Nonsmooth differential geometry

Nicola Gigli

September 19, 2014

Content

- First order differential structure of metric measure spaces
- L^{2}-normed L^{∞}-modules
- Cotangent module
- Tangent module
- Behavior under transformations
- RCD spaces
- Definition
- Some geometric properties
- Second order calculus

Content

- First order differential structure of metric measure spaces
- L^{2}-normed L^{∞}-modules
- Cotangent module
- Tangent module
- Behavior under transformations
- RCD spaces
- Definition
- Some geometric properties
- Second order calculus

The setting

$(\mathcal{X}, \mathrm{d}, \mathfrak{m})$ is a complete and separable metric space equipped with a non-negative and locally finite Borel measure

L^{2}-normed $L^{\infty}(\mathfrak{m})$-modules

An L^{2}-normed $L^{\infty}(\mathfrak{m})$-module is given by a Banach space $\left(M,\|\cdot\|_{M}\right)$ equipped with:

L^{2}-normed $L^{\infty}(\mathfrak{m})$-modules

An L^{2}-normed $L^{\infty}(\mathfrak{m})$-module is given by a Banach space $\left(M,\|\cdot\|_{M}\right)$ equipped with:

- a multiplication with $L^{\infty}(\mathfrak{m})$ functions, i.e. a bilinear map $L^{\infty}(\mathfrak{m}) \times M \rightarrow M$ satisfying

$$
\begin{aligned}
f(g v) & =(f g) v, \\
1 v & =v,
\end{aligned}
$$

for every $f, g \in L^{\infty}(\mathfrak{m})$ and $v \in M$.

L^{2}-normed $L^{\infty}(\mathfrak{m})$-modules

An L^{2}-normed $L^{\infty}(\mathfrak{m})$-module is given by a Banach space $\left(M,\|\cdot\|_{M}\right)$ equipped with:

- a multiplication with $L^{\infty}(\mathfrak{m})$ functions, i.e. a bilinear map $L^{\infty}(\mathfrak{m}) \times M \rightarrow M$ satisfying

$$
\begin{aligned}
f(g v) & =(f g) v, \\
1 v & =v,
\end{aligned}
$$

for every $f, g \in L^{\infty}(\mathfrak{m})$ and $v \in M$.

- a pointwise L^{2}-norm, i.e. a map $|\cdot|: M \rightarrow L^{2}(\mathfrak{m})$ satisfying

$$
\begin{aligned}
|v| & \geq 0, \quad \mathfrak{m}-\text { a.e. }, \\
|f v| & =|f||v|, \quad \mathfrak{m}-\text { a.e. }, \\
\|v\|_{M} & =\sqrt{\int|v|^{2} \mathrm{~d} \mathfrak{m}}
\end{aligned}
$$

The basic example

The space of L^{2} vector fields on a Riemannian manifold.

More generally: the space of L^{2} sections of a normed vector bundle.

The idea

In the smooth setting, one can fully describe a vector bundle by looking either to its fibers, or to its sections.

In the non-smooth one, we take the latter viewpoint and thus declare L^{2}-normed $L^{\infty}(\mathfrak{m})$-modules to 'be' vector bundles on our metric measure space

Basic features of modules: locality

For $v, w \in M$ and a Borel set $E \subset \mathcal{X}$ we say that

$$
v=w, \quad \mathfrak{m}-\text { a.e. on } E
$$

provided

$$
\chi_{E}(v-w)=0 .
$$

or equivalently

$$
|v-w|=0, \quad \mathfrak{m}-\text { a.e. on } E .
$$

The set $\{v=w\} \subset \mathcal{X}$ is then defined as $\{|v-w|=0\}$.

Basic features of modules: duality

The dual M^{*} of M is the space of linear continuous maps
$L: M \rightarrow L^{1}(\mathfrak{m})$ which are local, i.e. such that

$$
L(f v)=f L(v), \quad \forall v \in M, f \in L^{\infty}(\mathfrak{m}) .
$$

M^{*} is also an L^{2}-normed L^{∞}-module, the pointwise norm being given by

$$
|L|_{*}:=\operatorname{ess}-\text { sup }_{v:|v| \leq 1 \mathfrak{m}-\text { a.e. }} L(v)
$$

A special case: Hilbert modules

M is an Hilbert module provided, when seen as Banach space, is an Hilbert space.

This happens if and only if

$$
|v+w|^{2}+|v-w|^{2}=2|v|^{2}+2|w|^{2}, \quad \mathfrak{m}-\text { a.e. }
$$

for every $v, w \in M$.
Thus by polarization we have a pointwise scalar product

$$
M \ni v, w \quad \mapsto \quad\langle v, w\rangle \in L^{1}(\mathfrak{m})
$$

symmetric and L^{∞}-linear.

Example: the dual of $L^{2}(\mathfrak{m})$

The dual of $L^{2}(\mathfrak{m})$ as Hilbert space is $L^{2}(\mathfrak{m})$, i.e. for $L: L^{2}(\mathfrak{m}) \rightarrow \mathbb{R}$ linear and continuous there is a unique $g \in L^{2}(\mathfrak{m})$ such that

$$
L(f)=\int f g \mathrm{~d} \mathfrak{m} \quad \forall f \in L^{2}(\mathfrak{m})
$$

and $\|L\|_{L^{2}(\mathfrak{m})^{\prime}}=\|g\|_{L^{2}(\mathfrak{m})}$. And viceversa.

Example: the dual of $L^{2}(\mathfrak{m})$

The dual of $L^{2}(\mathfrak{m})$ as Hilbert space is $L^{2}(\mathfrak{m})$, i.e. for $L: L^{2}(\mathfrak{m}) \rightarrow \mathbb{R}$ linear and continuous there is a unique $g \in L^{2}(\mathfrak{m})$ such that

$$
L(f)=\int f g \mathrm{~d} \mathfrak{m} \quad \forall f \in L^{2}(\mathfrak{m})
$$

and $\|L\|_{L^{2}(\mathfrak{m})^{\prime}}=\|g\|_{L^{2}(\mathfrak{m})}$. And viceversa.

The dual of $L^{2}(\mathfrak{m})$ as Hilbert module is $L^{2}(\mathfrak{m})$, i.e. for $T: L^{2}(\mathfrak{m}) \rightarrow$ $L^{1}(\mathfrak{m})$ linear, continuous and local, there is a unique $g \in L^{2}(\mathfrak{m})$ such that

$$
T(f)=f g \quad \mathfrak{m}-\text { a.e. } \quad \forall f \in L^{2}(\mathfrak{m})
$$

and $|T|_{*}=|g| \mathfrak{m}$-a.e.. And viceversa.

Content

- First order differential structure of metric measure spaces
- L^{2}-normed L^{∞}-modules
- Cotangent module
- Tangent module
- Behavior under transformations
- RCD spaces
- Definition
- Some geometric properties
- Second order calculus

Cornerstones of the approach

Forget about:

Fibers

Geometry
Charts

Lipschitz functions

Focus on:

Sections

Analysis
Intrinsic calculus

Sobolev functions

Variational definition of $|D f|$ on \mathbb{R}^{d}

Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be smooth.

Then $|D f|$ is the minimum continuous function G for which

$$
\left|f\left(\gamma_{1}\right)-f\left(\gamma_{0}\right)\right| \leq \int_{0}^{1} G\left(\gamma_{t}\right)\left|\dot{\gamma}_{t}\right| \mathrm{d} t
$$

holds for any smooth curve γ

Test plans

Let $\pi \in \mathscr{P}(C([0,1], \mathcal{X}))$. We say that π is a test plan provided:

- for some $C>0$ it holds

$$
\left(\mathrm{e}_{t}\right)_{*} \pi \leq C \mathfrak{m}, \quad \forall t \in[0,1] .
$$

- it holds

$$
\iint_{0}^{1}\left|\dot{\gamma}_{t}\right|^{2} \mathrm{~d} t \mathrm{~d} \pi<\infty
$$

The Sobolev class $S^{2}(\mathcal{X})$

We say that $f: X \rightarrow \mathbb{R}$ belongs to $S^{2}(\mathcal{X})$ provided there exists $G \in L^{2}(\mathfrak{m}), G \geq 0$ such that

$$
\int\left|f\left(\gamma_{1}\right)-f\left(\gamma_{0}\right)\right| \mathrm{d} \boldsymbol{\pi}(\gamma) \leq \iint_{0}^{1} G\left(\gamma_{t}\right)\left|\dot{\gamma}_{t}\right| \mathrm{d} t \mathrm{~d} \boldsymbol{\pi}(\gamma)
$$

for any test plan π.
Any such G is called weak upper gradient of f.
The minimal G in the \mathfrak{m}-a.e. sense will be denoted by $|D f|$

The Sobolev class $S^{2}(\mathcal{X})$

We say that $f: X \rightarrow \mathbb{R}$ belongs to $S^{2}(\mathcal{X})$ provided there exists $G \in L^{2}(\mathfrak{m}), G \geq 0$ such that

$$
\int\left|f\left(\gamma_{1}\right)-f\left(\gamma_{0}\right)\right| \mathrm{d} \boldsymbol{\pi}(\gamma) \leq \iint_{0}^{1} G\left(\gamma_{t}\right)\left|\dot{\gamma}_{t}\right| \mathrm{d} t \mathrm{~d} \boldsymbol{\pi}(\gamma)
$$

for any test plan π.
Any such G is called weak upper gradient of f.
The minimal G in the \mathfrak{m}-a.e. sense will be denoted by $|D f|$
We also put $W^{1,2}(\mathcal{X}):=L^{2} \cap S^{2}(\mathcal{X})$ endowed with the norm

$$
\|f\|_{W^{1,2}}^{2}:=\|f\|_{L^{2}}^{2}+\|\mid D f\|_{L^{2}}^{2} .
$$

$W^{1,2}(\mathcal{X})$ is always a Banach space.

Calculus rules for $|D f|$

Lower semicontinuity:

$$
\left.\begin{array}{rl}
\left(f_{n}\right) & \subset S^{2}(\mathcal{X}) \\
f_{n} & \rightarrow f \text { m }- \text { a.e. } \\
\left|D f_{n}\right| & \rightarrow G \text { in } L^{2}(\mathfrak{m})
\end{array}\right\} \quad \Rightarrow \quad\left\{\begin{aligned}
f & \in S^{2}(\mathcal{X}) \\
|D f| & \leq G
\end{aligned}\right.
$$

Subadditivity: $|D(\alpha f+\beta g)| \leq|\alpha||D f|+|\beta||D g| \quad \mathfrak{m}$ - a.e.

Locality: $|D f|=|D g| \quad \mathfrak{m}-$ a.e. on $\{f=g\}$

Chain rule: $|D(\varphi \circ f)|=\left|\varphi^{\prime}\right| \circ f|D f|, \quad$ for $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ Lipschitz

Leibniz rule: $|D(f g)| \leq|f||D g|+|g||D f|, \quad$ for $f, g \in S^{2} \cap L^{\infty}(\mathcal{X})$

The 'Pre-cotangent module'

Consider the set

$$
\left.\begin{array}{rl}
\operatorname{Pcm}:=\left\{\left(A_{i}, f_{i}\right)_{i \in \mathbb{N}}:\right. & \left(A_{i}\right) \text { is a Borel partition of } \mathcal{X} \\
& f_{i} \in S^{2}(\mathcal{X}) \text { for every } i \in \mathbb{N} \\
& \sum_{i} \int_{A_{i}}\left|D f_{i}\right|^{2} \mathrm{~d} \mathfrak{m}<\infty
\end{array}\right\}
$$

The 'Pre-cotangent module'

Consider the set

$$
\left.\begin{array}{rl}
\operatorname{Pcm}:=\left\{\left(A_{i}, f_{i}\right)_{i \in \mathbb{N}}:\right. & \left(A_{i}\right) \text { is a Borel partition of } \mathcal{X} \\
& f_{i} \in S^{2}(\mathcal{X}) \text { for every } i \in \mathbb{N} \\
& \sum_{i} \int_{A_{i}}\left|D f_{i}\right|^{2} \mathrm{~d} \mathfrak{m}<\infty
\end{array}\right\}
$$

Define an equivalence relation \sim on Pcm by declaring

$$
\left(A_{i}, f_{i}\right)_{i \in \mathbb{N}} \sim\left(B_{j}, g_{j}\right)_{j \in \mathbb{N}}
$$

provided for any $i, j \in \mathbb{N}$ we have

$$
\left|D\left(f_{i}-g_{j}\right)\right|=0 \quad \mathfrak{m}-\text { a.e. on }\left\{A_{i} \cap B_{j}\right\}
$$

The 'Pre-cotangent module'

Consider the set

$$
\left.\begin{array}{rl}
\operatorname{Pcm}:=\left\{\left(A_{i}, f_{i}\right)_{i \in \mathbb{N}}:\right. & \left(A_{i}\right) \text { is a Borel partition of } \mathcal{X} \\
& f_{i} \in S^{2}(\mathcal{X}) \text { for every } i \in \mathbb{N} \\
& \sum_{i} \int_{A_{i}}\left|D f_{i}\right|^{2} \mathrm{~d} \mathfrak{m}<\infty
\end{array}\right\}
$$

Define an equivalence relation \sim on Pcm by declaring

$$
\left(A_{i}, f_{i}\right)_{i \in \mathbb{N}} \sim\left(B_{j}, g_{j}\right)_{j \in \mathbb{N}}
$$

provided for any $i, j \in \mathbb{N}$ we have

$$
\left|D\left(f_{i}-g_{j}\right)\right|=0 \quad \mathfrak{m}-\text { a.e. on }\left\{A_{i} \cap B_{j}\right\}
$$

Denote by $\left[A_{i}, f_{i}\right]$ the equivalence class of $\left(A_{i}, f_{i}\right)_{i \in \mathbb{N}}$

Operations on Pcm/ ~

Sum

$$
\left[A_{i}, f_{i}\right]+\left[B_{j}, g_{j}\right]:=\left[A_{i} \cap B_{j}, f_{i}+g_{j}\right]
$$

Multiplication by a simple function For $h=\sum_{j} \alpha_{j} \chi_{E_{j}}$ we put

$$
h \cdot\left[A_{i}, f_{i}\right]:=\left[A_{i} \cap E_{j}, \alpha_{j} f_{i}\right]
$$

Pointwise norm

$$
\left|\left[A_{i}, f_{i}\right]\right|:=\left|D f_{i}\right|, \quad \mathfrak{m}-\text { a.e. on } A_{i}
$$

Norm

$$
\left\|\left[A_{i}, f_{i}\right]\right\|:=\sqrt{\int_{\mathcal{X}}\left|\left[A_{i}, f_{i}\right]\right|^{2} \mathrm{~d} \mathfrak{m}}=\sqrt{\sum_{i} \int_{A_{i}}\left|D f_{i}\right|^{2} \mathrm{~d} \mathfrak{m}}
$$

The cotangent module $L^{2}\left(T^{*} \mathcal{X}\right)$

We define $L^{2}\left(T^{*} \mathcal{X}\right)$ to be the completion of $(\mathrm{Pcm} / \sim,\|\cdot\|)$. Its elements are called 1 -forms.

All the operations can be extended by continuity endowing $L^{2}\left(T^{*} \mathcal{X}\right)$ with the structure of L^{2}-normed L^{∞}-module.

The cotangent module $L^{2}\left(T^{*} \mathcal{X}\right)$

We define $L^{2}\left(T^{*} \mathcal{X}\right)$ to be the completion of $(\mathrm{Pcm} / \sim,\|\cdot\|)$. Its elements are called 1 -forms.

All the operations can be extended by continuity endowing $L^{2}\left(T^{*} \mathcal{X}\right)$ with the structure of L^{2}-normed L^{∞}-module.

For $f \in S^{2}(\mathcal{X})$ the differential $\mathrm{d} f \in L^{2}\left(T^{*} \mathcal{X}\right)$ is defined as

$$
\mathrm{d} f:=[\mathcal{X}, f]
$$

The cotangent module $L^{2}\left(T^{*} \mathcal{X}\right)$

We define $L^{2}\left(T^{*} \mathcal{X}\right)$ to be the completion of $(\mathrm{Pcm} / \sim,\|\cdot\|)$. Its elements are called 1 -forms.

All the operations can be extended by continuity endowing $L^{2}\left(T^{*} \mathcal{X}\right)$ with the structure of L^{2}-normed L^{∞}-module.

For $f \in S^{2}(\mathcal{X})$ the differential $\mathrm{d} f \in L^{2}\left(T^{*} \mathcal{X}\right)$ is defined as

$$
\mathrm{d} f:=[\mathcal{X}, f]
$$

We have $|\mathrm{d} f|=|D f| \mathfrak{m}$-a.e. by the definition of $|\mathrm{d} f|$.

The cotangent module $L^{2}\left(T^{*} \mathcal{X}\right)$

We define $L^{2}\left(T^{*} \mathcal{X}\right)$ to be the completion of $(\operatorname{Pcm} / \sim,\|\cdot\|)$. Its elements are called 1 -forms.

All the operations can be extended by continuity endowing $L^{2}\left(T^{*} \mathcal{X}\right)$ with the structure of L^{2}-normed L^{∞}-module.

For $f \in S^{2}(\mathcal{X})$ the differential $\mathrm{d} f \in L^{2}\left(T^{*} \mathcal{X}\right)$ is defined as

$$
\mathrm{d} f:=[\mathcal{X}, f]
$$

We have $|\mathrm{d} f|=|D f| \mathfrak{m}$-a.e. by the definition of $|\mathrm{d} f|$.

Note: in the smooth case, the construction is canonically identifiable with the space of L^{2} sections of the cotangent bundle.

Calculus rules for $\mathrm{d} f$

Closure:

$$
\left.\begin{array}{rl}
\left(f_{n}\right) & \subset S^{2}(\mathcal{X}) \\
f_{n} & \rightarrow f \text { m } \mathfrak{m}-\text { a.e. } \\
\mathrm{d} f_{n} & \rightarrow \omega \text { in } L^{2}\left(T^{*} \mathcal{X}\right)
\end{array}\right\} \quad \Rightarrow \quad\left\{\begin{aligned}
f \in S^{2}(\mathcal{X}) \\
\mathrm{d} f=\omega
\end{aligned}\right.
$$

Linearity: $\mathrm{d}(\alpha f+\beta g)=\alpha \mathrm{d} f+\beta \mathrm{d} g$

Locality: $\mathrm{d} f=\mathrm{d} g \quad \mathfrak{m}-$ a.e. on $\{f=g\}$

Chain rule: $\mathrm{d}(\varphi \circ f)=\varphi^{\prime} \circ f \mathrm{~d} f, \quad$ for $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ Lipschitz

Leibnitz rule: $\mathrm{d}(f g)=f \mathrm{~d} g+g \mathrm{~d} f, \quad$ for $f, g \in S^{2} \cap L^{\infty}(\mathcal{X})$

Content

- First order differential structure of metric measure spaces
- L^{2}-normed L^{∞}-modules
- Cotangent module
- Tangent module
- Behavior under transformations
- RCD spaces
- Definition
- Some geometric properties
- Second order calculus

The tangent module

Definition The tangent module $L^{2}(T \mathcal{X})$ is the dual of the cotangent one. Its elements are called vector fields.

The tangent module

Definition The tangent module $L^{2}(T \mathcal{X})$ is the dual of the cotangent one. Its elements are called vector fields.

- Vector fields are in 1-1 correspondence with L^{2} derivations, i.e. maps $L: S^{2}(\mathcal{X}) \rightarrow L^{1}(\mathfrak{m})$ satisfying the Leibniz rule and such that

$$
|L(f)| \leq I|D f| \quad \mathfrak{m} \text { - a.e. },
$$

for some $I \in L^{2}(\mathfrak{m})$

The tangent module

Definition The tangent module $L^{2}(T \mathcal{X})$ is the dual of the cotangent one. Its elements are called vector fields.

- Vector fields are in 1-1 correspondence with L^{2} derivations, i.e. maps $L: S^{2}(\mathcal{X}) \rightarrow L^{1}(\mathfrak{m})$ satisfying the Leibniz rule and such that

$$
|L(f)| \leq l|D f| \quad \mathfrak{m} \text {-a.e. },
$$

for some $I \in L^{2}(\mathfrak{m})$

- For any vector field $X \in L^{2}(T \mathcal{X})$ we have its pointwise norm $|X| \in L^{2}(\mathcal{X})$. It can be seen that such norm induces, in an appropriate weak sense, the original distance d on \mathcal{X}.

Infinitesimally Hilbertian spaces

We say that $(\mathcal{X}, \mathrm{d}, \mathfrak{m})$ is 'infinitesimally Hilbertian' if $L^{2}\left(T^{*} \mathcal{X}\right)$, and thus also $L^{2}(T \mathcal{X})$, is an Hilbert module.

On these spaces the pointwise scalar product of vector fields

$$
L^{2}(T \mathcal{X}) \ni X, Y \quad \mapsto \quad\langle X, Y\rangle \in L^{1}(\mathfrak{m})
$$

should be thought of as the metric tensor on $(\mathcal{X}, \mathrm{d}, \mathfrak{m})$.

Gradients

On an infinitesimally Hilbertian space, for $f \in S^{2}(\mathcal{X})$ there is a unique $X \in L^{2}(T \mathcal{X})$ such that

$$
|\mathrm{d} f|^{2}=\mathrm{d} f(X)=|X|^{2} \quad \mathfrak{m}-\text { a.e. }
$$

Such X is called gradient and denoted by ∇f.

The map

$$
S^{2}(\mathcal{X}) \ni f \quad \mapsto \quad \nabla f \in L^{2}(T \mathcal{X})
$$

is linear.

Content

- First order differential structure of metric measure spaces
- L^{2}-normed L^{∞}-modules
- Cotangent module
- Tangent module
- Behavior under transformations
- RCD spaces
- Definition
- Some geometric properties
- Second order calculus

Maps of bounded deformation

A map $\varphi: \mathcal{X}_{1} \rightarrow \mathcal{X}_{2}$ is of bounded deformation provided

$$
\begin{aligned}
\operatorname{Lip}(\varphi) & <\infty \\
\varphi_{*} \mathfrak{m}_{1} & \leq C \mathfrak{m}_{2}, \quad \text { for some } C>0 .
\end{aligned}
$$

Transformation of test plans and Sobolev functions

Let $\varphi: \mathcal{X}_{1} \rightarrow \mathcal{X}_{2}$ be of bounded deformation.

Then φ induces by left composition a map $\varphi: C\left([0,1], \mathcal{X}_{1}\right) \rightarrow$ $C\left([0,1], \mathcal{X}_{2}\right)$ which alters speed of at most a factor $\operatorname{Lip}(\varphi)$.

Transformation of test plans and Sobolev functions

Let $\varphi: \mathcal{X}_{1} \rightarrow \mathcal{X}_{2}$ be of bounded deformation.

Then φ induces by left composition a map $\varphi: C\left([0,1], \mathcal{X}_{1}\right) \rightarrow$ $C\left([0,1], \mathcal{X}_{2}\right)$ which alters speed of at most a factor $\operatorname{Lip}(\varphi)$.

By direct verification we see that if $\boldsymbol{\pi}$ is a test plan on \mathcal{X}_{1}, then $\varphi_{*} \boldsymbol{\pi}$ is a test plan on \mathcal{X}_{2}.

Transformation of test plans and Sobolev functions

Let $\varphi: \mathcal{X}_{1} \rightarrow \mathcal{X}_{2}$ be of bounded deformation.

Then φ induces by left composition a map $\varphi: C\left([0,1], \mathcal{X}_{1}\right) \rightarrow$
$C\left([0,1], \mathcal{X}_{2}\right)$ which alters speed of at most a factor $\operatorname{Lip}(\varphi)$.

By direct verification we see that if $\boldsymbol{\pi}$ is a test plan on \mathcal{X}_{1}, then $\varphi_{*} \boldsymbol{\pi}$ is a test plan on \mathcal{X}_{2}.

By duality, if $f \in S^{2}\left(\mathcal{X}_{2}\right)$ we have $f \circ \varphi$ is in $S^{2}\left(\mathcal{X}_{1}\right)$ with

$$
|D(f \circ \varphi)| \leq \operatorname{Lip}(\varphi)|D f| \circ \varphi
$$

Pullback of 1-forms

Theorem (G. '14) Let $\varphi: \mathcal{X}_{1} \rightarrow \mathcal{X}_{2}$ be of bounded deformation.
Then there exists a unique linear continuous map $\varphi^{*}: L^{2}\left(T^{*} \mathcal{X}_{2}\right) \rightarrow$ $L^{2}\left(T^{*} \mathcal{X}_{1}\right)$ such that

$$
\begin{aligned}
\varphi^{*} \mathrm{~d} f & =\mathrm{d}(f \circ \varphi) \\
\varphi^{*}(g \omega) & =g \circ \varphi \varphi^{*} \omega
\end{aligned}
$$

Such map satisfies

$$
\left|\varphi^{*} \omega\right| \leq \operatorname{Lip}(\varphi)|\omega| \circ \varphi, \quad \mathfrak{m}_{1}-\text { a.e.. }
$$

Pullback of 1-forms

Theorem (G. '14) Let $\varphi: \mathcal{X}_{1} \rightarrow \mathcal{X}_{2}$ be of bounded deformation.
Then there exists a unique linear continuous map $\varphi^{*}: L^{2}\left(T^{*} \mathcal{X}_{2}\right) \rightarrow$ $L^{2}\left(T^{*} \mathcal{X}_{1}\right)$ such that

$$
\begin{aligned}
\varphi^{*} \mathrm{~d} f & =\mathrm{d}(f \circ \varphi) \\
\varphi^{*}(g \omega) & =g \circ \varphi \varphi^{*} \omega
\end{aligned}
$$

Such map satisfies

$$
\left|\varphi^{*} \omega\right| \leq \operatorname{Lip}(\varphi)|\omega| \circ \varphi, \quad \mathfrak{m}_{1}-\text { a.e.. }
$$

If φ is invertible with inverse of bounded deformation, then the transpose of φ^{*} is the differential $\mathrm{d} \varphi: L^{2}\left(T \mathcal{X}_{1}\right) \rightarrow L^{2}\left(T \mathcal{X}_{2}\right)$.
A similar statement holds for non-invertible maps involving the notion of pullback module.

Content

- First order differential structure of metric measure spaces
- L^{2}-normed L^{∞}-modules
- Cotangent module
- Tangent module
- Behavior under transformations
- RCD spaces
- Definition
- Some geometric properties
- Second order calculus

Laplacian and heat flow

Let $(\mathcal{X}, \mathrm{d}, \mathfrak{m})$ be infinitesimally Hilbertian.
$D(\Delta) \subset W^{1,2}(\mathcal{X})$ is the space of f 's for which there is $h \in L^{2}(\mathfrak{m})$ such that

$$
\int\langle\nabla f, \nabla g\rangle \mathrm{d} \mathfrak{m}=-\int h g \mathrm{~d} \mathfrak{m}, \quad \forall g \in W^{1,2}(\mathcal{X})
$$

We call h the Laplacian of f and denote it by Δf.
$D(\Delta)$ is a vector space and $f \mapsto \Delta f$ linear.

Laplacian and heat flow

Let $(\mathcal{X}, \mathrm{d}, \mathfrak{m})$ be infinitesimally Hilbertian.
$D(\Delta) \subset W^{1,2}(\mathcal{X})$ is the space of f^{\prime} for which there is $h \in L^{2}(\mathfrak{m})$ such that

$$
\int\langle\nabla f, \nabla g\rangle \mathrm{d} \mathfrak{m}=-\int h g \mathrm{~d} \mathfrak{m}, \quad \forall g \in W^{1,2}(\mathcal{X})
$$

We call h the Laplacian of f and denote it by Δf.
$D(\Delta)$ is a vector space and $f \mapsto \Delta f$ linear.

There exists a unique 1-parameter semigroup of linear operators $\mathrm{h}_{t}: L^{2}(\mathfrak{m}) \rightarrow L^{2}(\mathfrak{m})$ such that for every $f \in L^{2}(\mathfrak{m})$ the curve $t \mapsto \mathrm{~h}_{t} f \in L^{2}(\mathfrak{m})$ is absolutely continuous and satisfies

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{~h}_{t} f=\Delta \mathrm{h}_{t} f
$$

We call the h_{t} 's the heat flow.

$\operatorname{RCD}(K, \infty)$ spaces

Definition (Ambrosio, G., Savaré '11) Let $K \in \mathbb{R}$. Then $(\mathcal{X}, \mathrm{d}, \mathfrak{m})$ is an $\operatorname{RCD}(K, \infty)$ space provided:
i) it is infinitesimally Hilbertian
ii) $\mathfrak{m}\left(B_{r}(x)\right) \leq e^{C r^{2}}$ for some $x \in \mathcal{X}$ and $C>0$
iii) Every $f \in W^{1,2}(\mathcal{X})$ with $|D f| \leq 1 \mathfrak{m}$-a.e. admits a 1-Lipschitz representative
iv) For every $f \in W^{1,2}(\mathcal{X})$ and $t \geq 0$ we have

$$
\left|D\left(\mathrm{~h}_{t} f\right)\right|^{2} \leq e^{-2 K t} \mathrm{~h}_{t}\left(|D f|^{2}\right)
$$

$\operatorname{RCD}(K, \infty)$ spaces

Definition (Ambrosio, G., Savaré '11) Let $K \in \mathbb{R}$. Then $(\mathcal{X}, \mathrm{d}, \mathfrak{m})$ is an $\operatorname{RCD}(K, \infty)$ space provided:
i) it is infinitesimally Hilbertian
ii) $\mathfrak{m}\left(B_{r}(x)\right) \leq e^{C r^{2}}$ for some $x \in \mathcal{X}$ and $C>0$
iii) Every $f \in W^{1,2}(\mathcal{X})$ with $|D f| \leq 1 \mathfrak{m}$-a.e. admits a 1-Lipschitz representative
iv) For every $f \in W^{1,2}(\mathcal{X})$ and $t \geq 0$ we have

$$
\left|D\left(\mathrm{~h}_{t} f\right)\right|^{2} \leq e^{-2 K t} \mathrm{~h}_{t}\left(|D f|^{2}\right)
$$

Theorem (Ambrosio, G., Savaré '11-based on Lott-Villani '05, Sturm '05, G. '09) pmGH limits of $\operatorname{RCD}(K, \infty)$ spaces are still $\operatorname{RCD}(K, \infty)$ spaces.

Bochner inequality

On $\operatorname{RCD}(K, \infty)$ spaces the Bochner inequality

$$
\Delta \frac{|\nabla f|^{2}}{2} \geq\langle\nabla f, \nabla \Delta f\rangle+K|\nabla f|^{2}
$$

holds in the weak sense, i.e.:

$$
\frac{1}{2} \int \Delta g|\nabla f|^{2} \mathrm{~d} \mathfrak{m} \geq \int g\left(\langle\nabla f, \nabla \Delta f\rangle+K|\nabla f|^{2}\right) \mathrm{d} \mathfrak{m}
$$

for $f, g \in D(\Delta)$ with $\Delta f \in W^{1,2}(\mathcal{X}), g \geq 0$ and $g, \Delta g \in L^{\infty}(\mathcal{X})$.

Requiring the weak version of

$$
\Delta \frac{|\nabla f|^{2}}{2} \geq \frac{(\Delta f)^{2}}{N}+\langle\nabla f, \nabla \Delta f\rangle+K|\nabla f|^{2}
$$

leads to the notion of $\operatorname{RCD}(K, N)$ space (Ambrosio-G.-Savaré '12, G. '12, Erbar-Kuwada-Sturm '13)

Content

- First order differential structure of metric measure spaces
- L^{2}-normed L^{∞}-modules
- Cotangent module
- Tangent module
- Behavior under transformations
- RCD spaces
- Definition
- Some geometric properties
- Second order calculus

Geometric results known for $\operatorname{RCD}(K, N)$ spaces

Abresch-Gromoll inequality (G.-Mosconi '12)

Splitting theorem (G. '13)

Maximal diameter theorem (Ketterer '13)

Rectifiability results (Mondino-Naber '14)

About rectifiability

Theorem (\sim Mondino-Naber '14) Let $(\mathcal{X}, \mathrm{d}, \mathfrak{m})$ be a $\operatorname{RCD}(K, N)$ space and $\varepsilon>0$.
Then there is a Borel partition $\left(A_{n}\right)$ of \mathcal{X} and maps $\varphi_{n}: A_{n} \rightarrow \mathbb{R}^{d_{n}}$ with $d_{n} \leq N$ such that

$$
\operatorname{Lip}\left(\varphi_{n}\right), \operatorname{Lip}\left(\varphi_{n}^{-1}\right) \leq 1+\varepsilon
$$

and putting $\mu_{n}:=\left(\varphi_{n}\right)_{*}\left(\mathfrak{m}_{A_{n}}\right)$ we have $\mu_{n}=\rho_{n} \mathcal{L}^{d_{n}}$ with

$$
\underset{\varphi_{n}\left(A_{n}\right)}{\operatorname{ess}-\sup } \rho_{n}-\underset{\varphi_{n}\left(A_{n}\right)}{\operatorname{ess}-i n f} \rho_{n} \leq \varepsilon
$$

About rectifiability

Theorem (\sim Mondino-Naber '14) Let $(\mathcal{X}, \mathrm{d}, \mathfrak{m})$ be a $\operatorname{RCD}(K, N)$ space and $\varepsilon>0$.
Then there is a Borel partition $\left(A_{n}\right)$ of \mathcal{X} and maps $\varphi_{n}: A_{n} \rightarrow \mathbb{R}^{d_{n}}$ with $d_{n} \leq N$ such that

$$
\operatorname{Lip}\left(\varphi_{n}\right), \operatorname{Lip}\left(\varphi_{n}^{-1}\right) \leq 1+\varepsilon
$$

and putting $\mu_{n}:=\left(\varphi_{n}\right)_{*}\left(\mathfrak{m}_{A_{n}}\right)$ we have $\mu_{n}=\rho_{n} \mathcal{L}^{d_{n}}$ with

$$
\underset{\varphi_{n}\left(A_{n}\right)}{\operatorname{ess}-\sup } \rho_{n}-\underset{\varphi_{n}\left(A_{n}\right)}{\operatorname{ess}-i n f} \rho_{n} \leq \varepsilon
$$

In particular, recalling the properties of the pullback of 1 -forms we get:
Corollary The tangent module $L^{2}(T \mathcal{X})$ is canonically isomorphic to the space of Borel and L^{2} maps assigning to \mathfrak{m}-a.e. $x \in \mathcal{X}$ an element of the pmGH-limit of rescaled spaces.

Content

- First order differential structure of metric measure spaces
- L^{2}-normed L^{∞}-modules
- Cotangent module
- Tangent module
- Behavior under transformations
- RCD spaces
- Definition
- Some geometric properties
- Second order calculus

3 simple formulas

$$
\begin{aligned}
\mathrm{H} f(\nabla g, \nabla g) & \left.=\langle\nabla\langle\nabla f, \nabla g\rangle, \nabla g\rangle-\left.\frac{1}{2}\langle\nabla f, \nabla| \nabla g\right|^{2}\right\rangle \\
\left\langle\nabla_{\nabla f} X, \nabla g\right\rangle & =\langle\nabla\langle X, \nabla g\rangle \nabla f\rangle-\mathrm{Hg}(X, \nabla f) \\
\mathrm{d} \omega(X, Y) & =X(\omega(Y))-X(\omega(Y))-\omega([X, Y])
\end{aligned}
$$

Why these can be used on $\operatorname{RCD}(K, \infty)$ spaces

Starting from

$$
\Delta \frac{|\nabla f|^{2}}{2} \geq\langle\nabla f, \nabla \Delta f\rangle+K|\nabla f|^{2}
$$

Why these can be used on $\operatorname{RCD}(K, \infty)$ spaces

Starting from

$$
\Delta \frac{|\nabla f|^{2}}{2} \geq\langle\nabla f, \nabla \Delta f\rangle+K|\nabla f|^{2}
$$

and with purely algebraic means we can deduce

$$
\Delta \frac{|\nabla f|^{2}}{2} \geq|\mathrm{H} f|_{\mathrm{HS}}^{2}+\langle\nabla f, \nabla \Delta f\rangle+K|\nabla f|^{2}
$$

Why these can be used on $\operatorname{RCD}(K, \infty)$ spaces

Starting from

$$
\Delta \frac{|\nabla f|^{2}}{2} \geq\langle\nabla f, \nabla \Delta f\rangle+K|\nabla f|^{2}
$$

and with purely algebraic means we can deduce

$$
\Delta \frac{|\nabla f|^{2}}{2} \geq|\mathrm{H} f|_{\mathrm{HS}}^{2}+\langle\nabla f, \nabla \Delta f\rangle+K|\nabla f|^{2}
$$

so that in particular

$$
\int|\mathrm{H} f|_{\mathrm{HS}}^{2} \mathrm{~d} \mathfrak{m} \leq \int|\Delta f|^{2}-K|\nabla f|^{2} \mathrm{~d} \mathfrak{m}
$$

(Bakry '85, Savaré '12, Sturm '14, G. '14)

Where this brings

Definition of the Sobolev space $W^{2,2}(\mathcal{X})$ and of the Hessian.

Where this brings

Definition of the Sobolev space $W^{2,2}(\mathcal{X})$ and of the Hessian.
Definition of the Sobolev space $W_{c}^{1,2}(T \mathcal{X})$ and of the covariant derivative, which is compatible with the metric and torsion free in a natural way.

Where this brings

Definition of the Sobolev space $W^{2,2}(\mathcal{X})$ and of the Hessian.
Definition of the Sobolev space $W_{c}^{1,2}(T \mathcal{X})$ and of the covariant derivative, which is compatible with the metric and torsion free in a natural way.

Definition of the Sobolev space $W_{\mathrm{d}}^{1,2}\left(T^{*} \mathcal{X}\right)$ and of exterior differential, which leads to de Rham cohomology and Hodge theory.

Where this brings

Definition of the Sobolev space $W^{2,2}(\mathcal{X})$ and of the Hessian.
Definition of the Sobolev space $W_{c}^{1,2}(T \mathcal{X})$ and of the covariant derivative, which is compatible with the metric and torsion free in a natural way.

Definition of the Sobolev space $W_{\mathrm{d}}^{1,2}\left(T^{*} \mathcal{X}\right)$ and of exterior differential, which leads to de Rham cohomology and Hodge theory.

Definition of the Ricci curvature via the formula

$$
\operatorname{Ric}(X, X):=\Delta \frac{|X|^{2}}{2}-|\nabla X|_{\text {HS }}^{2}+\left\langle X, \Delta_{H} X\right\rangle
$$

which is a measure-valued operator satisfying

$$
\operatorname{Ric}(X, X) \geq K|X|^{2} \mathfrak{m}
$$

Thank you

