Einstein Metrics,

Harmonic Forms,

Symplectic Four-Manifolds

Claude LeBrun
Stony Brook University

Sardegna, 2014/9/20
Definition. A Riemannian metric h is said to be **Einstein** if it has **constant Ricci curvature**.
Definition. A Riemannian metric h is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda h$$

for some constant $\lambda \in \mathbb{R}$.
Definition. A Riemannian metric h is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda h$$

for some constant $\lambda \in \mathbb{R}$.

“...the greatest blunder of my life!”

— A. Einstein, to G. Gamow
Definition. A Riemannian metric h is said to be **Einstein** if it has constant Ricci curvature — i.e.

$$r = \lambda h$$

for some constant $\lambda \in \mathbb{R}$.
Definition. A Riemannian metric h is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda h$$

for some constant $\lambda \in \mathbb{R}$.

As punishment ...
Definition. A Riemannian metric h is said to be Einstein if it has constant Ricci curvature — i.e.

\[r = \lambda h \]

for some constant $\lambda \in \mathbb{R}$.

λ called Einstein constant.
Definition. A Riemannian metric h is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda h$$

for some constant $\lambda \in \mathbb{R}$.

λ called Einstein constant.

Has same sign as the scalar curvature

$$s = r^i_j = \mathcal{R}^{ij}_{ij}.$$
Definition. A Riemannian metric h is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda h$$

for some constant $\lambda \in \mathbb{R}$.

λ called Einstein constant.

Has same sign as the scalar curvature

$$s = r^j_\ j = \mathcal{R}^{ij}{}_{ij}.$$

$$\frac{\text{vol}_g(B_{\varepsilon}(p))}{c_n \varepsilon^n} = 1 - s \frac{\varepsilon^2}{6(n+2)} + O(\varepsilon^4)$$
Geometrization Problem:
Geometrization Problem:

Given a smooth compact manifold M^n,
Geometrization Problem:

Given a smooth compact manifold M^n, can one decompose M in Einstein and collapsed pieces?
Geometrization Problem:

Given a smooth compact manifold M^n, can one decompose M in Einstein and collapsed pieces?

When $n = 3$, answer is “Yes.”
Geometrization Problem:

Given a smooth compact manifold M^n, can one decompose M in Einstein and collapsed pieces?

When $n = 3$, answer is “Yes.”

Proof by Ricci flow. Perelman et al.
Geometrization Problem:

Given a smooth compact manifold M^n, can one decompose M in Einstein and collapsed pieces?

When $n = 3$, answer is “Yes.”

Proof by Ricci flow. Perelman et al.

Perhaps reasonable in other dimensions?
Recognition Problem:
Recognition Problem:

Suppose M^n admits Einstein metric h.
Recognition Problem:

Suppose M^n admits Einstein metric h.

What, if anything, does h then tell us about M?
Recognition Problem:

Suppose M^n admits Einstein metric h.

What, if anything, does h then tell us about M?

Can we recognize M by looking at h?
Recognition Problem:

Suppose M^n admits Einstein metric h.

What, if anything, does h then tell us about M?

Can we recognize M by looking at h?

When $n = 3$, h has constant sectional curvature!
Recognition Problem:

Suppose M^n admits Einstein metric h.

What, if anything, does h then tell us about M?

Can we recognize M by looking at h?

When $n = 3$, h has constant sectional curvature!

So M has universal cover $S^3, \mathbb{R}^3, \mathcal{H}^3, \ldots$
Recognition Problem:

Suppose M^n admits Einstein metric h.

What, if anything, does h then tell us about M?

Can we recognize M by looking at h?

When $n = 3$, h has constant sectional curvature!

So M has universal cover S^3, \mathbb{R}^3, \mathcal{H}^3...

But when $n \geq 5$, situation seems hopeless.
Recognition Problem:

Suppose M^n admits Einstein metric h.

What, if anything, does h then tell us about M?

Can we recognize M by looking at h?

When $n = 3$, h has constant sectional curvature!

So M has universal cover $S^3, \mathbb{R}^3, \mathcal{H}^3\ldots$

But when $n \geq 5$, situation seems hopeless.

$\{\text{Einstein metrics on } S^m\}/\sim$ is highly disconnected.
Recognition Problem:

Suppose M^n admits Einstein metric h.

What, if anything, does h then tell us about M?

Can we recognize M by looking at h?

When $n = 3$, h has constant sectional curvature!

So M has universal cover S^3, \mathbb{R}^3, \mathcal{H}^3...

But when $n \geq 5$, situation seems hopeless.

$\{\text{Einstein metrics on } S^n\}/\sim$ is highly disconnected.

When $n \geq 4$, situation is more encouraging...
Moduli Spaces of Einstein metrics
Moduli Spaces of Einstein metrics

\[\mathcal{E}(M) = \{ \text{Einstein } h \} / (\text{Diffeos } \times \mathbb{R}^+) \]
Moduli Spaces of Einstein metrics

\[\mathcal{E}(M) = \{ \text{Einstein } h \}/(\text{Diffeos } \times \mathbb{R}^+) \]

Known to be connected for certain 4-manifolds:
Moduli Spaces of Einstein metrics

\[\mathcal{E}(M) = \{\text{Einstein } h\}/(\text{Diffeos } \times \mathbb{R}^+) \]

Known to be connected for certain 4-manifolds:

\[M = \]

Moduli Spaces of Einstein metrics

\[\mathcal{E}(M) = \{\text{Einstein } h\}/(\text{Diffeos } \times \mathbb{R}^+) \]

Known to be connected for certain 4-manifolds:

\[M = T^4, \]

Berger,
Moduli Spaces of Einstein metrics

\[\mathcal{E}(M) = \{\text{Einstein } h\}/(\text{Diffeos } \times \mathbb{R}^+) \]

Known to be connected for certain 4-manifolds:

\[M = T^4, \quad K3, \]

Berger, Hitchin,
Moduli Spaces of Einstein metrics

\[\mathcal{E}(M) = \{\text{Einstein } h\}/(\text{Diffeos } \times \mathbb{R}^+) \]

Known to be connected for certain 4-manifolds:

\[M = T^4, \quad K3, \quad \mathcal{H}^4/\Gamma, \]

Berger, Hitchin, Besson-Courtois-Gallot,
Moduli Spaces of Einstein metrics

\[\mathcal{E}(M) = \{\text{Einstein } h\}/(\text{Diffeos } \times \mathbb{R}^+) \]

Known to be connected for certain 4-manifolds:

\[M = T^4, \quad K3, \quad \mathcal{H}^4/\Gamma, \quad \mathbb{C}\mathcal{H}_2/\Gamma. \]

Berger, Hitchin, Besson-Courtois-Gallot, L.
Four Dimensions is Exceptional
Four Dimensions is Exceptional

When $n = 4$, Einstein metrics are genuinely non-trivial: not typically spaces of constant curvature.
Four Dimensions is Exceptional

When $n = 4$, Einstein metrics are genuinely non-trivial: not typically spaces of constant curvature.

There are beautiful and subtle global obstructions to the existence of Einstein metrics on 4-manifolds.
Four Dimensions is Exceptional

When \(n = 4 \), Einstein metrics are genuinely non-trivial: not typically spaces of constant curvature.

There are beautiful and subtle global obstructions to the existence of Einstein metrics on 4-manifolds.

But might allow for geometrization of 4-manifolds by decomposition into Einstein and collapsed pieces.
Four Dimensions is Exceptional

When $n = 4$, Einstein metrics are genuinely non-trivial: not typically spaces of constant curvature.

There are beautiful and subtle global obstructions to the existence of Einstein metrics on 4-manifolds.

But might allow for geometrization of 4-manifolds by decomposition into Einstein and collapsed pieces.

One key question:
Four Dimensions is Exceptional

When $n = 4$, Einstein metrics are genuinely non-trivial: not typically spaces of constant curvature.

There are beautiful and subtle global obstructions to the existence of Einstein metrics on 4-manifolds.

But might allow for geometrization of 4-manifolds by decomposition into Einstein and collapsed pieces.

One key question:

Does enough rigidity really hold in dimension four to make this a genuine geometrization?
Symplectic 4-manifolds:
Symplectic 4-manifolds:

A laboratory for exploring Einstein metrics.
Symplectic 4-manifolds:

A laboratory for exploring Einstein metrics.

Kähler geometry is a rich source of examples.
Symplectic 4-manifolds:

A laboratory for exploring Einstein metrics.

Kähler geometry is a rich source of examples.

If M admits a Kähler metric, it of course admits a symplectic form ω.
Symplectic 4-manifolds:

A laboratory for exploring Einstein metrics.

Kähler geometry is a rich source of examples.

If M admits a Kähler metric, it of course admits a symplectic form ω.

On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics.
Symplectic 4-manifolds:

A laboratory for exploring Einstein metrics.

Kähler geometry is a rich source of examples.

If M admits a Kähler metric, it of course admits a symplectic form ω.

On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics.

Some Suggestive Questions.
Symplectic 4-manifolds:

A laboratory for exploring Einstein metrics.

Kähler geometry is a rich source of examples.

If M admits a Kähler metric, it of course admits a symplectic form ω.

On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics.

Some Suggestive Questions. If (M^4, ω) is a symplectic 4-manifold,
Symplectic 4-manifolds:

A laboratory for exploring Einstein metrics.

Kähler geometry is a rich source of examples.

If M admits a Kähler metric, it of course admits a symplectic form ω.

On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics.

Some Suggestive Questions. If (M^4, ω) is a symplectic 4-manifold, when does M^4 admit an Einstein metric h
Symplectic 4-manifolds:

A laboratory for exploring Einstein metrics.

Kähler geometry is a rich source of examples.

If M admits a Kähler metric, it of course admits a symplectic form ω.

On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics.

Some Suggestive Questions. If (M^4, ω) is a symplectic 4-manifold, when does M^4 admit an Einstein metric h (unrelated to ω)?
Symplectic 4-manifolds:

A laboratory for exploring Einstein metrics.

Kähler geometry is a rich source of examples.

If M admits a Kähler metric, it of course admits a symplectic form ω.

On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics.

Some Suggestive Questions. If (M^4, ω) is a symplectic 4-manifold, when does M^4 admit an Einstein metric h (unrelated to ω)? What if we also require $\lambda \geq 0$?
Theorem (L ’09).
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω.
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω. Then M also admits an Einstein metric h.
Theorem (L ’09). Suppose that \(M \) is a smooth compact oriented 4-manifold which admits a symplectic structure \(\omega \). Then \(M \) also admits an Einstein metric \(h \) with \(\lambda \geq 0 \).
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω. Then M also admits an Einstein metric h with $\lambda \geq 0$ if and only if
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω. Then M also admits an Einstein metric h with $\lambda \geq 0$ if and only if M is diffeomorphic to

$$M \cong \begin{cases}
\mathbb{CP}^2 \# k \mathbb{CP}^2, & 0 \leq k \leq 8, \\
S^2 \times S^2, & K^3, \\
K^3/\mathbb{Z}_2, & T^4, \\
T^4/\mathbb{Z}_2, & T^4/\mathbb{Z}_3, \\
T^4/\mathbb{Z}_4, & T^4/\mathbb{Z}_6, \\
T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), & T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \\
or & T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).
\end{cases}$$
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω. Then M also admits an Einstein metric h with $\lambda \geq 0$ if and only if

$$M \approx \begin{cases}
\mathbb{CP}^2 \# k \overline{\mathbb{CP}^2}, \\
\mathbb{CP}^2
\end{cases}$$
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω. Then M also admits an Einstein metric h with $\lambda \geq 0$ if and only if

$$M \approx \begin{cases} \mathbb{CP}_2 \# k\overline{\mathbb{CP}_2}, & 0 \leq k \leq 8, \\ \mathbb{CP}_2 \# \overline{\mathbb{CP}_2}, & 0 \leq k \leq 8, \end{cases}$$
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω. Then M also admits an Einstein metric h with $\lambda \geq 0$ if and only if

$$M \cong \begin{cases}
\mathbb{CP}^2 \# k \overline{\mathbb{CP}^2}, & 0 \leq k \leq 8, \\
S^2 \times S^2, \\
\end{cases}$$
Theorem (L '09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω. Then M also admits an Einstein metric h with $\lambda \geq 0$ if and only if

\[
M \overset{\text{diff}}{\approx} \begin{cases}
\mathbb{CP}_2 \# k\overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\
S^2 \times S^2, \\
K3, \\
\end{cases}
\]
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω. Then M also admits an Einstein metric h with $\lambda \geq 0$ if and only if

$$M \overset{\text{diff}}{\approx} \begin{cases} \mathbb{C}P^2 \# k \overline{\mathbb{C}P^2}, & 0 \leq k \leq 8, \\ S^2 \times S^2, \\ K3, \\ K3/\mathbb{Z}_2, \end{cases}$$
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω. Then M also admits an Einstein metric h with $\lambda \geq 0$ if and only if

\[M^{\text{<diff>}} \approx \begin{cases}
\mathbb{C}P^2 \# k\overline{\mathbb{C}P^2}, & 0 \leq k \leq 8, \\
S^2 \times S^2, & \\
K3, & \\
K3/\mathbb{Z}_2, & \\
T^4, & \\
\end{cases} \]
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω. Then M also admits an Einstein metric h with $\lambda \geq 0$ if and only if

$$M \cong \begin{cases}
\mathbb{CP}^2 \# k \overline{\mathbb{CP}^2}, & 0 \leq k \leq 8, \\
S^2 \times S^2, \\
K3, \\
K3/\mathbb{Z}_2, \\
T^4, \\
T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,
\end{cases}$$
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω. Then M also admits an Einstein metric h with $\lambda \geq 0$ if and only if

$$M \approx_{\text{diff}} \begin{cases}
\mathbb{CP}^2 \# k \overline{\mathbb{CP}^2}, & 0 \leq k \leq 8, \\
S^2 \times S^2, & \\
K3, & \\
K3/\mathbb{Z}_2, & \\
T^4, & \\
T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, & \\
T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), & \text{or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).
\end{cases}$$
Conventions:

\[\overline{\mathbb{CP}_2} = \text{reverse oriented } \mathbb{CP}_2. \]
Conventions:

$\overline{\mathbb{CP}_2} = \text{reverse oriented } \mathbb{CP}_2.$

Connected sum $\#$:
Conventions:

\(\overline{\mathbb{CP}}_2 = \text{reverse oriented } \mathbb{CP}_2. \)

Connected sum \#:
Conventions:

$\overline{\mathbb{CP}_2} = \text{reverse oriented } \mathbb{CP}_2$.

Connected sum $\#$:
Conventions:

$\overline{\mathbb{CP}_2} = \text{reverse oriented } \mathbb{CP}_2.$

Connected sum $\#$:

![Diagram of connected sum](image_url)
Conventions:

$\overline{\mathbb{CP}^2} =$ reverse oriented \mathbb{CP}^2.

Connected sum $\#$:
Conventions:

\[\overline{\mathbb{C}P^2} = \text{reverse oriented } \mathbb{C}P^2. \]

Connected sum #:
Conventions:

$\overline{\mathbb{C}P^2} = \text{reverse oriented } \mathbb{C}P^2.$

Connected sum #:
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω. Then M also admits an Einstein metric h with $\lambda \geq 0$ if and only if

$$M \overset{\text{diff}}{\approx} \begin{cases}
\mathbb{CP}^2 \# k\overline{\mathbb{CP}^2}, & 0 \leq k \leq 8, \\
S^2 \times S^2, \\
K3, \\
K3/\mathbb{Z}_2, \\
T^4, \\
T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\
T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).
\end{cases}$$
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω. Then M also admits an Einstein metric h with $\lambda \geq 0$ if and only if

$$M \approx \begin{cases} \mathbb{CP}_2 \# k\overline{\mathbb{CP}_2}, & 0 \leq k \leq 8, \\ S^2 \times S^2, \\ K3, \\ K3/\mathbb{Z}_2, \\ T^4, \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\ T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \end{cases}$$

Del Pezzo surfaces,
K3 surface, Enriques surface,
Abelian surface, Hyper-elliptic surfaces.
\[\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, \quad 0 \leq k \leq 8, \]
\[S^2 \times S^2, \]
\[K3, \]
\[K3/\mathbb{Z}_2, \]
\[T^4, \]
\[T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \]
\[T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \]
Definitive list . . .

$\mathbb{CP}^2 \#^k \overline{\mathbb{CP}^2}, \quad 0 \leq k \leq 8,$

$S^2 \times S^2,$

$K3,$

$K3/\mathbb{Z}_2,$

$T^4,$

$T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$

$T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3),$ or $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$
$\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, \ 0 \leq k \leq 8,$

$S^2 \times S^2,$

$K3,$

$K3/\mathbb{Z}_2,$

$T^4,$

$T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$

$T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$
But we understand some cases better than others!

\[\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, \quad 0 \leq k \leq 8, \]
\[S^2 \times S^2, \]
\[K3, \]
\[K3/\mathbb{Z}_2, \]
\[T^4, \]
\[T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \]
\[T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \]
But we understand some cases better than others!

\[\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \leq k \leq 8, \]
\[S^2 \times S^2, \]
\[K3, \]
\[K3 / \mathbb{Z}_2, \]
\[T^4, \]
\[T^4 / \mathbb{Z}_2, T^4 / \mathbb{Z}_3, T^4 / \mathbb{Z}_4, T^4 / \mathbb{Z}_6, \]
\[T^4 / (\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4 / (\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4 / (\mathbb{Z}_2 \oplus \mathbb{Z}_4). \]
But we understand some cases better than others!

\[\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, \quad 0 \leq k \leq 8, \]
\[S^2 \times S^2, \]
\[K3, \]
\[K3/\mathbb{Z}_2, \]
\[T^4, \]
\[T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \]
\[T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \]

Below the line:
But we understand some cases better than others!

\[
\mathbb{CP}^2 \# k \overline{\mathbb{CP}^2}, \quad 0 \leq k \leq 8, \\
S^2 \times S^2, \\
K3, \\
K3/\mathbb{Z}_2, \\
T^4, \\
T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\
T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).
\]

Below the line:

Every Einstein metric is Ricci-flat Kähler.
But we understand some cases better than others!

\[
\begin{align*}
\mathbb{CP}_2 \#^k \overline{\mathbb{CP}_2}, & \quad 0 \leq k \leq 8, \\
S^2 \times S^2, & \\
K3, & \\
K3/\mathbb{Z}_2, & \\
T^4, & \\
T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, & \\
T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), & \text{or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).
\end{align*}
\]

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space \(\mathcal{E}(M) \)
But we understand some cases better than others!

\[
\mathbb{C}P_2 \# k \overline{\mathbb{C}P}_2, \quad 0 \leq k \leq 8, \\
S^2 \times S^2, \\
K3, \\
K3/\mathbb{Z}_2, \\
T^4, \\
T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\
T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).
\]

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space \(\mathcal{E}(M) = \{\text{Einstein } h\}/(\text{Diffeos} \times \mathbb{R}^+) \)
But we understand some cases better than others!

\[
\mathbb{CP}_2 \# k\overline{\mathbb{CP}}_2, \quad 0 \leq k \leq 8, \\
S^2 \times S^2, \\
K3, \\
K3/\mathbb{Z}_2, \\
T^4, \\
T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\
T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).
\]

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space \(\mathcal{E}(M) \) completely understood.
But we understand some cases better than others!

\[\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, \quad 0 \leq k \leq 8, \]

\[S^2 \times S^2, \]

\[K3, \]

\[K3/\mathbb{Z}_2, \]

\[T^4, \]

\[T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \]

\[T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \]

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space \(\mathcal{E}(M) \) connected!
\[\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \leq k \leq 8, \]
\[S^2 \times S^2, \]
\[K3, \]
\[K3/\mathbb{Z}_2, \]
\[T^4, \]
\[T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \]
\[T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \]

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space \(\mathcal{E}(M) \) connected!
Above the line:

\[\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, \quad 0 \leq k \leq 8, \]
\[S^2 \times S^2, \]
\[K3, \]
\[K3/\mathbb{Z}_2, \]
\[T^4, \]
\[T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \]
\[T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \]

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space \(\mathcal{E}(M) \) connected!
Above the line:

Know an Einstein metric on each manifold.

\[
\begin{align*}
\mathbb{CP}^2 \# k\overline{\mathbb{CP}^2}, & \quad 0 \leq k \leq 8, \\
S^2 \times S^2, & \\
K3, & \\
K3/\mathbb{Z}_2, & \\
T^4, & \\
T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, & \\
T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), & \text{or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).
\end{align*}
\]

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space \(\mathcal{E}(M) \) connected!
Above the line:

Moduli space $\mathcal{E}(M) \neq \emptyset$.

\[
\begin{align*}
\mathbb{CP}_2 \# & k \overline{\mathbb{CP}_2}, \quad 0 \leq k \leq 8, \\
S^2 \times S^2, \\
K3, \\
K3/\mathbb{Z}_2, \\
T^4, \\
T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\
T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).
\end{align*}
\]

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space $\mathcal{E}(M)$ connected!
Above the line:

Moduli space $\mathcal{E}(M) \neq \emptyset$. But is it connected?

\[
\begin{align*}
\mathbb{CP}^2 \# k\overline{\mathbb{CP}^2}, & \quad 0 \leq k \leq 8, \\
S^2 \times S^2, \\
K3, \\
K3/\mathbb{Z}_2, \\
T^4, \\
T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\
T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).
\end{align*}
\]

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space $\mathcal{E}(M)$ connected!
Objective of this lecture:
Objective of this lecture:

Describe modest recent progress on this issue.
Objective of this lecture:

Describe modest recent progress on this issue.

For M a Del Pezzo surface, will define explicit open
Objective of this lecture:

Describe modest recent progress on this issue.

For M a Del Pezzo surface, will define explicit open

$$\mathcal{U} \subset \{\text{Riemannian metrics on } M\}$$
Objective of this lecture:
Describe modest recent progress on this issue.

For M a Del Pezzo surface, will define explicit open

$$\mathcal{U} \subset \{\text{Riemannian metrics on } M\}$$

such that
Objective of this lecture:

Describe modest recent progress on this issue.

For M a Del Pezzo surface, will define explicit open

$$U \subset \{\text{Riemannian metrics on } M\}$$

such that

- Every known Einstein metric belongs to U;
Objective of this lecture:

Describe modest recent progress on this issue.

For M a Del Pezzo surface, will define explicit open $U \subset \{\text{Riemannian metrics on } M\}$ such that

- Every known Einstein metric belongs to U;
- These form a connected family, mod diffeos;
Objective of this lecture:

Describe modest recent progress on this issue.

For M a Del Pezzo surface, will define explicit open

$$\mathcal{U} \subset \{\text{Riemannian metrics on } M\}$$

such that

- Every known Einstein metric belongs to \mathcal{U};
- These form a connected family, mod diffeos; and
- No other Einstein metrics belong to \mathcal{U}!
Formulation will depend on...
Special character of dimension 4:
Special character of dimension 4:

The Lie group $SO(4)$ is not simple
Special character of dimension 4:

The Lie group $SO(4)$ is not simple:

$$so(4) \cong so(3) \oplus so(3).$$
Special character of dimension 4:

The Lie group $SO(4)$ is not simple:

$$so(4) \cong so(3) \oplus so(3).$$

On oriented (M^4, g),
Special character of dimension 4:

The Lie group $SO(4)$ is not simple:

$$so(4) \cong so(3) \oplus so(3).$$

On oriented (M^4, g), \implies

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$
Special character of dimension 4:

The Lie group $SO(4)$ is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

On oriented (M^4, g), \implies

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

where Λ^\pm are (± 1)-eigenspaces of

$\star : \Lambda^2 \to \Lambda^2$,
Special character of dimension 4:

The Lie group $SO(4)$ is not simple:

$$so(4) \cong so(3) \oplus so(3).$$

On oriented (M^4, g), \implies

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

where Λ^\pm are (± 1)-eigenspaces of

$$\star : \Lambda^2 \to \Lambda^2,$$

$$\star^2 = 1.$$

Λ^+ self-dual 2-forms.

Λ^- anti-self-dual 2-forms.
Riemann curvature of g

$\mathcal{R} : \Lambda^2 \rightarrow \Lambda^2$
Riemann curvature of g

$$\mathcal{R} : \Lambda^2 \rightarrow \Lambda^2$$

splits into 4 irreducible pieces:
Riemann curvature of g

$$\mathcal{R} : \Lambda^2 \rightarrow \Lambda^2$$

splits into 4 irreducible pieces:

<table>
<thead>
<tr>
<th>Λ^+</th>
<th>$\Lambda^+\ast$</th>
<th>Λ^\ast</th>
<th>Λ^-</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W_+ + \frac{s}{12}$</td>
<td>$\hat{\varphi}$</td>
<td>$\hat{\varphi}$</td>
<td>$W_ - + \frac{s}{12}$</td>
</tr>
</tbody>
</table>
Riemann curvature of g

$\mathcal{R} : \Lambda^2 \rightarrow \Lambda^2$

splits into 4 irreducible pieces:

<table>
<thead>
<tr>
<th></th>
<th>Λ^+</th>
<th>Λ^-</th>
<th>Λ^{+*}</th>
<th>Λ^{-*}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Λ^+</td>
<td>$W_+ + \frac{s}{12}$</td>
<td>$\mathring{\mathcal{R}}$</td>
<td>$\mathring{\mathcal{R}}$</td>
<td>$W_- + \frac{s}{12}$</td>
</tr>
</tbody>
</table>

where

- $s = \text{scalar curvature}$
- $\mathring{\mathcal{R}} = \text{trace-free Ricci curvature}$
- $W_+ = \text{self-dual Weyl curvature}$
- $W_- = \text{anti-self-dual Weyl curvature}$
Riemann curvature of g

$$\mathcal{R} : \Lambda^2 \rightarrow \Lambda^2$$

splits into 4 irreducible pieces:

<table>
<thead>
<tr>
<th></th>
<th>Λ^+</th>
<th>Λ^+*</th>
<th>Λ^-</th>
<th>Λ^-*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Λ^+</td>
<td>$W_+ + \frac{s}{12}$</td>
<td>\hat{r}</td>
<td>\hat{r}</td>
<td>$W_- + \frac{s}{12}$</td>
</tr>
</tbody>
</table>

where

$s = \text{scalar curvature}$

$\hat{r} = \text{trace-free Ricci curvature}$

$W_+ = \text{self-dual Weyl curvature} \ (\text{conformally invariant})$

$W_- = \text{anti-self-dual Weyl curvature}$
Smooth compact M^4 has invariants $b_{\pm}(M)$, defined in terms of intersection pairing.
Smooth compact M^4 has invariants $b_{\pm}(M)$, defined in terms of intersection pairing

$$H^2(M, \mathbb{R}) \times H^2(M, \mathbb{R}) \rightarrow \mathbb{R}$$

$$([\varphi], [\psi]) \mapsto \int_M \varphi \wedge \psi$$
Smooth compact M^4 has invariants $b_{\pm}(M)$, defined in terms of intersection pairing

$$H^2(M, \mathbb{R}) \times H^2(M, \mathbb{R}) \longrightarrow \mathbb{R}$$

$$([\varphi], [\psi]) \longmapsto \int_M \varphi \wedge \psi$$

Diagonalize:
Smooth compact M^4 has invariants $b_{\pm}(M)$, defined in terms of intersection pairing

$$H^2(M, \mathbb{R}) \times H^2(M, \mathbb{R}) \rightarrow \mathbb{R}$$

$$(\left[\varphi \right], \left[\psi \right]) \mapsto \int_M \varphi \wedge \psi$$

Diagonalize:

\[
\begin{bmatrix}
+1 \\
\vdots \\
+1 \\
-1 \\
\vdots \\
-1
\end{bmatrix}
\]
Smooth compact M^4 has invariants $b_{\pm}(M)$, defined in terms of intersection pairing

$$H^2(M, \mathbb{R}) \times H^2(M, \mathbb{R}) \rightarrow \mathbb{R}$$

$$(\, [\varphi], \, [\psi] \,) \mapsto \int_M \varphi \wedge \psi$$

Diagonalize:

\[
\begin{bmatrix}
+1 \\
\vdots \\
\left\{ \begin{array}{c}
+1 \\
\end{array} \right\}
\end{bmatrix} \\
\left\{ \begin{array}{c}
b_{+}(M) \\
b_{-}(M) \\
\end{array} \right\}
\begin{bmatrix}
-1 \\
\vdots \\
-1
\end{bmatrix}.
\]
Hodge theory:

\[H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d\star\varphi = 0 \}. \]
Hodge theory:

\[H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d\star\varphi = 0 \}. \]

Since \(\star \) is involution of RHS, \(\implies \)

\[H^2(M, \mathbb{R}) = \mathcal{H}^+_g \oplus \mathcal{H}^-_g, \]
Hodge theory:

\[H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d\star\varphi = 0 \} \].

Since \(\star \) is involution of RHS, \(\implies \)

\[H^2(M, \mathbb{R}) = \mathcal{H}_g^+ \oplus \mathcal{H}_g^- \],

where

\[\mathcal{H}_g^{\pm} = \{ \varphi \in \Gamma(\Lambda^{\pm}) \mid d\varphi = 0 \} \]

self-dual & anti-self-dual harmonic forms.
Hodge theory:

\[H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d\ast \varphi = 0 \}. \]

Since \(\ast \) is involution of RHS, \(\implies \)

\[H^2(M, \mathbb{R}) = \mathcal{H}^+ \oplus \mathcal{H}^-, \]

where

\[\mathcal{H}^\pm_g = \{ \varphi \in \Gamma(\Lambda^\pm) \mid d\varphi = 0 \} \]

self-dual & anti-self-dual harmonic forms. Then

\[b^\pm(M) = \dim \mathcal{H}^\pm_g. \]
\[\mathcal{H}_g^+ \subset H^2(M, \mathbb{R}) \]
\{ a \mid a \cdot a = 0 \} \subset H^2(M, \mathbb{R})
\(\{ a \mid a \cdot a = 0 \} \subset H^2(M, \mathbb{R}) \)
\[b_{\pm}(M) = \dim\mathcal{H}_g^{\mp}. \]
\[b_\pm(M) = \dim \mathcal{H}_g^\pm. \]
\[b_{\pm}(M) = \dim \mathcal{H}_g^{\pm}. \]
\[b_\pm(M) = \dim \mathcal{H}_g^\pm. \]
More Technical Question. When does a compact complex surface \((M^4, J)\) admit an Einstein metric \(h\) which is Hermitian,
More Technical Question. When does a compact complex surface \((M^4, J)\) admit an Einstein metric \(h\) which is Hermitian, in the sense that

\[h(\cdot, \cdot) = h(J\cdot, J\cdot) \]
More Technical Question. When does a compact complex surface \((M^4, J)\) admit an Einstein metric \(h\) which is Hermitian, in the sense that

\[h(\cdot, \cdot) = h(J\cdot, J\cdot) \]?

Kähler if the 2-form

\[\omega = h(J\cdot, \cdot) \]

is closed:

\[d\omega = 0. \]

But we do not assume this!
More Technical Question. When does a compact complex surface (M^4, J) admit an Einstein metric h which is Hermitian, in the sense that

$$h(\cdot, \cdot) = h(J\cdot, J\cdot)?$$
Theorem. A compact complex surface \((M^4, J)\) admits an Einstein metric \(h\) which is Hermitian with respect to \(J\) \(\iff\) \(c_1(M^4, J)\) “has a sign.”
Theorem. A compact complex surface \((M^4, J)\) admits an Einstein metric \(h\) which is Hermitian with respect to \(J\) \iff \(c_1(M^4, J)\) “has a sign.”

More precisely, \(\exists\) such \(h\) with Einstein constant \(\lambda\) \iff there is a Kähler form \(\omega\) such that

\[
c_1(M^4, J) = \lambda[\omega].
\]
Theorem. A compact complex surface \((M^4, J)\) admits an Einstein metric \(h\) which is Hermitian with respect to \(J \iff c_1(M^4, J)\) “has a sign.”

More precisely, \(\exists\) such \(h\) with Einstein constant \(\lambda \iff\) there is a Kähler form \(\omega\) such that
\[
c_1(M^4, J) = \lambda [\omega].
\]
Moreover, this metric is unique, up to isometry, if \(\lambda \neq 0\).
Theorem. A compact complex surface \((M^4, J)\) admits an Einstein metric \(h\) which is Hermitian with respect to \(J \iff c_1(M^4, J)\) “has a sign.”

More precisely, \(\exists\) such \(h\) with Einstein constant \(\lambda \iff\) there is a Kähler form \(\omega\) such that

\[
c_1(M^4, J) = \lambda[\omega].
\]

Moreover, this metric is unique, up to isometry, if \(\lambda \neq 0\).

Aubin, Yau, Siu, Tian \ldots\ Kähler case.
Theorem. A compact complex surface \((M^4, J)\) admits an Einstein metric \(h\) which is Hermitian with respect to \(J\) \(\iff\) \(c_1(M^4, J)\) “has a sign.”

More precisely, \(\exists\) such \(h\) with Einstein constant \(\lambda\) \(\iff\) there is a Kähler form \(\omega\) such that
\[
c_1(M^4, J) = \lambda[\omega].
\]
Moreover, this metric is unique, up to isometry, if \(\lambda \neq 0\).

Aubin, Yau, Siu, Tian . . . Kähler case.

Theorem. A compact complex surface \((M^4, J)\) admits an Einstein metric \(h\) which is Hermitian with respect to \(J\) \(\iff\) \(c_1(M^4, J)\) “has a sign.”

More precisely, \(\exists\) such \(h\) with Einstein constant \(\lambda\) \(\iff\) there is a Kähler form \(\omega\) such that

\[
c_1(M^4, J) = \lambda [\omega].
\]

Moreover, this metric is unique, up to isometry, if \(\lambda \neq 0\).

Aubin, Yau, Siu, Tian … Kähler case.

Only two metrics arise in non-Kähler case!
Theorem. A compact complex surface \((M^4, J)\) admits an Einstein metric \(h\) which is Hermitian with respect to \(J \iff c_1(M^4, J)\) “has a sign.”

More precisely, \(\exists\) such \(h\) with Einstein constant \(\lambda \iff\) there is a Kähler form \(\omega\) such that
\[
c_1(M^4, J) = \lambda[\omega].
\]
Moreover, this metric is unique, up to isometry, if \(\lambda \neq 0\).

Key Point.
Theorem. A compact complex surface (M^4, J) admits an Einstein metric h which is Hermitian with respect to J \iff $c_1(M^4, J)$ “has a sign.”

More precisely, \exists such h with Einstein constant λ \iff there is a Kähler form ω such that

$$c_1(M^4, J) = \lambda[\omega].$$

Moreover, this metric is unique, up to isometry, if $\lambda \neq 0$.

Key Point. Metrics are actually conformally Kähler.
Theorem. A compact complex surface \((M^4, J)\) admits an Einstein metric \(h\) which is Hermitian with respect to \(J \iff c_1(M^4, J)\) “has a sign.”

More precisely, \(\exists\) such \(h\) with Einstein constant \(\lambda \iff\) there is a Kähler form \(\omega\) such that
\[
c_1(M^4, J) = \lambda[\omega].
\]
Moreover, this metric is unique, up to isometry, if \(\lambda \neq 0\).

Key Point. Metrics are actually conformally Kähler.

\[
h = s^{-2}g
\]
Theorem. A compact complex surface \((M^4, J)\) admits an Einstein metric \(h\) which is Hermitian with respect to \(J\) \(\iff\) \(c_1(M^4, J)\) “has a sign.”

More precisely, \(\exists\) such \(h\) with Einstein constant \(\lambda\) \(\iff\) there is a Kähler form \(\omega\) such that
\[
c_1(M^4, J) = \lambda[\omega].
\]
Moreover, this metric is unique, up to isometry, if \(\lambda \neq 0\).

Key Point. Metrics are actually conformally Kähler.

Strictly 4-dimensional phenomenon!
Theorem. A compact complex surface (M^4, J) admits an Einstein metric h which is Hermitian with respect to $J \iff c_1(M^4, J)$ “has a sign.”

More precisely, \exists such h with Einstein constant $\lambda \iff$ there is a Kähler form ω such that

$$c_1(M^4, J) = \lambda[\omega].$$

Moreover, this metric is unique, up to isometry, if $\lambda \neq 0$.

Key Point. Metrics are actually conformally Kähler.

Strictly 4-dimensional phenomenon!

“Riemannian Goldberg-Sachs Theorem.”
So, which complex surfaces admit
So, which complex surfaces admit Einstein Hermitian metrics with $\lambda > 0$?
Del Pezzo surfaces:
Del Pezzo surfaces:

$$(M^4, J)$$ for which c_1 is a Kähler class $[\omega]$.
Del Pezzo surfaces:

(M^4, J) for which c_1 is a Kähler class $[\omega]$.

Shorthand: “$c_1 > 0$.”
Del Pezzo surfaces:

$$(M^4, J)$$ for which c_1 is a Kähler class $[\omega]$. Shorthand: “$c_1 > 0.$”

Blow-up of $\mathbb{C}P_2$ at k distinct points, in general position,
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\).

Shorthand: “\(c_1 > 0\).”

Blow-up of \(\mathbb{CP}^2\) at \(k\) distinct points, \(0 \leq k \leq 8\), in general position,
Del Pezzo surfaces:

$\left(M^4, J\right)$ for which c_1 is a Kähler class $[\omega]$.
Shorthand: “$c_1 > 0$.”

Blow-up of \mathbb{CP}^2 at k distinct points, $0 \leq k \leq 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\).

Shorthand: “\(c_1 > 0\).”

Blow-up of \(\mathbb{CP}_2\) at \(k\) distinct points, \(0 \leq k \leq 8\), in general position, or \(\mathbb{CP}_1 \times \mathbb{CP}_1\).
Blowing up:
Blowing up:

If N is a complex surface,
Blowing up:

If N is a complex surface, may replace $p \in N$.
Blowing up:

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1.
Blowing up:

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \cong N \# \mathbb{CP}_2$$

in which added \mathbb{CP}_1 has normal bundle $\mathcal{O}(-1)$.

![Diagram showing blow-up of N by \mathbb{CP}_1.]
Blowing up:

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}_2}$$

in which added \mathbb{CP}_1 has normal bundle $\mathcal{O}(-1)$.

![Diagram of blow-up process]
Blowing up:

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}_2}$$

in which added \mathbb{CP}_1 has normal bundle $\mathcal{O}(-1)$.

![Diagram of blowing up with M and N]
Blowing up:

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}_2}$$

in which added \mathbb{CP}_1 has normal bundle $\mathcal{O}(-1)$.

\[
\begin{array}{c}
 \text{Diagram:}\n \\
 M \quad \downarrow \quad \text{N}\n\end{array}
\]
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\). Shorthand: \(c_1 > 0\).

Blow-up of \(\mathbb{CP}_2\) at \(k\) distinct points, \(0 \leq k \leq 8\), in general position, or \(\mathbb{CP}_1 \times \mathbb{CP}_1\).
Del Pezzo surfaces:

$$(M^4, J)$$ for which c_1 is a Kähler class $[\omega]$. Shorthand: “$c_1 > 0$.”

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \leq k \leq 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

No 3 on a line,
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\).

Shorthand: “\(c_1 > 0\).”

Blow-up of \(\mathbb{CP}_2\) at \(k\) distinct points, \(0 \leq k \leq 8\), in general position, or \(\mathbb{CP}_1 \times \mathbb{CP}_1\).

No 3 on a line, no 6 on conic,
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\).
Shorthand: “\(c_1 > 0\).”

Blow-up of \(\mathbb{CP}_2\) at \(k\) distinct points, \(0 \leq k \leq 8\), in general position, or \(\mathbb{CP}_1 \times \mathbb{CP}_1\).

No 3 on a line, no 6 on conic, no 8 on nodal cubic.
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\). Shorthand: “\(c_1 > 0\).”

Blow-up of \(\mathbb{CP}_2\) at \(k\) distinct points, \(0 \leq k \leq 8\), in general position, or \(\mathbb{CP}_1 \times \mathbb{CP}_1\).
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\).
Shorthand: “\(c_1 > 0\).”

Blow-up of \(\mathbb{CP}_2\) at \(k\) distinct points, \(0 \leq k \leq 8\), in general position, or \(\mathbb{CP}_1 \times \mathbb{CP}_1\).

For each topological type:
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\).
Shorthand: “\(c_1 > 0\).”

Blow-up of \(\mathbb{CP}_2\) at \(k\) distinct points, \(0 \leq k \leq 8\), in general position, or \(\mathbb{CP}_1 \times \mathbb{CP}_1\).

For each topological type:

Moduli space of such \((M^4, J)\) is connected.
Del Pezzo surfaces:

(M^4, J) for which c_1 is a Kähler class $[\omega]$.

Shorthand: “$c_1 > 0$.”

Blow-up of \mathbb{CP}^2 at k distinct points, $0 \leq k \leq 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

For each topological type:

Moduli space of such (M^4, J) is connected.

Just a point if $b_2(M) \leq 5$.
Every del Pezzo surface has $b_+ = 1$.
Every del Pezzo surface has $b_+ = 1$. \iff

\forall h, \exists! \text{ self-dual harmonic 2-form } \omega:
Every del Pezzo surface has $b_+ = 1$. \(\iff\)

\[\forall h, \exists! \text{ self-dual harmonic 2-form } \omega: \]

\[d\omega = 0, \quad \star \omega = \omega. \]
Every del Pezzo surface has $b_+ = 1$. ⇐⇒

Up to scale, $\forall \ h, \ \exists \ !$ self-dual harmonic 2-form ω:

$$d\omega = 0, \ \ \ \ \star \omega = \omega.$$
Every del Pezzo surface has $b_+ = 1$. \iff

Up to scale, $\forall \ h, \ \exists !$ self-dual harmonic 2-form ω:

$$d\omega = 0, \quad \star \omega = \omega.$$

Such a form defines a symplectic structure,
Every del Pezzo surface has $b_+ = 1$.

Up to scale, $\forall \ h, \ \exists!$ self-dual harmonic 2-form ω:

$$d\omega = 0, \quad \star \omega = \omega.$$

Such a form defines a symplectic structure, except at points where $\omega = 0$.
Every del Pezzo surface has $b_+ = 1$. ⇐⇒

Up to scale, $\forall \ h, \ \exists \!$ self-dual harmonic 2-form ω:

$$d\omega = 0, \quad \star \omega = \omega.$$

Such a form defines a symplectic structure, except at points where $\omega = 0$.

Definition. Let M be smooth 4-manifold with $b_+(M) = 1$.

Every del Pezzo surface has $b_+ = 1$. \iff

Up to scale, $\forall \ h, \ \exists!$ self-dual harmonic 2-form ω:

$$d\omega = 0, \quad \star \omega = \omega.$$

Such a form defines a symplectic structure, except at points where $\omega = 0$.

Definition. Let M be smooth 4-manifold with $b_+(M) = 1$. We will say that a Riemannian metric h on M...
Every del Pezzo surface has $b_+ = 1$. ⇐⇒

Up to scale, $\forall h$, $\exists!$ self-dual harmonic 2-form ω:

$$d\omega = 0, \quad \star \omega = \omega.$$

Such a form defines a symplectic structure, except at points where $\omega = 0$.

Definition. Let M be smooth 4-manifold with $b_+(M) = 1$. We will say that a Riemannian metric h on M is of symplectic type.
Every del Pezzo surface has \(b_+ = 1 \).

Up to scale, \(\forall \, h, \exists! \) self-dual harmonic 2-form \(\omega \):

\[
d\omega = 0, \quad \star \omega = \omega.
\]

Such a form defines a symplectic structure, except at points where \(\omega = 0 \).

Definition. Let \(M \) be smooth 4-manifold with \(b_+(M) = 1 \). We will say that a Riemannian metric \(h \) on \(M \) is of symplectic type if associated SD harmonic \(\omega \).
Every del Pezzo surface has $b_+ = 1$.

Up to scale, $\forall \, h$, $\exists \!$ self-dual harmonic 2-form ω:

$$d\omega = 0, \quad \star \omega = \omega.$$

Such a form defines a symplectic structure, except at points where $\omega = 0$.

Definition. Let M be smooth 4-manifold with $b_+(M) = 1$. We will say that a Riemannian metric h on M is of symplectic type if associated SD harmonic ω is nowhere zero.
Every del Pezzo surface has $b_+ = 1$. \iff

Up to scale, $\forall \, h$, $\exists \, !$ self-dual harmonic 2-form $\omega:\n\n\n\begin{align*}
d\omega &= 0, \\
\star \omega &= \omega.
\end{align*}$

Such a form defines a symplectic structure, except at points where $\omega = 0$.

Definition. Let M be smooth 4-manifold with $b_+(M) = 1$. We will say that a Riemannian metric h on M is of symplectic type if associated SD harmonic ω is nowhere zero.

- open condition;
Every del Pezzo surface has $b_+ = 1$. \iff

Up to scale, $\forall\ h, \exists!$ self-dual harmonic 2-form ω:

$$d\omega = 0, \quad \star\omega = \omega.$$

Such a form defines a symplectic structure, except at points where $\omega = 0$.

Definition. Let M be smooth 4-manifold with $b_+(M) = 1$. We will say that a Riemannian metric h on M is of symplectic type if associated SD harmonic ω is nowhere zero.

- open condition;
- conformally invariant;
Every del Pezzo surface has $b_+ = 1$.

Up to scale, $\forall \ h$, \exists! self-dual harmonic 2-form ω:

$$d\omega = 0, \quad \star \omega = \omega.$$

Such a form defines a symplectic structure, except at points where $\omega = 0$.

Definition. Let M be smooth 4-manifold with $b_+(M) = 1$. We will say that a Riemannian metric h on M is of symplectic type if associated SD harmonic ω is nowhere zero.

- open condition;
- conformally invariant; and
- holds in Kähler case.
Definition. Let M be smooth compact 4-manifold with $b_+(M) = 1$.
Definition. Let M be smooth compact 4-manifold with $b_+(M) = 1$. We will say that a Riemannian metric h
Definition. Let M be smooth compact 4-manifold with $b_+(M) = 1$. We will say that a Riemannian metric h is of positive symplectic type.
Definition. Let M be smooth compact 4-manifold with $b_+(M) = 1$. We will say that a Riemannian metric h is of positive symplectic type if Weyl curvature and SD harmonic form ω satisfy
Definition. Let M be smooth compact 4-manifold with $b_+(M) = 1$. We will say that a Riemannian metric h is of positive symplectic type if Weyl curvature and SD harmonic form ω satisfy

$$W_+(\omega, \omega) > 0$$
Definition. Let M be smooth compact 4-manifold with $b_+(M) = 1$. We will say that a Riemannian metric η is of positive symplectic type if Weyl curvature and SD harmonic form ω satisfy

$$W_+(\omega, \omega) > 0$$

at every point of M.

Definition. Let M be smooth compact 4-manifold with $b_+(M) = 1$. We will say that a Riemannian metric h is of positive symplectic type if Weyl curvature and SD harmonic form ω satisfy

$$W_+(\omega, \omega) > 0$$

at every point of M.

Notice that
Definition. Let M be smooth compact 4-manifold with $b_+(M) = 1$. We will say that a Riemannian metric h is of positive symplectic type if Weyl curvature and SD harmonic form ω satisfy

$$W_+(\omega, \omega) > 0$$

at every point of M.

Notice that

- ω is symplectic form.
Definition. Let M be smooth compact 4-manifold with $b_+(M) = 1$. We will say that a Riemannian metric h is of positive symplectic type if Weyl curvature and SD harmonic form ω satisfy

$$W_+(\omega, \omega) > 0$$

at every point of M.

Notice that

- ω is symplectic form.
- W_+ is everywhere non-zero.
Definition. Let M be smooth compact 4-manifold with $b_+(M) = 1$. We will say that a Riemannian metric h is of positive symplectic type if Weyl curvature and SD harmonic form ω satisfy

$$W_+(\omega, \omega) > 0$$

at every point of M.
Definition. Let M be smooth compact 4-manifold with $b_+(M) = 1$. We will say that a Riemannian metric h is of positive symplectic type if Weyl curvature and SD harmonic form ω satisfy

$$W_+(\omega, \omega) > 0$$

at every point of M.

However,
Definition. Let M be smooth compact 4-manifold with $b_+(M) = 1$. We will say that a Riemannian metric h is of positive symplectic type if Weyl curvature and SD harmonic form ω satisfy

$$W_+(\omega, \omega) > 0$$

at every point of M.

However,

- recall that W_+ is trace-free;
Definition. Let M be smooth compact 4-manifold with $b_+(M) = 1$. We will say that a Riemannian metric h is of positive symplectic type if Weyl curvature and SD harmonic form ω satisfy

$$W_+(\omega, \omega) > 0$$

at every point of M.

However,

- recall that W_+ is trace-free; so
- wherever W_+ non-zero, has positive directions.
Definition. Let M be smooth compact 4-manifold with $b_+(M) = 1$. We will say that a Riemannian metric h is of positive symplectic type if Weyl curvature and SD harmonic form ω satisfy

$$W_+(\omega, \omega) > 0$$

at every point of M.
Definition. Let M be smooth compact 4-manifold with $b_+(M) = 1$. We will say that a Riemannian metric h is of positive symplectic type if Weyl curvature and SD harmonic form ω satisfy

$$W_+(\omega, \omega) > 0$$

at every point of M.

Thus, we are really just demanding that
Definition. Let M be smooth compact 4-manifold with $b_+(M) = 1$. We will say that a Riemannian metric h is of positive symplectic type if Weyl curvature and SD harmonic form ω satisfy

$$W_+(\omega, \omega) > 0$$

at every point of M.

Thus, we are really just demanding that

• $\omega \neq 0$ everywhere;
Definition. Let M be smooth compact 4-manifold with $b_+(M) = 1$. We will say that a Riemannian metric h is of positive symplectic type if Weyl curvature and SD harmonic form ω satisfy
\[W_+(\omega, \omega) > 0 \]
at every point of M.

Thus, we are really just demanding that
- $\omega \neq 0$ everywhere;
- $W_+ \neq 0$ everywhere; and
Definition. Let M be smooth compact 4-manifold with $b_+(M) = 1$. We will say that a Riemannian metric h is of positive symplectic type if Weyl curvature and SD harmonic form ω satisfy

\[W_+(\omega, \omega) > 0 \]

at every point of M.

Thus, we are really just demanding that

- $\omega \neq 0$ everywhere;
- $W_+ \neq 0$ everywhere; and
- W_+ and ω are everywhere roughly aligned.
Definition. Let M be smooth compact 4-manifold with $b_+(M) = 1$. We will say that a Riemannian metric h is of **positive symplectic type** if Weyl curvature and SD harmonic form ω satisfy

$$W_+(\omega, \omega) > 0$$

at every point of M.
Definition. Let M be smooth compact 4-manifold with $b_+(M) = 1$. We will say that a Riemannian metric h is of positive symplectic type if Weyl curvature and SD harmonic form ω satisfy

$$W_+(\omega, \omega) > 0$$

at every point of M.

- open condition;
Definition. Let M be smooth compact 4-manifold with $b_+(M) = 1$. We will say that a Riemannian metric h is of positive symplectic type if Weyl curvature and SD harmonic form ω satisfy
\[W_+(\omega, \omega) > 0 \]
at every point of M.

- open condition;
- conformally invariant;
Definition. Let M be smooth compact 4-manifold with $b_+(M) = 1$. We will say that a Riemannian metric h is of positive symplectic type if Weyl curvature and SD harmonic form ω satisfy

$$W_+(\omega, \omega) > 0$$

at every point of M.

- open condition;
- conformally invariant; and
- holds for Kähler metrics with $s > 0$.
Definition. Let M be smooth compact 4-manifold with $b_+(M) = 1$. We will say that a Riemannian metric h is of positive symplectic type if Weyl curvature and SD harmonic form ω satisfy
\[
W_+(\omega, \omega) > 0
\]
at every point of M.

- open condition;
- conformally invariant; and
- holds for Kähler metrics with $s > 0$.

\[
\text{Kähler} \implies W_+ = \begin{pmatrix}
-\frac{s}{12} & -\frac{s}{12} \\
-\frac{s}{12} & \frac{s}{6}
\end{pmatrix}
\]
Definition. Let M be smooth compact 4-manifold with $b_{+}(M) = 1$. We will say that a Riemannian metric h is of positive symplectic type if Weyl curvature and SD harmonic form ω satisfy

$$W_+(\omega, \omega) > 0$$

at every point of M.

- open condition;
- conformally invariant; and
- holds for Kähler metrics with $s > 0$.
Definition. Let M be smooth compact 4-manifold with $b_+(M) = 1$. We will say that a Riemannian metric h is of positive symplectic type if Weyl curvature and SD harmonic form ω satisfy
$$W_+(\omega, \omega) > 0$$
at every point of M.

- open condition;
- conformally invariant; and
- holds for (almost) Kähler metrics with $s > 0$.
Theorem A.

Let \((M, h)\) be a smooth compact 4-dimensional Einstein manifold. If \(h\) is of positive symplectic type, then it's a conformally Kähler, Einstein metric on a Del Pezzo surface \((M, J)\).
Theorem A. Let \((M, h)\) be a smooth compact 4-dimensional Einstein manifold.
Theorem A. Let \((M, h)\) be a smooth compact 4-dimensional Einstein manifold. If \(h\) is of positive symplectic type,
Theorem A. Let (M, h) be a smooth compact 4-dimensional Einstein manifold. If h is of positive symplectic type, then it’s a conformally Kähler, Einstein metric.
Theorem A. Let \((M, h)\) be a smooth compact 4-dimensional Einstein manifold. If \(h\) is of positive symplectic type, then it’s a conformally Kähler, Einstein metric on a Del Pezzo surface \((M, J)\).
Theorem A. Let \((M, h)\) be a smooth compact 4-dimensional Einstein manifold. If \(h\) is of positive symplectic type, then it’s a conformally Kähler, Einstein metric on a Del Pezzo surface \((M, J)\).

In other words, \(h\) is known, and is either
Theorem A. Let \((M, h)\) be a smooth compact 4-dimensional Einstein manifold. If \(h\) is of positive symplectic type, then it’s a conformally Kähler, Einstein metric on a Del Pezzo surface \((M, J)\).

In other words, \(h\) is known, and is either

- Kähler-Einstein, with \(\lambda > 0\); or
Theorem A. Let \((M, h)\) be a smooth compact 4-dimensional Einstein manifold. If \(h\) is of positive symplectic type, then it’s a conformally Kähler, Einstein metric on a Del Pezzo surface \((M, J)\).

In other words, \(h\) is known, and is either

- Kähler-Einstein, with \(\lambda > 0\); or
- Page metric on \(\mathbb{CP}_2 \# \overline{\mathbb{CP}_2}\); or
Theorem A. Let \((M, h)\) be a smooth compact 4-dimensional Einstein manifold. If \(h\) is of positive symplectic type, then it’s a conformally Kähler, Einstein metric on a Del Pezzo surface \((M, J)\).

In other words, \(h\) is known, and is either

- Kähler-Einstein, with \(\lambda > 0\); or
- Page metric on \(\mathbb{CP}_2 \# \overline{\mathbb{CP}_2}\); or
- CLW metric on \(\mathbb{CP}_2 \# 2\overline{\mathbb{CP}_2}\).
Theorem A. Let (M, h) be a smooth compact 4-dimensional Einstein manifold. If h is of positive symplectic type, then it’s a conformally Kähler, Einstein metric on a Del Pezzo surface (M, J).

In other words, h is known, and is either

- Kähler-Einstein, with $\lambda > 0$; or
- Page metric on $\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$; or
- CLW metric on $\mathbb{CP}_2 \# 2\overline{\mathbb{CP}}_2$.

Conversely, all these are of positive symplectic type.
For M^4 a Del Pezzo surface,
For M^4 a Del Pezzo surface,

considered as smooth compact oriented 4-manifold,
For M^4 a Del Pezzo surface,
For M^4 a Del Pezzo surface, set
For M^4 a Del Pezzo surface, set

$$\mathcal{E}(M) = \{\text{Einstein } h \text{ on } M\}/(\text{Diffeos } \times \mathbb{R}^+)$$
For M^4 a Del Pezzo surface, set

\[\mathcal{E}(M) = \{ \text{Einstein } h \text{ on } M \} / (\text{Diffeos } \times \mathbb{R}^+) \]

\[\mathcal{E}_\omega^+(M) = \{ \text{Einstein } h \text{ with } W^+(\omega, \omega) > 0 \} / \sim \]
For M^4 a Del Pezzo surface, set

\[\mathcal{E}(M) = \{ \text{Einstein } h \text{ on } M \}/(\text{Diffeos} \times \mathbb{R}^+) \]

\[\mathcal{E}_\omega^+(M) = \{ \text{Einstein } h \text{ with } W^+(\omega, \omega) > 0 \}/\sim \]

Corollary. $\mathcal{E}_\omega^+(M)$ is connected.
For M^4 a Del Pezzo surface, set

$$\mathcal{E}(M) = \{\text{Einstein } h \text{ on } M\}/(\text{Diffeos } \times \mathbb{R}^+)$$

$$\mathcal{E}_\omega^+(M) = \{\text{Einstein } h \text{ with } W^+(\omega, \omega) > 0\}/\sim$$

Corollary. $\mathcal{E}_\omega^+(M)$ is connected. Moreover, if $b_2(M) \leq 5$,
For M^4 a Del Pezzo surface, set

$$\mathcal{E}(M) = \{\text{Einstein } h \text{ on } M\} / (\text{Diffeos } \times \mathbb{R}^+)$$

$$\mathcal{E}_\omega^+(M) = \{\text{Einstein } h \text{ with } W^+(\omega, \omega) > 0\} / \sim$$

Corollary. $\mathcal{E}_\omega^+(M)$ is connected. Moreover, if $b_2(M) \leq 5$, then $\mathcal{E}_\omega^+(M) = \{\text{point}\}$.
For M^4 a Del Pezzo surface, set

$$\mathcal{E}(M) = \{\text{Einstein } h \text{ on } M\}/(\text{Diffeos } \times \mathbb{R}^+)$$

$$\mathcal{E}_\omega^+(M) = \{\text{Einstein } h \text{ with } W^+(\omega, \omega) > 0\}/\sim$$

Corollary. $\mathcal{E}_\omega^+(M)$ is connected. Moreover, if $b_2(M) \leq 5$, then $\mathcal{E}_\omega^+(M) = \{\text{point}\}$.

Corollary. $\mathcal{E}_\omega^+(M)$ is exactly one connected component of $\mathcal{E}(M)$.
Method of Proof.
Key Observation:
Key Observation:

By second Bianchi identity,
Key Observation:

By second Bianchi identity,

\[h \text{ Einstein} \implies \delta W^+ = (\delta W)^+ = 0. \]
Key Observation:

By second Bianchi identity,

\[h \text{ Einstein} \implies \delta W^+ = (\delta W)^+ = 0. \]

\[(\delta W)_{bcd} := -\nabla_a W^a_{bcd} = -\nabla_{[c^r d]} b + \frac{1}{6} h b[c \nabla_d]s \]
Key Observation:

By second Bianchi identity,

\[h \text{ Einstein} \implies \delta W^+ = (\delta W)^+ = 0. \]

\[(\delta W)_{bcd} := -\nabla^a W^a_{bcd} = -\nabla^{[cr} d]b + \frac{1}{6} h b[c \nabla d]^{s} \]

Our strategy:
Key Observation:

By second Bianchi identity,

\[h \text{ Einstein} \implies \delta W^+ = (\delta W)^+ = 0. \]

\[(\delta W)_{bcd} := -\nabla_a W^a_{bcd} = -\nabla_{[c}^{\; r d]} b + \frac{1}{6} h b [c \nabla d] s \]

Our strategy:

study weaker equation
Key Observation:

By second Bianchi identity,

\[h \text{ Einstein } \implies \delta W^+ = (\delta W)^+ = 0. \]

\[(\delta W)_{bcd} := -\nabla_a W^a_{bcd} = -\nabla_{[c^r d]} b + \frac{1}{6} h b [c \nabla d]^s \]

Our strategy:

study weaker equation

\[\delta W^+ = 0 \]
Key Observation:

By second Bianchi identity,

\[h \text{ Einstein} \implies \delta W^+ = (\delta W)^+ = 0. \]

\[(\delta W)_{bcd} := -\nabla_a W^a_{bcd} = -\nabla_{[crd]}b + \frac{1}{6} h b [c \nabla_d]s \]

Our strategy:

study weaker equation

\[\delta W^+ = 0 \]

as proxy for Einstein equation.
Now suppose that $\omega \neq 0$ everywhere.
Now suppose that \(\omega \neq 0 \) everywhere.

Rescale \(h \) to obtain \(g \) with \(|\omega| \equiv \sqrt{2} \):
Now suppose that $\omega \neq 0$ everywhere.

Rescale h to obtain g with $|\omega| \equiv \sqrt{2}$:

$$g = \frac{1}{\sqrt{2}}|\omega|h.$$
Now suppose that $\omega \neq 0$ everywhere.

Rescale h to obtain g with $|\omega| \equiv \sqrt{2}$:

$$g = \frac{1}{\sqrt{2}} |\omega| h.$$

This g is almost-Kähler:
Now suppose that $\omega \neq 0$ everywhere.

Rescale h to obtain g with $|\omega| \equiv \sqrt{2}$:

$$g = \frac{1}{\sqrt{2}|\omega|h}.$$

This g is almost-Kähler:

related to symplectic form ω by
Now suppose that $\omega \neq 0$ everywhere.

Rescale h to obtain g with $|\omega| \equiv \sqrt{2}$:

$$g = \frac{1}{\sqrt{2}}|\omega|h.$$

This g is almost-Kähler:

related to symplectic form ω by

$$g = \omega(\cdot, J\cdot)$$
Now suppose that $\omega \neq 0$ everywhere.

Rescale h to obtain g with $|\omega| \equiv \sqrt{2}$:

$$g = \frac{1}{\sqrt{2}}|\omega|h.$$

This g is almost-Kähler:

related to symplectic form ω by

$$g = \omega(\cdot, J\cdot)$$

for some g-preserving almost-complex structure J.
Weitzenböck for harmonic self-dual 2-form ω:
Weitzenböck for harmonic self-dual 2-form ω:

$$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3} \omega$$
Weitzenböck for harmonic self-dual 2-form ω:

$$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3} \omega$$

Taking inner product with ω:
Weitzenböck for harmonic self-dual 2-form ω:

$$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3} \omega$$

Taking inner product with ω:

$$0 = \frac{1}{2} \Delta |\omega|^2 + |\nabla \omega|^2 - 2W^+(\omega, \omega) + \frac{s}{3} |\omega|^2$$
Weitzenböck for harmonic self-dual 2-form ω:

$$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3} \omega$$

Taking inner product with ω:

$$0 = \frac{1}{2} \Delta |\omega|^2 + |\nabla \omega|^2 - 2W^+(\omega, \omega) + \frac{s}{3} |\omega|^2$$

In almost-Kähler case, $|\omega|^2 \equiv 2$, so
Weitzenböck for harmonic self-dual 2-form ω:

$$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3}\omega$$

Taking inner product with ω:

$$0 = \frac{1}{2} \Delta |\omega|^2 + |\nabla \omega|^2 - 2W^+(\omega, \omega) + \frac{s}{3}|\omega|^2$$

In almost-Kähler case, $|\omega|^2 \equiv 2$, so

$$\frac{1}{2}|\nabla \omega|^2 = W^+(\omega, \omega) - \frac{s}{3}$$
Weitzenböck for harmonic self-dual 2-form ω:

$$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3}\omega$$

Taking inner product with ω:

$$0 = \frac{1}{2} \Delta |\omega|^2 + |\nabla \omega|^2 - 2W^+(\omega, \omega) + \frac{s}{3} |\omega|^2$$

In almost-Kähler case, $|\omega|^2 \equiv 2$, so

$$\frac{1}{2} |\nabla \omega|^2 = W^+(\omega, \omega) - \frac{s}{3}$$

$$W^+(\omega, \omega) \geq \frac{s}{3}$$
Equation $\delta W^+ = 0$?
Equation $\delta W^+ = 0$ not conformally invariant!
Equation $\delta W^+ = 0$ not conformally invariant!

If $h = f^2 g$ satisfies
Equation $\delta W^+ = 0$ not conformally invariant!

If $h = f^2 g$ satisfies

$$\delta W^+ = 0$$
Equation $\delta W^+ = 0$ not conformally invariant!

If $h = f^2 g$ satisfies

$$\delta W^+ = 0$$

then g instead satisfies
Equation $\delta W^+ = 0$ not conformally invariant!

If $h = f^2 g$ satisfies

$$\delta W^+ = 0$$

then g instead satisfies

$$\delta(f W^+) = 0$$
Equation $\delta W^+ = 0$ not conformally invariant!

If $h = f^2 g$ satisfies

$$\delta W^+ = 0$$

then g instead satisfies

$$\delta (f W^+) = 0$$

which in turn implies the Weitzenböck formula
Equation $\delta W^+ = 0$ not conformally invariant!

If $h = f^2 g$ satisfies

$$\delta W^+ = 0$$

then g instead satisfies

$$\delta(fW^+) = 0$$

which in turn implies the Weitzenböck formula

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6 fW^+ \circ W^+ + 2 f |W^+|^2 I$$
Equation $\delta W^+ = 0$ not conformally invariant!

If $h = f^2g$ satisfies

$$\delta W^+ = 0$$

then g instead satisfies

$$\delta(fW^+) = 0$$

which in turn implies the Weitzenböck formula

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6 fW^+ \circ W^+ + 2 f|W^+|^2 I$$

for $fW^+ \in \text{End}(\Lambda^+)$.
Now take inner product of Weitzenböck formula

\[
0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I
\]
Now take inner product of Weitzenböck formula

\[0 = \nabla^* \nabla (f W^+) + \frac{s}{2} f W^+ - 6 f W^+ \circ W^+ + 2 f |W^+|^2 I \]

with \(2\omega \otimes \omega\)
Now take inner product of Weitzenböck formula

\[0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I \]

with \(2\omega \otimes \omega\) and integrate by parts,
Now take inner product of Weitzenböck formula

\[0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2I \]

with \(2\omega \otimes \omega\) and integrate by parts, using identity
Now take inner product of Weitzenböck formula

\[
0 = \nabla^* \nabla (f W^+) + \frac{s}{2} f W^+ - 6 f W^+ \circ W^+ + 2 f |W^+|^2 I
\]

with \(2\omega \otimes \omega\) and integrate by parts, using identity

\[
\langle W^+, \nabla^* \nabla (\omega \otimes \omega) \rangle = [W^+(\omega, \omega)]^2 + 4|W^+(\omega)|^2 - s W^+(\omega, \omega).
\]
Now take inner product of Weitzenböck formula

\[
0 = \nabla^* \nabla (f W^+) + \frac{s}{2} f W^+ - 6 f W^+ \circ W^+ + 2 f |W^+|^2 I
\]

with \(2\omega \otimes \omega\) and integrate by parts, using identity

\[
\langle W^+, \nabla^* \nabla (\omega \otimes \omega) \rangle = \left[W^+(\omega, \omega)\right]^2 + 4|W^+(\omega)|^2 - s W^+(\omega, \omega).
\]

This yields
Now take inner product of Weitzenböck formula

\[
0 = \nabla^* \nabla (f W^+) + \frac{s}{2} f W^+ - 6 f W^+ \circ W^+ + 2 f |W^+|^2 I
\]

with \(2\omega \otimes \omega\) and integrate by parts, using identity

\[
\langle W^+, \nabla^* \nabla (\omega \otimes \omega) \rangle = [W^+ (\omega, \omega)]^2 + 4|W^+ (\omega)|^2 - sW^+ (\omega, \omega).
\]

This yields

\[
0 = \int_M \left(-s W^+ (\omega, \omega) + 8|W^+|^2 - 4|W^+ (\omega)\perp|^2 \right) f \, d\mu,
\]
Now take inner product of Weitzenböck formula

\[0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6 fW^+ \circ W^+ + 2 f |W^+|^2 I \]

with \(2\omega \otimes \omega\) and integrate by parts, using identity

\[\langle W^+, \nabla^* \nabla (\omega \otimes \omega) \rangle = [W^+(\omega, \omega)]^2 + 4 |W^+(\omega)|^2 - sW^+(\omega, \omega). \]

This yields

\[0 = \int_M \left(-sW^+(\omega, \omega) + 8 |W^+|^2 - 4 |W^+(\omega)^\perp|^2 \right) f \, d\mu, \]

where \(W^+(\omega)^\perp\) = projection of \(W^+(\omega, \cdot)\) to \(\omega^\perp\).
Now take inner product of Weitzenböck formula

\[
0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6 fW^+ \circ W^+ + 2 f|W^+|^2 I
\]

with \(2\omega \otimes \omega\) and integrate by parts, using identity

\[
\langle W^+, \nabla^* \nabla (\omega \otimes \omega) \rangle = [W^+(\omega, \omega)]^2 + 4|W^+(\omega)|^2 - sW^+(\omega, \omega).
\]

This yields

\[
0 = \int_M \left(-sW^+(\omega, \omega) + 8|W^+|^2 - 4|W^+(\omega)^\perp|^2 \right) f \, d\mu
\]
Now take inner product of Weitzenböck formula

\[
0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6 fW^+ \circ W^+ + 2 f |W^+|^2 I
\]

with \(2\omega \otimes \omega\) and integrate by parts, using identity

\[
\langle W^+, \nabla^* \nabla (\omega \otimes \omega) \rangle = [W^+(\omega, \omega)]^2 + 4|W^+(\omega)|^2 - sW^+(\omega, \omega) .
\]

This yields

\[
0 \geq \int_M \left(-sW^+(\omega, \omega) + 3 [W^+(\omega, \omega)]^2 \right) f \, d\mu
\]
Now take inner product of Weitzenböck formula

\[
0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6 f W^+ \circ W^+ + 2 f |W^+|^2 I
\]

with \(2\omega \otimes \omega\) and integrate by parts, using identity

\[
\langle W^+, \nabla^* \nabla (\omega \otimes \omega) \rangle = [W^+ (\omega, \omega)]^2 + 4|W^+ (\omega)|^2 - sW^+ (\omega, \omega).
\]

This yields

\[
0 \geq 3 \int_M W^+ (\omega, \omega) \left(W^+ (\omega, \omega) - \frac{s}{3} \right) f \ d\mu
\]
Now take inner product of Weitzenböck formula

\[
0 = \nabla^* \nabla (f W^+) + \frac{s}{2} f W^+ - 6 f W^+ \circ W^+ + 2 f |W^+|^2 I
\]

with \(2\omega \otimes \omega\) and integrate by parts, using identity

\[
\langle W^+, \nabla^* \nabla (\omega \otimes \omega) \rangle = [W^+(\omega, \omega)]^2 + 4|W^+(\omega)|^2 - sW^+(\omega, \omega).
\]

This yields

\[
0 \geq 3 \int_M W^+(\omega, \omega) \left(\frac{1}{2} |\nabla \omega|^2 \right) f \, d\mu
\]
Proposition.
Proposition. If compact almost-Kähler (M^4, g, ω)...
Proposition. If compact almost-Kähler \((M^4, g, \omega)\) satisfies \(\delta(f W^+) = 0\)
Proposition. If compact almost-Kähler \((M^4, g, \omega)\) satisfies \(\delta(fW^+) = 0\) for some \(f > 0\),
Proposition. If compact almost-Kähler \((M^4, g, \omega)\) satisfies \(\delta(fW^+) = 0\) for some \(f > 0\), then

\[
0 \geq \int_M W^+(\omega, \omega)|\nabla \omega|^2 f \ d\mu
\]
Proposition. If compact almost-Kähler \((M^4, g, \omega)\) satisfies \(\delta(fW^+) = 0\) for some \(f > 0\), then

\[
0 \geq \int_M W^+(\omega, \omega)|\nabla \omega|^2 f \, d\mu
\]

Corollary.
Proposition. If compact almost-Kähler \((M^4, g, \omega)\) satisfies \(\delta(f W^+) = 0\) for some \(f > 0\), then

\[
0 \geq \int_M W^+ (\omega, \omega) |\nabla \omega|^2 f \, d\mu
\]

Corollary. Let \((M^4, g, \omega)\) be a compact almost-Kähler manifold
Proposition. If compact almost-Kähler (M^4, g, ω) satisfies $\delta(fW^+) = 0$ for some $f > 0$, then

$$0 \geq \int_M W^+(\omega, \omega)|\nabla \omega|^2 f \ d\mu$$

Corollary. Let (M^4, g, ω) be a compact almost-Kähler manifold with $W^+(\omega, \omega) > 0$.
Proposition. If compact almost-Kähler \((M^4, g, \omega)\) satisfies \(\delta(f W^+) = 0\) for some \(f > 0\), then

\[
0 \geq \int_M W^+(\omega, \omega) |\nabla \omega|^2 f \, d\mu
\]

Corollary. Let \((M^4, g, \omega)\) be a compact almost-Kähler manifold with \(W^+ (\omega, \omega) > 0\). If

\[
\delta(f W^+) = 0
\]
Proposition. If compact almost-Kähler \((M^4, g, \omega)\) satisfies \(\delta(fW^+) = 0\) for some \(f > 0\), then

\[
0 \geq \int_M W^+(\omega, \omega)|\nabla \omega|^2 f \, d\mu
\]

Corollary. Let \((M^4, g, \omega)\) be a compact almost-Kähler manifold with \(W^+(\omega, \omega) > 0\). If

\[\delta(fW^+) = 0\]

for some \(f > 0\),
Proposition. If compact almost-Kähler \((M^4, g, \omega)\) satisfies \(\delta(fW^+) = 0\) for some \(f > 0\), then

\[
0 \geq \int_M W^+(\omega, \omega)|\nabla \omega|^2 f \, d\mu
\]

Corollary. Let \((M^4, g, \omega)\) be a compact almost-Kähler manifold with \(W^+(\omega, \omega) > 0\). If

\[\delta(fW^+) = 0\]

for some \(f > 0\), then \(g\) is a Kähler metric
Proposition. If compact almost-Kähler \((M^4, g, \omega)\) satisfies \(\delta(f W^+) = 0\) for some \(f > 0\), then

\[
0 \geq \int_M W^+(\omega, \omega) |\nabla \omega|^2 f \, d\mu
\]

Corollary. Let \((M^4, g, \omega)\) be a compact almost-Kähler manifold with \(W^+(\omega, \omega) > 0\). If

\[
\delta(f W^+) = 0
\]

for some \(f > 0\), then \(g\) is a Kähler metric with scalar curvature \(s > 0\).
Proposition. If compact almost-Kähler \((M^4, g, \omega)\) satisfies \(\delta(fW^+) = 0\) for some \(f > 0\), then

\[
0 \geq \int_M W^+(\omega, \omega)|\nabla \omega|^2 f \, d\mu
\]

Corollary. Let \((M^4, g, \omega)\) be a compact almost-Kähler manifold with \(W^+(\omega, \omega) > 0\). If

\[
\delta(fW^+) = 0
\]

for some \(f > 0\), then \(g\) is a Kähler metric with scalar curvature \(s > 0\). Moreover, \(f = c/s\) for some constant \(c > 0\).
Proposition. If compact almost-Kähler \((M^4, g, \omega)\) satisfies \(\delta(f W^+) = 0\) for some \(f > 0\), then

\[
0 \geq \int_M W^+(\omega, \omega)|\nabla \omega|^2 f \, d\mu
\]

Corollary. Let \((M^4, g, \omega)\) be a compact almost-Kähler manifold with \(W^+(\omega, \omega) > 0\). If

\[
\delta(f W^+) = 0
\]

for some \(f > 0\), then \(g\) is a Kähler metric with scalar curvature \(s > 0\). Moreover, \(f = c/s\) for some constant \(c > 0\).

\[
\text{Kähler} \quad \implies \quad W_+ = \begin{pmatrix}
-\frac{s}{12} & \frac{s}{12} \\
\frac{s}{12} & s
\end{pmatrix}
\]
Proposition. If compact almost-Kähler \((M^4, g, \omega)\) satisfies \(\delta(fW^+) = 0\) for some \(f > 0\), then

\[
0 \geq \int_M W^+(\omega, \omega)|\nabla \omega|^2 f \, d\mu
\]

Corollary. Let \((M^4, g, \omega)\) be a compact almost-Kähler manifold with \(W^+(\omega, \omega) > 0\). If

\[
\delta(fW^+) = 0
\]

for some \(f > 0\), then \(g\) is a Kähler metric with scalar curvature \(s > 0\). Moreover, \(f = c/s\) for some constant \(c > 0\).
Proposition. If compact almost-Kähler \((M^4, g, \omega)\) satisfies \(\delta(fW^+) = 0\) for some \(f > 0\), then

\[
0 \geq \int_M W^+(\omega, \omega)|\nabla \omega|^2 f \, d\mu
\]

Corollary. Let \((M^4, g, \omega)\) be a compact almost-Kähler manifold with \(W^+(\omega, \omega) > 0\). If

\[
\delta(fW^+) = 0
\]

for some \(f > 0\), then \(g\) is a Kähler metric with scalar curvature \(s > 0\). Moreover, \(f = c/s\) for some constant \(c > 0\).

Conversely, any Kähler \((M^4, g, \omega)\) with \(s > 0\) satisfies \(W^+(\omega, \omega) > 0\),
Proposition. If compact almost-Kähler \((M^4, g, \omega)\) satisfies \(\delta(fW^+) = 0\) for some \(f > 0\), then

\[
0 \geq \int_M W^+(\omega, \omega)|\nabla \omega|^2 f \, d\mu
\]

Corollary. Let \((M^4, g, \omega)\) be a compact almost-Kähler manifold with \(W^+(\omega, \omega) > 0\). If

\[
\delta(fW^+) = 0
\]

for some \(f > 0\), then \(g\) is a Kähler metric with scalar curvature \(s > 0\). Moreover, \(f = c/s\) for some constant \(c > 0\).

Conversely, any Kähler \((M^4, g, \omega)\) with \(s > 0\) satisfies \(W^+(\omega, \omega) > 0\), and \(f = c/s\) solves
Proposition. If compact almost-Kähler \((M^4, g, \omega)\) satisfies \(\delta(fW^+) = 0\) for some \(f > 0\), then

\[
0 \geq \int_M W^+(\omega, \omega)|\nabla \omega|^2 f \, d\mu
\]

Corollary. Let \((M^4, g, \omega)\) be a compact almost-Kähler manifold with \(W^+(\omega, \omega) > 0\). If

\[
\delta(fW^+) = 0
\]

for some \(f > 0\), then \(g\) is a Kähler metric with scalar curvature \(s > 0\). Moreover, \(f = c/s\) for some constant \(c > 0\).

Conversely, any Kähler \((M^4, g, \omega)\) with \(s > 0\) satisfies \(W^+(\omega, \omega) > 0\), and \(f = c/s\) solves

\[
\nabla(fW^+) = 0
\]
Proposition. If compact almost-Kähler (M^4, g, ω) satisfies $\delta(fW^+) = 0$ for some $f > 0$, then

$$0 \geq \int_M W^+(\omega, \omega)|\nabla\omega|^2 f \ d\mu.$$

Corollary. Let (M^4, g, ω) be a compact almost-Kähler manifold with $W^+(\omega, \omega) > 0$. If

$$\delta(fW^+) = 0$$

for some $f > 0$, then g is a Kähler metric with scalar curvature $s > 0$. Moreover, $f = c/s$ for some constant $c > 0$.

Conversely, any Kähler (M^4, g, ω) with $s > 0$ satisfies $W^+(\omega, \omega) > 0$, and $f = c/s$ solves

$$\nabla(fW^+) = 0 \implies \delta(fW^+) = 0.$$
Theorem.
Theorem. Let (M, h)
Theorem. Let (M, h) be a compact oriented
Theorem. Let (M, h) be a compact oriented Riemannian 4-manifold with $\delta W + = 0$. If $W^+ (\omega, \omega) > 0$ for some self-dual harmonic 2-form ω, then $h = s^{-2} g$ for a unique Kähler metric g of scalar curvature $s > 0$.

Conversely, for any Kähler metric g of positive scalar curvature, the conformally related metric $h = s^{-2} g$ satisfies $\delta W + = 0$ and $W^+ (\omega, \omega) > 0$. 295
Theorem. Let \((M, h)\) be a compact oriented Riemannian 4-manifold with \(\delta W^+ = 0\). For some self-dual harmonic 2-form \(\omega\), then \(h = s^{-2}g\) for a unique Kähler metric \(g\) of scalar curvature \(s > 0\).

Conversely, for any Kähler metric \(g\) of positive scalar curvature, the conformally related metric \(h = s^{-2}g\) satisfies \(\delta W^+ = 0\) and \(W^+ (\omega, \omega) > 0\).
Theorem. Let \((M, h)\) be a compact oriented Riemannian 4-manifold with \(\delta W^+ = 0\). If
\[W^+(\omega, \omega) > 0 \]
Theorem. Let (M, h) be a compact oriented Riemannian 4-manifold with $\delta W^+ = 0$. If

$$W^+(\omega, \omega) > 0$$

for some self-dual harmonic 2-form ω,

true
Theorem. Let \((M, h)\) be a compact oriented Riemannian 4-manifold with \(\delta W^+ = 0\). If

\[W^+(\omega, \omega) > 0 \]

for some self-dual harmonic 2-form \(\omega\), then

\[h = s^{-2}g \]
Theorem. Let \((M, h)\) be a compact oriented Riemannian 4-manifold with \(\delta W^+ = 0\). If
\[W^+(\omega, \omega) > 0 \]
for some self-dual harmonic 2-form \(\omega\), then
\[h = s^{-2}g \]
for a unique Kähler metric \(g\).
Theorem. Let \((M, h)\) be a compact oriented Riemannian 4-manifold with \(\delta W^+ = 0\). If
\[W^+(\omega, \omega) > 0\]
for some self-dual harmonic 2-form \(\omega\), then
\[h = s^{-2}g\]
for a unique Kähler metric \(g\) of scalar curvature.
Theorem. Let (M, h) be a compact oriented Riemannian 4-manifold with $\delta W^+ = 0$. If

$$W^+(\omega, \omega) > 0$$

for some self-dual harmonic 2-form ω, then

$$h = s^{-2} g$$

for a unique Kähler metric g of scalar curvature $s > 0$.
Theorem. Let \((M, h)\) be a compact oriented Riemannian 4-manifold with \(\delta \mathbb{W}^+ = 0\). If

\[W^+(\omega, \omega) > 0 \]

for some self-dual harmonic 2-form \(\omega\), then

\[h = s^{-2}g \]

for a unique Kähler metric \(g\) of scalar curvature \(s > 0\).

Conversely,
Theorem. Let \((M, h)\) be a compact oriented Riemannian 4-manifold with \(\delta W^+ = 0\). If
\[
W^+(\omega, \omega) > 0
\]
for some self-dual harmonic 2-form \(\omega\), then
\[
h = s^{-2}g
\]
for a unique Kähler metric \(g\) of scalar curvature \(s > 0\).

Conversely, for any Kähler metric \(g\)
Theorem. Let \((M, h)\) be a compact oriented Riemannian 4-manifold with \(\delta W^+ = 0\). If
\[
W^+(\omega, \omega) > 0
\]
for some self-dual harmonic 2-form \(\omega\), then
\[
h = s^{-2}g
\]
for a unique Kähler metric \(g\) of scalar curvature \(s > 0\).

Conversely, for any Kähler metric \(g\) of positive scalar curvature,
Theorem. Let \((M, h)\) be a compact oriented Riemannian 4-manifold with \(\delta W^+ = 0\). If

\[W^+(\omega, \omega) > 0 \]

for some self-dual harmonic 2-form \(\omega\), then

\[h = s^{-2}g \]

for a unique Kähler metric \(g\) of scalar curvature \(s > 0\).

Conversely, for any Kähler metric \(g\) of positive scalar curvature, the conformally related metric
Theorem. Let \((M, h)\) be a compact oriented Riemannian 4-manifold with \(\delta W^+ = 0\). If
\[
W^+(\omega, \omega) > 0
\]
for some self-dual harmonic 2-form \(\omega\), then
\[
h = s^{-2}g
\]
for a unique Kähler metric \(g\) of scalar curvature \(s > 0\).

Conversely, for any Kähler metric \(g\) of positive scalar curvature, the conformally related metric
\[
h = s^{-2}g
\]
Theorem. Let \((M, h)\) be a compact oriented Riemannian 4-manifold with \(\delta W^+ = 0\). If
\[
W^+(\omega, \omega) > 0
\]
for some self-dual harmonic 2-form \(\omega\), then
\[
h = s^{-2}g
\]
for a unique Kähler metric \(g\) of scalar curvature \(s > 0\).

Conversely, for any Kähler metric \(g\) of positive scalar curvature, the conformally related metric \(h = s^{-2}g\) satisfies \(\delta W^+ = 0\).
Theorem. Let (M, h) be a compact oriented Riemannian 4-manifold with $\delta W^+ = 0$. If

$$W^+(\omega, \omega) > 0$$

for some self-dual harmonic 2-form ω, then

$$h = s^{-2}g$$

for a unique Kähler metric g of scalar curvature $s > 0$.

Conversely, for any Kähler metric g of positive scalar curvature, the conformally related metric $h = s^{-2}g$ satisfies $\delta W^+ = 0$ and $W^+(\omega, \omega) > 0$.
Theorem. Let (M, h) be a compact oriented Riemannian 4-manifold with $\delta W^+ = 0$. If

$$W^+(\omega, \omega) > 0$$

for some self-dual harmonic 2-form ω, then

$$h = s^{-2}g$$

for a unique Kähler metric g of scalar curvature $s > 0$.

Conversely, for any Kähler metric g of positive scalar curvature, the conformally related metric $h = s^{-2}g$ satisfies $\delta W^+ = 0$ and $W^+(\omega, \omega) > 0$.

Remark. If such metrics exist, $b_+(M) = 1$.
Theorem. Let \((M, h)\) be a compact oriented Riemannian 4-manifold with \(\delta W^+ = 0\). If
\[
W^+(\omega, \omega) > 0
\]
for some self-dual harmonic 2-form \(\omega\), then
\[
h = s^{-2}g
\]
for a unique Kähler metric \(g\) of scalar curvature \(s > 0\).

Conversely, for any Kähler metric \(g\) of positive scalar curvature, the conformally related metric \(h = s^{-2}g\) satisfies \(\delta W^+ = 0\) and \(W^+(\omega, \omega) > 0\).
Theorem. Let \((M, h)\) be a compact oriented Riemannian 4-manifold with \(\delta W^+ = 0\). If

\[W^+(\omega, \omega) > 0 \]

for some self-dual harmonic 2-form \(\omega\), then

\[h = s^{-2}g \]

for a unique Kähler metric \(g\) of scalar curvature \(s > 0\).

Conversely, for any Kähler metric \(g\) of positive scalar curvature, the conformally related metric \(h = s^{-2}g\) satisfies \(\delta W^+ = 0\) and \(W^+(\omega, \omega) > 0\).

Theorem A follows by restricting to Einstein case.
Theorem A. Let (M, h) be a smooth compact 4-dimensional Einstein manifold. If h is of positive symplectic type, then it’s a conformally Kähler, Einstein metric on a Del Pezzo surface (M, J).
Theorem A. Let (M, h) be a smooth compact 4-dimensional Einstein manifold. If h is of positive symplectic type, then it’s a conformally Kähler, Einstein metric on a Del Pezzo surface (M, J).

Corollary. $\mathcal{E}^+_{\omega}(M)$ is connected. Moreover, if $b_2(M) \leq 5$, then $\mathcal{E}^+_{\omega}(M) = \{\text{point}\}$.
Theorem A. Let (M, h) be a smooth compact 4-dimensional Einstein manifold. If h is of positive symplectic type, then it’s a conformally Kähler, Einstein metric on a Del Pezzo surface (M, J).

Corollary. $\mathcal{E}_\omega^+(M)$ is connected. Moreover, if $b_2(M) \leq 5$, then $\mathcal{E}_\omega^+(M) = \{\text{point}\}$.

Corollary. $\mathcal{E}_\omega^+(M)$ is exactly one connected component of $\mathcal{E}(M)$.
Application to Almost-Kähler Geometry:
Theorem.
Theorem. Let (M, g, ω)
Theorem. Let (M, g, ω) be a compact almost-Kähler 4-manifold.
Theorem. Let \((M, g, \omega)\) be a compact almost-Kähler 4-manifold with
\[
s \geq 0,
\]
Theorem. Let (M, g, ω) be a compact almost-Kähler 4-manifold with

\[s \geq 0, \quad \delta W^+ = 0. \]
Theorem. Let \((M, g, \omega)\) be a compact almost-Kähler 4-manifold with

\[s \geq 0, \quad \delta W^+ = 0. \]

Then \((M, g, \omega)\) is a
Theorem. Let \((M, g, \omega)\) be a compact almost-Kähler 4-manifold with
\[
s \geq 0, \quad \delta W^+ = 0.
\]
Then \((M, g, \omega)\) is a constant-scalar-curvature Kähler
Theorem. Let \((M, g, \omega)\) be a compact almost-Kähler 4-manifold with

\[s \geq 0, \quad \delta W^+ = 0. \]

Then \((M, g, \omega)\) is a constant-scalar-curvature Kähler ("cscK") manifold.
Theorem. Let \((M, g, \omega)\) be a compact almost-Kähler 4-manifold with
\[s \geq 0, \quad \delta W^+ = 0. \]
Then \((M, g, \omega)\) is a constant-scalar-curvature Kähler ("cscK") manifold.

In particular, gives a new proof of the following:
Theorem. Let \((M, g, \omega)\) be a compact almost-Kähler 4-manifold with
\[s \geq 0, \quad \delta W^+ = 0. \]
Then \((M, g, \omega)\) is a constant-scalar-curvature Kähler ("cscK") manifold.

In particular, gives a new proof of the following:

Corollary (Sekigawa). Every compact almost-Kähler Einstein 4-manifold with non-negative Einstein constant is Kähler-Einstein.
Theorem. Let \((M, g, \omega)\) be a compact almost-Kähler 4-manifold with
\[s \geq 0, \quad \delta W^+ = 0. \]
Then \((M, g, \omega)\) is a constant-scalar-curvature Kähler ("cscK") manifold.

In particular, gives a new proof of the following:

Corollary (Sekigawa). Every compact almost-Kähler Einstein 4-manifold with non-negative Einstein constant is Kähler-Einstein.

(Special case of "Goldberg conjecture.")
Theorem. Let \((M, g, \omega)\) be a compact almost-Kähler 4-manifold with
\[
s \geq 0, \quad \delta W^+ = 0.
\]
Then \((M, g, \omega)\) is a constant-scalar-curvature Kähler ("cscK") manifold.

In particular, gives a new proof of the following:

Corollary (Sekigawa). Every compact almost-Kähler Einstein 4-manifold with non-negative Einstein constant is Kähler-Einstein.

Helped motivate the discovery of Theorem A...
Tanti auguri, Stefano!
Tanti auguri, Stefano!

E grazie agli organizzatori
Tanti auguri, Stefano!

E grazie agli organizzatori

per un convegno così bello!