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Abstract
We investigate relationships between Lie groupoids and general-

ized almost contact manifolds. We first relate the notions of integrable
Jacobi pairs and contact groupoids on a generalized contact manifolds,
then we show that there is a one to one correspondence between linear
operators and multiplicative forms satisfying Hitchin pair. Finally we
find equivalent conditions among the integrability conditions of gen-
eralized almost contact manifolds, the condition of compatibility of
source and target maps of contact groupoids with contact form and
generalized contact maps.

1 Introduction
A groupoid is a small category in which all morphisms are

invertible. More precisely, a groupoid (G,G0) consists of two
sets G and G0, called arrows and objects, respectively, with
maps s, t : G → G0 called source and target. It is equipped
with a composition m : G2 → G defined on the subset G2 =
{(g, h) ∈ G × G | s(g) = t(h)}; an inclusion map of objects
e : G0 → G and an inverse map i : G → G. For a groupoid, the
following properties are satisfied: s(gh) = s(h), t(gh) = t(g),
s(g−1) = t(g), t(g−1) = s(g), g(hf ) = (gh)f whenever both
sides are defined, g−1g = 1s(g), gg

−1 = 1t(g). Here we have
used gh, 1x and g−1 instead of m(g, h), e(x) and i(g). Gener-
ally, a groupoid (G,G0) is denoted by the set of arrows G.

A Lie groupoid is a groupoid G whose set of arrows and set
of objects are both manifolds whose structure maps s, t, e, i,m
are all smooth maps and s, t are submersions. The latter con-
dition ensures that s and t-fibres are manifolds. One can see
from above definition that the space G2 of composable arrows
is a submanifold of G × G. We note that the notion of Lie
groupoids was introduced by Ehresmann [7]. Relations among
Lie groupoids, Lie algebroids and other algebraic structures
have been investigated by many authors [3, 6, 8, 13, 19].

On the other hand, Lie algebroids were first introduced by
Pradines [15] as infinitesimal objects associated with the Lie
groupoids. More precisely, a Lie algebroid structure on a real
vector bundle A on a manifold M is defined by a vector bundle
map ρA : A → TM , the anchor of A, and an R-Lie algebra
bracket on Γ(A), [, ]A satisfying the Leibnitz rule

[α, fβ]A = f [α, β]A + LρA(α)(f )β

for all α, β ∈ Γ(A), f ∈ C∞(M), where LρA(α) is the Lie
derivative with respect to the vector field ρA(α), where Γ(A)
denotes the set of sections in A.

In [10], Hitchin introduced the notion of generalized complex
manifolds by unifying and extending the usual notions of com-
plex and symplectic manifolds. Later such manifolds have been
studied widely by Gualtieri. He also introduced the notion of
generalized Kähler manifold [9]. On the other hand, the con-
cept of generalized almost contact structure on odd dimensional
manifolds have been studied in [11], [14], [18]

Recently, Crainic [2] showed that there is a close relationship
between the equations of a generalized complex manifold and a
Lie groupoid. More precisely, he obtained that the complicated
equations of such manifolds turn into simple structures for Lie
groupoids.

In this study, we investigate relationships between the com-
plicated equations of generalized contact structures and Lie
groupoids. We showed that the equations of such manifolds are
useful to obtain equivalent results on a contact groupoid.

2 Preliminaries
In this section we give basic facts of Jacobi geometry, Lie

groupoids and Lie algebroids. We first recall notions of con-
tact manifold and contact groupoid from [13]. A contact man-
ifold is a smooth (odd dimensional) manifold M with 1-form
η ∈ Ω1(M) such that η ∧ (dη)n ̸= 0. η is called the contact
form of M . Let G be a Lie groupoid on M and η a form on Lie
groupoid G, then η is called r-multiplicative if

m∗η = pr∗2(e
−r)pr∗1η + pr∗2η,

where pri : G× G → G, i = 1, 2, are the canonical projections
and r : G → R, r(gh) = r(g) + r(h) is a function [5]. A contact
groupoid over a manifold M is a Lie groupoid G over M to-
gether with a contact form η on G such that η is r-multiplicative.
We recall that multiplicative of a 2-form ω is defined by

m∗ω = pr∗1ω + pr∗2ω.

We now recall the notion of Jacobi manifolds. A Jacobi man-
ifold is a smooth manifold M equipped with a bivector field π
and a vector field E such that

[π, π] = −2E ∧ π and [E, π] = 0

where [, ] denotes the schouten bracket.
We now give a relation between Lie algebroid and Lie

groupoid, more details can be found in [4]. Given a Lie groupoid
G on M , the associated Lie algebroid A = Lie(G) has fibres
Ax = Ker(ds)x = Tx(G(−, x)), for any x ∈ M . Any α ∈ Γ(A)

extends to a unique right-invariant vector field on G, which will
be denoted by same letter α. The usual Lie bracket on vector
fields induces the bracket on Γ(A), and the anchor is given by
ρ = dt : A → TM .

Given a Lie algebroid A, an integration of A is a Lie groupoid
G together with an isomorphism A ∼= Lie(G). If such a G
exists, then it is said that A is integrable. In contrast with the
case of Lie algebras, not every Lie algebroid admits an integra-
tion. However if a Lie algebroid is integrable, then there exists a
canonical source-simply connected integration G, and any other
source-simply connected integration is smoothly isomorphic to
G. From now on we assume that all Lie groupoids are source-
simply connected.

We now recall the notion of IM form (infinitesimal multiplica-
tive form) on a Lie algebroid [1] which will be useful when we
deal with relations between Lie groupoids and Lie algebroids.
An IM form on a Lie algebroid A is a bundle map

u : A → T ∗M

satisfying the following properties
(i) ⟨u(α), ρ(β)⟩ = −⟨u(β), ρ(α)⟩

(ii) u([α, β]) = Lα(u(β))− Lβ(u(α)) + d⟨u(α), ρ(β)⟩
for α, β ∈ Γ(A), where ρ = ρA and ⟨, ⟩ denotes the usual pairing
between a vector space and its dual.

If A is a Lie algebroid of a Lie groupoid G, then a closed mul-
tiplicative 2-form ω on G induces an IM form uω of A by

⟨uω(α), X⟩ = ω(α,X).

For the relationship between IM form and closed 2-form we
have the following.
Theorem 1 [1]If A is an integrable Lie algebroid and if G is
its integration, then ω 7→ uω is an one to one correspondence
between closed multiplicative 2-forms on G and IM forms of A.

Finally, in this section, we give brief information on the notion
of generalized geometry, details can be found in [9]. A cen-
tral idea in generalized geometry is that TM ⊕ T ∗M should be
thought of as a generalized tangent bundle to manifold M . If X
and ξ denote a vector field and a dual vector field on M respec-
tively, then we write (X, ξ) (or X + ξ) as a typical element of
TM ⊕ T ∗M . The Courant bracket of two sections (X, ξ), (Y, η)
of TM ⊕ T ∗M = T M is defined by

J(X, ξ), (Y, η)K = [X,Y ] + LXη − LY ξ −
1

2
d(iXη − iY ξ),

where d, LX and iX denote exterior derivative, Lie derivative
and interior derivative with respect to X , respectively. The
Courant bracket is antisymmetric but it does not satisfy the Ja-
cobi identity. Here, we use the notations: β(π♯α) = π(α, β) and
ω♯(X)(Y ) = ω(X,Y ) which are defined as π♯ : T ∗M → TM ,
ω♯ : TM → T ∗M for any 1-forms α and β, 2-form ω and bivec-
tor field π, and vector fields X and Y . Also we denote by [, ]π,
the bracket on the space of 1-forms on M defined by

[α, β]π = Lπ♯αβ − Lπ♯βα− dπ(α, β).

3 Lie groupoids and generalized contact
structures

In this section we first give a characterization for generalized
contact structures to be integrable, then we obtain certain re-
lationships between generalized contact manifolds and contact
groupoids. We recall a generalized almost contact pair and then
a generalized almost contact structure.
Definition 1 [18]A generalized almost contact pair (I, F + η)
on a smooth odd-dimensional manifold M consists of a bundle
endomorphism I of TM ⊕ T ∗M and a section F + η of T M
such that

I + I∗ = 0; η(F ) = 1; I(F ) = 0; I(η) = 0;

I2 = −Id + F ⊙ η,

where F ⊙ η(X + α) := η(X)F + α(F )η, for any X + α ∈
Γ(T M). Since I has a matrix form:

I =

[
φ π♯

θ♯ −φ∗

]
(3.1)

where φ is a (1, 1)-tensor, π is a bivector field, θ a 2-form and
φ∗ : T ∗M → T ∗M is dual of φ. One sees that a generalized
almost contact pair is equivalent to a quintuplet (F, η, π, θ, φ),
where F is a vector field, η a 1-form.

Definition 2 [18] A generalized almost contact structure on M
is an equivalent class of such pairs (I, F + η).

We now present two examples of generalized almost contact
manifolds.

Example 1 [14] An (2n + 1) dimensional smooth manifold M
has an almost contact structure (φ, F, η) if it admits a tensor
field φ of type (1, 1), a vector field F and a 1− form η satisfying
the following compatibility conditions

φ(F ) = 0 , η ◦ φ = 0

η(F ) = 1 , φ2 = −id + η ⊗ F.

Associated to any almost contact structure, we have an almost
generalized contact structure by setting

I =

[
φ 0
0 −φ∗

]
.

Example 2 [14] On the three-dimensional Heisenberg group
H3,we choose a basis {X1, X2, X3} and let {α1, α2, α3} be a
dual frame. For t = rc + irs, where c = cos v and s = sin v for
some real number v, we define

φt =
2rc

1− r2
(X2 ⊗ α2 +X3 ⊗ α3) , σt =

r2 − 2rs + 1

1− r2
α2 ∧ α3

πt =
r2 + 2rs + 1

1− r2
X2 ∧X3 , η = α1, F = X1 − bX2 + aX3

for any real numbers a, b. We also define

I =

[
φt π

♯
t

σt♭ −φ∗t

]
.

Then Jt = (F, η, ϕt, πtσt) is a family of generalized almost con-
tact structures.

Given a generalized almost contact pair (I, F + η), we define

E(1,0) = {e−iI(e)|e ∈ kerη⊕kerF}, E(0,1) = {e+iI(e)|e ∈ kerη⊕kerF}.
The endomorphism I is linearly extended to the complexified
bundle T M ⊗ C. It has three eigenvalues, namely, λ = 0 and
λ = i =

√
−1 and λ = −i. The corresponding eigenbundles are

LF ⊕ Lη , E(1,0) and E(0,1), where LF and Lη are the complex
vector bundles of rank 1 generated with F and η, respectively.
Define

L := LF ⊕ E(1,0), L := LF ⊕ E(0,1), L∗ := Lη ⊕ E(0,1),

L
∗
:= Lη ⊕ E(1,0).

Definition 3 [14] Consider a generalized almost contact pair
and let L be its associated maximal isotropic subbundle. We
say that the generalized almost contact pair is integrable if the
space Γ(L) of sections of L is closed under the Courant bracket,
i.e. JΓ(L),Γ(L)K ⊂ Γ(L). In this case, the generalized almost
contact pair is simply called a generalized contact pair. A gen-
eralized contact structure is an equivalence class of generalized
contact pairs.

In the sequel, we give necessary and sufficient conditions for
a generalized almost contact structure to be integrable in terms
of the above tensor fields. We note that the following result was
stated in [18].
Theorem 2 A generalized almost contact pair corresponding to
the quintuplet (F, η, π, θ, φ) is integrable if and only if the fol-
lowing relations are satisfied:

(C1)

a)
1

2
[π, π] = F ∧ (π♯ ⊗ π♯)dη,

b)[F, π] = −F ∧ π♯LFη

(C2)

φπ♯ = π♯φ∗

φ∗[α, β]π = Lπ♯αφ
∗β − Lπ♯βφ

∗α− dπ(φ∗α, β); (3.2)

(C3)

φ2 + π♯θ♯ = −Id + F ⊙ η (3.3)

Nφ(X,Y ) + dη(φX,φY )F = π♯(iX∧Y dθ);

(C4)

φ∗θ♯ = θ♯φ

dθφ(X,Y, Z) = dθ(φX, Y, Z) + dθ(X,φY, Z) + dθ(X,Y, φZ);

(C5)

LFφ = 0;LFθ = 0,

where

[α, β]π = Lπ♯αβ − Lπ♯βα− dπ(α, β) and θφ(X,Y ) = θ(φX, Y ).

We note that if (3.1) is a generalized contact structure, then

I =

[
φ −π♯

−θ♯ −φ∗

]
is also a generalized contact structure. I is called the opposite
of I. In this paper we denote a generalized contact manifold
endowed with I by M .

As an analogue of a Hitchin pair on a generalized complex
manifold, a Hitchin pair on a generalized almost contact man-
ifold M is a pair (dη, φ) consisting of a contact form η and a
(1, 1)-tensor φ with the property that dη and φ commute (i.e.
dη(X,φY ) = dη(φX, Y )). We note that, since a generalized al-
most contact structure is equivalent to a generalized almost com-
plex structure on M × R, the bivector field π of the generalized
almost contact structure is not non degenerate in general. But we
emphasize that we are putting this condition for restricted case.



Lemma 1 Let M be a generalized almost contact manifold. If π
is a non-degenerate bivector field on TM∗−Span{η}, dη is the
inverse 2-form (defined by (dη)♯ = (π♯)−1) and π satisfies (3.3)
then θ = −dη−φ∗dη+η∧(iFdη) iff dη(φ2X,Y ) = φ∗dη(X, Y ).

From now on, when we mention a non-degenerate bivector
field π, we mean it is non-degenerate on TM∗ − Span{η}.
We note that if dη is the inverse 2-form of π, non-degenerate π
on TM∗ − Span{η} implies that dη is also non-degenerate on
TM − Span{F}.

We say that 2-form θ is the twist of Hitchin pair (dη, φ). Note
that in this case φ is neither an almost contact structure nor
torsion(Nφ) free.
Lemma 2 Let (M, η, φ, F ) be an almost contact manifold. dη
and φ commute if and only if dη + φ∗dη = η ∧ (iFdη).

Next we see that (C1) is satisfied automatically when one
chooses dη as the 2-form which is the inverse of π defined by
(dη)♯ = (π♯)−1.
Lemma 3 Let π be a non-degenerate bivector on a generalized
almost contact manifold M , and dη the inverse 2-form (defined
by (dη)♯ = (π♯)−1). Then π satisfies (C1).

Definition 4 [5]The Lie algebroid of the Jacobi manifold
(M,π, F ) is T ∗M ⊕ R, with the anchor ρ : T ∗M ⊕ R → TM
given by

ρ(ω, λ) = (π, F )♯(ω, λ) = π♯(ω) + λF,

and the bracket

[(ω, 0), (η, 0)] = ([ω, η)]π, 0)− iF (ω ∧ η), π(ω, η))

[(0, 1), (ω, 0)] = (L(F )ω, 0).

The associated groupoid

Σ(M) = G(T ∗M ⊕ R),

is called contact groupoid of the Jacobi manifold M . We say that
M is integrable as a Jacobi manifold if the associated algebroid
T ∗M ⊕ R is integrable (or, equivalently, if Σ(M) is smooth).

Thus, we have the following result which shows that there is
close relationship between the condition (C1) and a contact
groupoid.
Theorem 3 Let M be a generalized almost contact manifold and
η a contact form. There is a 1-1 correspondence between:
(i) Integrable Jacobi pair (F, π) on M (i.e. (F, π) is satisfying

(C1), integrable).
(ii) Contact groupoids (Σ, η) over M .

We now give the conditions for (C2) in terms of dη and φ.
Lemma 4 Let M be a generalized almost contact manifold and
dη a 2-form. Given a non-degenerate bivector π on TM∗−{η}
(i.e. π♯ = ((dη)♯)

−1) and a map φ : TM → TM , then π and φ
satisfy (C2) if and only if dη and φ commute.
We now give a correspondence between generalized contact
structures with non-degenerate π, and Hitchin pairs (dη, φ).
Proposition 1 There is a one to one correspondence between
generalized contact structures given by (3.1) with π non-
degenerate, and Hitchin pairs (dη, φ) such that dη(X,Y ) =
dη(φX,φY ). In this correspondence, π is the inverse of dη,
and θ is the twist of the Hitchin pair (dη, φ).

We note that, similar to 2-forms, given a Lie groupoid G, a
(1, 1)-tensor J : TG → TG is called multiplicative [2] if for any
(g, h) ∈ G×G and any vg ∈ TgG, wh ∈ ThG such that (vg, wh)
is tangent to G×G at (g, h), so is (Jvg, Jwh), and

(dm)g,h(Jvg, Jwh) = J((dm)g,h(vg, wh)).

Let (M, η) be a contact manifold. Then it is easy to see that
there is a one to one correspondence between (1, 1)-tensors φ
commuting with dη and 2-forms on M . On the other hand, it
is easy to see that (C2) is equivalent to the fact that φ∗ ◦ pr1 is
an IM form on the Lie algebroid T ∗M ⊕ R associated Jacobi
structure (F, π). Thus from the above discussion, Lemma 4 and
Theorem 1, one can conclude with the following theorem.
Theorem 4 Let M be a generalized almost contact manifold.
Let (F, π) be an integrable Jacobi structure on M , and (Σ, η)
a contact groupoid over M . Then there is a natural 1-1 corre-
spondence between
(i) (1, 1)-tensors φ on M satisfying (C2),

(ii) multiplicative (1, 1)-tensors I on Σ with the property that
(I, dη) is a Hitchin pair.

We recall the notion of generalized contact map between gen-
eralized contact manifolds. This notion is similar to the general-
ized holomorphic map given in [2].

Let (Mi, Ii), i = 1, 2, be two generalized contact manifolds,
and let φi, πi, θi be the components of Ii in the matrix represen-
tation (3.1). A map f : M1 → M2 is called generalized contact
iff f maps φ1 into φ2, F1 into F2, π1 into π2, f∗θ2 = θ1 and
(df ) ◦ φ1 = φ2 ◦ (df ).

We now state and prove the main result of this paper. This re-
sult gives equivalent assertions between the condition (C3), twist
θ of (dη, I) and contact maps for a contact groupoid over M .
Theorem 5 Let M be a generalized almost contact manifold and
(Σ, η, I) an induced contact groupoid over M with the induced
multiplicative (1, 1)-tensor. Assume that ((F, π), I) satisfy (C1),
(C2) with integrable (F, π). Then for a θ 2-form on M , the fol-
lowing assertions are equivalent.
(i) (C3) is satisfied,

(ii) dη + I∗dη − η ∧ (iFdη) = s∗θ − t∗θ,
(iii) (t, s) : Σ → M ×M is a generalized contact map; condition

of generalized contact map on M is (dt) ◦φ1 = φ2 ◦ (dt), this
condition on M is (ds) ◦ φ1 = −φ2 ◦ (ds)).

Remark 1 Details and proofs of this poster can be found in [16].
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