Overdetermined elliptic problems in the plane

Antonio Ros and Pieralberto Sicbaldi

Cagliari, 2014

$$\Omega \subset \mathbb{R}^2$$
 smooth C^2 domain, $f \in C^1(\mathbb{R})$.
$$\left\{ egin{array}{ll} \Delta u + f(u) = 0, & 0 < u < \mbox{const. in } \Omega \\ u = 0 \mbox{ and } rac{\partial u}{\partial n} = \alpha & \mbox{on } \partial \Omega, & \alpha > 0. \end{array} \right. \ (\alpha = 0)$$

Theorem (Serrin)

If Ω is bounded, then it is a ball and u is radial.

Theorem (Alexandrov)

If $S \subset \mathbb{R}^3$ is a closed surface with constant mean curvature, then S is a round sphere.

Proof: Moving plane technique

If 0 is a critical point for u and u^* then use either

- Interior maximum principle, or
- Boundary maximum principle (Hopf) or
- Corner Lemma (Serrin): If 0 lies in $\partial\Omega\cap\Pi$ (Π is the vertical symmetry plane) and $u(0)=u^*(0)$, $(\nabla u)(0)=(\nabla u^*)(0)$ and $(\nabla^2 u)(0)=(\nabla^2 u^*)(0)$, then $u=u^*$ around 0.

Conjecture (Berestycki, Caffarelli, Nirenberg)

If $\partial\Omega$ is connected, then Ω is either a round disk, the exterior of a disk or a halfplane. Moreover, u has the symmetries of Ω .

Theorem (Sicbaldi) Schlenk)

BCN conjecture fails in high dimension.

Theorem (Del Pino, Pacard, Wei)

There are counterexamples: n > 8, epigraphs and

$$f(0) = f(1),$$

$$f(0) = f(1),$$
 $f'(1) < 0,$ $f(s) > 0 \text{ for } 0 < s < 1$

Lemma

The inwards pointing normal halflines lie in Ω .

Proposition (??)

Either $\overline{\Omega}$ contains a straight line tangent to $\Gamma = \partial \Omega$, or Ω is an epigraph: $\Omega = \{(x,y) \mid y > \varphi(x)\}, \quad \varphi \colon \mathbb{R} \to \mathbb{R}.$

Lemma

If Ω is an epigraph and $\limsup_{x\to+\infty} \varphi(x) = \limsup_{x\to-\infty} \varphi(x) = +\infty$, then the moving plane technique applies to every horizontal line.

Conjecture 1 (Berestycki, Caffarelli, Nirenberg)

If $\partial\Omega$ is connected, then Ω is either a round disk, the exterior of a disk or a halfplane. Moreover, u has the symmetries of Ω .

Theorem (R-, Sicbaldi)

If the boundary of Ω is a proper arc, then BCN conjecture holds, $\Omega = \{(x,y) \mid y > 0\}$ and u(x,y) = u(y).

Lemma

If Ω is an epigraph and $\limsup_{x\to-\infty}\varphi(x)=+\infty$, $\limsup_{x\to+\infty}\varphi(x)=0$ then the moving plane technique applies to every horizontal line.

Lemma

If Ω is an epigraph and $\limsup_{x\to +\infty} \varphi(x)$, $\limsup_{x\to -\infty} \varphi(x) \in \mathbf{R}$ then the moving plane technique applies to every horizontal line.

Proposition

Either $\overline{\Omega}$ contains a straight line tangent to $\Gamma = \partial \Omega$, or the moving plane technique applies to every horizontal line.

Liouville property (BCN Ambrosio-Cabré)

If $\Delta u + f(u) = 0$ in \mathbb{R}^2 , $|\nabla u| \le C$, $u_y > 0$, then u is parallel: u(x,y) = u(y).

 u_x, u_y eigenfuntions: $\Delta v + f'(u)v = 0$ $v = u_y, w = u_x/u_y$. Then $\operatorname{div}(v^2\nabla w) = 0$. $\xi \in C_0^2(\mathbb{R}^2)$.

$$\int \xi^2 v^2 |\nabla w|^2 = -2 \int \xi v^2 w < \nabla \xi, \nabla w >$$

$$\leq \left(\int \xi^2 v^2 |\nabla w|^2 \right)^{1/2} \left(\int v^2 w^2 |\nabla \xi|^2 \right)^{1/2}$$

$$\Rightarrow |\nabla w| = 0 \Rightarrow u_x = au_y, \text{ and } u \text{ is parallel.}$$

Proposition

If u is an overdetermined solution in Ω with bounded gradient and $u_y > 0$, then Ω is a halfplane and u is parallel.

Proof.

$$\langle \nabla w, n \rangle = 0.$$

Farina-Valdinoci using stability argument

Proposition

Every overdetermined solution has bounded geometry.

Proposition

If u is an overdetermined solution in Ω , then either u is parallel or $\overline{\Omega}$ contains a straight line tangent to $\partial\Omega$.

limit direction

$$p_n \in \partial \Omega$$
 $p_n \to +\infty$ $\vec{v} = \lim_n \frac{p_n}{|p_n|}$

$$\lim_m \frac{p_m - p_n}{|p_m - p_n|} = \vec{v}$$
 $\lim_n \frac{0 - p_n}{|0 - p_n|} = -\vec{v}$

$$\Omega_n = \Omega - p_n$$
 $u_n(p) = u(p + p_n)$

$$u_{\infty} = \lim u_n : \Omega_{\infty} \longrightarrow \mathbf{R} \quad \Delta u_{\infty} + f(u_{\infty}) = 0$$

Proposition. If u is an overdetermined solution in Ω and $\overline{\Omega}$ contains a straight line tangent to $\partial\Omega$ then a translation limit of (Ω, u) is parallel.

Lemma. There is at most a bounded nonnegative solution u(t), $0 \le t < \infty$, of the ODE

$$u'' + f(u) = 0$$
, $u(0) = 0$, $u'(0) \ge 0$

Proposition If $\overline{\Omega}$ contains a straight line tangent to its boundary then $\Omega = \{(x,y)/y > 0\}$ and u(x,y) = u(y).

Theorem 7 (Traizet)

If u is an overdetermined positive harmonic function

$$\begin{cases} \Delta u = 0 & \text{in } \Omega \\ u = 0 & \text{and } \frac{\partial u}{\partial n} = \alpha \text{ on } \partial \Omega, \end{cases}$$

and $\partial\Omega$ is connected, then either $u(x,y)=\alpha y$ is a linear function, or $u(r)=a\log r$ is logarithmic.

The case of lattices

Theorem Let Σ CMC, symmetry P1. If Σ is stable, then

- 1. either Σ consists of parallel planes, or
- 2. Σ is an array of round spheres, or
- 3. an array of circular cylinders, or
- 4. doubly periodic with genus($\Sigma/P1$)= 2, or
- 5. triply periodic with genus($\Sigma/P1$)= 3

