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The setting

(X,d,m) is a complete and separable metric space equipped with a
non-negative and locally finite Borel measure



L2-normed L>(m)-modules

An L2-normed L>(m)-module is given by a Banach space (M, || - ||m)
equipped with:
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L2-normed L>(m)-modules

An L2-normed L>(m)-module is given by a Banach space (M, || - ||m)
equipped with:
» a multiplication with L>°(m) functions, i.e. a bilinear map
L>°(m) x M — M satisfying

f(gv) = (fg)v,
1v=v,

forevery f,g € L>°(m) and v € M.

» a pointwise L2-norm, i.e.amap |- | : M — L2(m) satisfying
lv| >0, m-—ae.,
|fv] = |f||v|, m—a.e.,

Vi =/ [ v2am



The basic example

The space of L? vector fields on a Riemannian manifold.

More generally: the space of L2 sections of a normed vector bundle.



The idea

In the smooth setting, one can fully describe a vector bundle by
looking either to its fibers, or to its sections.

In the non-smooth one, we take the latter viewpoint and thus declare
L2-normed L>*(m)-modules to ‘be’ vector bundles on our metric
measure space



Basic features of modules: locality

For v,w € M and a Borel set E C X we say that

vV=w, m—aeonkE
provided
Xe(v—w)=0
or equivalently
|v—w| =0, m —a.e.onkE.

The set {v = w} C X is then defined as {|v — w| = 0}.



Basic features of modules: duality

The dual M* of M is the space of linear continuous maps
L: M — L'(m) which are local, i.e. such that

L(fv) = fL(v), WveM, fel®(m).

M is also an L2-normed L>°-module, the pointwise norm being given
by
L]« :=  ess-sup  L(v)

v:|v|<t m—a.e.



A special case: Hilbert modules

M is an Hilbert module provided, when seen as Banach space, is an
Hilbert space.

This happens if and only if
v+ wP+|v—wP=2|v2+2w? wm-ae,

for every v,w € M.
Thus by polarization we have a pointwise scalar product

Msv,w — (v,w) e L'(m),

symmetric and L*°-linear.



Example: the dual of L2(m)

The dual of L?(m) as Hilbert space is L?(m), i.e. for L : L?(m) — R
linear and continuous there is a unique g € L?(m) such that

L(f):/fgdm vf € [2(m)

and ||L||2(m) = [19ll12(m)- And viceversa.



Example: the dual of L2(m)

The dual of L?(m) as Hilbert space is L?(m), i.e. for L : L?(m) — R
linear and continuous there is a unique g € L?(m) such that

L(f):/fgdm vf € [2(m)

and ||L||2(m) = [19ll12(m)- And viceversa.

The dual of L2(m) as Hilbert module is L2(m), i.e. for T : L2(m) —
L'(m) linear, continuous and local, there is a unique g € L?(m) such
that

T(f)=fg m—ae. Vf € L%(m)

and |T|. = |g| m-a.e.. And viceversa.
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Cornerstones of the approach

Forget about:

Fibers
Geometry
Charts

Lipschitz functions

Focus on:

Sections
Analysis
Intrinsic calculus

Sobolev functions



Variational definition of | Df| on R

Let f: RY — R be smooth.

Then | Df| is the minimum continuous function G for which

1
(1) — f(30)] < /0 G)lFel dt

holds for any smooth curve



Test plans

Let w € £2(C([0,1], X)). We say that = is a test plan provided:
» for some C > 0 it holds

(et)s«m™ < Cm, vt e [0,1].

1
// |92 dt dm < o0
0

» it holds



The Sobolev class S?(X)

We say that f : X — R belongs to S?(X) provided there exists
G € L2(m), G > 0 such that

1
/|f(71)—f(vo)|d7r(v)§//0 G(y1) || dt dme(v)

for any test plan .
Any such G is called weak upper gradient of f.

The minimal G in the m-a.e. sense will be denoted by |Df|



The Sobolev class S?(X)

We say that f : X — R belongs to S?(X) provided there exists
G € L2(m), G > 0 such that

1
/|f(v1)—f(vo)|d7r(v)§//0 G(y1) || dt dme(v)

for any test plan .
Any such G is called weak upper gradient of f.

The minimal G in the m-a.e. sense will be denoted by |Df|
We also put W'2(Xx) := L2 N S?(X) endowed with the norm
1£1%r.2 == IflIZ + [[ DA

W'2(x) is always a Banach space.



Calculus rules for | Df|

Lower semicontinuity:

(fa) C S2(X) } . { f e S2(X)

fn = f m-—a.e.

IDf)| — G in [2(m) bfl <G
Subadditivity: |D(af + 5g)| < |«||Df| + |5||Dg| m—ae.
Locality: |Df| = |Dg| m—a.e.on{f=g}

Chain rule: |D(po f)| = || o f|Df], for ¢ : R — R Lipschitz

Leibniz rule: |D(fg)| < |f||Dg| + |g||Df|, for f,g € S? N L>(X)



The ‘Pre-cotangent module’

Consider the set
Pcm := {(A,-, fien : (A) is a Borel partition of X

f.e S2(X) foreveryic N

Z/ |Dfi|2 dm < oo
i A
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The ‘Pre-cotangent module’

Consider the set

Pcm := {(A,-, fien : (A) is a Borel partition of X
f.e S2(X) foreveryic N

> / |Dfi|2 dm < oo
i A
Define an equivalence relation ~ on Pcm by declaring
(A, f)ien ~ (B}, gj)jen
provided for any /,j € N we have

|ID(fi—g9;)|=0 wm—ae. on{AnNB}

Denote by [A;, f] the equivalence class of (A;, fi)ien



Operations on Pcm/ ~

Sum
[Ai, ] + [Bj, gi] := [Ai N B}, fi + g]]
Multiplication by a simple function For h =}, a;Xg we put
h-[Ai, f] == [Ai N Ej, ajf]
Pointwise norm

\[Ai, f]| := | Df, m— a.e. on A

1AL Al = /X|[A,»,f,]|zdm: Z./A_'D”"Fd“‘

Norm



The cotangent module L2(T*X)
We define L2(T*X) to be the completion of (Pcm/ ~, || - ||). lts

elements are called 1-forms.

All the operations can be extended by continuity endowing L2(T*X)
with the structure of [2-normed L>°-module.
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The cotangent module L2(T*X)

We define L?(T*X) to be the completion of (Pcm/ ~, || - ||). Its
elements are called 1-forms.

All the operations can be extended by continuity endowing L2(T*X)
with the structure of [2-normed L>°-module.

For f € S2(X) the differential df € L2(T*X) is defined as
df .= [X, f]

We have |df| = |Df| m-a.e. by the definition of |df|.

Note: in the smooth case, the construction is canonically identifiable
with the space of L? sections of the cotangent bundle.



Calculus rules for df

Closure:
(fn) C Sz(X) f c 82()()
fh =f wm-—ae. = {df—
df, — w in L2(T*X) v

Linearity: d(af + 3g) = adf + 3dg
Locality: df =dg m—a.e.on{f =g}
Chain rule: d(¢ o f) = ¢’ o fdf, for ¢ : R — R Lipschitz

Leibnitz rule: d(fg) = fdg + gdf, for f,g € S2 N L>(X)
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The tangent module

Definition The tangent module L?( TX) is the dual of the cotangent
one. lts elements are called vector fields.

» Vector fields are in 1-1 correspondence with L? derivations, i.e.
maps L : S?(X) — L'(m) satisfying the Leibniz rule and such
that

|L()| < 1| Df| m-—a.e.,

for some / € L?(m)

» For any vector field X € L2(TXx) we have its pointwise norm
|X| € L3(X). It can be seen that such norm induces, in an
appropriate weak sense, the original distance d on X.



Infinitesimally Hilbertian spaces

We say that (X',d, m) is ‘infinitesimally Hilbertian’ if L2(T*X), and
thus also L2(TX), is an Hilbert module.

On these spaces the pointwise scalar product of vector fields
LA(TX)3 X, Y — (X,Y)el'(m)

should be thought of as the metric tensor on (X, d, m).



Gradients

On an infinitesimally Hilbertian space, for f € S?(X) there is a unique
X € L3(TX) such that

df2 = df(X) = |X2 w-—ae.

Such X is called gradient and denoted by V.

The map
SP(X)sf — VFiel?(Tx)

is linear.
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Maps of bounded deformation

A map ¢ : Xy — A» is of bounded deformation provided

Lip(¢) < o0
o my < Cmy, for some C > 0.



Transformation of test plans and Sobolev functions

Let o : Xy — X> be of bounded deformation.

Then ¢ induces by left composition a map ¢ : C([0, 1], Xy) —
C([0, 1], X») which alters speed of at most a factor Lip(y).
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Transformation of test plans and Sobolev functions

Let o : Xy — X> be of bounded deformation.

Then ¢ induces by left composition a map ¢ : C([0, 1], Xy) —
C([0, 1], X») which alters speed of at most a factor Lip(y).

By direct verification we see that if = is a test plan on &3, then ¢, is
a test plan on Xs.

By duality, if f € S?(X») we have f o ¢ is in S2(X;) with

|D(f o )| < Lip(¢)|Df| o ¢



Pullback of 1-forms

Theorem (G. '14) Let o : X7 — X» be of bounded deformation.
Then there exists a unique linear continuous map ¢* : L2(T*Az) —
L2(T*Xy) such that

p*df =d(fo )
P (gw) = gopy w

Such map satisfies

lo*w| < Lip(p)|w] o ¢, my —a.e..



Pullback of 1-forms

Theorem (G. '14) Let o : X7 — X» be of bounded deformation.
Then there exists a unique linear continuous map ¢* : L2(T*Az) —
L2(T*Xy) such that
p*df =d(fo )
¢*(gw) =gopy'w
Such map satisfies

lo*w| < Lip(p)|w] o ¢, my —a.e..

If ¢ is invertible with inverse of bounded deformation, then the
transpose of (* is the differential dy : L2(T &) — L3(TAz).

A similar statement holds for non-invertible maps involving the notion
of pullback module.
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Laplacian and heat flow

Let (X,d, m) be infinitesimally Hilbertian.
D(A) ¢ W'2(x) is the space of f’s for which there is h € L2(m) such
that

/(Vf V) d /hgdm g € W'2(X).

We call hthe Laplacian of f and denote it by Af.
D(A) is a vector space and f — Af linear.



Laplacian and heat flow

Let (X,d, m) be infinitesimally Hilbertian.
D(A) ¢ W'2(x) is the space of f’s for which there is h € L2(m) such
that

/(Vf V) d /hgdm Vg € W2(X).

We call hthe Laplacian of f and denote it by Af.
D(A) is a vector space and f — Af linear.

There exists a unique 1-parameter semigroup of linear operators
h; : L2(m) — L2(m) such that for every f € L2(m) the curve
t — hf € L?(m) is absolutely continuous and satisfies

d
Ehtf = Ahf

We call the hy’s the heat flow.



RCD(K, ) spaces

Definition (Ambrosio, G., Savaré '11) Let K € R. Then (X,d, m) is
an RCD(K, o) space provided:

i) itis infinitesimally Hilbertian
i) m(B,(x)) < e for some x € X and C > 0

i) Every f € W'2(X) with |Df| < 1 m-a.e. admits a 1-Lipschitz
representative

iv) Forevery f ¢ W'2(X) and t > 0 we have

ID(hef)[? < e 2"'hy(|Df|?)



RCD(K, ) spaces

Definition (Ambrosio, G., Savaré '11) Let K € R. Then (X,d, m) is
an RCD(K, o) space provided:

i) itis infinitesimally Hilbertian
i) m(B,(x)) < e for some x € X and C > 0

i) Every f € W'2(X) with |Df| < 1 m-a.e. admits a 1-Lipschitz
representative

iv) Forevery f ¢ W'2(X) and t > 0 we have

ID(hef)[? < e 2"'hy(|Df|?)

Theorem (Ambrosio, G., Savaré '11 - based on Lott-Villani 05, Sturm
‘05, G.'09)
pmGH limits of RCD(K, o0) spaces are still RCD(K, o) spaces.



Bochner inequality
On RCD(K, oo) spaces the Bochner inequality

A > (Vf, VAF) + K|Vf|?

[VIP
2
holds in the weak sense, i.e.:
1
E/Agwf\zdm > /g((Vf7VAf> + K|Vf?) dm

for f,g € D(A) with Af € W'2(X), g > 0and g, Ag € L=(X).

Requiring the weak version of

2 2
|V - (Af)
2 = N
leads to the notion of RCD(K, N) space (Ambrosio-G.-Savaré '12, G.
12, Erbar-Kuwada-Sturm ’'13)

A + (VF,VAF) + K|VF|?
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Geometric results known for RCD(K, N) spaces

Abresch-Gromoll inequality (G.-Mosconi '12)
Splitting theorem (G. '13)
Maximal diameter theorem (Ketterer '13)

Rectifiability results (Mondino-Naber '14)



About rectifiability

Theorem (~Mondino-Naber '14) Let (X, d, m) be a RCD(K, N) space
and e > 0.

Then there is a Borel partition (A,) of X and maps ¢, : Ay — R% with
d, < N such that

Lip(¢n), Lip(pn') < 1+4¢
and putting 1tn := (2n).(m|, ) we have 1ip = pnL% with

ess-sup pp — ess-inf pp, < e
n(An) #n(An)



About rectifiability

Theorem (~Mondino-Naber '14) Let (X, d, m) be a RCD(K, N) space
and e > 0.

Then there is a Borel partition (A,) of X and maps ¢, : Ay — R% with
d, < N such that

Lip(n), Lip(p, ) < 1+¢
and putting 1tn := (2n).(m|, ) we have 1ip = pnL% with

ess-sup pp — ess-inf pp, < e
n(An) #n(An)

In particular, recalling the properties of the pullback of 1-forms we get:

Corollary The tangent module L?(TX) is canonically isomorphic to
the space of Borel and L? maps assigning to m-a.e. x € X an element
of the pmGH-Ilimit of rescaled spaces.
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3 simple formulas

Hf(Vg,Vg) = (V(Vf,Vg),Vg) - 1 (Vf,V|Vg[)
(VeiX,Vg) = (V(X,Vg) Vf) — Hg(X, Vf)

d(X, ¥) = X(w(Y)) = X(w(¥)) = (X, Y))
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Why these can be used on RCD(K, oc) spaces

Starting from

2
A ‘V2f| > (Vf, VAF) + K|Vf|?
and with purely algebraic means we can deduce

i

A
2

> [Hf|3g + (VF, VAF) + K|V |2

so that in particular
/\Hf|ﬁs dm < /|Af|2 — K|Vf|?dm

(Bakry 85, Savaré 12, Sturm '14, G. '14)
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Where this brings

Definition of the Sobolev space W?22(x) and of the Hessian.

Definition of the Sobolev space W3?(TX) and of the covariant
derivative, which is compatible with the metric and torsion free in a
natural way.

Definition of the Sobolev space Wd1 2(T*X) and of exterior differential,
which leads to de Rham cohomology and Hodge theory.

Definition of the Ricci curvature via the formula

2
Ric(X, X) = A% — |V X[ + (X, ApX)

which is a measure-valued operator satisfying

Ric(X, X) > K|X|?m



Thank you



