Constructions of H_r -hypersurfaces, barriers and Alexandrov Theorem in $\mathbb{H}^n \times \mathbb{R}$

Maria Fernanda Elbert

Universidade Federal do Rio de Janeiro Joint work with R. Sa Earp To appear in Ann. Mat. Pura Apl.

Preliminaries

 M^n and \bar{M}^{n+1} be oriented Riemannian manifolds

$$\begin{split} X: M^n \to \bar{M}^{n+1} \text{ be an isometric immersion} \\ p \in M, A: T_p M \to T_p M \text{ be the the shape operator} \\ k_1, \dots, k_n \text{ principal curvatures} \\ H_1(p) &= \frac{1}{2}(k_1 + k_2 + \ldots + k_n) \\ H_2(p) &= \frac{1}{\binom{n}{2}}(k_1 k_2 + k_1 k_3 + \ldots + k_n k_{n-1}) \\ & \ddots \\ H_r(p) &= \frac{1}{\binom{n}{r}} \sum_{i_1 < \ldots < i_r} k_{i_1} \ldots k_{i_r} = \frac{1}{\binom{n}{r}} S_r(p) \\ r\text{-mean curvature (Higher order mean curvatures)} \end{split}$$

 H_r -hypersurfaces

In Euclidean spaces:

For each $H_r > \frac{(n-r)}{n}$, there exists, up to translations or reflections, a unique embedded compact rotational H_r -hypersurface and it is strictly convex.

Moreover, in $\mathbb{H}^n \times \mathbb{R}$, an embedded compact rotational H_r hypersurface must have $H_r > \frac{(n-r)}{n}$ and an entire rotational H_r graph must have $0 < H_r \leq \frac{(n-r)}{n}$.

H-hyperurfaces are critical points of the area functional $A = \int_M dM$ for volume preserving variations .

 H_r -hypersurfaces are critical points of the r-area functional $A_r = \int_M S_r \ dM$ for volume preserving variations

For space forms, L.Barbosa and G. Colares stablished the variational problem whose critical points are H_r -hypersurfaces and addressed the stability properties.

What about other ambient spaces?

Equations and constructions of examples

Considering vertical graphs in $M \times \mathbb{R}$, where $M \subset \mathbb{R}^n$ with metric conformal to the euclidean one, we obtained explicit equations for H_r including one in the divergence form.

We have constructed some examples of H_r -hypersurfaces in

Relations with other results

Last Theorem shows that the value $\frac{(n-r)}{n}$ is a <u>critical value</u> for the theory for rotational H_r -hypersurfaces.

For *H* in $\mathbb{H}^n \times \mathbb{R}$, the critical value is $\frac{(n-1)}{n}$. (R. Sa Earp, E. Toubiana and P. Berard)

r = n = 2, extrinsic curvature: J.M. Espinar, J.A. Galvez and H. Rosenberg proved: A complete immersion in $\mathbb{H}^2 \times \mathbb{R}$ with $H_2 = cte > 0$ is a rotational sphere.

Question: Is a complete immersion in $\mathbb{H}^n \times \mathbb{R}$ with $H_n = cte > 0$ the rotational "n-sphere"?

Barriers

By using the rotational examples as barriers and a suitable version of the Maximum Principle (J. Hounie - M.L. Leite and F. Fontenele - S. Silva) we obtain some interesting geometric results, as for example a Convex Hull Lemma, a Height estimate and

 $\mathbb{H}^n \times \mathbb{R}$ either invariant by rotations or by parabolic screw motions. In particular, we have obtained a classification result for hypersurfaces with $H_r = 0$ and invariant by parabolic translations.

Rotational *H*_r**-hypersurfaces**

For each $0 < H_r \leq \frac{(n-r)}{n}$, there exists, up to translations or reflections, a unique entire rotational H_r -graph in $\mathbb{H}^n \times \mathbb{R}$ and it is strictly convex.

Alexandrov Theorem

Theorem Let M be a compact (without boundary) connected embedded hypersurface in $\mathbb{H}^n \times \mathbb{R}$ with constant r-mean curvature function $H_r > 0$. Then M is, up to translations, the spherelike rotational hypersurface we have obtained. In particular, we have $H_r > \frac{(n-r)}{n}$.