Higher codimension CR structures, Levi–Kähler reduction and toric geometry

David M. J. Calderbank

University of Bath

New trends in differential geometry Villasimius 17–20 September 2014

Joint work with

- Vestislav Apostolov (UQAM)
- Paul Gauduchon (Ecole Polytechnique)
- Eveline Legendre (Toulouse)

#### What this talk is about

**Defn.** A *CR* structure on a manifold *N* is a distribution  $\mathcal{D} \subseteq TN$  equipped with a complex structure  $J: \mathcal{D} \to \mathcal{D}$  satisfying an integrability condition. Define  $L_{\mathcal{D}}: \wedge^2 \mathcal{D} \to TN/\mathcal{D}$  by

$$L_{\mathcal{D}}(X,Y) = -[X,Y] \mod \mathcal{D}.$$

This (or the associated hermitian tensor) is called the *Levi form*. **Example.** N a real submanifold of  $\mathbb{C}^d$  with standard complex structure I: set  $\mathcal{D} = TN \cap ITN$  and  $J = I|_{\mathcal{D}}$ .

#### What this talk is about

**Defn.** A *CR* structure on a manifold *N* is a distribution  $\mathcal{D} \subseteq TN$  equipped with a complex structure  $J: \mathcal{D} \to \mathcal{D}$  satisfying an integrability condition. Define  $L_{\mathcal{D}}: \wedge^2 \mathcal{D} \to TN/\mathcal{D}$  by

$$L_{\mathcal{D}}(X,Y) = -[X,Y] \mod \mathcal{D}.$$

This (or the associated hermitian tensor) is called the *Levi form*.

**Example.** *N* a real submanifold of  $\mathbb{C}^d$  with standard complex structure *I*: set  $\mathcal{D} = TN \cap ITN$  and  $J = I|_{\mathcal{D}}$ .

**Main idea.** For *G* acting freely on *N* by "transversal" CR automorphisms of  $(\mathcal{D}, J)$ , *G*-invariant positive definite components of  $L_{\mathcal{D}}$  descend to Kähler metrics on N/G.

*Note*: *N* is then a principal *G*-bundle over *M*; transversality means that  $\mathcal{D}$  is a connection on  $N \to M$ .

### Motivating examples: CR spheres

Any odd dimensional sphere

$$\mathbb{S}^{2m+1} = \{ z \in \mathbb{C}^{m+1} : |z_0|^2 + |z_1|^2 + \dots + |z_{m+1}|^2 = 1 \}$$

is a CR submanifold of  $\mathbb{C}^{m+1}$ , with positive definite Levi form. Quotient of  $\mathbb{S}^{2m+1}$  by weighted  $\mathbb{S}^1$  action on  $\mathbb{C}^{m+1}$  with weights  $\mathbf{a} = (a_0, a_1, \ldots a_m)$  is the weighted projective space  $\mathbb{C}P_{\mathbf{a}}^m$  (which is  $\mathbb{C}P^m$  when  $a_i = a_i$  for all i, j).

# Motivating examples: CR spheres

Any odd dimensional sphere

$$\mathbb{S}^{2m+1} = \{ z \in \mathbb{C}^{m+1} : |z_0|^2 + |z_1|^2 + \dots + |z_{m+1}|^2 = 1 \}$$

is a CR submanifold of  $\mathbb{C}^{m+1}$ , with positive definite Levi form. Quotient of  $\mathbb{S}^{2m+1}$  by weighted  $\mathbb{S}^1$  action on  $\mathbb{C}^{m+1}$  with weights  $\mathbf{a} = (a_0, a_1, \ldots a_m)$  is the weighted projective space  $\mathbb{C}P_{\mathbf{a}}^m$  (which is  $\mathbb{C}P^m$  when  $a_i = a_i$  for all i, j).

Generator  $\xi_{\mathbf{a}}$  of action is transverse to  $\mathcal{D}$  and so trivializes  $T\mathbb{S}^{2m+1}/\mathcal{D}$ . The Levi form defines a hermitian metric on  $\mathcal{D}$ , which descends to a Kähler metric  $g_{\mathbf{a}}$  on  $\mathbb{C}P_{\mathbf{a}}^{m}$ .

Following Tanaka, Chern-Moser, Webster, Bryant,

David–Gauduchon et al. we discover that:

**Theorem.** The Kähler metric  $g_a$  on  $\mathbb{C}P_a^m$  is Bochner-flat (i.e., has vanishing Bochner tensor).

### Motivating observations

- ► The theorem holds because S<sup>2m+1</sup> is "CR-flat" (thus it has vanishing Chern–Moser tensor).
- ► The Kähler quotient of C<sup>m+1</sup> by a weighted S<sup>1</sup> action is Bochner-flat only in the standard case of equal weights.
- Construction not limited to codimension one: ℓ-fold product of weighted S<sup>1</sup> actions on CR-spheres yields an ℓ-fold product of weighted projective spaces.
- ► The (skew, or imaginary part of the) Levi form depends only on D: the complex structure J on D is largely a passenger.

# Motivating observations

- ► The theorem holds because S<sup>2m+1</sup> is "CR-flat" (thus it has vanishing Chern–Moser tensor).
- ► The Kähler quotient of C<sup>m+1</sup> by a weighted S<sup>1</sup> action is Bochner-flat only in the standard case of equal weights.
- ► Construction not limited to codimension one: *l*-fold product of weighted S<sup>1</sup> actions on CR-spheres yields an *l*-fold product of weighted projective spaces.
- ► The (skew, or imaginary part of the) Levi form depends only on D: the complex structure J on D is largely a passenger.

#### Plan.

- 1. Contact geometry in arbitrary codimension
- 2. CR structures and Levi-Kähler reduction
- 3. Application to toric Kähler geometry

# 1. Levi nondegenerate distributions and symplectization On a manifold N with distribution $\mathcal{D}$ , have an exact sequence

$$0 \rightarrow \mathcal{D} \rightarrow TN \rightarrow TN/\mathcal{D} \rightarrow 0.$$

Let  $L_{\mathcal{D}} \colon \wedge^2 \mathfrak{D} \to TN/\mathfrak{D}$  be its Levi form.



### 1. Levi nondegenerate distributions and symplectization On a manifold N with distribution $\mathcal{D}$ , have an exact sequence

$$0 \rightarrow \mathcal{D} \rightarrow TN \rightarrow TN/\mathcal{D} \rightarrow 0.$$

Let  $L_{\mathcal{D}} \colon \wedge^2 \mathcal{D} \to TN/\mathcal{D}$  be its Levi form.

Let  $\mathcal{D}^0 \xrightarrow{i} T^*N$  be the inclusion and  $\tau$  the tautological 1-form on  $T^*N \xrightarrow{p} N$  (with  $\tau_{\alpha} = \alpha \circ p_* \colon T_{\alpha}T^*N \to \mathbb{R}$  for  $\alpha \in T^*N$ ).

**Proposition.** The pullback  $\Omega^{\mathcal{D}} = i^* d\tau = di^* \tau$  of the standard symplectic form  $\Omega = d\tau$  to  $\mathcal{D}^0$  is symplectic on the open subset

$$U_{\mathcal{D}} = \{ \alpha \in \mathcal{D}^{0} \cong (TM/\mathcal{D})^{*} \mid \alpha \circ L_{\mathcal{D}} \text{ is nondegenerate} \}$$

of  $T^*N$ , which we call the *nondegeneracy locus* of  $\mathcal{D}$ .

### 1. Levi nondegenerate distributions and symplectization On a manifold N with distribution $\mathcal{D}$ , have an exact sequence

$$0 \rightarrow \mathcal{D} \rightarrow TN \rightarrow TN/\mathcal{D} \rightarrow 0.$$

Let  $L_{\mathcal{D}} \colon \wedge^2 \mathfrak{D} \to TN/\mathfrak{D}$  be its Levi form.

Let  $\mathcal{D}^0 \xrightarrow{i} T^*N$  be the inclusion and  $\tau$  the tautological 1-form on  $T^*N \xrightarrow{p} N$  (with  $\tau_{\alpha} = \alpha \circ p_* \colon T_{\alpha}T^*N \to \mathbb{R}$  for  $\alpha \in T^*N$ ).

**Proposition.** The pullback  $\Omega^{\mathcal{D}} = i^* d\tau = di^* \tau$  of the standard symplectic form  $\Omega = d\tau$  to  $\mathcal{D}^0$  is symplectic on the open subset

$$U_{\mathcal{D}} = \{ \alpha \in \mathcal{D}^{0} \cong (TM/\mathcal{D})^{*} \mid \alpha \circ L_{\mathcal{D}} \text{ is nondegenerate} \}$$

of  $T^*N$ , which we call the *nondegeneracy locus* of  $\mathcal{D}$ .

**Defn.** Say  $(N, \mathcal{D})$  is *Levi-nondegenerate* or *contact* of rank *m* and codimension  $\ell = \operatorname{rank}(\mathcal{D}^0)$  if  $\forall z \in N$ ,  $U_{\mathcal{D}} \cap p^{-1}(z) \neq \emptyset$ .

Thus rank( $\mathcal{D}$ ) = 2*m* is even, and  $U_{\mathcal{D}} \xrightarrow{p} N$  has (local) sections called *contact forms*.

 $(N, \mathcal{D})$  contact of rank m and codimension  $\ell$ .  $\mathfrak{con}(N, \mathcal{D}) \subseteq \Gamma(TN)$ : Lie algebra of infinitesimal contactomorphisms of  $(N, \mathcal{D})$ , i.e., vector fields X with

 $\mathcal{L}_X \Gamma(\mathcal{D}) \subseteq \Gamma(\mathcal{D}).$ 

 $(N, \mathcal{D})$  contact of rank *m* and codimension  $\ell$ .  $\mathfrak{con}(N, \mathcal{D}) \subseteq \Gamma(TN)$ : Lie algebra of infinitesimal contactomorphisms of  $(N, \mathcal{D})$ , i.e., vector fields *X* with

 $\mathcal{L}_X \Gamma(\mathcal{D}) \subseteq \Gamma(\mathcal{D}).$ 

Any  $X \in \Gamma(TN)$ : lift  $\tilde{X}$  to vector field on  $T^*N$  with hamiltonian  $\tau(\tilde{X})$ , i.e.,  $\alpha \mapsto \tau_{\alpha}(\tilde{X}) = \alpha(X)$ . If  $X \in \mathfrak{con}(N, \mathcal{D})$ , then  $\tilde{X}$  is tangent to  $\mathcal{D}^0 \subseteq T^*N$ .

 $(N, \mathcal{D})$  contact of rank m and codimension  $\ell$ .  $\mathfrak{con}(N, \mathcal{D}) \subseteq \Gamma(TN)$ : Lie algebra of infinitesimal contactomorphisms of  $(N, \mathcal{D})$ , i.e., vector fields X with

 $\mathcal{L}_X \Gamma(\mathcal{D}) \subseteq \Gamma(\mathcal{D}).$ 

Any  $X \in \Gamma(TN)$ : lift  $\tilde{X}$  to vector field on  $T^*N$  with hamiltonian  $\tau(\tilde{X})$ , i.e.,  $\alpha \mapsto \tau_{\alpha}(\tilde{X}) = \alpha(X)$ . If  $X \in \operatorname{con}(N, \mathcal{D})$ , then  $\tilde{X}$  is tangent to  $\mathcal{D}^0 \subseteq T^*N$ . **Defn.** A (*local, effective*) contact action of a Lie algebra  $\mathfrak{g}$  on  $(N, \mathcal{D})$  is a Lie algebra monomorphism  $\mathbf{K} : \mathfrak{g} \to \operatorname{con}(N, \mathcal{D})$ . For  $v \in \mathfrak{g}$ , write  $K_v$  for the vector field  $\mathbf{K}(v)$ .

 $(N, \mathcal{D})$  contact of rank m and codimension  $\ell$ .  $\mathfrak{con}(N, \mathcal{D}) \subseteq \Gamma(TN)$ : Lie algebra of infinitesimal contactomorphisms of  $(N, \mathcal{D})$ , i.e., vector fields X with

 $\mathcal{L}_X \Gamma(\mathcal{D}) \subseteq \Gamma(\mathcal{D}).$ 

Any  $X \in \Gamma(TN)$ : lift  $\tilde{X}$  to vector field on  $T^*N$  with hamiltonian  $\tau(\tilde{X})$ , i.e.,  $\alpha \mapsto \tau_{\alpha}(\tilde{X}) = \alpha(X)$ . If  $X \in \operatorname{con}(N, \mathcal{D})$ , then  $\tilde{X}$  is tangent to  $\mathcal{D}^0 \subseteq T^*N$ . **Defn.** A (*local, effective*) contact action of a Lie algebra  $\mathfrak{g}$  on  $(N, \mathcal{D})$  is a Lie algebra monomorphism  $\mathbf{K} : \mathfrak{g} \to \operatorname{con}(N, \mathcal{D})$ . For  $v \in \mathfrak{g}$ , write  $K_v$  for the vector field  $\mathbf{K}(v)$ . **Lemma.**  $\mathbf{K} : \mathfrak{g} \to \operatorname{con}(N, \mathcal{D})$  a local contact action of  $\mathfrak{g}$  on  $(N, \mathcal{D})$ ;

define  $\mu_{\mathfrak{g}} \colon \mathcal{D}^{0} \to \mathfrak{g}^{*}$  by  $\langle \mu_{\mathfrak{g}}(\alpha), v \rangle = \alpha(K_{v})$  for  $\alpha \in \mathcal{D}^{0}$  and  $v \in \mathfrak{g}$ . Then the lift of **K** to  $T^{*}N$  preserves  $\mathcal{D}^{0}$ , and is hamiltonian on  $U_{\mathcal{D}}$  with momentum map  $\mu_{\mathfrak{g}}$ .

# 1. Transversal actions

 $(N, \mathcal{D})$  contact of codimension  $\ell$ .

A local contact action  $\mathbf{K} : \mathfrak{g} \to \mathfrak{con}(N, \mathcal{D})$  of an  $\ell$ -dimensional Lie algebra  $\mathfrak{g}$  is *transversal* iff pointwise image  $\mathcal{K}^{\mathfrak{g}}$  of  $\mathbf{K}$  is a rank  $\ell$  distribution transverse to  $\mathcal{D}$  called the *Reeb distribution*:

<ロ> < @> < E> < E> E のQC 7

**Condition 1.** At every point of N,  $\mathcal{D} + \mathcal{K}^{\mathfrak{g}} = TN$ .

# 1. Transversal actions

 $(N, \mathcal{D})$  contact of codimension  $\ell$ .

A local contact action  $\mathbf{K} : \mathfrak{g} \to \mathfrak{con}(N, \mathcal{D})$  of an  $\ell$ -dimensional Lie algebra  $\mathfrak{g}$  is *transversal* iff pointwise image  $\mathcal{K}^{\mathfrak{g}}$  of  $\mathbf{K}$  is a rank  $\ell$  distribution transverse to  $\mathcal{D}$  called the *Reeb distribution*:

**Condition 1.** At every point of N,  $\mathcal{D} + \mathcal{K}^{\mathfrak{g}} = TN$ .

Define  $\eta: TN \rightarrow \mathfrak{g}$  (uniquely) by

$$\operatorname{ker}(\eta) = \mathcal{D}$$
 and  $\eta(K_v) = v, \quad \forall v \in \mathfrak{g}.$ 

<ロ> < @> < E> < E> E のQC 7

# 1. Transversal actions

 $(N, \mathcal{D})$  contact of codimension  $\ell$ .

A local contact action  $\mathbf{K} : \mathfrak{g} \to \mathfrak{con}(N, \mathcal{D})$  of an  $\ell$ -dimensional Lie algebra  $\mathfrak{g}$  is *transversal* iff pointwise image  $\mathcal{K}^{\mathfrak{g}}$  of  $\mathbf{K}$  is a rank  $\ell$  distribution transverse to  $\mathcal{D}$  called the *Reeb distribution*:

**Condition 1.** At every point of *N*,  $\mathcal{D} + \mathcal{K}^{\mathfrak{g}} = TN$ .

Define  $\eta \colon TN \to \mathfrak{g}$  (uniquely) by

$$\operatorname{ker}(\eta) = \mathcal{D}$$
 and  $\eta(K_v) = v, \quad \forall v \in \mathfrak{g}.$ 

Then  $(p, \mu_{\mathfrak{g}}) \colon \mathfrak{D}^{0} \to N \times \mathfrak{g}^{*}$  is a bundle isomorphism. Also:

▶ For any 
$$v \in \mathfrak{g}$$
,  $\mathcal{L}_{K_v}\eta + [v, \eta]_{\mathfrak{g}} = 0$ ;

•  $d\eta + \frac{1}{2}[\eta \wedge \eta]_{\mathfrak{g}} = \eta \circ L_{\mathcal{D}}$ , where  $L_{\mathcal{D}}$  is extended by zero from  $\mathcal{D}$  to  $TN = \mathcal{D} \oplus \mathfrak{K}^{\mathfrak{g}}$ .

**Example.**  $\eta$  could be a connection 1-form on a principal *G*-bundle.

### 1. Contact torus actions

 $(N, \mathcal{D})$  be contact manifold of rank *m* and codimension  $\ell$ .

Let  $\mathbb{T}_N = \mathfrak{t}_N/2\pi\Lambda$  be a (real) torus with Lie algebra  $\mathfrak{t}_N = \Lambda \otimes_{\mathbb{Z}} \mathbb{R}$ , where  $\Lambda$  is the lattice of circle subgroups of  $\mathbb{T}_N$ .

**Defn.** A contact torus action of  $\mathbb{T}_N$  on M is a local contact action  $\mathbf{K} : \mathfrak{t}_N \to \mathfrak{con}(N, \mathcal{D})$  which integrates to an effective action of  $\mathbb{T}_N$ . It is *toric* if dim  $\mathbb{T}_N = d := m + \ell$ .

Say  $(N, \mathcal{D}, \mathbf{K})$  has tube type iff  $\mathfrak{t}_N$  has an  $\ell$ -dimensional subalgebra  $\mathfrak{g}$  acting transversally on N via  $\mathbf{K}$ , i.e.,  $\mathcal{K}^{\mathfrak{g}} = \operatorname{span}\{K_{\nu,z} \mid \nu \in \mathfrak{g}\}$  satisfies Condition 1.

## 1. Contact torus actions

 $(N, \mathcal{D})$  be contact manifold of rank *m* and codimension  $\ell$ .

Let  $\mathbb{T}_N = \mathfrak{t}_N/2\pi\Lambda$  be a (real) torus with Lie algebra  $\mathfrak{t}_N = \Lambda \otimes_{\mathbb{Z}} \mathbb{R}$ , where  $\Lambda$  is the lattice of circle subgroups of  $\mathbb{T}_N$ .

**Defn.** A contact torus action of  $\mathbb{T}_N$  on M is a local contact action  $\mathbf{K} : \mathfrak{t}_N \to \mathfrak{con}(N, \mathcal{D})$  which integrates to an effective action of  $\mathbb{T}_N$ . It is *toric* if dim  $\mathbb{T}_N = d := m + \ell$ .

Say  $(N, \mathcal{D}, \mathbf{K})$  has tube type iff  $\mathfrak{t}_N$  has an  $\ell$ -dimensional subalgebra  $\mathfrak{g}$  acting transversally on N via  $\mathbf{K}$ , i.e.,  $\mathcal{K}^{\mathfrak{g}} = \operatorname{span}\{K_{\nu,z} \mid \nu \in \mathfrak{g}\}$  satisfies Condition 1.

**Example.** g the Lie algebra of a closed subgroup G of  $\mathbb{T}_N$ : Condition  $1 \Rightarrow$  action of G is locally free on N

 $\Rightarrow$  M := N/G is a compact orbifold.

Action of  $\mathbb{T}_N$  induces action of quotient torus  $\mathbb{T} := \mathbb{T}_N/G$  on M. Condition 1 also ensures:  $\mathcal{D} \cong$  pullback of TM to N, and hence G-invariant data on  $\mathcal{D}$  descend to M.

### 1. Levi quotients and symplectic quotients

 $(N, \mathcal{D}, \mathbf{K})$  tube type:  $\mathfrak{g} \subseteq \mathfrak{t}_N$  transversal, Reeb distribution  $\mathcal{K}^{\mathfrak{g}}$ , connection 1-form  $\eta: TN \to \mathfrak{g}$ .

For any  $\lambda \in \mathfrak{g}^* \setminus 0$ , define  $\eta^{\lambda} \colon \mathbb{N} \to \mathcal{D}^0$  by  $\eta_z^{\lambda}(X) = \langle \eta_z(X), \lambda \rangle$ , and let  $\mathcal{L}_{\mathcal{D},\lambda} = \eta^{\lambda} \circ \mathcal{L}_{\mathcal{D}} = \langle \mathsf{d}\eta|_{\mathcal{D}}, \lambda \rangle$ .

**Defn.** Say  $(\mathcal{D}, L_{\mathcal{D},\lambda})$  is the *Levi structure* induced by  $(\mathfrak{g}, \lambda)$ ; it is *nondegenerate* over the open subset  $N_{\lambda} \subseteq N$  where  $\eta^{\lambda}$  is a contact form (i.e.,  $U_{\mathcal{D}}$ -valued). If  $\mathfrak{g}$  is the Lie algebra of a closed subgroup G of  $\mathbb{T}_N$ , refer to M = N/G as *Levi quotient* of N by G.

### 1. Levi quotients and symplectic quotients

 $(N, \mathcal{D}, \mathbf{K})$  tube type:  $\mathfrak{g} \subseteq \mathfrak{t}_N$  transversal, Reeb distribution  $\mathcal{K}^{\mathfrak{g}}$ , connection 1-form  $\eta: TN \to \mathfrak{g}$ .

For any  $\lambda \in \mathfrak{g}^* \setminus 0$ , define  $\eta^{\lambda} \colon \mathbb{N} \to \mathcal{D}^0$  by  $\eta_z^{\lambda}(X) = \langle \eta_z(X), \lambda \rangle$ , and let  $L_{\mathcal{D},\lambda} = \eta^{\lambda} \circ L_{\mathcal{D}} = \langle d\eta |_{\mathcal{D}}, \lambda \rangle$ .

**Defn.** Say  $(\mathcal{D}, L_{\mathcal{D},\lambda})$  is the *Levi structure* induced by  $(\mathfrak{g}, \lambda)$ ; it is *nondegenerate* over the open subset  $N_{\lambda} \subseteq N$  where  $\eta^{\lambda}$  is a contact form (i.e.,  $U_{\mathcal{D}}$ -valued). If  $\mathfrak{g}$  is the Lie algebra of a closed subgroup G of  $\mathbb{T}_N$ , refer to M = N/G as *Levi quotient* of N by G.

Action of  $\mathbb{T}_N$  on N lifts to hamiltonian action on  $U_{\mathbb{D}}$ . Momentum map  $\mu_N := \mu_{\mathfrak{t}_N} : U_{\mathbb{D}} \to \mathfrak{t}_N^*$  with  $\langle \mu_N(\alpha), \mathbf{v} \rangle = \alpha(K_{\mathbf{v}})$ . Given  $\iota : \mathfrak{g} \hookrightarrow \mathfrak{t}_N$ , have  $\mu_{\mathfrak{g}} = \iota^\top \mu_N : U_{\mathbb{D}} \to \mathfrak{g}^*$  and  $N_\lambda = \{ z \in N \mid U_{\mathbb{D},z} \cap \mu_{\mathfrak{g}}^{-1}(\lambda) \neq \varnothing \}.$ 

**Proposition.**  $L_{\mathcal{D},\lambda}$  descends to a symplectic form on M := N/G if and only if  $N_{\lambda} = N$ . In this case M is the symplectic quotient  $\mu_{\mathfrak{g}}^{-1}(\lambda)/G$  of  $U_{\mathcal{D}}$  by the lifted G action.

### 1. Levi quotients and symplectic quotients

 $(N, \mathcal{D}, \mathbf{K})$  tube type:  $\mathfrak{g} \subseteq \mathfrak{t}_N$  transversal, Reeb distribution  $\mathcal{K}^{\mathfrak{g}}$ , connection 1-form  $\eta: TN \to \mathfrak{g}$ .

For any  $\lambda \in \mathfrak{g}^* \setminus 0$ , define  $\eta^{\lambda} \colon \mathbb{N} \to \mathcal{D}^0$  by  $\eta_z^{\lambda}(X) = \langle \eta_z(X), \lambda \rangle$ , and let  $L_{\mathcal{D},\lambda} = \eta^{\lambda} \circ L_{\mathcal{D}} = \langle d\eta |_{\mathcal{D}}, \lambda \rangle$ .

**Defn.** Say  $(\mathcal{D}, L_{\mathcal{D},\lambda})$  is the *Levi structure* induced by  $(\mathfrak{g}, \lambda)$ ; it is *nondegenerate* over the open subset  $N_{\lambda} \subseteq N$  where  $\eta^{\lambda}$  is a contact form (i.e.,  $U_{\mathcal{D}}$ -valued). If  $\mathfrak{g}$  is the Lie algebra of a closed subgroup G of  $\mathbb{T}_N$ , refer to M = N/G as *Levi quotient* of N by G.

Action of  $\mathbb{T}_N$  on N lifts to hamiltonian action on  $U_{\mathbb{D}}$ . Momentum map  $\mu_N := \mu_{\mathfrak{t}_N} : U_{\mathbb{D}} \to \mathfrak{t}_N^*$  with  $\langle \mu_N(\alpha), \mathbf{v} \rangle = \alpha(K_{\mathbf{v}})$ . Given  $\iota : \mathfrak{g} \hookrightarrow \mathfrak{t}_N$ , have  $\mu_{\mathfrak{g}} = \iota^\top \mu_N : U_{\mathbb{D}} \to \mathfrak{g}^*$  and  $N_\lambda = \{ z \in N \mid U_{\mathbb{D},z} \cap \mu_{\mathfrak{g}}^{-1}(\lambda) \neq \varnothing \}.$ 

**Proposition.**  $L_{\mathcal{D},\lambda}$  descends to a symplectic form on M := N/G if and only if  $N_{\lambda} = N$ . In this case M is the symplectic quotient  $\mu_{\mathfrak{g}}^{-1}(\lambda)/G$  of  $U_{\mathcal{D}}$  by the lifted G action.

**Remark.**  $\{\lambda \in \mathfrak{g}^* \setminus 0 \mid N_\lambda = N\}$  is an open cone  $\mathcal{C} \subseteq \mathfrak{g}^*$ .

### 1. Levi quotient formalism and horizontal momentum map

Fix an epimorphism  $\mathfrak{h} \to \mathfrak{t}$  with kernel  $\mathbb{R}$  between abelian Lie algebras of dimensions m+1 and m. Then the diagram

$$\begin{array}{cccc} 0 \longrightarrow \mathfrak{g} \stackrel{\iota}{\longrightarrow} \mathfrak{t}_N \stackrel{\mathbf{u}}{\longrightarrow} \mathfrak{t} \longrightarrow 0 \\ \lambda \downarrow & \mathbf{L} \downarrow & \parallel \\ 0 \longrightarrow \mathbb{R} \stackrel{\varepsilon}{\longrightarrow} \mathfrak{h} \stackrel{\mathbf{d}}{\longrightarrow} \mathfrak{t} \longrightarrow 0 \end{array}$$

associates pairs  $(\mathfrak{g}, \lambda)$  to epimorphisms  $\mathbf{L} : \mathfrak{t}_N \to \mathfrak{h}$  ( $\mathfrak{g}$  is the kernel of  $\mathbf{u} := \mathbf{d} \circ \mathbf{L}$ , and  $\lambda$  is induced by  $\mathbf{L}|_{\mathfrak{g}}$ ). Let  $\mathcal{A} = (\varepsilon^{\top})^{-1}(1)$ .

### 1. Levi quotient formalism and horizontal momentum map

Fix an epimorphism  $\mathfrak{h} \to \mathfrak{t}$  with kernel  $\mathbb{R}$  between abelian Lie algebras of dimensions m + 1 and m. Then the diagram

$$\begin{array}{cccc} 0 \longrightarrow \mathfrak{g} \stackrel{\iota}{\longrightarrow} \mathfrak{t}_{N} \stackrel{\mathbf{u}}{\longrightarrow} \mathfrak{t} \longrightarrow 0 \\ \lambda \downarrow & \mathbf{L} \downarrow & \parallel \\ 0 \longrightarrow \mathbb{R} \stackrel{\varepsilon}{\longrightarrow} \mathfrak{h} \stackrel{\mathbf{d}}{\longrightarrow} \mathfrak{t} \longrightarrow 0 \end{array}$$

associates pairs  $(\mathfrak{g}, \lambda)$  to epimorphisms  $\mathbf{L} : \mathfrak{t}_N \to \mathfrak{h}$  ( $\mathfrak{g}$  is the kernel of  $\mathbf{u} := \mathbf{d} \circ \mathbf{L}$ , and  $\lambda$  is induced by  $\mathbf{L}|_{\mathfrak{g}}$ ). Let  $\mathcal{A} = (\varepsilon^{\top})^{-1}(1)$ . Note that  $\langle \mu_N(\eta_z^{\lambda}), v \rangle = \eta_z^{\lambda}(\mathcal{K}_v)$  equals  $\langle v, \lambda \rangle$  for  $v \in \mathfrak{g}$ . This vanishes for  $v \in \ker \lambda \subseteq \mathfrak{g}$ , hence induces  $\mu^{\lambda} : N \to \mathcal{A} \subseteq \mathfrak{h}^*$  with

<ロト < 部 > < 注 > < 注 > うへで 10

(1) 
$$\langle \mu^{\lambda}(z), \mathbf{L}(v) \rangle = \eta_{z}^{\lambda}(K_{v})$$

for all  $z \in N$  and  $v \in \mathfrak{t}_N$ .

### 1. Levi quotient formalism and horizontal momentum map

Fix an epimorphism  $\mathfrak{h} \to \mathfrak{t}$  with kernel  $\mathbb{R}$  between abelian Lie algebras of dimensions m+1 and m. Then the diagram

$$\begin{array}{cccc} 0 \longrightarrow \mathfrak{g} \stackrel{\iota}{\longrightarrow} \mathfrak{t}_{N} \stackrel{\mathbf{u}}{\longrightarrow} \mathfrak{t} \longrightarrow 0 \\ \lambda \downarrow & \mathbf{L} \downarrow & \parallel \\ 0 \longrightarrow \mathbb{R} \stackrel{\varepsilon}{\longrightarrow} \mathfrak{h} \stackrel{\mathbf{d}}{\longrightarrow} \mathfrak{t} \longrightarrow 0 \end{array}$$

associates pairs  $(\mathfrak{g}, \lambda)$  to epimorphisms  $\mathbf{L} : \mathfrak{t}_N \to \mathfrak{h}$  ( $\mathfrak{g}$  is the kernel of  $\mathbf{u} := \mathbf{d} \circ \mathbf{L}$ , and  $\lambda$  is induced by  $\mathbf{L}|_{\mathfrak{g}}$ ). Let  $\mathcal{A} = (\varepsilon^{\top})^{-1}(1)$ . Note that  $\langle \mu_N(\eta_z^{\lambda}), \mathbf{v} \rangle = \eta_z^{\lambda}(\mathcal{K}_{\mathbf{v}})$  equals  $\langle \mathbf{v}, \lambda \rangle$  for  $\mathbf{v} \in \mathfrak{g}$ . This vanishes for  $\mathbf{v} \in \ker \lambda \subseteq \mathfrak{g}$ , hence induces  $\mu^{\lambda} : N \to \mathcal{A} \subseteq \mathfrak{h}^*$  with

(1) 
$$\langle \mu^{\lambda}(z), \mathsf{L}(v) \rangle = \eta^{\lambda}_{z}(K_{v})$$

for all  $z \in N$  and  $v \in \mathfrak{t}_N$ .  $\mu^{\lambda}$  is the *horizontal* (*natural*) *momentum map* of  $(\mathfrak{D}, \mathcal{L}_{\mathfrak{D}, \lambda}, \mathfrak{g})$ .

### Aside: Natural momentum maps in toric geometry

Setting: a hamiltonian action of a Lie group  $\mathbb{T}$  on a symplectic orbifold  $(M, \omega)$ , with Lie algebra  $\mathfrak{t} \hookrightarrow C^{\infty}(M, TM)$ .

Let  $\mathfrak{h} \subseteq C^{\infty}(M, \mathbb{R})$  be the subspace of hamiltonian generators f, i.e., with  $\operatorname{grad}_{\omega} f \in \mathfrak{t}$ . This defines an exact sequence

$$0 o \mathbb{R} \stackrel{\varepsilon}{ o} \mathfrak{h} o \mathfrak{t} o 0,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで 11

where  $\mathbb{R}$  is the subspace of constant functions.

### Aside: Natural momentum maps in toric geometry

Setting: a hamiltonian action of a Lie group  $\mathbb{T}$  on a symplectic orbifold  $(M, \omega)$ , with Lie algebra  $\mathfrak{t} \hookrightarrow C^{\infty}(M, TM)$ .

Let  $\mathfrak{h} \subseteq C^{\infty}(M, \mathbb{R})$  be the subspace of hamiltonian generators f, i.e., with  $\operatorname{grad}_{\omega} f \in \mathfrak{t}$ . This defines an exact sequence

$$0 o \mathbb{R} \xrightarrow{\varepsilon} \mathfrak{h} o \mathfrak{t} o 0,$$

where  $\mathbb{R}$  is the subspace of constant functions. Hence (dually)

$$0 o \mathfrak{t}^* o \mathfrak{h}^* \stackrel{\varepsilon^{\top}}{ o} \mathbb{R} o 0$$

and we have a canonical map  $\mu \colon M \to \mathfrak{h}^*$  given by  $\langle \mu(x), f \rangle = f(x)$  for  $x \in M$  and  $f \in \mathfrak{h}$ . It takes values in the affine subspace  $\mathcal{A} := (\varepsilon^{\top})^{-1}(1)$  of  $\mathfrak{h}^*$ .

This **natural momentum map**  $\mu$  determines a momentum map in the usual sense after choosing a splitting  $\mathfrak{t} \to \mathfrak{h}$  (a basepoint in  $\mathcal{A}$ ).

# 1. Convexity and connectedness

**Theorem.** Suppose  $(N, \mathcal{D})$  is a (compact, connected) toric contact manifold under  $\mathbb{T}_N = \mathfrak{t}_N/2\pi\Lambda$ . Given a transversal subalgebra  $\iota \colon \mathfrak{g} \to \mathfrak{t}_N$  and  $\lambda \in \mathfrak{g}^*$  with  $N_\lambda = N$ , let  $\mu^\lambda \colon N \to \mathcal{A} \subseteq \mathfrak{h}^*$  be the induced horizontal momentum map. Then the image of  $\mu^\lambda$  is a compact convex simple polytope  $\Delta$  in  $\mathcal{A}$ , the convex hull of the points  $\mu^\lambda(z)$  where  $\mathcal{K}_z^{\mathfrak{g}} = \mathcal{K}_z^{\mathfrak{t}_N}$ . Furthermore,  $\mu^\lambda$  is a submersion over the interior of any face of  $\Delta$ , and the fibres of  $\mu^\lambda$  are  $\mathbb{T}_N$ -orbits.

# 1. Convexity and connectedness

**Theorem.** Suppose  $(N, \mathcal{D})$  is a (compact, connected) toric contact manifold under  $\mathbb{T}_N = \mathfrak{t}_N/2\pi\Lambda$ . Given a transversal subalgebra  $\iota \colon \mathfrak{g} \to \mathfrak{t}_N$  and  $\lambda \in \mathfrak{g}^*$  with  $N_\lambda = N$ , let  $\mu^\lambda \colon N \to \mathcal{A} \subseteq \mathfrak{h}^*$  be the induced horizontal momentum map. Then the image of  $\mu^\lambda$  is a compact convex simple polytope  $\Delta$  in  $\mathcal{A}$ , the convex hull of the points  $\mu^\lambda(z)$  where  $\mathcal{K}_z^{\mathfrak{g}} = \mathcal{K}_z^{\mathfrak{t}_N}$ . Furthermore,  $\mu^\lambda$  is a submersion over the interior of any face of  $\Delta$ , and the fibres of  $\mu^\lambda$  are  $\mathbb{T}_N$ -orbits.

Proof follows Atiyah. The essential ingredient is that for any  $v \in \mathfrak{t}_N$ ,  $f := \eta^{\lambda}(K_v)$  is a Morse–Bott function on N whose critical submanifolds all have even index.

# 1. Convexity and connectedness

**Theorem.** Suppose  $(N, \mathcal{D})$  is a (compact, connected) toric contact manifold under  $\mathbb{T}_N = \mathfrak{t}_N/2\pi\Lambda$ . Given a transversal subalgebra  $\iota \colon \mathfrak{g} \to \mathfrak{t}_N$  and  $\lambda \in \mathfrak{g}^*$  with  $N_\lambda = N$ , let  $\mu^\lambda \colon N \to \mathcal{A} \subseteq \mathfrak{h}^*$  be the induced horizontal momentum map. Then the image of  $\mu^\lambda$  is a compact convex simple polytope  $\Delta$  in  $\mathcal{A}$ , the convex hull of the points  $\mu^\lambda(z)$  where  $\mathcal{K}_z^{\mathfrak{g}} = \mathcal{K}_z^{\mathfrak{t}_N}$ . Furthermore,  $\mu^\lambda$  is a submersion over the interior of any face of  $\Delta$ , and the fibres of  $\mu^\lambda$  are  $\mathbb{T}_N$ -orbits.

Proof follows Atiyah. The essential ingredient is that for any  $v \in \mathfrak{t}_N$ ,  $f := \eta^{\lambda}(K_v)$  is a Morse–Bott function on N whose critical submanifolds all have even index.

Hence for any vectors  $v_1, \ldots, v_k \in \mathfrak{t}_N$ , the map  $f : \mathbb{N} \to \mathbb{R}^k$  with  $f_i = \eta^{\lambda}(K_{v_i})$  satisfies (A) all fibres  $f^{-1}(p)$  are empty or connected; (B) the image  $f(\mathbb{N})$  is convex.

# 2. CR structures

**Defn.** A rank *m*, codimension  $\ell$  CR structure on a  $(2m + \ell)$ -manifold *N* is a rank 2m distribution  $\mathcal{D} \subseteq TN$  equipped with an almost complex structure  $J: \mathcal{D} \to \mathcal{D}$ , which satisfies the integrability conditions

$$\begin{split} & [X,Y]-[JX,JY]\in \Gamma(\mathcal{D}),\\ & [X,JY]+[JX,Y]=J([X,Y]-[JX,JY]), \quad \forall \, X,Y\in \Gamma(\mathcal{D}). \end{split}$$

 $(N, \mathcal{D}, J)$  is called a *CR manifold* (of codimension  $\ell$ ) and is said to be *Levi nondegenerate* if  $\mathcal{D}$  is.

# 2. CR structures

**Defn.** A rank *m*, codimension  $\ell$  CR structure on a  $(2m + \ell)$ -manifold *N* is a rank 2m distribution  $\mathcal{D} \subseteq TN$  equipped with an almost complex structure  $J: \mathcal{D} \to \mathcal{D}$ , which satisfies the integrability conditions

$$\begin{aligned} & [X, Y] - [JX, JY] \in \Gamma(\mathcal{D}), \\ & [X, JY] + [JX, Y] = J([X, Y] - [JX, JY]), \quad \forall X, Y \in \Gamma(\mathcal{D}). \end{aligned}$$

 $(N, \mathcal{D}, J)$  is called a *CR manifold* (of codimension  $\ell$ ) and is said to be *Levi nondegenerate* if  $\mathcal{D}$  is.

Levi form  $L_{\mathcal{D}}$  is *J*-invariant or "type (1,1)" on  $\mathcal{D}$ . It follows that  $h_{\mathcal{D}}(X, Y) := L_{\mathcal{D}}(X, JY)$  is a section of  $S^2 \mathcal{D}^* \otimes TN/\mathcal{D}$ . Say  $(N, \mathcal{D}, J)$  is *Levi definite* if there is a contact form  $\alpha$  such that  $\alpha \circ h_{\mathcal{D}} \in S^2 \mathcal{D}^*$  is positive definite.

Set  $U_{\mathcal{D}}^+ := \{ \alpha \in \mathcal{D}^0 \, | \, \alpha \circ h_{\mathcal{D}} \text{ is positive definite} \} \subseteq U_{\mathcal{D}}.$ 

# 2. CR torus actions and Levi-Kähler reduction

 $(N, \mathcal{D}, J)$  a CR manifold: the Lie algebra  $\mathfrak{cr}(N, \mathcal{D}, J)$  of CR vector fields consists of those  $X \in \mathfrak{con}(N, \mathcal{D})$  such that  $\mathcal{L}_X J = 0$ . A local action  $\mathbf{K} : \mathfrak{g} \to \mathfrak{con}(N, \mathcal{D})$  is called a local CR action iff it takes values in  $\mathfrak{cr}(N, \mathcal{D}, J)$ .

## 2. CR torus actions and Levi-Kähler reduction

 $(N, \mathcal{D}, J)$  a CR manifold: the Lie algebra  $\mathfrak{cr}(N, \mathcal{D}, J)$  of CR vector fields consists of those  $X \in \mathfrak{con}(N, \mathcal{D})$  such that  $\mathcal{L}_X J = 0$ . A local action  $\mathbf{K} : \mathfrak{g} \to \mathfrak{con}(N, \mathcal{D})$  is called a local CR action iff it takes values in  $\mathfrak{cr}(N, \mathcal{D}, J)$ .

A *CR* torus action of  $\mathbb{T}_N = \mathfrak{t}_N/2\pi\Lambda$  on a CR manifold  $(N, \mathcal{D}, J)$  is contact torus action of  $\mathbb{T}_N$  on  $(N, \mathcal{D})$  induced by a local CR action  $\mathbf{K} : \mathfrak{t}_N \to \mathfrak{cr}(N, \mathcal{D}, J)$ . Say  $(N, \mathcal{D}, J, \mathbf{K})$  is tube type or is toric if the underlying contact torus action is.

Suppose  $\mathbf{K} : \mathfrak{g} \to \mathfrak{cr}(N, \mathcal{D}, J)$  is a transversal CR action with connection 1-form  $\eta : TN \to \mathfrak{g}$ . For  $\lambda \in \mathfrak{g}^*$ , set  $h_{\mathcal{D},\lambda} := L_{\mathcal{D},\lambda}(\cdot, J \cdot)$ .

# 2. CR torus actions and Levi-Kähler reduction

 $(N, \mathcal{D}, J)$  a CR manifold: the Lie algebra  $\mathfrak{cr}(N, \mathcal{D}, J)$  of CR vector fields consists of those  $X \in \mathfrak{con}(N, \mathcal{D})$  such that  $\mathcal{L}_X J = 0$ . A local action  $\mathbf{K} : \mathfrak{g} \to \mathfrak{con}(N, \mathcal{D})$  is called a local CR action iff it takes values in  $\mathfrak{cr}(N, \mathcal{D}, J)$ .

A *CR* torus action of  $\mathbb{T}_N = \mathfrak{t}_N/2\pi\Lambda$  on a CR manifold  $(N, \mathcal{D}, J)$  is contact torus action of  $\mathbb{T}_N$  on  $(N, \mathcal{D})$  induced by a local CR action  $\mathbf{K} : \mathfrak{t}_N \to \mathfrak{cr}(N, \mathcal{D}, J)$ . Say  $(N, \mathcal{D}, J, \mathbf{K})$  is tube type or is toric if the underlying contact torus action is.

Suppose  $\mathbf{K} : \mathfrak{g} \to \mathfrak{cr}(N, \mathcal{D}, J)$  is a transversal CR action with connection 1-form  $\eta : TN \to \mathfrak{g}$ . For  $\lambda \in \mathfrak{g}^*$ , set  $h_{\mathcal{D},\lambda} := L_{\mathcal{D},\lambda}(\cdot, J \cdot)$ .

**Defn.** Say  $(N, \mathcal{D}, J, \mathfrak{g})$  is *Levi–Kähler* at momentum level  $\lambda \in \mathfrak{g}^* \setminus \{0\}$  iff  $h_{\mathcal{D},\lambda}$  is positive definite on  $\mathcal{D}$ , i.e.,  $\langle \eta, \lambda \rangle$  is a section of  $U_{\mathcal{D}}^+$ . If also  $\mathfrak{g}$  is the Lie algebra of a Lie group G acting on N such that M/G is a smooth manifold (or orbifold), then the Kähler metric on M induced by  $(h_{\mathcal{D},\lambda}, J, L_{\mathcal{D},\lambda})$  is called the *Levi–Kähler quotient* of  $(N, \mathcal{D}, J)$  by  $(\mathfrak{g}, \lambda)$ .

# 2. Flat space

S a *d* element set (e.g.,  $S = \{1, 2, \dots d\}$ ). Let  $\mathbb{Z}_S \cong \mathbb{Z}^d$  be the free abelian group generated by S. Let  $\mathfrak{t}_S = \mathbb{Z}_S \otimes_{\mathbb{Z}} \mathbb{R} \cong \mathbb{R}^d$  and  $\mathbb{C}_S = \mathbb{Z}_S \otimes_{\mathbb{Z}} \mathbb{C} \cong \mathbb{C}^d$  be corresponding free vector spaces over  $\mathbb{R}$  and  $\mathbb{C}$ .

Denote the generators of  $\mathbb{Z}_{S} \subseteq \mathfrak{t}_{S} \subseteq \mathbb{C}_{S}$  by  $e_{s} : s \in S$ , and by  $z_{s} : \mathbb{C}_{S} \to \mathbb{C}$ , the standard (linear) complex coordinates on  $\mathbb{C}_{S}$ .

<ロト < 部 > < 注 > < 注 > 一注 の < の 15

# 2. Flat space

S a *d* element set (e.g.,  $S = \{1, 2, ..., d\}$ ). Let  $\mathbb{Z}_{\mathbb{S}} \cong \mathbb{Z}^d$  be the free abelian group generated by S. Let  $\mathfrak{t}_{\mathfrak{S}} = \mathbb{Z}_{\mathfrak{S}} \otimes_{\mathbb{Z}} \mathbb{R} \cong \mathbb{R}^d$  and  $\mathbb{C}_{\mathfrak{S}} = \mathbb{Z}_{\mathfrak{S}} \otimes_{\mathbb{Z}} \mathbb{C} \cong \mathbb{C}^d$  be corresponding free vector spaces over  $\mathbb{R}$  and  $\mathbb{C}$ .

Denote the generators of  $\mathbb{Z}_{S} \subseteq \mathfrak{t}_{S} \subseteq \mathbb{C}_{S}$  by  $e_{s} : s \in S$ , and by  $z_s \colon \mathbb{C}_{\mathbb{S}} \to \mathbb{C}$ , the standard (linear) complex coordinates on  $\mathbb{C}_{\mathbb{S}}$ . Then  $\mathbb{T}_{\mathcal{S}} = \mathfrak{t}_{\mathcal{S}}/2\pi\mathbb{Z}_{\mathcal{S}} \cong (\mathbb{S}^1)^d$  acts diagonally on  $\mathbb{C}_{\mathcal{S}}$ , via  $\left[\sum_{s} t_{s} e_{s}\right] \cdot \left(\sum_{s} z_{s} e_{s}\right) = \sum_{s} \exp(it_{s}) z_{s} e_{s}$ ; action is hamiltonian (wrt. standard symplectic form  $\omega_{\delta}$ ) with momentum map  $\sigma : \mathbb{C}_{\delta} \to \mathfrak{t}_{\delta}^*$ :

$$\langle \boldsymbol{\sigma}(z), \boldsymbol{e}_s \rangle = \sigma_s(z) = \frac{1}{2} |z_s|^2.$$

The flat Kähler metric in action-angle coordinates on  $\mathbb{C}_{\mathcal{S}}$  is then

$$g_{\mathbb{S}} = \sum_{s \in \mathbb{S}} \left( \frac{\mathrm{d}\sigma_s^2}{2\sigma_s} + 2\sigma_s \mathrm{d}\vartheta_s^2 \right), \quad \omega_{\mathbb{S}} = \sum_{s \in \mathbb{S}} \mathrm{d}\sigma_s \wedge \mathrm{d}\vartheta_s,$$

where  $\vartheta : \mathbb{C}_{S}^{\times} \to \mathbb{T}_{S}$  are angle coordinates with  $Jd\sigma_{s} = 2\sigma_{s}d\vartheta_{s}$ . ◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへで 15

# 2. Toric CR submanifolds of flat space

**Defn.** A toric CR submanifold  $(N, \mathcal{D}, J)$  of  $\mathbb{C}_{\mathbb{S}}$  is a compact connected CR submanifold which is invariant under the  $\mathbb{T}_{\mathbb{S}}$  action. A (toric, codimension  $\ell$ ) Levi–Kähler reduction M of  $\mathbb{C}_{\mathbb{S}}$  is a Levi–Kähler quotient of  $(N, \mathcal{D}, J)$  by  $(\mathfrak{g}, \lambda)$ , where  $(N, \mathcal{D}, J)$  is a toric CR submanifold of  $\mathbb{C}_{\mathbb{S}}$  of codimension  $\ell$ , and  $\mathfrak{g} \subseteq \mathfrak{t}_{\mathbb{S}}$  is the Lie algebra of an  $\ell$ -dimensional subgroup G of  $\mathbb{T}_{\mathbb{S}}$ .

### 2. Toric CR submanifolds of flat space

**Defn.** A *toric CR submanifold*  $(N, \mathcal{D}, J)$  of  $\mathbb{C}_{S}$  is a compact connected CR submanifold which is invariant under the  $\mathbb{T}_{S}$  action.

A (toric, codimension  $\ell$ ) Levi-Kähler reduction M of  $\mathbb{C}_{S}$  is a Levi-Kähler quotient of  $(N, \mathcal{D}, J)$  by  $(\mathfrak{g}, \lambda)$ , where  $(N, \mathcal{D}, J)$  is a toric CR submanifold of  $\mathbb{C}_{S}$  of codimension  $\ell$ , and  $\mathfrak{g} \subseteq \mathfrak{t}_{S}$  is the Lie algebra of an  $\ell$ -dimensional subgroup G of  $\mathbb{T}_{S}$ .

Specify the choice of  $(\mathfrak{g}, \lambda)$  via an epimorphism  $\mathbf{L} : \mathfrak{t}_{\mathcal{S}} \to \mathfrak{h}$ , or equivalently, an indexed family  $L_s : s \in \mathcal{S}$  of vectors in  $\mathfrak{h}$  which span (where  $L_s = \mathbf{L}(e_s)$ ). Thus  $\mathfrak{g}$  is the kernel of  $\mathbf{u} = \mathbf{d} \circ \mathbf{L} : \mathfrak{t}_{\mathcal{S}} \to \mathfrak{t}$ , sending  $\sum_s t_s e_s$  to  $\sum_s t_s u_s$  for an indexed family  $u_s : s \in \mathcal{S}$  of vectors in  $\mathfrak{t}$  which span.

Data  $(N, \mathcal{D}, J)$  and  $(\mathfrak{g}, \lambda)$  are then linked by Condition 1, which may now be viewed as a constraint on  $(N, \mathcal{D}, J)$  given  $(\mathfrak{g}, \lambda)$  or vice versa.

## 3. Toric geometry: Rational Delzant theory

A toric symplectic orbifold is a symplectic 2m-orbifold  $(M, \omega)$  with a hamiltonian action of an *m*-torus  $\mathbb{T} = \mathfrak{t}/2\pi\Lambda$ , where t is the Lie algebra of  $\mathbb{T}$  and  $\Lambda$  is the lattice of circle subgroups.

**Fact** (Delzant, Lerman–Tolman). The image of the natural momentum map  $\mu \colon M \to \mathcal{A} \subseteq \mathfrak{h}^*$  is a compact convex polytope

$$\Delta := \{\xi \in \mathcal{A} \mid \forall s \in \mathbb{S}, \ L_s(\xi) \ge 0\} \subseteq \mathcal{A}$$

for **affine normals**  $L_s \in \mathfrak{h}$  ( $s \in S$ ), defining affine functions on  $\mathcal{A} \subseteq \mathfrak{h}^*$ .

# 3. Toric geometry: Rational Delzant theory

A toric symplectic orbifold is a symplectic 2m-orbifold  $(M, \omega)$  with a hamiltonian action of an *m*-torus  $\mathbb{T} = \mathfrak{t}/2\pi\Lambda$ , where t is the Lie algebra of  $\mathbb{T}$  and  $\Lambda$  is the lattice of circle subgroups.

**Fact** (Delzant, Lerman–Tolman). The image of the natural momentum map  $\mu \colon M \to \mathcal{A} \subseteq \mathfrak{h}^*$  is a compact convex polytope

$$\Delta := \{\xi \in \mathcal{A} \mid \forall s \in \mathbb{S}, \ L_s(\xi) \ge 0\} \subseteq \mathcal{A}$$

for affine normals  $L_s \in \mathfrak{h}$  ( $s \in S$ ), defining affine functions on  $\mathcal{A} \subseteq \mathfrak{h}^*$ . The  $L_s$  are determined uniquely up to scale by  $\Delta$ , and the orbifold structure of M determines these scales such that:

•  $\forall s \in S$  the inward normals  $u_s := dL_s$  are in  $\Lambda \subseteq \mathfrak{t}$ ;

►  $\forall \xi \in \Delta$ ,  $\{u_s \in \mathfrak{t} : L_s(\xi) = 0\} \subseteq \mathfrak{t}$  is linearly independent.

 $(\Delta, \mathsf{L})$  is called a **rational Delzant polytope**; it determines  $(M, \omega, \mathbb{T})$  up to equiv. symplectomorphism and orbifold covering.

### 3. Toric geometry: the Delzant construction

Given a rational Delzant polytope  $(\Delta, \mathbf{L})$ , we construct a symplectic toric orbifold as a symplectic quotient of the flat space  $\mathbb{C}_{\mathcal{S}}$  generated by the set  $\mathcal{S}$  parameterizing the facets of  $\Delta$ . For this we use  $\mathbf{L}$ , viewed as a linear map  $\mathfrak{t}_{\mathcal{S}} \to \mathfrak{h}$ , to define a pair  $(\mathfrak{g}, \lambda)$ 



with  $\mathfrak{g} \subseteq \mathfrak{t}_{\mathcal{S}}$  and  $\lambda \in \mathfrak{g}^*$ . The rationality conditions on  $\Delta$  ensure  $\mathfrak{g}$  is the Lie algebra of a subtorus G of  $\mathbb{T}_{\mathcal{S}}$ , and M is given as a symplectic quotient  $(\iota_{\mathfrak{g}}^{\top} \circ \sigma)^{-1}(0)/G$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへで 18

#### 3. Toric geometry: the Delzant construction

Given a rational Delzant polytope  $(\Delta, \mathbf{L})$ , we construct a symplectic toric orbifold as a symplectic quotient of the flat space  $\mathbb{C}_{\mathcal{S}}$  generated by the set  $\mathcal{S}$  parameterizing the facets of  $\Delta$ . For this we use  $\mathbf{L}$ , viewed as a linear map  $\mathfrak{t}_{\mathcal{S}} \to \mathfrak{h}$ , to define a pair  $(\mathfrak{g}, \lambda)$ 



with  $\mathfrak{g} \subseteq \mathfrak{t}_{\delta}$  and  $\lambda \in \mathfrak{g}^*$ . The rationality conditions on  $\Delta$  ensure  $\mathfrak{g}$  is the Lie algebra of a subtorus G of  $\mathbb{T}_{\delta}$ , and M is given as a symplectic quotient  $(\iota_{\mathfrak{g}}^{\top} \circ \sigma)^{-1}(0)/G$ . Since  $\langle \sigma(z), e_s \rangle = \frac{1}{2} |z_s|^2$ ,  $N := (\iota_{\mathfrak{g}}^{\top} \circ \sigma)^{-1}(0)$  is an intersection of hermitian quadrics, hence a toric CR submanifold of  $\mathbb{C}_{\delta}$ .

### 3. Example: spheres and projective spaces

 $S = \{0, 1, \dots, m\}$ ,  $\mathfrak{h} = \mathfrak{t}_{\mathbb{S}}$  with  $\mathfrak{t} = \mathfrak{h}/\ell$ , where  $\ell$  is the span of  $\sum_{s \in \mathbb{S}} e_s$ . Thus  $\mathcal{A} \subseteq \mathfrak{h}^*$  is the affine subspace whose coordinates sum to one, and  $L_s = e_s$  so  $\Delta$  is the standard simplex in  $\mathcal{A}$ . Thus  $C_{\mathbb{S}} \cong \mathbb{C}^{m+1}$ , G diagonal subgroup of  $\mathbb{T}_{\mathbb{S}}$ ,  $N = \mathbb{S}^{2m+1}$  and  $M = \mathbb{C}P^m$ .

Can vary example by taking  $L_s = w_s e_s$  for some  $w_s \in \mathbb{Q}$ . The diagonal G is replaced by a weighted action, and M is a weighted projective space.

### 3. Example: spheres and projective spaces

 $S = \{0, 1, \dots, m\}$ ,  $\mathfrak{h} = \mathfrak{t}_{\mathbb{S}}$  with  $\mathfrak{t} = \mathfrak{h}/\ell$ , where  $\ell$  is the span of  $\sum_{s \in \mathbb{S}} e_s$ . Thus  $\mathcal{A} \subseteq \mathfrak{h}^*$  is the affine subspace whose coordinates sum to one, and  $L_s = e_s$  so  $\Delta$  is the standard simplex in  $\mathcal{A}$ . Thus  $C_{\mathbb{S}} \cong \mathbb{C}^{m+1}$ , G diagonal subgroup of  $\mathbb{T}_{\mathbb{S}}$ ,  $N = \mathbb{S}^{2m+1}$  and  $M = \mathbb{C}P^m$ .

Can vary example by taking  $L_s = w_s e_s$  for some  $w_s \in \mathbb{Q}$ . The diagonal G is replaced by a weighted action, and M is a weighted projective space.

Can also take products. For this, fix  $\ell \in \mathbb{Z}^+$  and  $m_1, \ldots m_\ell \in \mathbb{Z}^+$ , and let  $\mathcal{I} = \{1, \ldots \ell\}$ ,  $I_i = \{0, \ldots m_i\}$  and  $S = \{(i, r) \mid i \in \mathcal{I} \text{ and } r \in I_i\}$ . Let  $m = \sum_{i=1}^{\ell} m_i$  and  $d = m + \ell$ . Thus  $\mathbb{C}_S \cong \mathbb{C}^{m_1+1} \times \mathbb{C}^{m_2+1} \times \cdots \times \mathbb{C}^{m_\ell+1} \cong \mathbb{C}^d$  and  $\mathfrak{t}_S$  has a subspace  $\mathfrak{g}_o = \{x \in \mathfrak{t}_S \mid x_{iq} = x_{ir} \text{ for all } i \in \mathcal{I}, q, r \in I_i\}$ . Let  $x_i$  be the common value of the  $x_{ir}$  and thus identify  $\mathfrak{g}_o$  with  $\mathbb{R}^{\ell}$ . On  $\mathfrak{g}_o$  we have a natural linear form  $\lambda_o$  sending  $(x_1, x_2, \ldots x_\ell)$ to  $x_1 + x_2 + \cdots + x_\ell \in \mathbb{R}$ , and we let  $\mathbf{L}^o : \mathfrak{t}_S \to \mathfrak{h} = \mathfrak{t}_S / \ker \lambda_o$  and  $\mathbf{u}^o : \mathfrak{t}_S \to \mathfrak{t} = \mathfrak{t}_S / \mathfrak{g}_o$  be the quotient maps.

#### 3. Products of spheres

**Theorem.** Let  $N = \mathbb{S}^{2m_1+1} \times \cdots \times \mathbb{S}^{2m_\ell+1} \subseteq \mathbb{C}_{\mathbb{S}}$  be a product of standard CR spheres and let  $(\Delta, \mathbf{L})$  be a rational Delzant polytope of the same combinatorial type as the product of simplices such that the kernel  $\mathfrak{g}$  of  $\mathbf{u} = d \circ \mathbf{L}$  satisfies Condition 1.

Then N is Levi–Kähler with respect to g at the momentum level  $\lambda$  determined by **L**, and the quotient is a compact toric Kähler orbifold with whose Kähler metric has symplectic potential

$$G = \frac{1}{2} \sum_{i=1}^{\ell} \left( \sum_{r=0}^{m_i} L_{ir} \log L_{ir} - \left( \sum_{r=0}^{m_i} L_{ir} \right) \log \left( \sum_{r=0}^{m_i} L_{ir} \right) \right)$$
$$= \frac{1}{2} \sum_{i=1}^{\ell} \sum_{r=0}^{m_i} L_{ir} \log \left( \frac{L_{ir}}{\sum_{s=0}^{m_i} L_{is}} \right).$$

Equivalently, the reduced metric on the image of  $\mu^{\lambda}$  is given by

$$g_{\rm red} = \frac{1}{2} \sum_{i=1}^{\ell} \left( \sum_{r=0}^{m_i} \frac{dL_{ir}^2}{L_{ir}} - \frac{\left(\sum_{r=0}^{m_i} dL_{ir}\right)^2}{\sum_{r=0}^{m_i} L_{ir}} \right).$$

# 3. Products of spheres continued

For  $\ell = 1$ , we reobtain (from the preceding theorem) R. Bryant's description of Bochner-flat Kähler metrics on weighted projective spaces. We have also studied the case that  $N = \mathbb{S}^3 \times \mathbb{S}^3$ .

### 3. Products of spheres continued

For  $\ell = 1$ , we reobtain (from the preceding theorem) R. Bryant's description of Bochner-flat Kähler metrics on weighted projective spaces. We have also studied the case that  $N = \mathbb{S}^3 \times \mathbb{S}^3$ .

**Theorem.** Let  $(M, g, \omega, J)$  a compact simply-connected Kähler 4-orbifold. Then the following conditions are equivalent.

1.  $(M, g, \omega, J)$  is a Levi–Kähler quotient of  $\mathbb{S}^3 \times \mathbb{S}^3$ .

(M, g, ω, J) is toric with respect to a 2-torus T, g = g<sub>+</sub> is compatible with a second complex structures J<sub>-</sub> which commutes with J<sub>+</sub> = J but induces the opposite orientation on M, and g<sub>+</sub> is conformal to a metric g<sub>-</sub> which is Kähler with respect to J<sub>-</sub>, such that (T, g<sub>±</sub>, J<sub>±</sub>, ω<sub>±</sub>) is *ambitoric* in the sense of Apostolov-C-Gauduchon. Furthermore, the scalar curvature of g<sub>-</sub> is a Killing potential with respect to (g<sub>+</sub>, ω<sub>+</sub>) for a vector field induced by the action of T.

## That's all folks

Thank you!

