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The setting

(X ,d,m) is a complete and separable metric space equipped with a
non-negative and locally finite Borel measure



L2-normed L∞(m)-modules

An L2-normed L∞(m)-module is given by a Banach space (M, ‖ · ‖M)
equipped with:

I a multiplication with L∞(m) functions, i.e. a bilinear map
L∞(m)×M → M satisfying

f (gv) = (fg)v ,
1v = v ,

for every f ,g ∈ L∞(m) and v ∈ M.
I a pointwise L2-norm, i.e. a map | · | : M → L2(m) satisfying

|v | ≥ 0, m− a.e.,
|fv | = |f | |v |, m− a.e.,

‖v‖M =

√∫
|v |2 dm
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The basic example

The space of L2 vector fields on a Riemannian manifold.

More generally: the space of L2 sections of a normed vector bundle.



The idea

In the smooth setting, one can fully describe a vector bundle by
looking either to its fibers, or to its sections.

In the non-smooth one, we take the latter viewpoint and thus declare
L2-normed L∞(m)-modules to ‘be’ vector bundles on our metric
measure space



Basic features of modules: locality

For v ,w ∈ M and a Borel set E ⊂ X we say that

v = w , m− a.e. on E

provided
χE (v − w) = 0.

or equivalently

|v − w | = 0, m− a.e. on E .

The set {v = w} ⊂ X is then defined as {|v − w | = 0}.



Basic features of modules: duality

The dual M∗ of M is the space of linear continuous maps
L : M → L1(m) which are local, i.e. such that

L(fv) = f L(v), ∀v ∈ M, f ∈ L∞(m).

M∗ is also an L2-normed L∞-module, the pointwise norm being given
by

|L|∗ := ess-sup
v : |v |≤1 m−a.e.

L(v)



A special case: Hilbert modules

M is an Hilbert module provided, when seen as Banach space, is an
Hilbert space.

This happens if and only if

|v + w |2 + |v − w |2 = 2|v |2 + 2|w |2, m− a.e.,

for every v ,w ∈ M.
Thus by polarization we have a pointwise scalar product

M 3 v ,w 7→ 〈v ,w〉 ∈ L1(m),

symmetric and L∞-linear.



Example: the dual of L2(m)

The dual of L2(m) as Hilbert space is L2(m), i.e. for L : L2(m) → R
linear and continuous there is a unique g ∈ L2(m) such that

L(f ) =

∫
fg dm ∀f ∈ L2(m)

and ‖L‖L2(m)′ = ‖g‖L2(m). And viceversa.

The dual of L2(m) as Hilbert module is L2(m), i.e. for T : L2(m) →
L1(m) linear, continuous and local, there is a unique g ∈ L2(m) such
that

T (f ) = fg m− a.e. ∀f ∈ L2(m)

and |T |∗ = |g| m-a.e.. And viceversa.
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Cornerstones of the approach

Forget about: Focus on:

Fibers Sections

Geometry Analysis

Charts Intrinsic calculus

Lipschitz functions Sobolev functions



Variational definition of |Df | on Rd

Let f : Rd → R be smooth.

Then |Df | is the minimum continuous function G for which

|f (γ1)− f (γ0)| ≤
∫ 1

0
G(γt )|γ̇t | dt

holds for any smooth curve γ



Test plans

Let π ∈P(C([0,1],X )). We say that π is a test plan provided:
I for some C > 0 it holds

(et )∗π ≤ Cm, ∀t ∈ [0,1].

I it holds ∫∫ 1

0
|γ̇t |2 dt dπ <∞



The Sobolev class S2(X )

We say that f : X → R belongs to S2(X ) provided there exists
G ∈ L2(m), G ≥ 0 such that∫ ∣∣f (γ1)− f (γ0)

∣∣ dπ(γ) ≤
∫∫ 1

0
G(γt )|γ̇t | dt dπ(γ)

for any test plan π.

Any such G is called weak upper gradient of f .

The minimal G in the m-a.e. sense will be denoted by |Df |

We also put W 1,2(X ) := L2 ∩ S2(X ) endowed with the norm

‖f‖2
W 1,2 := ‖f‖2

L2 + ‖|Df |‖2
L2 .

W 1,2(X ) is always a Banach space.
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Calculus rules for |Df |

Lower semicontinuity:

(fn) ⊂ S2(X )
fn → f m− a.e.

|Dfn| → G in L2(m)

 ⇒
{

f ∈ S2(X )
|Df | ≤ G

Subadditivity: |D(αf + βg)| ≤ |α||Df |+ |β||Dg| m− a.e.

Locality: |Df | = |Dg| m− a.e. on {f = g}

Chain rule: |D(ϕ ◦ f )| = |ϕ′| ◦ f |Df |, for ϕ : R→ R Lipschitz

Leibniz rule: |D(fg)| ≤ |f ||Dg|+ |g||Df |, for f ,g ∈ S2 ∩ L∞(X )



The ‘Pre-cotangent module’

Consider the set

Pcm :=
{

(Ai , fi )i∈N : (Ai ) is a Borel partition of X

fi ∈ S2(X ) for every i ∈ N∑
i

∫
Ai

|Dfi |2 dm <∞
}

Define an equivalence relation ∼ on Pcm by declaring

(Ai , fi )i∈N ∼ (Bj ,gj )j∈N

provided for any i , j ∈ N we have

|D(fi − gj )| = 0 m− a.e. on {Ai ∩ Bj}

Denote by [Ai , fi ] the equivalence class of (Ai , fi )i∈N



The ‘Pre-cotangent module’

Consider the set

Pcm :=
{

(Ai , fi )i∈N : (Ai ) is a Borel partition of X

fi ∈ S2(X ) for every i ∈ N∑
i

∫
Ai

|Dfi |2 dm <∞
}

Define an equivalence relation ∼ on Pcm by declaring

(Ai , fi )i∈N ∼ (Bj ,gj )j∈N

provided for any i , j ∈ N we have

|D(fi − gj )| = 0 m− a.e. on {Ai ∩ Bj}

Denote by [Ai , fi ] the equivalence class of (Ai , fi )i∈N



The ‘Pre-cotangent module’

Consider the set

Pcm :=
{

(Ai , fi )i∈N : (Ai ) is a Borel partition of X

fi ∈ S2(X ) for every i ∈ N∑
i

∫
Ai

|Dfi |2 dm <∞
}

Define an equivalence relation ∼ on Pcm by declaring

(Ai , fi )i∈N ∼ (Bj ,gj )j∈N

provided for any i , j ∈ N we have

|D(fi − gj )| = 0 m− a.e. on {Ai ∩ Bj}

Denote by [Ai , fi ] the equivalence class of (Ai , fi )i∈N



Operations on Pcm/ ∼

Sum
[Ai , fi ] + [Bj ,gj ] := [Ai ∩ Bj , fi + gj ]

Multiplication by a simple function For h =
∑

j αjχEj we put

h · [Ai , fi ] := [Ai ∩ Ej , αj fi ]

Pointwise norm

|[Ai , fi ]| := |Dfi |, m− a.e. on Ai

Norm

‖[Ai , fi ]‖ :=

√∫
X
|[Ai , fi ]|2 dm =

√∑
i

∫
Ai

|Dfi |2 dm



The cotangent module L2(T ∗X )

We define L2(T ∗X ) to be the completion of (Pcm/ ∼, ‖ · ‖). Its
elements are called 1-forms.

All the operations can be extended by continuity endowing L2(T ∗X )
with the structure of L2-normed L∞-module.

For f ∈ S2(X ) the differential df ∈ L2(T ∗X ) is defined as

df := [X , f ]

We have |df | = |Df | m-a.e. by the definition of |df |.

Note: in the smooth case, the construction is canonically identifiable
with the space of L2 sections of the cotangent bundle.
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Calculus rules for df

Closure:

(fn) ⊂ S2(X )
fn → f m− a.e.

dfn → ω in L2(T ∗X )

 ⇒
{

f ∈ S2(X )
df = ω

Linearity: d(αf + βg) = αdf + βdg

Locality: df = dg m− a.e. on {f = g}

Chain rule: d(ϕ ◦ f ) = ϕ′ ◦ f df , for ϕ : R→ R Lipschitz

Leibnitz rule: d(fg) = f dg + g df , for f ,g ∈ S2 ∩ L∞(X )
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The tangent module

Definition The tangent module L2(TX ) is the dual of the cotangent
one. Its elements are called vector fields.

I Vector fields are in 1-1 correspondence with L2 derivations, i.e.
maps L : S2(X )→ L1(m) satisfying the Leibniz rule and such
that

|L(f )| ≤ l |Df | m− a.e.,

for some l ∈ L2(m)

I For any vector field X ∈ L2(TX ) we have its pointwise norm
|X | ∈ L2(X ). It can be seen that such norm induces, in an
appropriate weak sense, the original distance d on X .
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Infinitesimally Hilbertian spaces

We say that (X ,d,m) is ‘infinitesimally Hilbertian’ if L2(T ∗X ), and
thus also L2(TX ), is an Hilbert module.

On these spaces the pointwise scalar product of vector fields

L2(TX ) 3 X ,Y 7→ 〈X ,Y 〉 ∈ L1(m)

should be thought of as the metric tensor on (X ,d,m).



Gradients

On an infinitesimally Hilbertian space, for f ∈ S2(X ) there is a unique
X ∈ L2(TX ) such that

|df |2 = df (X ) = |X |2 m− a.e.

Such X is called gradient and denoted by ∇f .

The map
S2(X ) 3 f 7→ ∇f ∈ L2(TX )

is linear.
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Maps of bounded deformation

A map ϕ : X1 → X2 is of bounded deformation provided

Lip(ϕ) <∞
ϕ∗m1 ≤ Cm2, for some C > 0.



Transformation of test plans and Sobolev functions

Let ϕ : X1 → X2 be of bounded deformation.

Then ϕ induces by left composition a map ϕ : C([0,1],X1) →
C([0,1],X2) which alters speed of at most a factor Lip(ϕ).

By direct verification we see that if π is a test plan on X1, then ϕ∗π is
a test plan on X2.

By duality, if f ∈ S2(X2) we have f ◦ ϕ is in S2(X1) with

|D(f ◦ ϕ)| ≤ Lip(ϕ)|Df | ◦ ϕ
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Pullback of 1-forms

Theorem (G. ’14) Let ϕ : X1 → X2 be of bounded deformation.
Then there exists a unique linear continuous map ϕ∗ : L2(T ∗X2) →
L2(T ∗X1) such that

ϕ∗df = d(f ◦ ϕ)

ϕ∗(gω) = g ◦ ϕϕ∗ω

Such map satisfies

|ϕ∗ω| ≤ Lip(ϕ)|ω| ◦ ϕ, m1 − a.e..

If ϕ is invertible with inverse of bounded deformation, then the
transpose of ϕ∗ is the differential dϕ : L2(TX1)→ L2(TX2).
A similar statement holds for non-invertible maps involving the notion
of pullback module.
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Laplacian and heat flow

Let (X ,d,m) be infinitesimally Hilbertian.
D(∆) ⊂ W 1,2(X ) is the space of f ’s for which there is h ∈ L2(m) such
that ∫

〈∇f ,∇g〉 dm = −
∫

hg dm, ∀g ∈W 1,2(X ).

We call h the Laplacian of f and denote it by ∆f .
D(∆) is a vector space and f 7→ ∆f linear.

There exists a unique 1-parameter semigroup of linear operators
ht : L2(m) → L2(m) such that for every f ∈ L2(m) the curve
t 7→ ht f ∈ L2(m) is absolutely continuous and satisfies

d
dt

ht f = ∆ht f

We call the ht ’s the heat flow.
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RCD(K ,∞) spaces

Definition (Ambrosio, G., Savaré ’11) Let K ∈ R. Then (X ,d,m) is
an RCD(K ,∞) space provided:

i) it is infinitesimally Hilbertian

ii) m(Br (x)) ≤ eCr2
for some x ∈ X and C > 0

iii) Every f ∈W 1,2(X ) with |Df | ≤ 1 m-a.e. admits a 1-Lipschitz
representative

iv) For every f ∈W 1,2(X ) and t ≥ 0 we have

|D(ht f )|2 ≤ e−2Ktht (|Df |2)

Theorem (Ambrosio, G., Savaré ’11 - based on Lott-Villani ’05, Sturm
’05, G. ’09)
pmGH limits of RCD(K ,∞) spaces are still RCD(K ,∞) spaces.



RCD(K ,∞) spaces

Definition (Ambrosio, G., Savaré ’11) Let K ∈ R. Then (X ,d,m) is
an RCD(K ,∞) space provided:

i) it is infinitesimally Hilbertian

ii) m(Br (x)) ≤ eCr2
for some x ∈ X and C > 0

iii) Every f ∈W 1,2(X ) with |Df | ≤ 1 m-a.e. admits a 1-Lipschitz
representative

iv) For every f ∈W 1,2(X ) and t ≥ 0 we have

|D(ht f )|2 ≤ e−2Ktht (|Df |2)

Theorem (Ambrosio, G., Savaré ’11 - based on Lott-Villani ’05, Sturm
’05, G. ’09)
pmGH limits of RCD(K ,∞) spaces are still RCD(K ,∞) spaces.



Bochner inequality
On RCD(K ,∞) spaces the Bochner inequality

∆
|∇f |2

2
≥ 〈∇f ,∇∆f 〉+ K |∇f |2

holds in the weak sense, i.e.:

1
2

∫
∆g|∇f |2 dm ≥

∫
g
(
〈∇f ,∇∆f 〉+ K |∇f |2

)
dm

for f ,g ∈ D(∆) with ∆f ∈W 1,2(X ), g ≥ 0 and g,∆g ∈ L∞(X ).

Requiring the weak version of

∆
|∇f |2

2
≥ (∆f )2

N
+ 〈∇f ,∇∆f 〉+ K |∇f |2

leads to the notion of RCD(K ,N) space (Ambrosio-G.-Savaré ’12, G.
’12, Erbar-Kuwada-Sturm ’13)
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Geometric results known for RCD(K ,N) spaces

Abresch-Gromoll inequality (G.-Mosconi ’12)

Splitting theorem (G. ’13)

Maximal diameter theorem (Ketterer ’13)

Rectifiability results (Mondino-Naber ’14)



About rectifiability

Theorem (∼Mondino-Naber ’14) Let (X ,d,m) be a RCD(K ,N) space
and ε > 0.
Then there is a Borel partition (An) of X and maps ϕn : An → Rdn with
dn ≤ N such that

Lip(ϕn), Lip(ϕ−1
n ) ≤ 1 + ε

and putting µn := (ϕn)∗(m|An
) we have µn = ρnLdn with

ess-sup
ϕn(An)

ρn − ess-inf
ϕn(An)

ρn ≤ ε

In particular, recalling the properties of the pullback of 1-forms we get:

Corollary The tangent module L2(TX ) is canonically isomorphic to
the space of Borel and L2 maps assigning to m-a.e. x ∈ X an element
of the pmGH-limit of rescaled spaces.
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3 simple formulas

Hf (∇g,∇g) = 〈∇ 〈∇f ,∇g〉 ,∇g〉 − 1
2

〈
∇f ,∇|∇g|2

〉
〈∇∇f X ,∇g〉 = 〈∇ 〈X ,∇g〉∇f 〉 − Hg(X ,∇f )

dω(X ,Y ) = X
(
ω(Y )

)
− X

(
ω(Y )

)
− ω([X ,Y ])



Why these can be used on RCD(K ,∞) spaces

Starting from

∆
|∇f |2

2
≥ 〈∇f ,∇∆f 〉+ K |∇f |2

and with purely algebraic means we can deduce

∆
|∇f |2

2
≥ |Hf |2HS + 〈∇f ,∇∆f 〉+ K |∇f |2

so that in particular∫
|Hf |2HS dm ≤

∫
|∆f |2 − K |∇f |2 dm

(Bakry ’85, Savaré ’12, Sturm ’14, G. ’14)
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Where this brings
Definition of the Sobolev space W 2,2(X ) and of the Hessian.

Definition of the Sobolev space W 1,2
C (TX ) and of the covariant

derivative, which is compatible with the metric and torsion free in a
natural way.

Definition of the Sobolev space W 1,2
d (T ∗X ) and of exterior differential,

which leads to de Rham cohomology and Hodge theory.

Definition of the Ricci curvature via the formula

Ric(X ,X ) := ∆
|X |2

2
− |∇X |2HS + 〈X ,∆HX 〉

which is a measure-valued operator satisfying

Ric(X ,X ) ≥ K |X |2m
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Thank you


