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What this talk is about

Defn. A CR structure on a manifold N is a distribution D ⊆ TN
equipped with a complex structure J : D→ D satisfying an
integrability condition. Define LD : ∧2D→ TN/D by

LD(X ,Y ) = −[X ,Y ] mod D.

This (or the associated hermitian tensor) is called the Levi form.

Example. N a real submanifold of Cd with standard complex
structure I : set D = TN ∩ ITN and J = I |D.

Main idea. For G acting freely on N by “transversal” CR
automorphisms of (D, J), G -invariant positive definite components
of LD descend to Kähler metrics on N/G .

Note: N is then a principal G -bundle over M; transversality means
that D is a connection on N → M.
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Motivating examples: CR spheres

Any odd dimensional sphere

S2m+1 = {z ∈ Cm+1 : |z0|2 + |z1|2 + · · ·+ |zm+1|2 = 1}

is a CR submanifold of Cm+1, with positive definite Levi form.

Quotient of S2m+1 by weighted S1 action on Cm+1 with weights
a = (a0, a1, . . . am) is the weighted projective space CPm

a (which is
CPm when ai = aj for all i , j).

Generator ξa of action is transverse to D and so trivializes
TS2m+1/D. The Levi form defines a hermitian metric on D, which
descends to a Kähler metric ga on CPm

a .

Following Tanaka, Chern–Moser, Webster, Bryant,
David–Gauduchon et al. we discover that:

Theorem. The Kähler metric ga on CPm
a is Bochner-flat (i.e., has

vanishing Bochner tensor).
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Motivating observations

I The theorem holds because S2m+1 is “CR-flat” (thus it has
vanishing Chern–Moser tensor).

I The Kähler quotient of Cm+1 by a weighted S1 action is
Bochner-flat only in the standard case of equal weights.

I Construction not limited to codimension one: `-fold product
of weighted S1 actions on CR-spheres yields an `-fold product
of weighted projective spaces.

I The (skew, or imaginary part of the) Levi form depends only
on D: the complex structure J on D is largely a passenger.

Plan.

1. Contact geometry in arbitrary codimension

2. CR structures and Levi–Kähler reduction

3. Application to toric Kähler geometry
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1. Levi nondegenerate distributions and symplectization
On a manifold N with distribution D, have an exact sequence

0→ D→ TN → TN/D→ 0.

Let LD : ∧2D→ TN/D be its Levi form.

Let D0 i−→ T ∗N be the inclusion and τ the tautological 1-form on
T ∗N

p−→ N (with τα = α ◦ p∗ : TαT ∗N → R for α ∈ T ∗N).

Proposition. The pullback ΩD = i∗dτ = di∗τ of the standard
symplectic form Ω = dτ to D0 is symplectic on the open subset

UD = {α ∈ D0 ∼= (TM/D)∗ | α ◦ LD is nondegenerate}

of T ∗N, which we call the nondegeneracy locus of D.

Defn. Say (N,D) is Levi-nondegenerate or contact of rank m and
codimension ` = rank(D0) if ∀ z ∈ N, UD ∩ p−1(z) 6= ∅.

Thus rank(D) = 2m is even, and UD
p−→ N has (local) sections

called contact forms.
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1. Local contact actions

(N,D) contact of rank m and codimension `.

con(N,D) ⊆ Γ(TN): Lie algebra of infinitesimal
contactomorphisms of (N,D), i.e., vector fields X with

LXΓ(D) ⊆ Γ(D).

Any X ∈ Γ(TN): lift X̃ to vector field on T ∗N with hamiltonian
τ(X̃ ), i.e., α 7→ τα(X̃ ) = α(X ).

If X ∈ con(N,D), then X̃ is tangent to D0 ⊆ T ∗N.

Defn. A (local, effective) contact action of a Lie algebra g on
(N,D) is a Lie algebra monomorphism K : g→ con(N,D). For
v ∈ g, write Kv for the vector field K(v).

Lemma. K : g→ con(N,D) a local contact action of g on (N,D);
define µg : D0 → g∗ by 〈µg(α), v〉 = α(Kv ) for α ∈ D0 and v ∈ g.

Then the lift of K to T ∗N preserves D0, and is hamiltonian on UD

with momentum map µg.
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1. Transversal actions

(N,D) contact of codimension `.

A local contact action K : g→ con(N,D) of an `-dimensional Lie
algebra g is transversal iff pointwise image Kg of K is a rank `
distribution transverse to D called the Reeb distribution:

Condition 1. At every point of N, D + Kg = TN.

Define η : TN → g (uniquely) by

ker(η) = D and η(Kv ) = v , ∀ v ∈ g.

Then (p, µg) : D0 → N × g∗ is a bundle isomorphism. Also:

I For any v ∈ g, LKv η + [v , η]g = 0;

I dη + 1
2 [η ∧ η]g = η ◦ LD, where LD is extended by zero from D

to TN = D⊕Kg.

Example. η could be a connection 1-form on a principal G -bundle.
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1. Contact torus actions

(N,D) be contact manifold of rank m and codimension `.

Let TN = tN/2πΛ be a (real) torus with Lie algebra tN = Λ⊗Z R,
where Λ is the lattice of circle subgroups of TN .

Defn. A contact torus action of TN on M is a local contact action
K : tN → con(N,D) which integrates to an effective action of TN .
It is toric if dimTN = d := m + `.

Say (N,D,K) has tube type iff tN has an `-dimensional subalgebra
g acting transversally on N via K, i.e., Kg = span{Kv ,z | v ∈ g}
satisfies Condition 1.

Example. g the Lie algebra of a closed subgroup G of TN :
Condition 1 ⇒ action of G is locally free on N

⇒ M := N/G is a compact orbifold.
Action of TN induces action of quotient torus T := TN/G on M.

Condition 1 also ensures: D ∼= pullback of TM to N, and hence
G -invariant data on D descend to M.
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1. Levi quotients and symplectic quotients
(N,D,K) tube type: g ⊆ tN transversal, Reeb distribution Kg,
connection 1-form η : TN → g.
For any λ ∈ g∗ \ 0, define ηλ : N → D0 by ηλz (X ) = 〈ηz(X ), λ〉,
and let LD,λ = ηλ ◦ LD = 〈dη|D, λ〉.
Defn. Say (D, LD,λ) is the Levi structure induced by (g, λ); it is
nondegenerate over the open subset Nλ ⊆ N where ηλ is a contact
form (i.e., UD-valued). If g is the Lie algebra of a closed subgroup
G of TN , refer to M = N/G as Levi quotient of N by G .

Action of TN on N lifts to hamiltonian action on UD.
Momentum map µN := µtN : UD → t∗N with 〈µN(α), v〉 = α(Kv ).
Given ι : g ↪→ tN , have µg = ι>µN : UD → g∗ and
Nλ = {z ∈ N | UD,z ∩ µg−1(λ) 6= ∅}.
Proposition. LD,λ descends to a symplectic form on M := N/G if
and only if Nλ = N. In this case M is the symplectic quotient
µg
−1(λ)/G of UD by the lifted G action.

Remark. {λ ∈ g∗ \ 0 | Nλ = N} is an open cone C ⊆ g∗.
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1. Levi quotient formalism and horizontal momentum map

Fix an epimorphism h→ t with kernel R between abelian Lie
algebras of dimensions m + 1 and m. Then the diagram

0 - g
ι
- tN

u
- t - 0

0 - R
λ ? ε

- h

L ? d
- t

www
- 0

associates pairs (g, λ) to epimorphisms L : tN → h (g is the kernel
of u := d ◦ L, and λ is induced by L|g). Let A = (ε>)−1(1).

Note that 〈µN(ηλz ), v〉 = ηλz (Kv ) equals 〈v , λ〉 for v ∈ g. This
vanishes for v ∈ ker λ ⊆ g, hence induces µλ : N → A ⊆ h∗ with

(1) 〈µλ(z),L(v)〉 = ηλz (Kv )

for all z ∈ N and v ∈ tN .

µλ is the horizontal (natural) momentum map of (D, LD,λ, g).
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Aside: Natural momentum maps in toric geometry

Setting: a hamiltonian action of a Lie group T on a symplectic
orbifold (M, ω), with Lie algebra t ↪→ C∞(M,TM).

Let h ⊆ C∞(M,R) be the subspace of hamiltonian generators f ,
i.e., with gradω f ∈ t. This defines an exact sequence

0→ R ε→ h→ t→ 0,

where R is the subspace of constant functions.

Hence (dually)

0→ t∗ → h∗
ε>→ R→ 0

and we have a canonical map µ : M → h∗ given by
〈µ(x), f 〉 = f (x) for x ∈ M and f ∈ h. It takes values in the affine
subspace A := (ε>)−1(1) of h∗.
This natural momentum map µ determines a momentum map in
the usual sense after choosing a splitting t→ h (a basepoint in A).
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1. Convexity and connectedness

Theorem. Suppose (N,D) is a (compact, connected) toric
contact manifold under TN = tN/2πΛ. Given a transversal
subalgebra ι : g→ tN and λ ∈ g∗ with Nλ = N, let
µλ : N → A ⊆ h∗ be the induced horizontal momentum map.
Then the image of µλ is a compact convex simple polytope ∆ in
A, the convex hull of the points µλ(z) where K

g
z = K

tN
z .

Furthermore, µλ is a submersion over the interior of any face of ∆,
and the fibres of µλ are TN -orbits.

Proof follows Atiyah. The essential ingredient is that for any
v ∈ tN , f := ηλ(Kv ) is a Morse–Bott function on N whose critical
submanifolds all have even index.

Hence for any vectors v1, . . . , vk ∈ tN , the map f : N → Rk with
fi = ηλ(Kvi ) satisfies

(A) all fibres f −1(p) are empty or connected;

(B) the image f (N) is convex.
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and the fibres of µλ are TN -orbits.

Proof follows Atiyah. The essential ingredient is that for any
v ∈ tN , f := ηλ(Kv ) is a Morse–Bott function on N whose critical
submanifolds all have even index.

Hence for any vectors v1, . . . , vk ∈ tN , the map f : N → Rk with
fi = ηλ(Kvi ) satisfies

(A) all fibres f −1(p) are empty or connected;

(B) the image f (N) is convex.
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2. CR structures

Defn. A rank m, codimension ` CR structure on a
(2m + `)-manifold N is a rank 2m distribution D ⊆ TN equipped
with an almost complex structure J : D→ D, which satisfies the
integrability conditions

[X ,Y ]− [JX , JY ] ∈ Γ(D),

[X , JY ] + [JX ,Y ] = J([X ,Y ]− [JX , JY ]), ∀X ,Y ∈ Γ(D).

(N,D, J) is called a CR manifold (of codimension `) and is said to
be Levi nondegenerate if D is.

Levi form LD is J-invariant or “type (1,1)” on D. It follows that
hD(X ,Y ) := LD(X , JY ) is a section of S2D∗ ⊗ TN/D. Say
(N,D, J) is Levi definite if there is a contact form α such that
α ◦ hD ∈ S2D∗ is positive definite.

Set U+
D := {α ∈ D0 |α ◦ hD is positive definite} ⊆ UD.
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2. CR torus actions and Levi–Kähler reduction

(N,D, J) a CR manifold: the Lie algebra cr(N,D, J) of CR vector
fields consists of those X ∈ con(N,D) such that LX J = 0. A local
action K : g→ con(N,D) is called a local CR action iff it takes
values in cr(N,D, J).

A CR torus action of TN = tN/2πΛ on a CR manifold (N,D, J) is
contact torus action of TN on (N,D) induced by a local CR action
K : tN → cr(N,D, J). Say (N,D, J,K) is tube type or is toric if
the underlying contact torus action is.

Suppose K : g→ cr(N,D, J) is a transversal CR action with
connection 1-form η : TN → g. For λ ∈ g∗, set hD,λ := LD,λ(·, J·).

Defn. Say (N,D, J, g) is Levi–Kähler at momentum level
λ ∈ g∗ \ {0} iff hD,λ is positive definite on D, i.e., 〈η, λ〉 is a
section of U+

D . If also g is the Lie algebra of a Lie group G acting
on N such that M/G is a smooth manifold (or orbifold), then the
Kähler metric on M induced by (hD,λ, J, LD,λ) is called the
Levi–Kähler quotient of (N,D, J) by (g, λ).
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2. Flat space
S a d element set (e.g., S = {1, 2, . . . d}).
Let ZS

∼= Zd be the free abelian group generated by S. Let
tS = ZS ⊗Z R ∼= Rd and CS = ZS ⊗Z C ∼= Cd be corresponding
free vector spaces over R and C.

Denote the generators of ZS ⊆ tS ⊆ CS by es : s ∈ S, and by
zs : CS → C, the standard (linear) complex coordinates on CS.

Then TS = tS/2πZS
∼= (S1)d acts diagonally on CS, via

[
∑

s tses ] · (
∑

s zses) =
∑

s exp(its)zses ; action is hamiltonian (wrt.
standard symplectic form ωS) with momentum map σ : CS → t∗S:

〈σ(z), es〉 = σs(z) = 1
2 |zs |

2.

The flat Kähler metric in action-angle coordinates on CS is then

gS =
∑
s∈S

(dσs
2

2σs
+ 2σsdϑs

2
)
, ωS =

∑
s∈S

dσs ∧ dϑs ,

where ϑ : C×S → TS are angle coordinates with Jdσs = 2σsdϑs .
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2. Toric CR submanifolds of flat space

Defn. A toric CR submanifold (N,D, J) of CS is a compact
connected CR submanifold which is invariant under the TS action.

A (toric, codimension `) Levi–Kähler reduction M of CS is a
Levi–Kähler quotient of (N,D, J) by (g, λ), where (N,D, J) is a
toric CR submanifold of CS of codimension `, and g ⊆ tS is the Lie
algebra of an `-dimensional subgroup G of TS.

Specify the choice of (g, λ) via an epimorphism L : tS → h, or
equivalently, an indexed family Ls : s ∈ S of vectors in h which
span (where Ls = L(es)). Thus g is the kernel of
u = d ◦ L : tS → t, sending

∑
s tses to

∑
s tsus for an indexed

family us : s ∈ S of vectors in t which span.

Data (N,D, J) and (g, λ) are then linked by Condition 1, which
may now be viewed as a constraint on (N,D, J) given (g, λ) or
vice versa.
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3. Toric geometry: Rational Delzant theory

A toric symplectic orbifold is a symplectic 2m-orbifold (M, ω) with
a hamiltonian action of an m-torus T = t/2πΛ, where t is the Lie
algebra of T and Λ is the lattice of circle subgroups.

Fact (Delzant, Lerman–Tolman). The image of the natural
momentum map µ : M → A ⊆ h∗ is a compact convex polytope

∆ := {ξ ∈ A | ∀s ∈ S, Ls(ξ) ≥ 0} ⊆ A

for affine normals Ls ∈ h (s ∈ S), defining affine functions on
A ⊆ h∗.

The Ls are determined uniquely up to scale by ∆, and the
orbifold structure of M determines these scales such that:

I ∀ s ∈ S the inward normals us := dLs are in Λ ⊆ t;

I ∀ξ ∈ ∆, {us ∈ t : Ls(ξ) = 0} ⊆ t is linearly independent.

(∆,L) is called a rational Delzant polytope; it determines
(M, ω,T) up to equiv. symplectomorphism and orbifold covering.
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3. Toric geometry: the Delzant construction

Given a rational Delzant polytope (∆,L), we construct a
symplectic toric orbifold as a symplectic quotient of the flat space
CS generated by the set S parameterizing the facets of ∆. For this
we use L, viewed as a linear map tS → h, to define a pair (g, λ)

0 - g
ιg- tS

u
- t - 0

0 - R
λ ? ε

- h

L ? d
- t

www
- 0

with g ⊆ tS and λ ∈ g∗. The rationality conditions on ∆ ensure g
is the Lie algebra of a subtorus G of TS, and M is given as a
symplectic quotient (ι>g ◦ σ)−1(0)/G .

Since 〈σ(z), es〉 = 1
2 |zs |

2, N := (ι>g ◦ σ)−1(0) is an intersection of
hermitian quadrics, hence a toric CR submanifold of CS.
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3. Example: spheres and projective spaces
S = {0, 1, . . .m}, h = tS with t = h/`, where ` is the span of∑

s∈S es . Thus A ⊆ h∗ is the affine subspace whose coordinates
sum to one, and Ls = es so ∆ is the standard simplex in A.
Thus CS

∼= Cm+1, G diagonal subgroup of TS, N = S2m+1 and
M = CPm.

Can vary example by taking Ls = wses for some ws ∈ Q. The
diagonal G is replaced by a weighted action, and M is a weighted
projective space.

Can also take products. For this, fix ` ∈ Z+ and m1, . . .m` ∈ Z+,
and let I = {1, . . . `}, Ii = {0, . . .mi} and S = {(i , r) | i ∈ I and
r ∈ Ii}. Let m =

∑`
i=1 mi and d = m + `.

Thus CS
∼= Cm1+1 × Cm2+1 × · · · × Cm`+1 ∼= Cd and tS has a

subspace go = {x ∈ tS | xiq = xir for all i ∈ I, q, r ∈ Ii}.
Let xi be the common value of the xir and thus identify go with
R`. On go we have a natural linear form λo sending (x1, x2, . . . x`)
to x1 + x2 + · · ·+ x` ∈ R, and we let Lo : tS → h = tS/ ker λo and
uo : tS → t = tS/go be the quotient maps.
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3. Products of spheres
Theorem. Let N = S2m1+1 × · · · × S2m`+1 ⊆ CS be a product of
standard CR spheres and let (∆,L) be a rational Delzant polytope
of the same combinatorial type as the product of simplices such
that the kernel g of u = d ◦ L satisfies Condition 1.
Then N is Levi–Kähler with respect to g at the momentum level λ
determined by L, and the quotient is a compact toric Kähler
orbifold with whose Kähler metric has symplectic potential

G =
1

2

∑̀
i=1

( mi∑
r=0

Lir log Lir −
( mi∑
r=0

Lir

)
log
( mi∑
r=0

Lir

))

=
1

2

∑̀
i=1

mi∑
r=0

Lir log
( Lir∑mi

s=0 Lis

)
.

Equivalently, the reduced metric on the image of µλ is given by

gred =
1

2

∑̀
i=1

( mi∑
r=0

dLir
2

Lir
−
(∑mi

r=0 dLir

)2∑mi
r=0 Lir

)
.
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3. Products of spheres continued

For ` = 1, we reobtain (from the preceding theorem) R. Bryant’s
description of Bochner-flat Kähler metrics on weighted projective
spaces. We have also studied the case that N = S3 × S3.

Theorem. Let (M, g , ω, J) a compact simply-connected Kähler
4-orbifold. Then the following conditions are equivalent.

1. (M, g , ω, J) is a Levi–Kähler quotient of S3 × S3.

2. (M, g , ω, J) is toric with respect to a 2-torus T, g = g+ is
compatible with a second complex structures J− which
commutes with J+ = J but induces the opposite orientation
on M, and g+ is conformal to a metric g− which is Kähler
with respect to J−, such that (T, g±, J±, ω±) is ambitoric in
the sense of Apostolov–C–Gauduchon. Furthermore, the
scalar curvature of g− is a Killing potential with respect to
(g+, ω+) for a vector field induced by the action of T.
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That’s all folks

Thank you!
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