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The Ricci flow
At the end of ’70s–beginning of ’80s the study of Ricci and
Einstein tensors from an analytic point of view gets a strong
interest, for instance in the works (static) of Dennis DeTurck. A
proposal of investigation of a family of flows, among them the
Ricci flow, was done by Jean–Pierre Bourguignon (”Ricci
curvature and Einstein metrics”, Lecture Notes in Math 838,
1981). In 1982 Richard Hamilton defines and studies the Ricci
flow, that is, the system of partial differential equations

∂g(t)
∂t

= −2Ricg(t)

describing the evolution g(t) of the metric of a Riemannian
manifold.

R. Hamilton – “Three–manifolds with positive Ricci curvature”,
Journal of Differential Geometry 17, 1982, 255–306.
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Ricci flow is a sort of geometric heat equations, indeed, the
Ricci tensor can be expressed as

Ricg = −1
2

∆g + LOT

with an appropriate choice of local coordinates.
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It can be actually shown that this is a quasilinear, (degenerate)
parabolic system of PDE on a manifold. It has a unique smooth
solution for small time if the initial manifold is compact. In
addition, the solutions satisfy comparison principles and
derivative estimates similar to the case of parabolic equations
in Euclidean space. Unfortunately, it is well known that the
solutions exist in general only in a finite time interval. This
means that singularities, for geometric or analytic reasons,
develop. The study of such singularities is the key point in the
subject of geometric evolutions.
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Examples (Ricci flow contracts the manifold where the
curvature is positive and dilates it where it is negative)

Sphere: g(t) = (1− 4t)g0.

t = 1/4

Hyperbolic surface (constant negative curvature):
g(t) = (1 + 4t)g0.
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Negative examples: the neckpinch
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Generalizations of Ricci flow: the renormalization
group flow

The renormalization group flow arises in modern theoretical
physics as a method to investigate the changes of a system
viewed at different distance scales. Anyway, it still lacks of a
strong mathematical foundation and it is defined by a formal
flow of metric on a manifold satisfying the evolution equation

∂gij(t)
∂τ

= −βij(g(t)) ,

for some functions βij depending on the metric, the curvature
and its derivatives.
In the “perturbative regime” (that is, when a|Riem(g)| � 1) the
functions βij can be expanded in powers of a,

∂gij

∂τ
= −aRij + o(a) ,

as a→ 0.
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Hence, the first order truncation (after the substitution τ = t/2a)
coincides with the Ricci flow ∂tg = −2Ric, as noted by Friedan
and Lott (and also Carfora).
It is interesting then to consider also the second order term in
the expansion of such beta functions, whose coefficients are
quadratic in the curvature and therefore are (possibly)
dominating, even when a|Riem(g)| → 0.

The resulting flow is called two–loop renormalization group flow

∂gij

∂τ
= −aRij −

a2

2
RiklmRjstugksg ltgmu .
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Joint work with L. Cremaschi

Theorem (Laura Cremaschi, CM)

Let (M3,g0) be a compact, smooth, three–dimensional
Riemannian manifold and a ∈ R. Assume that the sectional
curvature K0 of the initial metric g0 satisfies

1 + 2aK0(X ,Y ) > 0

for every point p ∈ M3 and vectors X ,Y ∈ TpM3. Then, there
exists some T > 0 such that the two–loop renormalization
group flow has a unique smooth solution g(t) in a maximal time
interval [0,T ).

Subsequently generalized to any dimensions by Gimre,
Guenther and Isenberg.
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Open problems

It is unknown if the condition

1 + 2aK0(X ,Y ) > 0

is preserved under the flow.

To investigate higher order truncations of the RG flow
(derivatives of the Riemann tensor also appear =⇒ higher
order flows).
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The Ricci–Bourguignon flow

∂g
∂t

= −2
(
Ric − ρRg

)
I Einstein flow: ρ = 1/2
I Traceless Ricci flow: ρ = 1/n
I Schouten flow: ρ = 1/2(n − 1)

I Ricci flow: ρ = 0

It can be seen as an interpolation between the Ricci flow and
the Yamabe flow

∂g(t)
∂t

= −2Rg
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Joint work with G. Catino, L. Cremaschi, Z. Djadli,
L. Mazzieri

General Results:
I short time existence and uniqueness for any metric on M

compact, if ρ < 1/2(n − 1)

I blow–up of the curvature at a singularity
I preservation of positive scalar curvature
I preservation of positive Riemann operator
I easier classification of solitons (see later) when ρ 6= 0

(easier than for Ricci flow), in particular when n = 3

When n = 3 also:
I preservation of positive Ricci tensor
I preservation of positive sectional curvature
I Hamilton–Ivey estimate
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Open problems

I Schouten case ρ = 1/2(n − 1) very interesting but ”critical”
for the short time existence of the flow

I missing the analogue of a monotonicity formula, like
Perelman’s one for Ricci flow

I missing an injectivity radius estimate at the scale of the
curvature
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Hamilton’s Theorem for the RB flow

Theorem (Richard Hamilton, 1982)
If a compact 3–dimensional Riemannian manifold has positive
Ricci tensor, the (normalized) Ricci flow deforms it in a sphere
(asymptotically).

Theorem (Laura Cremaschi, CM)
If a compact 3–dimensional Riemannian manifold has positive
Ricci tensor, the (normalized) RB flow deforms it in a sphere
(asymptotically).
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Key estimates – Uniform in time

Roundness estimate: there exist constants C and D such that∣∣∣∣Ric − 1
3

Rg
∣∣∣∣ ≤ CR1−δ + D

for some δ > 0.

Gradient estimate: for every ε > 0 there exists a constant C(ε)
such that

|∇R|2

R
≤ εR2 + C(ε) .
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Ricci solitons
In several cases the asymptotic profile of a singularity of the
Ricci flow is given by a so called Ricci soliton. They are
Riemannian manifolds (M,g) such that there exists a smooth
function f : M → R and a constant λ ∈ R satisfying

Ric +∇2f = λg

I When λ > 0 the soliton is called shrinking

I When λ = 0 the soliton is called steady

I When λ > 0 the soliton is called expanding

They describe selfsimilar solutions of the Ricci flow and their
study and classification is necessary to “continue” the flow after
a singularity, performing a surgery, in order to get geometric
conclusions.
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Joint work with G. Catino and L. Mazzieri (et alt.)

We obtained several classifications results for Ricci solitons,
mainly shrinking and steady, in low dimensions (n = 2,3) or in
general dimension with positive Ricci tensor, under various
hypotheses on some (derived) curvature tensor, for instance,

I null Weyl tensor, that is, locally conformally flatness of the
manifold

I null Cotton tensor (with M. Rimoldi and S. Mongodi)
I null Bach tensor (with H.-D. Cao and Q. Chen)

These results are actually symmetry result, showing that
actually the solitons share rotational symmetry. This then leads
to their full classification.
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Moreover, we investigate more deeply the LCF condition also
for “ancient” solutions of the Ricci flow, that are important in the
cases where it is not possible to conclude that the asymptotic
profile of a singularity is a Ricci soliton. Our result is that
actually under such hypothesis the two classes coincide, then,
for instance in low dimension they can be classified.

We underline that actually one of the major open problems for
Ricci flow is to classify the ancient solutions in dimension three.
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Einstein–type manifolds

A natural generalization of the concept of Ricci solitons (already
appeared in other fields, some related to physics) is the family
of the so called Einstein–type manifold (a Ricci soliton is
already a generalization of an Einstein manifold). They are
Riemannian manifolds (M,g) such that there exists smooth
functions f , µ : M → R and a constant α ∈ R satisfying

Ric +∇2f + α∇f ⊗∇f = µg

As a special case, choosing α = 0 and µ = ρR + λ, for
constants ρ, λ ∈ R, one gets the solitons for the
Ricci–Bourguignon flow

Ric − ρRg +∇2f = λg

describing the selfsimilar solutions of such flow.
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We generalized several results for Ricci solitons to this more
general case (with M. Rimoldi et alt.) and we realize that for the
RB solitons when ρ 6= 0 the analysis and classification is easier
than for the Ricci flow (ρ = 0). In particular for the Schouten
flow, which makes its study of special interest.

This was actually the way we started our research on the RB
flow... then we discovered the paper by Jean–Pierre
Bourguignon.

Moreover, these techniques, leading to symmetry (rotational)
results for manifolds, were recently used by V. Agostiniani e L.
Mazzieri to get symmetry results for overdetermined problems
for semilinear elliptic PDEs in exterior domains of Rn,
transforming the PDE problems to geometric ones, by
conformal deformations of the canonical metric of Rn.
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A weak flow tangent to Ricci flow
Joint work with N. Gigli

Let (M,g) be a compact Riemannian manifold, P(M) the
space of Borel probability measures on M and let
Kt : P(M)→P(M) be the heat semigroup. Given a couple of
points p,q ∈ M and a smooth curve s 7→ γ(s) connecting them,
for every t ≥ 0 we have a curve s 7→ γt (s) in P(M) defined by

γt (s) = Kt (δγ(s)) .

Such curves turns out to be absolutely continuous with respect
to the Wasserstein distance W2 on P(M) so their lengths are
well defined. Taking the infimum of such lengths on all smooth
curves connecting the points p and q in M, we can define a
new ”distance” dt on the manifold M.
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I The function dt is actually a distance for every t ≥ 0 and d0
is the Riemannian distance associated to the original
metric tensor g.

I The distance dt comes from a smooth Riemannian metric
tensor gt , for every t > 0.

I The dependence on t ∈ R+ is smooth.
I As t → 0 the metrics gt converge to the original metric

tensor g of the manifold M.
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Theorem (CM, N. Gigli)
For almost every vector v ∈ TM there holds

d
dt

gt (v , v)

∣∣∣∣
t=0

= −2Ricg(v , v),

where g is the original metric on M.

One can then recover the Ricci flow of a smooth (compact)
manifold with successive deformations of the initial metrics by
this flow in short intervals of times, then sending to zero the
time steps.

Moreover, this result opens the possibility (work in progress!!!)
to define the Ricci tensor and the Ricci flow for special classes
of nonsmooth spaces, where this flow can be defined, that is,
metric spaces allowing a well behaved heat kernel.
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Open problems

I Defining ”weak” Ricci tensor and Ricci flow for some
nonsmooth metric measure spaces

I Understanding ”easy” singular spaces, like a flat cone
I Removing the technical ”almost every vector” conclusion in

the theorem
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Thanks for your attention
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