$S = 0$, \mathcal{L} has a single leaf $\{z = 0\} \setminus \vec{0}$.

NB: The leaf extends smoothly to a surface in \mathbb{R}^3.
Theorem (Anderson, White (1985))

If the total curvatures of the surfaces D_i, i.e. \(\int_{D_i} |A|^2 \), are uniformly bounded, then

- S is finite;
- L extends smoothly across S.

If the D_i are disks then $S = \emptyset$.
Theorem (Anderson, White (1985))

If the total curvatures of the surfaces D_i, i.e. $\int_{D_i} |A|^2$, are uniformly bounded, then

- S is finite;
- \mathcal{L} extends smoothly across S.

If the D_i are disks then $S = \emptyset$.

What if the D_i have unbounded total curvatures?
Theorem (Anderson, White (1985))

If the total curvatures of the surfaces D_i, i.e. $\int_{D_i} |A|^2$, are uniformly bounded, then

- S is finite;
- \mathcal{L} extends smoothly across S.

If the D_i are disks then $S = \emptyset$.

What if the D_i have unbounded total curvatures?

Let us assume that the D_i are (properly embedded) DISKS.
Key example

Rescalings of a helicoid $S = z - axis$, \mathcal{L} is a foliation of \mathbb{R}^3 minus the z-axis by horizontal planes. **NB:** The leaves extend smoothly to surfaces in \mathbb{R}^3. Likewise, the lamination \mathcal{L} extends to a proper foliation of \mathbb{R}^3.
Theorem (Colding-Minicozzi, 2004)

Suppose each D_i is a properly embedded disk and $\Omega = \mathbb{R}^3$. If $S \neq \emptyset$ then

- \mathcal{L} is a foliation of $\mathbb{R}^3 \setminus S$ by parallel planes;
- S is a line perpendicular to those planes. (Meeks)
The situation is very different when $\Omega \subseteq \mathbb{R}^3$. What can be said about the set S and about the leaves of L? (reminder D's are embedded DISKS)
The situation is very different when $\Omega \subseteq \mathbb{R}^3$.
What can be said about the set S and about the leaves of \mathcal{L}? (reminder D;s are embedded DISKS)

The set S can be:
- a point (Colding-Minicozzi);
The situation is very different when $\Omega \subsetneq \mathbb{R}^3$. What can be said about the set S and about the leaves of \mathcal{L}? (reminder D‘s are embedded DISKS)

The set S can be:
- a point (Colding-Minicozzi);
- a line segment (Dean);
The situation is very different when $\Omega \subseteq \mathbb{R}^3$. What can be said about the set S and about the leaves of \mathcal{L}? (reminder D_i’s are **embedded DISKS**)

The set S can be:

- a point (Colding-Minicozzi);
- a line segment (Dean);
- an arbitrary finite subset of a line segment (Kahn);
The situation is very different when $\Omega \subsetneq \mathbb{R}^3$.
What can be said about the set S and about the leaves of \mathcal{L}?
(reminder D_is are embedded DISKS)

The set S can be:
- a point (Colding-Minicozzi);
- a line segment (Dean);
- an arbitrary finite subset of a line segment (Kahn);
- any closed subset of the z-axis (Hoffman-White, later Kleene).

In contrast to the other constructions, Hoffman-White use variational methods which carry over to $\Omega = \mathbb{H}^3$.
an arbitrary \(C^{1,1} \) curve (Meeks-Weber).

Sequence of minimal annuli in a solid torus of revolution whose singular set is the central circle of the solid torus.
The set S can be:

- a point (Colding-Minicozzi);
- a line segment (Dean);
- an arbitrary finite subset of a line segment (Kahn);
- any closed subset of the z-axis (Hoffman-White, later Kleene);
- an arbitrary $C^{1,1}$ curve (Meeks-Weber).
In the local case, Colding-Minicozzi (essentially) show

Theorem (Colding-Minicozzi 2004)

The structure of S

- *S is contained in a properly embedded Lipshitz curve S' of Ω.)*
- *For any $p \in S$ there exists a leaf L such that $p \in \overline{L}$ and \overline{L} is a properly embedded minimal surface.*
- *If \overline{L} is a properly embedded minimal surface, and $\overline{L} \cap S \neq \emptyset$, then \overline{L} meets S transversely.*
In the local case, Colding-Minicozzi (essentially) show

Theorem (Colding-Minicozzi 2004)

The structure of S

- S is contained in a properly embedded Lipshitz curve S' of Ω.
- For any $p \in S$ there exists a leaf L such that $p \in \overline{L}$ and \overline{L} is a properly embedded minimal surface.
- If \overline{L} is a properly embedded minimal surface, and $\overline{L} \cap S \neq \emptyset$, then \overline{L} meets S transversely.

Meeks showed that if $S = S'$ (i.e., S has no “gaps”), then it is a $C^{1,1}$ curve (tangent to curve is orthogonal to leaves)

White showed that S is contained in a C^1 curve.
What can be said about the leaves of \mathcal{L}?

In all known examples, the leaves of \mathcal{L} are either disks or annuli. Indeed, if \mathcal{L} is a leaf of an example then it can be an open disk $\mathcal{D} \cap S$; a proper disk in \mathcal{D}; proper annulus in $\mathcal{D} \cap S$ with $\overline{\mathcal{L}} \setminus S = 6$; and $\overline{\mathcal{L}}$ is a proper disk in \mathcal{D}.

Question (Ho-man-White)

Can a surface of genus > 0 occur? A planar domain with more than two ends?

Answer (Bernstein-T.)

No, under natural geometric condition on \mathcal{D} it cannot.
What can be said about the the leaves of \mathcal{L}? In all known examples, the leaves of \mathcal{L} are either disks or annuli. Indeed, if L is a leaf of an example then it can be
- a non-proper disk in $\Omega \setminus S$;
What can be said about the leaves of \mathcal{L}? In all known examples, the leaves of \mathcal{L} are either disks or annuli. Indeed, if L is a leaf of an example then it can be

- a non-proper disk in $\Omega \setminus S$;
- a proper disk or annulus (Hoffman-White) in Ω.
What can be said about the leaves of \mathcal{L}? In all known examples, the leaves of \mathcal{L} are either disks or annuli. Indeed, if L is a leaf of an example then it can be

- a non-proper disk in $\Omega \setminus \mathcal{S}$;
- a proper disk or annulus (Hoffman-White) in Ω;
- a proper annulus in $\Omega \setminus \mathcal{S}$ with $\bar{L} \cap \mathcal{S} \neq \emptyset$ and \bar{L} is a proper disk in Ω.

Question (Hoelman-White)

Can a surface of genus > 0 occur? A planar domain with more than two ends?

Answer (Bernstein-T.)

No, under natural geometric condition on Ω it cannot.
What can be said about the leaves of \(\mathcal{L} \)? In all known examples, the leaves of \(\mathcal{L} \) are either disks or annuli. Indeed, if \(L \) is a leaf of an example then it can be

- a non-proper disk in \(\Omega \setminus S \);
- a proper disk or annulus (Hoffman-White) in \(\Omega \);
- a proper annulus in \(\Omega \setminus S \) with \(\overline{L} \cap S \neq \emptyset \) and \(\overline{L} \) is a proper disk in \(\Omega \).

Question (Hoffman-White)

Can a surface of genus \(> 0 \) occur? A planar domain with more than two ends?
What can be said about the leaves of \mathcal{L}?
In all known examples, the leaves of \mathcal{L} are either disks or annuli. Indeed, if L is a leaf of an example then it can be
- a non-proper disk in $\Omega \setminus S$;
- a proper disk or annulus (Hoffman-White) in Ω;
- a proper annulus in $\Omega \setminus S$ with $\bar{L} \cap S \neq \emptyset$ and \bar{L} is a proper disk in Ω.

Question (Hoffman-White)

Can a surface of genus > 0 occur? A planar domain with more than two ends?

Answer (Bernstein-T.)

No, under natural geometric condition on Ω it cannot.
Let Ω be the interior of an oriented compact three-manifold with boundary so that:

- $\partial \Omega$ is strictly mean convex;
- There are no closed minimal surfaces in Ω.

Theorem

Let L be a leaf of \mathcal{L} then:

- L is either a disk or an annulus.

Second bullet: Colding-Minicozzi = the set of singular points meeting L is a discrete set in L.

Let Ω be the interior of an oriented compact three-manifold with boundary so that:

- $\partial \Omega$ is strictly mean convex;
- There are no closed minimal surfaces in Ω.

Theorem

Let L be a leaf of \mathcal{L} then:

- L is either a disk or an annulus.
- If \bar{L} is a properly embedded minimal surface, then L is either a puncture disk, or a disk or an annulus disjoint from S.

Second bullet: Colding-Minicozzi = the set of singular points meeting L is a discrete set in L.
Let Ω be the interior of an oriented compact three-manifold with boundary so that:

- $\partial \Omega$ is strictly mean convex;
- There are no closed minimal surfaces in Ω.

Theorem

Let L be a leaf of \mathcal{L} then:

- L is either a disk or an annulus.
- If \overline{L} is a properly embedded minimal surface, then L is either a puncture disk, or a disk or an annulus disjoint from S.

Second bullet: Colding-Minicozzi \Rightarrow the set of singular points meeting \overline{L} is a discrete set in \overline{L}.
Example

Example of a torus being the limit of (non-minimal) disks.
Idea of proof

- The disks D_i in the sequence act as an “effective” universal cover of L.

- Specifically, one can “lift” closed curves in L to curves in the D_i.

- The geometry of the minimal, mean convex set — restricts the topology of the L, essentially forcing it to have an abelian fundamental group.

- An uncomplicated geometric feature: the conditions on \mathcal{I} ensure, by a result of White, that minimal surfaces in \mathcal{I} satisfy an isoperimetric inequality.
Idea of proof

- The disks D_i in the sequence act as an “effective” universal cover of L.
- Specifically, one can “lift” closed curves in L to curves in the D_i.
Idea of proof

- The disks D_i in the sequence act as an “effective” universal cover of L.
- Specifically, one can “lift” closed curves in L to curves in the D_i.
- The geometry of the D_i – minimally embedded and in a mean convex set – restricts the topology of the L, essentially forcing it to have abelian fundamental group.
Idea of proof

- The disks D_i in the sequence act as an “effective” universal cover of L.
- Specifically, one can “lift” closed curves in L to curves in the D_i.
- The geometry of the D_i – minimally embedded and in a mean convex set – restricts the topology of the L, essentially forcing it to have abelian fundamental group.
- A more complicated geometric feature we use: the conditions on Ω ensure – by a result of White – that minimal surfaces in Ω satisfy an isoperimetric inequality.
Definition

If \(\gamma : S^1 \to L \) is a piece-wise \(C^1 \) closed curve, then \(\gamma \) has the \textit{closed-lift property} if there exists a sequence of closed “lifts” \(\gamma_i : S^1 \to D_i \) converging to \(\gamma \). Otherwise, \(\gamma \) has the \textit{open-lift property}.

\(\text{If } S^1 \text{ is embedded so are its lifts.} \)
Definition

If \(\gamma : S^1 \to L \) is a piece-wise \(C^1 \) closed curve, then \(\gamma \) has the closed-lift property if there exists a sequence of closed “lifts” \(\gamma_i : S^1 \to D_i \) converging to \(\gamma \). Otherwise, \(\gamma \) has the open-lift property.

If \(\gamma \) is embedded so are its lifts.
Separating Lemma

If $\gamma: S^1 \to L$ is a closed embedded curve in L with the closed lift property, then γ is separating.
Separating Lemma

If $\gamma: S^1 \to L$ is a closed embedded curve in L with the closed lift property, then γ is separating.

Proof

- Let $\gamma_i: S^1 \to D_i$ be a sequence of embedded closed lifts converging to γ;
Separating Lemma

If \(\gamma: S^1 \to L \) is a closed embedded curve in \(L \) with the closed lift property, then \(\gamma \) is separating.

Proof

- Let \(\gamma_i: S^1 \to D_i \) be a sequence of embedded closed lifts converging to \(\gamma \);
- Each \(\gamma_i \) is the boundary of a close minimal disk \(\Delta_i \subset D_i \);
Separating Lemma

If \(\gamma : S^1 \to L \) is a closed embedded curve in \(L \) with the closed lift property, then \(\gamma \) is separating.

Proof

- Let \(\gamma_i : S^1 \to D_i \) be a sequence of embedded closed lifts converging to \(\gamma \);
- Each \(\gamma_i \) is the boundary of a close minimal disk \(\Delta_i \subset D_i \);
- \(\text{Area}(\Delta_i) < C_1 \text{Length}(\gamma_i) < C_2 \text{Length}(\gamma) \);
Separating Lemma

If \(\gamma : S^1 \to L \) is a closed embedded curve in \(L \) with the closed lift property, then \(\gamma \) is separating.

Proof

- Let \(\gamma_i : S^1 \to D_i \) be a sequence of embedded closed lifts converging to \(\gamma \);
- Each \(\gamma_i \) is the boundary of a close minimal disk \(\Delta_i \subset D_i \);
- \(\text{Area}(\Delta_i) < C_1 \text{Length}(\gamma_i) < C_2 \text{Length}(\gamma) \);
- \(\Delta_i \to \Delta \) in \(C^\infty_{loc}(\Omega) \) and \(\Delta \subset L \setminus \gamma \) is open and close;
Separating Lemma

If $\gamma: S^1 \rightarrow L$ is a closed embedded curve in L with the closed lift property, then γ is separating.

Proof

- Let $\gamma_i: S^1 \rightarrow D_i$ be a sequence of embedded closed lifts converging to γ;
- Each γ_i is the boundary of a close minimal disk $\Delta_i \subset D_i$;
- $\text{Area}(\Delta_i) < C_1 \text{Length}(\gamma_i) < C_2 \text{Length}(\gamma)$;
- $\Delta_i \rightarrow \Delta$ in $C^\infty_{loc}(\Omega)$ and $\Delta \subset L \setminus \gamma$ is open and close;
- If γ does not separate L then $\Delta = L \setminus \gamma$;
Separating Lemma

If $\gamma: S^1 \to L$ is a closed embedded curve in L with the closed lift property, then γ is separating.

Proof

- Let $\gamma_i: S^1 \to D_i$ be a sequence of embedded closed lifts converging to γ;
- Each γ_i is the boundary of a close minimal disk $\Delta_i \subset D_i$;
- $\text{Area}(\Delta_i) < C_1 \text{Length}(\gamma_i) < C_2 \text{Length}(\gamma)$;
- $\Delta_i \to \Delta$ in $C^\infty_{\text{loc}}(\Omega)$ and $\Delta \subset L \setminus \gamma$ is open and close;
- If γ does not separate L then $\Delta = L \setminus \gamma$;
- Contradiction because $\partial \Omega$ strictly mean convex implies Δ_i cannot get close to $\partial \Omega$.

Commutator Lemma

Let L be two-sided and let

$$\alpha : [0, 1] \to L \text{ and } \beta : [0, 1] \to L$$

be closed piece-wise C^1 Jordan curves. If α and β have the open lift property and $\alpha \cap \beta = p_0$ where $p_0 = \alpha(0) = \beta(0)$, then

$$\nu := \alpha \circ \beta \circ \alpha^{-1} \circ \beta^{-1}$$

has the closed lift property.
Proposition

If \(L \) is two-sided then \(L \) has genus zero.
Proposition
If L is two-sided then L has genus zero.

Proof
Otherwise,
- Let α and β be two non-separating curves in L meeting at one point.
Proposition

If L is two-sided then L has genus zero.

Proof

Otherwise,

- Let α and β be two non-separating curves in L meeting at one point.
- Each curve has the open-lift property by the separating lemma.
Proposition

If \(L \) is two-sided then \(L \) has genus zero.

Proof

Otherwise,

- Let \(\alpha \) and \(\beta \) be two non-separating curves in \(L \) meeting at one point.
- Each curve has the open-lift property by the separating lemma.
- \(\alpha \circ \beta \circ \alpha^{-1} \circ \beta^{-1} \) has the closed lift property but it is non-separating.

Contradiction.
Proposition
If L is two-sided then L has genus zero.

Proof
Otherwise,
- Let α and β be two non-separating curves in L meeting at one point.
- Each curve has the open-lift property by the separating lemma.
- $\alpha \circ \beta \circ \alpha^{-1} \circ \beta^{-1}$ has the closed lift property but it is non-separating.
- Contradiction.
Proposition [No pants]
If L is two-sided then L is either a disk or an annulus.
Proposition [No pants]

If L is two-sided then L is either a disk or an annulus.

Proof

We have already shown that L must be a planar domain. Assume L is not an annulus.
Proposition [No pants]
If L is two-sided then L is either a disk or an annulus.

Proof
We have already shown that L must be a planar domain. Assume L is not an annulus. Then,
- There exist embedded closed curves α and β separating L in 3 connected components, L_1, L_2 and L_3.
Proposition [No pants]

If L is two-sided then L is either a disk or an annulus.

Proof

We have already shown that L must be a planar domain. Assume L is not an annulus. Then,

- There exist embedded closed curves α and β separating L in 3 connected components, L_1, L_2 and L_3.
- Let L_3 be the component such that $\alpha \cup \beta \subset \partial L_3$ and L_3 is not an annulus.
Proposition [No pants]
If L is two-sided then L is either a disk or an annulus.

Proof
We have already shown that L must be a planar domain. Assume L is not an annulus. Then,

- There exist embedded closed curves α and β separating L in 3 connected components, L_1, L_2 and L_3.
- Let L_3 be the component such that $\alpha \cup \beta \subset \partial L_3$ and L_3 is not an annulus.
- α and β must have the open lift property.
Proposition [No pants]

If L is two-sided then L is either a disk or an annulus.

Proof

We have already shown that L must be a planar domain. Assume L is not an annulus. Then,

- There exist embedded closed curves α and β separating L in 3 connected components, L_1, L_2 and L_3.
- Let L_3 be the component such that $\alpha \cup \beta \subset \partial L_3$ and L_3 is not an annulus.
- α and β must have the open lift property.
- Let σ be an embedded arc in L_3 with endpoints in α and β and consider the two curves $\sigma \circ \alpha \circ \sigma^{-1}$ and β.
Proposition [No pants]

If \(L \) is two-sided then \(L \) is either a disk or an annulus.

Proof

We have already shown that \(L \) must be a planar domain. Assume \(L \) is not an annulus. Then,

- There exist embedded closed curves \(\alpha \) and \(\beta \) separating \(L \) in 3 connected components, \(L_1, L_2 \) and \(L_3 \).
- Let \(L_3 \) be the component such that \(\alpha \cup \beta \subset \partial L_3 \) and \(L_3 \) is not an annulus.
- \(\alpha \) and \(\beta \) must have the open lift property.
- Let \(\sigma \) be an embedded arc in \(L_3 \) with endpoints in \(\alpha \) and \(\beta \) and consider the two curves \(\sigma \circ \alpha \circ \sigma^{-1} \) and \(\beta \).
- By the Commutator Lemma \(\sigma \circ \alpha \circ \sigma^{-1} \circ \beta \circ (\sigma \circ \alpha \circ \sigma^{-1})^{-1} \circ \beta^{-1} \) has the closed lift property.
Proof

- A sequence of embedded minimal disks Δ_i must converge to an open and close subset of $L \setminus (\beta \circ \sigma \circ \alpha)$.
Proof

A sequence of embedded minimal disks Δ_i must converge to an open and close subset of $L \setminus (\beta \circ \sigma \circ \alpha)$.

In particular, the limit must contain either L_1, or L_2 or L_3.
Proof

- A sequence of embedded minimal disks Δ_i must converge to an open and closed subset of $L \setminus (\beta \circ \sigma \circ \alpha)$.
- In particular, the limit must contain either L_1, or L_2 or L_3.
- Contradiction because $\partial \Omega$ strictly mean convex implies Δ_i cannot get close to $\partial \Omega$.
Proposition

A leaf \(L \) is two-sided.
Proposition

A leaf L is two-sided.

Proof

- If L is one-sided, then there is a closed non-separating curve along which L does not have well defined normal;
Proposition

A leaf L is two-sided.

Proof

- If L is one-sided, then there is a closed non-separating curve along which L does not have well defined normal;
- Non-separating \iff lift of this curve is open;
Proposition
A leaf L is two-sided.

Proof
- If L is one-sided, then there is a closed non-separating curve along which L does not have well defined normal;
- Non-separating \implies lift of this curve is open;
- Following lift around in a D_i violates either properness or embeddedness.
Understanding Geometric Conditions

Question

- *Is our theorem sharp?*
- *To what extent can the assumptions on \(\Omega \) be relaxed?*
Understanding Geometric Conditions

Question

- *Is our theorem sharp?*
- *To what extent can the assumptions on Ω be relaxed?*

Let D be an embedded but NOT properly embedded minimal disk in Ω with the property that the closure, \bar{D}, of D in Ω is a proper minimal lamination of Ω. (In fact more general.)
Topology of Minimal Disk Closures

The leaves of \bar{D} behave almost identically to those of the limit leaves of a sequence of minimal disks.

Theorem

Let Ω be the interior of an oriented compact three-manifold with boundary so that:
- $\partial \Omega$ is strictly mean convex;
- There are no closed minimal surfaces in Ω.

Then each leaf L of \bar{D} is either a disk, an annulus or a Möbius band.
The preceding theorem is sharp in the following sense: There is an embedded minimal disk D that contains a Möbius band in its closure. Note: the lamination \bar{D} cannot occur as the lamination that is the limit of a sequence of minimal disks. There is an embedded minimal disk whose closure contains a minimal torus in \mathcal{T}.
The preceding theorem is sharp in the following sense:

- There is an embedded minimal disk D that contains a Möbius band in its closure. Note: the lamination \bar{D} cannot occur as the lamination that is the limit of a sequence of minimal disks.
Sharpness

The preceding theorem is sharp in the following sense:

- There is an embedded minimal disk D that contains a Möbius band in its closure. Note: the lamination \bar{D} cannot occur as the lamination that is the limit of a sequence of minimal disks.

- There is an embedded minimal disk D whose closure contains a minimal torus in Ω.
Some further questions:

- To what extent are both theorems true even for regions which contain closed minimal surfaces?
- To what extent is the theorem for a sequence of minimal disks sharp? For instance, it is hard to picture a minimal torus arises in this context.
Commutator Lemma

Let L be two-sided and let

$$\alpha : [0, 1] \rightarrow L \text{ and } \beta : [0, 1] \rightarrow L$$

be closed piece-wise C^1 Jordan curves. If α and β have the open lift property and $\alpha \cap \beta = p_0$ where $p_0 = \alpha(0) = \beta(0)$, then

$$\nu := \alpha \circ \beta \circ \alpha^{-1} \circ \beta^{-1}$$

has the closed lift property.
Proof

Let $\alpha_i^+ (\beta_i^+)$ be a lift of $\alpha (\beta)$ and let $\alpha_i^- (\beta_i^-)$ be a lift of $\alpha^{-1} (\beta^{-1})$.
Proof

Let $\alpha_i^+ (\beta_i^+)$ be a lift of $\alpha (\beta)$ and let $\alpha_i^- (\beta_i^-)$ be a lift of $\alpha^{-1} (\beta^{-1})$.

- Using embeddedness, the graphs converging to a small neighborhood of p_0 can be ordered by “height.”
Proof

Let $\alpha_i^+ (\beta_i^+)$ be a lift of $\alpha (\beta)$ and let $\alpha_i^- (\beta_i^-)$ be a lift of $\alpha^{-1} (\beta^{-1})$.

- Using embeddedness, the graphs converging to a small neighborhood of p_0 can be order by “height.”
- If α_i^+ moves “upward” m_i sheets, α_i^- moves “downward” m_i sheets.
Proof

Let $\alpha_i^+ (\beta_i^+)$ be a lift of $\alpha (\beta)$ and let $\alpha_i^- (\beta_i^-)$ be a lift of $\alpha^{-1} (\beta^{-1})$.

- Using embeddedness, the graphs converging to a small neighborhood of p_0 can be order by “height.”
- If α_i^+ moves “upward” m_i sheets, α_i^- moves “downward” m_i sheets.
- If β_i^+ moves “upward” n_i sheets, β_i^- moves “downward” n_i sheets.