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The variational Problems
Mn a Riemannian manifold
f : Mn → Nn+p isometric immersion of a closed manifold M into
N .

•H - the mean curvature vector of the immersion
• α - the second fundamental form of the immersion;

If dµ = dµM denotes the Riemannian measure on M , we define the
following functional

Φ(M) =

∫
M
‖α‖2 dµ , (1)

and view it as functionals defined over the space of all isometric im-
mersions of M into M̃ .
Remark 1.

1. A totally geodesic submanifold of N is an minimizer for (1).
2. Φ is a measure of how far the submanifold is to be totally geodesic.

We also considerer the Wilmore functional given by

Ψ(M) =

∫
M
‖H‖2 dµ , (2)

and also view it as functionals defined over the space of all isometric
immersions of M into M̃ .
Remark 2.

1. A minimal submanifold of N is an minimizer for (2).
2. Ψ is a measure of how far the submanifold is to be minimal.

In the case when the background manifold is the space form of cur-
vature c, we introduce for consideration a third functional given by

Θc(M) =

∫
M

(n(n− 1)c + ‖H‖2) dµ . (3)

When c = 1, we denote Θc simply by Θ.

Critical points
• f : (−a, a)M → N be a one parameter family of deformations of
M .
•Mt = f (t,M) for t ∈ (−a, a), and M0 = M .
•Given a point p ∈M , we let {x1, . . . , xn, t} be a coordinate system

of M × (−a, a), valid in some neighborhood of (p, 0), and such that
{x1, . . . , xn} are normal coordinates of M at p.
• T the variational vector field of the deformation.

We would like to compute the t-derivative of Φ(Mt) at t = 0. The next
result gives the Euler-Lagrange equation for (1). For convenience, we
use the standard double index summation convention.

Theorem 3. Let f : (−a, a)M → N be a deformation of an iso-
metrically immersed submanifold f : M → f (M) ⊂ N into
the Riemannian manifold (N, g̃). We set Mt = f (t,M), have
M0 = M , and let {e1, . . . , en} be an orthonormal frame of Mt
for all t ∈ (−a, a). Then the infinitesimal variation of

Φ(M) =

∫
M
‖α‖2 dµ ,

is given by

dΦ(t)

dt
=

∫
M
〈2∇g̃ej∇

g̃
eiα(ei, ej)+2Rg̃(α(ei, ej), ej)ei−‖α‖2H,T 〉dµ

+

∫
M
〈4〈α(ei, ej), α(el, ej)〉α(el, ei)−∇‖α‖2, T 〉dµ

−2

∫
M

(ei〈T, el〉 + el〈T, ei〉)〈α(ei, ej), α(el, ej)〉dµ.

M is a a critical point of the functional

Ψ(M) =

∫
M
‖H‖2 dµ ,

if, and only if,

2∆h = 2cnh− 2h‖∇νeiν1‖2 − h3 + 2h traceA2
ν1 ,

and for all m in the range 2 ≤ m ≤ p, we have that

0 = 4ei(h)〈∇νeiν1, νm〉 + 2hei〈∇νeiν1, νm〉 − 2h〈∇νeiν1,∇νeiνm〉

+2h traceAν1Aνm .

And M is a critical point of the functional (3) if, and only, if, the
last p−1 equations above hold, and the one before these is replaced
by

2∆h = (3n− n2)ch− 2h‖∇νeiν1‖2 − h3 + 2h traceA2
ν1 .

In particular, a hypersurface M in Sn+1
c is a critical point for the

functional
Φ(M) =

∫
M
‖α‖2 dµ ,

if, and only if, its mean curvature function h satisfies the equation

2∆h = 2ch− h‖α‖2 + 2(k3
1 + · · · + k3

n) ,

while M is a critical point of the functional

Ψ(M) =

∫
M
‖H‖2 dµ ,

if, and only if, its mean curvature function h satisfies the equation

2∆h = 2cnh + 2h‖α‖2 − h3 .

Gap Theorems in spheres
Let us begin by recalling the gap theorem in a form suit-
able to our work (see [Theorem 5.3.2, Corollary 5.3.2](Simons)
[Main Theorem](Chern-do Carmo-Kobayashi),[Corollary 2](Law-
son).):

Theorem 4. Suppose that Mn ↪→ Sn+p is an isometric minimal im-
mersion. Assume that the pointwise inequality ‖α‖2 ≤ np/(2p− 1)
holds everywhere. Then

1. Either ‖α‖2 = 0, or

2. ‖α‖2 = np/(2p − 1) if, and only if, either p = 1 and Mn is the
minimal Clifford torus Sm(

√
m/n) × Sn−m(

√
(n−m)/n) ⊂

Sn+1, 1 ≤ m < n, with ‖α‖2 = n, or n = p = 2 and M is the
real projective plane embedded into S4 by the Veronese map with
‖α‖2 = 4/3.

For an immersionM ↪→ M̃ , we let νH denote the normal vector in the
direction of the mean curvature vector H , and denote by AνH and ∇ν
the shape operator in the direction of νH and covariant derivative of
the normal bundle, respectively. We consider immersions that satisfy
the estimates

−λ‖H‖2 − n ≤ traceA2
νH − ‖H‖

2 − ‖∇ννH‖2

≤ ‖α‖2 − ‖H‖2 − ‖∇ννH‖2 ≤
np

2p− 1

(4)

for some constant λ. Notice that ‖AνH‖2 = traceA2
νH is bounded

above by ‖α‖2, and so the second of the inequalities above is always
true. Our first result is the following:

Theorem 5. Suppose that (Mn, g) is a closed Riemannian manifold
isometrically immersed into Sn+p as a critical point of the func-
tional Φ above, and having constant mean curvature function ‖H‖.
Assume that the immersion is such that (4) holds for some constant
λ ∈ [0, 1/2). Then M is minimal, and so it is a critical point of the
functional Θ also, 0 ≤ ‖α‖2 ≤ np/(2p− 1), and either

1. ‖α‖2 = 0, in which case M lies in an equatorial sphere, or

2. ‖α‖2 = np/(2p − 1), in which case either p = 1 and Mn is
the Clifford torus Sm(

√
m/n) × Sn−m(

√
(n−m)/n) ⊂ Sn+1,

1 ≤ m < n, with ‖α‖2 = n, or n = p = 2 and M2 is the
real projective plane embedded into S4 by the Veronese map with
‖α‖2 = 4/3 and scalar curvature 2/3, all cases of metrics with
nonnegative Ricci tensor.

We now consider immersions that satisfy the estimates

−λ‖H‖2 − 1 ≤ ‖α‖2 − ‖H‖2 − ‖∇ννH‖2 ≤
np

2p− 1
(5)

for some constant λ. Here, {νj} is an orthonormal frame of the normal
bundle.

Our second result distinguishes further the critical points of Ψ ob-
tained in Theorem 5.

Theorem 6. Suppose that (Mn, g) is a closed Riemannian manifold
isometrically immersed into Sn+p as a critical point of the func-
tional Ψ above, and having constant mean curvature function. As-
sume that the immersion is such that (5) holds for some constant
λ ∈ [0, 1). Then M is minimal, and so a critical point of Ψ and Θ
also, 0 ≤ ‖α‖2 ≤ np/(2p− 1), and either

1. ‖α‖2 = 0, in which case M lies inside an equatorial sphere, or

2. ‖α‖2 = np/(2p − 1), in which case either n = p = 2 and M
is a minimal real projective plane with an Einstein metric em-
bedded into S4, or p = 1, n = 2m and M is the Clifford torus
Sm(

√
1/2)×Sm(

√
1/2) ⊂ Sn+1 with its Einstein product metric.

The following observation follows easily, but it emphasizes the fact
that among these submanifolds, we have some that are critical points
of the total scalar curvature functional among metrics in M realized
by isometric immersions into the sphere Sn+p.

Corollary 7. Let (M, g) be a closed Riemannian manifold that is
canonically placed in Sn+p with constant mean curvature func-
tion and satisfying (5) for some λ ∈ [0, 1). Then M is a min-
imal critical point of the total scalar curvature functional under
deformations of the isometric immersion, and either ‖α‖2 = 0 or
‖α‖2 = np/(2p − 1). In the latter case, (M, g) is Einstein and the
two possible surface cases in codimension p = 1 and p = 2 corre-
spond to Einstein manifolds that are associated to different critical
values of the total scalar curvature.

It is slightly easier to prove our first gap result by replacing the role
that the functional Φ plays by that of the functional Θ, and derive the
same conclusion. The point is not the use of critical points of Θ ver-
sus those of Φ. Rather, since the curvature of the sphere is positive,
if the second fundamental form is pointwise small in relation to the
mean curvature vector, the constant mean curvature function condi-
tion forces the critical points of these functionals to be the same, and
minimal.

Gap theorems in space of negative curvature
The natural gap theorem for the functionals Ψ or Φ themselves that
we can derive is somewhat dual to that proven for minimal immer-
sions into spheres, and occur on quotients of space forms of negative
curvature instead.

We recall that a closed hyperbolic manifold is of the form Hm/Γ
for Γ a torsion-free discrete group of isometries of Hm. We have the
following:

Theorem 8. Let M be a critical point of (2) on a hyperbolic com-
pact manifold Hn+p/Γ. If the pointwise inequality 0 ≤ ‖α‖2 −
1
2‖H‖

2 − ‖∇ννH‖2 ≤ n holds on M , then either ‖H‖2 = 0 and
M is minimal, or ‖α‖2 = 1

2‖H‖
2 + n = ‖AνH‖2 and M is a non-

minimal submanifold whose mean curvature vector is a covariantly
constant section of its normal bundle.

For the functional (1), we have the following gap result in this frame-
work:

Theorem 9. Let M be a critical point of (1) on a hyperbolic com-
pact manifold Hn+p/Γ. If the pointwise inequality

‖α‖2
((

3− n

2

)
‖α‖2 − ‖H‖2

)
≤ (n‖α‖2 + 2‖H‖2)

holds, then either ‖H‖2 = 0 and M is a minimal submanifold,
or n ≤ 5, the equality above holds, ‖α‖2 = ‖AνH‖2, and M is a
submanifold whose mean curvature vector is a covariantly constant
section of its normal bundle.

For the proof we need the following Lemma:

Lemma 10. Let (M, g) be a Riemannian manifold isometrically im-
mersed into (M̃, g̃), and consider the degree 1-homogeneous func-
tion

trace
(
Aν1

∑
j A

2
νj

)
‖α‖2

.

At a critical point we have that

trace

Aν1∑
j

A2
νj

 =
‖H‖(‖α‖2 + 2‖Aν1‖2)

n + 2‖H‖2/‖α‖2
,

the maximum occurs when ‖α‖2 = ‖Aν1‖2, and so

trace

Aν1∑
j

A2
νj

 ≤ 3‖H‖‖α‖2

2
.

Proof of the Lemma. We have that

trace

Aν1∑
j

A2
νj

 =

p∑
k=1

n∑
i,l,s=1

h1
ish

k
slh

k
li ,

and so the function of the hkijs under consideration is defined by

trace
(
Aν1

∑
j A

2
νj

)
‖α‖2

=

∑p
k=1

∑n
i,l,s=1 h

1
ish

k
slh

k
li∑

k
∑
ij(h

k
ij)

2

outside the origin, and extended by continuity everywhere. Its criti-
cal points subject to the constraints, are the solutions of the system of
equations, where λ1, . . . , λp are the Lagrange multipliers:

p∑
k=1

n∑
l=1

hkulh
k
lvδ1r +

n∑
i=1

h1
uih

r
iv +

n∑
s=1

h1
vsh

r
su

= (
∑
k

∑
ij

(hkij)
2)2δuv

p∑
j=1

λjδjr ,

If we multiply by hruv and add in u, v and r, we obtain the relation

‖α‖2trace

Aν1∑
j

A2
νj

 = λ1h‖α‖4 ,

while if we set u = v, r = 1 and add in u, we obtain that

‖α‖2(‖α‖2 + 2‖A2
ν1‖

2)− 2h trace

Aν1∑
j

A2
νj

 = λ1n‖α‖4 .

A simple algebraic manipulation yields the stated equality at critical
points, and the statement about the maximum is then clear. As we
have assumed that n ≥ 2, the inequality follows.
Proof of the Theorem. We use once again the critical point equation

given by Theorem 3, and obtain that

0 ≤ 2

∫
h∆h dµg =

∫
h2(−2− 2‖∇νeiν1‖2

−‖α‖2 + 2
1

h
traceAν1

∑
j

A2
νj)dµg .

By Lemma 10, we have that

−2−‖α‖2 +2
1

h
traceAν1

∑
j

A2
νj ≤ −2−‖α‖2 +2

3‖α‖2

n + 2‖H‖2/‖α‖2
,

and the stated inequality is equivalent to the right side of this expres-
sion being nonpositive. Thus, either h = 0 or the right hand side of
the expression above vanishes and the equality holds, and ∇νν1 = 0.
In the latter case, hrij = 0 for all r ≥ 2 and H = hν1 is a covariantly
constant section of ν(M).


