Higher codimension CR structures, Levi-Kähler reduction and toric geometry

David M. J. Calderbank

University of Bath

New trends in differential geometry
Villasimius 17-20 September 2014

Joint work with

- Vestislav Apostolov (UQAM)
- Paul Gauduchon (Ecole Polytechnique)
- Eveline Legendre (Toulouse)

What this talk is about

Defn. A $C R$ structure on a manifold N is a distribution $\mathcal{D} \subseteq T N$ equipped with a complex structure $J: \mathcal{D} \rightarrow \mathcal{D}$ satisfying an integrability condition. Define $L_{\mathcal{D}}: \wedge^{2} \mathcal{D} \rightarrow T N / \mathcal{D}$ by

$$
L_{\mathcal{D}}(X, Y)=-[X, Y] \quad \bmod \mathcal{D}
$$

This (or the associated hermitian tensor) is called the Levi form. Example. N a real submanifold of \mathbb{C}^{d} with standard complex structure I : set $\mathcal{D}=T N \cap I T N$ and $J=\left.I\right|_{\mathcal{D}}$.

What this talk is about

Defn. A $C R$ structure on a manifold N is a distribution $\mathcal{D} \subseteq T N$ equipped with a complex structure $J: \mathcal{D} \rightarrow \mathcal{D}$ satisfying an integrability condition. Define $L_{\mathcal{D}}: \wedge^{2} \mathcal{D} \rightarrow T N / \mathcal{D}$ by

$$
L_{\mathcal{D}}(X, Y)=-[X, Y] \quad \bmod \mathcal{D} .
$$

This (or the associated hermitian tensor) is called the Levi form.
Example. N a real submanifold of \mathbb{C}^{d} with standard complex structure I : set $\mathcal{D}=T N \cap I T N$ and $J=\left.I\right|_{\mathcal{D}}$.
Main idea. For G acting freely on N by "transversal" CR automorphisms of $(\mathcal{D}, J), G$-invariant positive definite components of $L_{\mathcal{D}}$ descend to Kähler metrics on N / G.
Note: N is then a principal G-bundle over M; transversality means that \mathcal{D} is a connection on $N \rightarrow M$.

Motivating examples: CR spheres

Any odd dimensional sphere

$$
\mathbb{S}^{2 m+1}=\left\{z \in \mathbb{C}^{m+1}:\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}+\cdots+\left|z_{m+1}\right|^{2}=1\right\}
$$

is a $C R$ submanifold of \mathbb{C}^{m+1}, with positive definite Levi form.
Quotient of $\mathbb{S}^{2 m+1}$ by weighted \mathbb{S}^{1} action on \mathbb{C}^{m+1} with weights $\mathbf{a}=\left(a_{0}, a_{1}, \ldots a_{m}\right)$ is the weighted projective space $\mathbb{C} P_{\mathbf{a}}^{m}$ (which is $\mathbb{C} P^{m}$ when $a_{i}=a_{j}$ for all $\left.i, j\right)$.

Motivating examples: CR spheres

Any odd dimensional sphere

$$
\mathbb{S}^{2 m+1}=\left\{z \in \mathbb{C}^{m+1}:\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}+\cdots+\left|z_{m+1}\right|^{2}=1\right\}
$$

is a CR submanifold of \mathbb{C}^{m+1}, with positive definite Levi form.
Quotient of $\mathbb{S}^{2 m+1}$ by weighted \mathbb{S}^{1} action on \mathbb{C}^{m+1} with weights $\mathbf{a}=\left(a_{0}, a_{1}, \ldots a_{m}\right)$ is the weighted projective space $\mathbb{C} P_{\mathbf{a}}^{m}$ (which is $\mathbb{C} P^{m}$ when $a_{i}=a_{j}$ for all $\left.i, j\right)$.
Generator ξ_{a} of action is transverse to \mathcal{D} and so trivializes $T \mathbb{S}^{2 m+1} / \mathcal{D}$. The Levi form defines a hermitian metric on \mathcal{D}, which descends to a Kähler metric g_{a} on $\mathbb{C} P_{a}^{m}$.
Following Tanaka, Chern-Moser, Webster, Bryant, David-Gauduchon et al. we discover that:
Theorem. The Kähler metric $g_{\mathbf{a}}$ on $\mathbb{C} P_{\mathbf{a}}^{m}$ is Bochner-flat (i.e., has vanishing Bochner tensor).

Motivating observations

- The theorem holds because $\mathbb{S}^{2 m+1}$ is "CR-flat" (thus it has vanishing Chern-Moser tensor).
- The Kähler quotient of \mathbb{C}^{m+1} by a weighted \mathbb{S}^{1} action is Bochner-flat only in the standard case of equal weights.
- Construction not limited to codimension one: ℓ-fold product of weighted \mathbb{S}^{1} actions on CR-spheres yields an ℓ-fold product of weighted projective spaces.
- The (skew, or imaginary part of the) Levi form depends only on \mathcal{D} : the complex structure J on \mathcal{D} is largely a passenger.

Motivating observations

- The theorem holds because $\mathbb{S}^{2 m+1}$ is "CR-flat" (thus it has vanishing Chern-Moser tensor).
- The Kähler quotient of \mathbb{C}^{m+1} by a weighted \mathbb{S}^{1} action is Bochner-flat only in the standard case of equal weights.
- Construction not limited to codimension one: ℓ-fold product of weighted \mathbb{S}^{1} actions on CR-spheres yields an ℓ-fold product of weighted projective spaces.
- The (skew, or imaginary part of the) Levi form depends only on \mathcal{D} : the complex structure J on \mathcal{D} is largely a passenger.

Plan.

1. Contact geometry in arbitrary codimension
2. $C R$ structures and Levi-Kähler reduction
3. Application to toric Kähler geometry
4. Levi nondegenerate distributions and symplectization

On a manifold N with distribution \mathcal{D}, have an exact sequence

$$
0 \rightarrow \mathcal{D} \rightarrow T N \rightarrow T N / \mathcal{D} \rightarrow 0
$$

Let $L_{\mathcal{D}}: \wedge^{2} \mathcal{D} \rightarrow T N / \mathcal{D}$ be its Levi form.

1. Levi nondegenerate distributions and symplectization

On a manifold N with distribution \mathcal{D}, have an exact sequence

$$
0 \rightarrow \mathcal{D} \rightarrow T N \rightarrow T N / \mathcal{D} \rightarrow 0
$$

Let $L_{\mathcal{D}}: \wedge^{2} \mathcal{D} \rightarrow T N / \mathcal{D}$ be its Levi form.
Let $\mathcal{D}^{0} \xrightarrow{i} T^{*} N$ be the inclusion and τ the tautological 1-form on $T^{*} N \xrightarrow{p} N\left(\right.$ with $\tau_{\alpha}=\alpha \circ p_{*}: T_{\alpha} T^{*} N \rightarrow \mathbb{R}$ for $\left.\alpha \in T^{*} N\right)$.
Proposition. The pullback $\Omega^{\mathcal{D}}=i^{*} \mathrm{~d} \tau=\mathrm{d} i^{*} \tau$ of the standard symplectic form $\Omega=\mathrm{d} \tau$ to D^{0} is symplectic on the open subset

$$
U_{\mathcal{D}}=\left\{\alpha \in \mathcal{D}^{0} \cong(T M / \mathcal{D})^{*} \mid \alpha \circ L_{\mathcal{D}} \text { is nondegenerate }\right\}
$$

of $T^{*} N$, which we call the nondegeneracy locus of \mathcal{D}.

1. Levi nondegenerate distributions and symplectization On a manifold N with distribution \mathcal{D}, have an exact sequence

$$
0 \rightarrow \mathcal{D} \rightarrow T N \rightarrow T N / \mathcal{D} \rightarrow 0
$$

Let $L_{\mathcal{D}}: \wedge^{2} \mathcal{D} \rightarrow T N / \mathcal{D}$ be its Levi form.
Let $\mathcal{D}^{0} \xrightarrow{i} T^{*} N$ be the inclusion and τ the tautological 1-form on $T^{*} N \xrightarrow{p} N\left(\right.$ with $\tau_{\alpha}=\alpha \circ p_{*}: T_{\alpha} T^{*} N \rightarrow \mathbb{R}$ for $\left.\alpha \in T^{*} N\right)$.
Proposition. The pullback $\Omega^{\mathcal{D}}=i^{*} \mathrm{~d} \tau=\mathrm{d} i^{*} \tau$ of the standard symplectic form $\Omega=\mathrm{d} \tau$ to \mathcal{D}^{0} is symplectic on the open subset

$$
U_{\mathcal{D}}=\left\{\alpha \in \mathcal{D}^{0} \cong(T M / \mathcal{D})^{*} \mid \alpha \circ L_{\mathcal{D}} \text { is nondegenerate }\right\}
$$

of $T^{*} N$, which we call the nondegeneracy locus of \mathcal{D}.
Defn. Say (N, \mathcal{D}) is Levi-nondegenerate or contact of rank m and codimension $\ell=\operatorname{rank}\left(\mathcal{D}^{0}\right)$ if $\forall z \in N, U_{\mathcal{D}} \cap p^{-1}(z) \neq \varnothing$.
Thus $\operatorname{rank}(\mathcal{D})=2 m$ is even, and $U_{\mathcal{D}} \xrightarrow{p} N$ has (local) sections called contact forms.

1. Local contact actions

(N, \mathcal{D}) contact of rank m and codimension ℓ. $\mathfrak{c o n}(N, \mathcal{D}) \subseteq \Gamma(T N)$: Lie algebra of infinitesimal contactomorphisms of (N, \mathcal{D}), i.e., vector fields X with

$$
\mathcal{L}_{X} \Gamma(\mathcal{D}) \subseteq \Gamma(\mathcal{D})
$$

1. Local contact actions

(N, \mathcal{D}) contact of rank m and codimension ℓ. $\mathfrak{c o n}(N, \mathcal{D}) \subseteq \Gamma(T N)$: Lie algebra of infinitesimal contactomorphisms of (N, \mathcal{D}), i.e., vector fields X with

$$
\mathcal{L}_{X} \Gamma(\mathcal{D}) \subseteq \Gamma(\mathcal{D})
$$

Any $X \in \Gamma(T N)$: lift \tilde{X} to vector field on $T^{*} N$ with hamiltonian $\tau(\tilde{X})$, i.e., $\alpha \mapsto \tau_{\alpha}(\tilde{X})=\alpha(X)$.
If $X \in \operatorname{con}(N, \mathcal{D})$, then \tilde{X} is tangent to $\mathcal{D}^{0} \subseteq T^{*} N$.

1. Local contact actions

(N, \mathcal{D}) contact of rank m and codimension ℓ. $\mathfrak{c o n}(N, \mathcal{D}) \subseteq \Gamma(T N)$: Lie algebra of infinitesimal contactomorphisms of (N, \mathcal{D}), i.e., vector fields X with

$$
\mathcal{L}_{X} \Gamma(\mathcal{D}) \subseteq \Gamma(\mathcal{D})
$$

Any $X \in \Gamma(T N)$: lift \tilde{X} to vector field on $T^{*} N$ with hamiltonian $\tau(\tilde{X})$, i.e., $\alpha \mapsto \tau_{\alpha}(\tilde{X})=\alpha(X)$.
If $X \in \operatorname{con}(N, \mathcal{D})$, then \tilde{X} is tangent to $\mathcal{D}^{0} \subseteq T^{*} N$.
Defn. A (local, effective) contact action of a Lie algebra \mathfrak{g} on (N, \mathcal{D}) is a Lie algebra monomorphism $\mathbf{K}: \mathfrak{g} \rightarrow \operatorname{con}(N, \mathcal{D})$. For $v \in \mathfrak{g}$, write K_{v} for the vector field $\mathbf{K}(v)$.

1. Local contact actions

(N, \mathcal{D}) contact of rank m and codimension ℓ. $\mathfrak{c o n}(N, \mathcal{D}) \subseteq \Gamma(T N)$: Lie algebra of infinitesimal contactomorphisms of (N, \mathcal{D}), i.e., vector fields X with

$$
\mathcal{L}_{X} \Gamma(\mathcal{D}) \subseteq \Gamma(\mathcal{D})
$$

Any $X \in \Gamma(T N)$: lift \tilde{X} to vector field on $T^{*} N$ with hamiltonian $\tau(\tilde{X})$, i.e., $\alpha \mapsto \tau_{\alpha}(\tilde{X})=\alpha(X)$.
If $X \in \operatorname{con}(N, \mathcal{D})$, then \tilde{X} is tangent to $\mathcal{D}^{0} \subseteq T^{*} N$.
Defn. A (local, effective) contact action of a Lie algebra \mathfrak{g} on (N, \mathcal{D}) is a Lie algebra monomorphism $\mathbf{K}: \mathfrak{g} \rightarrow \operatorname{con}(N, \mathcal{D})$. For $v \in \mathfrak{g}$, write K_{v} for the vector field $\mathbf{K}(v)$.
Lemma. K: $\mathfrak{g} \rightarrow \mathfrak{c o n}(N, \mathcal{D})$ a local contact action of \mathfrak{g} on (N, \mathcal{D}); define $\mu_{\mathfrak{g}}: \mathcal{D}^{0} \rightarrow \mathfrak{g}^{*}$ by $\left\langle\mu_{\mathfrak{g}}(\alpha), v\right\rangle=\alpha\left(K_{v}\right)$ for $\alpha \in \mathcal{D}^{0}$ and $v \in \mathfrak{g}$.
Then the lift of \mathbf{K} to $T^{*} N$ preserves \mathcal{D}^{0}, and is hamiltonian on $U_{\mathcal{D}}$ with momentum map $\mu_{\mathfrak{g}}$.

1. Transversal actions

(N, \mathcal{D}) contact of codimension ℓ.
A local contact action $\mathbf{K}: \mathfrak{g} \rightarrow \mathfrak{c o n}(N, \mathcal{D})$ of an ℓ-dimensional Lie algebra \mathfrak{g} is transversal iff pointwise image $\mathcal{K}^{\mathfrak{g}}$ of \mathbf{K} is a rank ℓ distribution transverse to \mathcal{D} called the Reeb distribution:
Condition 1. At every point of $N, \mathcal{D}+\mathcal{K}^{\mathfrak{g}}=T N$.

1. Transversal actions

(N, \mathcal{D}) contact of codimension ℓ.
A local contact action $\mathbf{K}: \mathfrak{g} \rightarrow \mathfrak{c o n}(N, \mathcal{D})$ of an ℓ-dimensional Lie algebra \mathfrak{g} is transversal iff pointwise image $\mathcal{K}^{\mathfrak{g}}$ of \mathbf{K} is a rank ℓ distribution transverse to \mathcal{D} called the Reeb distribution:
Condition 1. At every point of $N, \mathcal{D}+\mathcal{K}^{\mathfrak{g}}=T N$.
Define $\eta: T N \rightarrow \mathfrak{g}$ (uniquely) by

$$
\operatorname{ker}(\eta)=\mathcal{D} \quad \text { and } \quad \eta\left(K_{v}\right)=v, \quad \forall v \in \mathfrak{g}
$$

1. Transversal actions

(N, \mathcal{D}) contact of codimension ℓ.
A local contact action $\mathbf{K}: \mathfrak{g} \rightarrow \mathfrak{c o n}(N, \mathcal{D})$ of an ℓ-dimensional Lie algebra \mathfrak{g} is transversal iff pointwise image $\mathfrak{K}^{\mathfrak{g}}$ of \mathbf{K} is a rank ℓ distribution transverse to \mathcal{D} called the Reeb distribution:
Condition 1. At every point of $N, \mathcal{D}+\mathcal{K}^{\mathfrak{g}}=T N$.
Define $\eta: T N \rightarrow \mathfrak{g}$ (uniquely) by

$$
\operatorname{ker}(\eta)=\mathcal{D} \quad \text { and } \quad \eta\left(K_{v}\right)=v, \quad \forall v \in \mathfrak{g}
$$

Then $\left(p, \mu_{\mathfrak{g}}\right): \mathcal{D}^{0} \rightarrow N \times \mathfrak{g}^{*}$ is a bundle isomorphism. Also:

- For any $v \in \mathfrak{g}, \mathcal{L}_{K_{v}} \eta+[v, \eta]_{\mathfrak{g}}=0$;
- $\mathrm{d} \eta+\frac{1}{2}[\eta \wedge \eta]_{\mathfrak{g}}=\eta \circ L_{\mathcal{D}}$, where $L_{\mathcal{D}}$ is extended by zero from \mathcal{D} to $T N=\mathcal{D} \oplus \mathcal{K}^{\mathfrak{g}}$.
Example. η could be a connection 1 -form on a principal G-bundle.

1. Contact torus actions

(N, \mathcal{D}) be contact manifold of rank m and codimension ℓ.
Let $\mathbb{T}_{N}=\mathfrak{t}_{N} / 2 \pi \Lambda$ be a (real) torus with Lie algebra $\mathfrak{t}_{N}=\Lambda \otimes_{\mathbb{Z}} \mathbb{R}$, where Λ is the lattice of circle subgroups of \mathbb{T}_{N}.
Defn. A contact torus action of \mathbb{T}_{N} on M is a local contact action $\mathbf{K}: \mathfrak{t}_{N} \rightarrow \mathfrak{c o n}(N, \mathcal{D})$ which integrates to an effective action of \mathbb{T}_{N}. It is toric if $\operatorname{dim} \mathbb{T}_{N}=d:=m+\ell$.
Say $(N, \mathcal{D}, \mathbf{K})$ has tube type iff \mathfrak{t}_{N} has an ℓ-dimensional subalgebra \mathfrak{g} acting transversally on N via \mathbf{K}, i.e., $\mathcal{K}^{\mathfrak{g}}=\operatorname{span}\left\{K_{v, z} \mid v \in \mathfrak{g}\right\}$ satisfies Condition 1.

1. Contact torus actions

(N, \mathcal{D}) be contact manifold of rank m and codimension ℓ.
Let $\mathbb{T}_{N}=\mathfrak{t}_{N} / 2 \pi \Lambda$ be a (real) torus with Lie algebra $\mathfrak{t}_{N}=\Lambda \otimes_{\mathbb{Z}} \mathbb{R}$, where Λ is the lattice of circle subgroups of \mathbb{T}_{N}.
Defn. A contact torus action of \mathbb{T}_{N} on M is a local contact action $\mathrm{K}: \mathfrak{t}_{N} \rightarrow \operatorname{con}(N, \mathcal{D})$ which integrates to an effective action of \mathbb{T}_{N}. It is toric if $\operatorname{dim} \mathbb{T}_{N}=d:=m+\ell$.
Say ($N, \mathcal{D}, \mathbf{K}$) has tube type iff \mathfrak{t}_{N} has an ℓ-dimensional subalgebra \mathfrak{g} acting transversally on N via K, i.e., $\mathcal{K}^{\mathfrak{g}}=\operatorname{span}\left\{K_{v, z} \mid v \in \mathfrak{g}\right\}$ satisfies Condition 1.
Example. \mathfrak{g} the Lie algebra of a closed subgroup G of \mathbb{T}_{N} :
Condition $1 \Rightarrow$ action of G is locally free on N $\Rightarrow M:=N / G$ is a compact orbifold.
Action of \mathbb{T}_{N} induces action of quotient torus $\mathbb{T}:=\mathbb{T}_{N} / G$ on M.
Condition 1 also ensures: $\mathcal{D} \cong$ pullback of $T M$ to N, and hence G-invariant data on \mathcal{D} descend to M.

1. Levi quotients and symplectic quotients

($N, \mathcal{D}, \mathbf{K}$) tube type: $\mathfrak{g} \subseteq \mathfrak{t}_{N}$ transversal, Reeb distribution $\mathcal{K}^{\mathfrak{g}}$, connection 1-form $\eta: T N \rightarrow \mathfrak{g}$.
For any $\lambda \in \mathfrak{g}^{*} \backslash 0$, define $\eta^{\lambda}: N \rightarrow \mathcal{D}^{0}$ by $\eta_{z}^{\lambda}(X)=\left\langle\eta_{z}(X), \lambda\right\rangle$, and let $L_{\mathcal{D}, \lambda}=\eta^{\lambda} \circ L_{\mathcal{D}}=\left\langle\left.\mathrm{d} \eta\right|_{\mathcal{D}}, \lambda\right\rangle$.
Defn. Say ($\mathcal{D}, L_{\mathcal{D}, \lambda}$) is the Levi structure induced by (\mathfrak{g}, λ); it is nondegenerate over the open subset $N_{\lambda} \subseteq N$ where η^{λ} is a contact form (i.e., $U_{\mathcal{D}}$-valued). If \mathfrak{g} is the Lie algebra of a closed subgroup G of \mathbb{T}_{N}, refer to $M=N / G$ as Levi quotient of N by G.

1. Levi quotients and symplectic quotients

($N, \mathcal{D}, \mathbf{K}$) tube type: $\mathfrak{g} \subseteq \mathfrak{t}_{N}$ transversal, Reeb distribution $\mathcal{K}^{\mathfrak{g}}$, connection 1-form $\eta: T N \rightarrow \mathfrak{g}$.
For any $\lambda \in \mathfrak{g}^{*} \backslash 0$, define $\eta^{\lambda}: N \rightarrow \mathcal{D}^{0}$ by $\eta_{z}^{\lambda}(X)=\left\langle\eta_{z}(X), \lambda\right\rangle$, and let $L_{\mathcal{D}, \lambda}=\eta^{\lambda} \circ L_{\mathcal{D}}=\left\langle\left.\mathrm{d} \eta\right|_{\mathcal{D}}, \lambda\right\rangle$.
Defn. Say $\left(\mathcal{D}, L_{\mathcal{D}, \lambda}\right)$ is the Levi structure induced by (\mathfrak{g}, λ); it is nondegenerate over the open subset $N_{\lambda} \subseteq N$ where η^{λ} is a contact form (i.e., $U_{\mathcal{D}}$-valued). If \mathfrak{g} is the Lie algebra of a closed subgroup G of \mathbb{T}_{N}, refer to $M=N / G$ as Levi quotient of N by G.
Action of \mathbb{T}_{N} on N lifts to hamiltonian action on $U_{\mathcal{D}}$. Momentum map $\mu_{N}:=\mu_{\mathrm{t}_{N}}: U_{\mathcal{D}} \rightarrow \mathfrak{t}_{N}^{*}$ with $\left\langle\mu_{N}(\alpha), v\right\rangle=\alpha\left(K_{v}\right)$.
Given $\iota: \mathfrak{g} \hookrightarrow \mathfrak{t}_{N}$, have $\mu_{\mathfrak{g}}=\iota^{\top} \mu_{N}: U_{\mathcal{D}} \rightarrow \mathfrak{g}^{*}$ and $N_{\lambda}=\left\{z \in N \mid U_{\mathcal{D}, z} \cap \mu_{\mathfrak{g}}{ }^{-1}(\lambda) \neq \varnothing\right\}$.
Proposition. $L_{\mathcal{D}, \lambda}$ descends to a symplectic form on $M:=N / G$ if and only if $N_{\lambda}=N$. In this case M is the symplectic quotient $\mu_{\mathfrak{g}}{ }^{-1}(\lambda) / G$ of $U_{\mathcal{D}}$ by the lifted G action.

1. Levi quotients and symplectic quotients

($N, \mathcal{D}, \mathbf{K}$) tube type: $\mathfrak{g} \subseteq \mathfrak{t}_{N}$ transversal, Reeb distribution $\mathcal{K}^{\mathfrak{g}}$, connection 1-form $\eta: T N \rightarrow \mathfrak{g}$.
For any $\lambda \in \mathfrak{g}^{*} \backslash 0$, define $\eta^{\lambda}: N \rightarrow \mathcal{D}^{0}$ by $\eta_{z}^{\lambda}(X)=\left\langle\eta_{z}(X), \lambda\right\rangle$, and let $L_{\mathcal{D}, \lambda}=\eta^{\lambda} \circ L_{\mathcal{D}}=\left\langle\left.\mathrm{d} \eta\right|_{\mathcal{D}}, \lambda\right\rangle$.
Defn. Say ($\mathcal{D}, L_{\mathcal{D}, \lambda}$) is the Levi structure induced by (\mathfrak{g}, λ); it is nondegenerate over the open subset $N_{\lambda} \subseteq N$ where η^{λ} is a contact form (i.e., $U_{\mathcal{D}}$-valued). If \mathfrak{g} is the Lie algebra of a closed subgroup G of \mathbb{T}_{N}, refer to $M=N / G$ as Levi quotient of N by G.
Action of \mathbb{T}_{N} on N lifts to hamiltonian action on $U_{\mathcal{D}}$. Momentum map $\mu_{N}:=\mu_{\mathrm{t}_{N}}: U_{\mathcal{D}} \rightarrow \mathfrak{t}_{N}^{*}$ with $\left\langle\mu_{N}(\alpha), v\right\rangle=\alpha\left(K_{v}\right)$.
Given $\iota: \mathfrak{g} \hookrightarrow \mathfrak{t}_{N}$, have $\mu_{\mathfrak{g}}=\iota^{\top} \mu_{N}: U_{\mathcal{D}} \rightarrow \mathfrak{g}^{*}$ and
$N_{\lambda}=\left\{z \in N \mid U_{\mathcal{D}, z} \cap \mu_{\mathfrak{g}}{ }^{-1}(\lambda) \neq \varnothing\right\}$.
Proposition. $L_{\mathcal{D}, \lambda}$ descends to a symplectic form on $M:=N / G$ if and only if $N_{\lambda}=N$. In this case M is the symplectic quotient $\mu_{\mathfrak{g}}{ }^{-1}(\lambda) / G$ of $U_{\mathcal{D}}$ by the lifted G action.
Remark. $\left\{\lambda \in \mathfrak{g}^{*} \backslash 0 \mid N_{\lambda}=N\right\}$ is an open cone $\mathcal{C} \subseteq \mathfrak{g}^{*}$.

1．Levi quotient formalism and horizontal momentum map

Fix an epimorphism $\mathfrak{h} \rightarrow \mathfrak{t}$ with kernel \mathbb{R} between abelian Lie algebras of dimensions $m+1$ and m ．Then the diagram

associates pairs (\mathfrak{g}, λ) to epimorphisms $\mathbf{L}: \mathfrak{t}_{N} \rightarrow \mathfrak{h}$（ \mathfrak{g} is the kernel of $\mathbf{u}:=\mathrm{d} \circ \mathbf{L}$ ，and λ is induced by $\left.\left.\mathbf{L}\right|_{\mathfrak{g}}\right)$ ．Let $\mathcal{A}=\left(\varepsilon^{\top}\right)^{-1}(1)$ ．

1. Levi quotient formalism and horizontal momentum map

Fix an epimorphism $\mathfrak{h} \rightarrow \mathfrak{t}$ with kernel \mathbb{R} between abelian Lie algebras of dimensions $m+1$ and m. Then the diagram
associates pairs (\mathfrak{g}, λ) to epimorphisms $\mathbf{L}: \mathfrak{t}_{N} \rightarrow \mathfrak{h}$ (\mathfrak{g} is the kernel of $\mathbf{u}:=\mathrm{d} \circ \mathbf{L}$, and λ is induced by $\left.\left.\mathbf{L}\right|_{\mathfrak{g}}\right)$. Let $\mathcal{A}=\left(\varepsilon^{\top}\right)^{-1}(1)$.
Note that $\left\langle\mu_{N}\left(\eta_{z}^{\lambda}\right), v\right\rangle=\eta_{z}^{\lambda}\left(K_{v}\right)$ equals $\langle v, \lambda\rangle$ for $v \in \mathfrak{g}$. This vanishes for $v \in \operatorname{ker} \lambda \subseteq \mathfrak{g}$, hence induces $\mu^{\lambda}: N \rightarrow \mathcal{A} \subseteq \mathfrak{h}^{*}$ with

$$
\begin{equation*}
\left\langle\mu^{\lambda}(z), \mathbf{L}(v)\right\rangle=\eta_{z}^{\lambda}\left(K_{v}\right) \tag{1}
\end{equation*}
$$

for all $z \in N$ and $v \in \mathfrak{t}_{N}$.

1. Levi quotient formalism and horizontal momentum map

Fix an epimorphism $\mathfrak{h} \rightarrow \mathfrak{t}$ with kernel \mathbb{R} between abelian Lie algebras of dimensions $m+1$ and m. Then the diagram
associates pairs (\mathfrak{g}, λ) to epimorphisms $\mathbf{L}: \mathfrak{t}_{N} \rightarrow \mathfrak{h}$ (\mathfrak{g} is the kernel of $\mathbf{u}:=\mathrm{d} \circ \mathbf{L}$, and λ is induced by $\left.\left.\mathbf{L}\right|_{\mathfrak{g}}\right)$. Let $\mathcal{A}=\left(\varepsilon^{\top}\right)^{-1}(1)$.
Note that $\left\langle\mu_{N}\left(\eta_{z}^{\lambda}\right), v\right\rangle=\eta_{z}^{\lambda}\left(K_{v}\right)$ equals $\langle v, \lambda\rangle$ for $v \in \mathfrak{g}$. This vanishes for $v \in \operatorname{ker} \lambda \subseteq \mathfrak{g}$, hence induces $\mu^{\lambda}: N \rightarrow \mathcal{A} \subseteq \mathfrak{h}^{*}$ with

$$
\begin{equation*}
\left\langle\mu^{\lambda}(z), \mathbf{L}(v)\right\rangle=\eta_{z}^{\lambda}\left(K_{v}\right) \tag{1}
\end{equation*}
$$

for all $z \in N$ and $v \in \mathfrak{t}_{N}$.
μ^{λ} is the horizontal (natural) momentum map of ($\left.\mathcal{D}, L_{\mathcal{D}, \lambda}, \mathfrak{g}\right)$.

Aside: Natural momentum maps in toric geometry

Setting: a hamiltonian action of a Lie group \mathbb{T} on a symplectic orbifold (M, ω), with Lie algebra $\mathfrak{t} \hookrightarrow C^{\infty}(M, T M)$. Let $\mathfrak{h} \subseteq C^{\infty}(M, \mathbb{R})$ be the subspace of hamiltonian generators f, i.e., with $\operatorname{grad}_{\omega} f \in \mathfrak{t}$. This defines an exact sequence

$$
0 \rightarrow \mathbb{R} \xrightarrow{\varepsilon} \mathfrak{h} \rightarrow \mathfrak{t} \rightarrow 0,
$$

where \mathbb{R} is the subspace of constant functions.

Aside: Natural momentum maps in toric geometry

Setting: a hamiltonian action of a Lie group \mathbb{T} on a symplectic orbifold (M, ω), with Lie algebra $\mathfrak{t} \hookrightarrow C^{\infty}(M, T M)$.
Let $\mathfrak{h} \subseteq C^{\infty}(M, \mathbb{R})$ be the subspace of hamiltonian generators f, i.e., with $\operatorname{grad}_{\omega} f \in \mathfrak{t}$. This defines an exact sequence

$$
0 \rightarrow \mathbb{R} \xrightarrow{\varepsilon} \mathfrak{h} \rightarrow \mathfrak{t} \rightarrow 0
$$

where \mathbb{R} is the subspace of constant functions. Hence (dually)

$$
0 \rightarrow \mathfrak{t}^{*} \rightarrow \mathfrak{h}^{*} \xrightarrow{\varepsilon^{\top}} \mathbb{R} \rightarrow 0
$$

and we have a canonical map $\mu: M \rightarrow \mathfrak{h}^{*}$ given by $\langle\mu(x), f\rangle=f(x)$ for $x \in M$ and $f \in \mathfrak{h}$. It takes values in the affine subspace $\mathcal{A}:=\left(\varepsilon^{\top}\right)^{-1}(1)$ of \mathfrak{h}^{*}.
This natural momentum map μ determines a momentum map in the usual sense after choosing a splitting $\mathfrak{t} \rightarrow \mathfrak{h}$ (a basepoint in \mathcal{A}).

1. Convexity and connectedness

Theorem. Suppose (N, \mathcal{D}) is a (compact, connected) toric contact manifold under $\mathbb{T}_{N}=\mathfrak{t}_{N} / 2 \pi \Lambda$. Given a transversal subalgebra $\iota: \mathfrak{g} \rightarrow \mathfrak{t}_{N}$ and $\lambda \in \mathfrak{g}^{*}$ with $N_{\lambda}=N$, let $\mu^{\lambda}: N \rightarrow \mathcal{A} \subseteq \mathfrak{h}^{*}$ be the induced horizontal momentum map. Then the image of μ^{λ} is a compact convex simple polytope Δ in \mathcal{A}, the convex hull of the points $\mu^{\lambda}(z)$ where $\mathcal{K}_{z}^{\mathfrak{g}}=\mathcal{K}_{z}^{t_{N}}$.
Furthermore, μ^{λ} is a submersion over the interior of any face of Δ, and the fibres of μ^{λ} are \mathbb{T}_{N}-orbits.

1. Convexity and connectedness

Theorem. Suppose (N, \mathcal{D}) is a (compact, connected) toric contact manifold under $\mathbb{T}_{N}=\mathfrak{t}_{N} / 2 \pi \Lambda$. Given a transversal subalgebra $\iota: \mathfrak{g} \rightarrow \mathfrak{t}_{N}$ and $\lambda \in \mathfrak{g}^{*}$ with $N_{\lambda}=N$, let $\mu^{\lambda}: N \rightarrow \mathcal{A} \subseteq \mathfrak{h}^{*}$ be the induced horizontal momentum map. Then the image of μ^{λ} is a compact convex simple polytope Δ in \mathcal{A}, the convex hull of the points $\mu^{\lambda}(z)$ where $\mathcal{K}_{z}^{\mathfrak{g}}=\mathcal{K}_{z}^{\boldsymbol{t}_{N}}$.
Furthermore, μ^{λ} is a submersion over the interior of any face of Δ, and the fibres of μ^{λ} are \mathbb{T}_{N}-orbits.

Proof follows Atiyah. The essential ingredient is that for any $v \in \mathfrak{t}_{N}, f:=\eta^{\lambda}\left(K_{v}\right)$ is a Morse-Bott function on N whose critical submanifolds all have even index.

1. Convexity and connectedness

Theorem. Suppose (N, \mathcal{D}) is a (compact, connected) toric contact manifold under $\mathbb{T}_{N}=\mathfrak{t}_{N} / 2 \pi \Lambda$. Given a transversal subalgebra $\iota: \mathfrak{g} \rightarrow \mathfrak{t}_{N}$ and $\lambda \in \mathfrak{g}^{*}$ with $N_{\lambda}=N$, let $\mu^{\lambda}: N \rightarrow \mathcal{A} \subseteq \mathfrak{h}^{*}$ be the induced horizontal momentum map. Then the image of μ^{λ} is a compact convex simple polytope Δ in \mathcal{A}, the convex hull of the points $\mu^{\lambda}(z)$ where $\mathcal{K}_{z}^{\mathfrak{g}}=\mathscr{K}_{z}^{t_{N}}$.
Furthermore, μ^{λ} is a submersion over the interior of any face of Δ, and the fibres of μ^{λ} are \mathbb{T}_{N}-orbits.
Proof follows Atiyah. The essential ingredient is that for any $v \in \mathfrak{t}_{N}, f:=\eta^{\lambda}\left(K_{v}\right)$ is a Morse-Bott function on N whose critical submanifolds all have even index.
Hence for any vectors $v_{1}, \ldots, v_{k} \in \mathfrak{t}_{N}$, the map $f: N \rightarrow \mathbb{R}^{k}$ with $f_{i}=\eta^{\lambda}\left(K_{v_{i}}\right)$ satisfies
(A) all fibres $f^{-1}(p)$ are empty or connected;
(B) the image $f(N)$ is convex.

2. CR structures

Defn. A rank m, codimension $\ell C R$ structure on a $(2 m+\ell)$-manifold N is a rank $2 m$ distribution $\mathcal{D} \subseteq T N$ equipped with an almost complex structure $J: \mathcal{D} \rightarrow \mathcal{D}$, which satisfies the integrability conditions

$$
\begin{aligned}
& {[X, Y]-[J X, J Y] \in \Gamma(\mathcal{D})} \\
& {[X, J Y]+[J X, Y]=J([X, Y]-[J X, J Y]), \quad \forall X, Y \in \Gamma(\mathcal{D}) .}
\end{aligned}
$$

(N, \mathcal{D}, J) is called a $C R$ manifold (of codimension ℓ) and is said to be Levi nondegenerate if \mathcal{D} is.

2. CR structures

Defn. A rank m, codimension $\ell C R$ structure on a $(2 m+\ell)$-manifold N is a rank $2 m$ distribution $\mathcal{D} \subseteq T N$ equipped with an almost complex structure $J: \mathcal{D} \rightarrow \mathcal{D}$, which satisfies the integrability conditions

$$
\begin{aligned}
& {[X, Y]-[J X, J Y] \in \Gamma(\mathcal{D}),} \\
& {[X, J Y]+[J X, Y]=J([X, Y]-[J X, J Y]), \quad \forall X, Y \in \Gamma(\mathcal{D}) .}
\end{aligned}
$$

(N, \mathcal{D}, J) is called a $C R$ manifold (of codimension ℓ) and is said to be Levi nondegenerate if \mathcal{D} is.
Levi form $L_{\mathcal{D}}$ is J-invariant or "type $(1,1)$ " on \mathcal{D}. It follows that $h_{\mathcal{D}}(X, Y):=L_{\mathcal{D}}(X, J Y)$ is a section of $S^{2} \mathcal{D}^{*} \otimes T N / \mathcal{D}$. Say (N, \mathcal{D}, J) is Levi definite if there is a contact form α such that $\alpha \circ h_{\mathcal{D}} \in S^{2} \mathcal{D}^{*}$ is positive definite.
Set $U_{\mathcal{D}}^{+}:=\left\{\alpha \in \mathcal{D}^{0} \mid \alpha \circ h_{\mathcal{D}}\right.$ is positive definite $\} \subseteq U_{\mathcal{D}}$.

2. CR torus actions and Levi-Kähler reduction

(N, \mathcal{D}, J) a CR manifold: the Lie algebra $\mathfrak{c r}(N, \mathcal{D}, J)$ of CR vector fields consists of those $X \in \operatorname{con}(N, \mathcal{D})$ such that $\mathcal{L}_{X} J=0$. A local action $\mathbf{K}: \mathfrak{g} \rightarrow \mathfrak{c o n}(N, \mathcal{D})$ is called a local CR action iff it takes values in $\mathfrak{c r}(N, \mathcal{D}, J)$.

2. CR torus actions and Levi-Kähler reduction

(N, \mathcal{D}, J) a CR manifold: the Lie algebra $\mathfrak{c r}(N, \mathcal{D}, J)$ of CR vector fields consists of those $X \in \operatorname{con}(N, \mathcal{D})$ such that $\mathcal{L}_{X} J=0$. A local action $\mathrm{K}: \mathfrak{g} \rightarrow \mathfrak{c o n}(N, \mathcal{D})$ is called a local CR action iff it takes values in $\mathfrak{c r}(N, \mathcal{D}, J)$.
A CR torus action of $\mathbb{T}_{N}=\mathfrak{t}_{N} / 2 \pi \Lambda$ on a CR manifold (N, \mathcal{D}, J) is contact torus action of \mathbb{T}_{N} on (N, \mathcal{D}) induced by a local CR action $\mathbf{K}: \mathfrak{t}_{N} \rightarrow \mathfrak{c r}(N, \mathcal{D}, J)$. Say $(N, \mathcal{D}, J, \mathbf{K})$ is tube type or is toric if the underlying contact torus action is.
Suppose $\mathbf{K}: \mathfrak{g} \rightarrow \mathfrak{c r}(N, \mathcal{D}, J)$ is a transversal CR action with connection 1-form $\eta: T N \rightarrow \mathfrak{g}$. For $\lambda \in \mathfrak{g}^{*}$, set $h_{\mathcal{D}, \lambda}:=L_{\mathcal{D}, \lambda}(\cdot, J \cdot)$.

2. CR torus actions and Levi-Kähler reduction

(N, \mathcal{D}, J) a CR manifold: the Lie algebra $\mathfrak{c r}(N, \mathcal{D}, J)$ of CR vector fields consists of those $X \in \operatorname{con}(N, \mathcal{D})$ such that $\mathcal{L}_{X} J=0$. A local action $\mathrm{K}: \mathfrak{g} \rightarrow \mathfrak{c o n}(N, \mathcal{D})$ is called a local $C R$ action iff it takes values in $\mathfrak{c r}(N, \mathcal{D}, J)$.
A CR torus action of $\mathbb{T}_{N}=\mathfrak{t}_{N} / 2 \pi \Lambda$ on a CR manifold (N, \mathcal{D}, J) is contact torus action of \mathbb{T}_{N} on (N, \mathcal{D}) induced by a local CR action $\mathbf{K}: \mathfrak{t}_{N} \rightarrow \mathfrak{c r}(N, \mathcal{D}, J)$. Say $(N, \mathcal{D}, J, \mathbf{K})$ is tube type or is toric if the underlying contact torus action is.
Suppose $\mathbf{K}: \mathfrak{g} \rightarrow \mathfrak{c r}(N, \mathcal{D}, J)$ is a transversal CR action with connection 1-form $\eta: T N \rightarrow \mathfrak{g}$. For $\lambda \in \mathfrak{g}^{*}$, set $h_{\mathcal{D}, \lambda}:=L_{\mathcal{D}, \lambda}(\cdot, J \cdot)$.
Defn. Say ($N, \mathcal{D}, J, \mathfrak{g}$) is Levi-Kähler at momentum level $\lambda \in \mathfrak{g}^{*} \backslash\{0\}$ iff $h_{\mathcal{D}, \lambda}$ is positive definite on \mathcal{D}, i.e., $\langle\eta, \lambda\rangle$ is a section of $U_{\mathcal{D}}^{+}$. If also \mathfrak{g} is the Lie algebra of a Lie group G acting on N such that M / G is a smooth manifold (or orbifold), then the Kähler metric on M induced by ($h_{\mathfrak{D}, \lambda}, J, L_{\mathcal{D}, \lambda}$) is called the Levi-Kähler quotient of (N, \mathcal{D}, J) by (\mathfrak{g}, λ).

2. Flat space

\mathcal{S} a d element set (e.g., $\mathcal{S}=\{1,2, \ldots d\}$).
Let $\mathbb{Z}_{S} \cong \mathbb{Z}^{d}$ be the free abelian group generated by \mathcal{S}. Let $\mathfrak{t}_{\delta}=\mathbb{Z}_{\mathcal{S}} \otimes_{\mathbb{Z}} \mathbb{R} \cong \mathbb{R}^{d}$ and $\mathbb{C}_{S}=\mathbb{Z}_{\mathcal{S}} \otimes_{\mathbb{Z}} \mathbb{C} \cong \mathbb{C}^{d}$ be corresponding free vector spaces over \mathbb{R} and \mathbb{C}.
Denote the generators of $\mathbb{Z}_{S} \subseteq \mathfrak{t}_{S} \subseteq \mathbb{C}_{S}$ by $e_{s}: s \in \mathcal{S}$, and by $z_{S}: \mathbb{C}_{S} \rightarrow \mathbb{C}$, the standard (linear) complex coordinates on \mathbb{C}_{S}.

2. Flat space

\mathcal{S} a d element set (e.g., $\mathcal{S}=\{1,2, \ldots d\}$).
Let $\mathbb{Z}_{\mathcal{S}} \cong \mathbb{Z}^{d}$ be the free abelian group generated by \mathcal{S}. Let $\mathfrak{t}_{\mathcal{S}}=\mathbb{Z}_{\mathcal{S}} \otimes_{\mathbb{Z}} \mathbb{R} \cong \mathbb{R}^{d}$ and $\mathbb{C}_{\mathcal{S}}=\mathbb{Z}_{\mathcal{S}} \otimes_{\mathbb{Z}} \mathbb{C} \cong \mathbb{C}^{d}$ be corresponding free vector spaces over \mathbb{R} and \mathbb{C}.
Denote the generators of $\mathbb{Z}_{S} \subseteq \mathfrak{t}_{S} \subseteq \mathbb{C}_{S}$ by $e_{s}: s \in \mathcal{S}$, and by $z_{s}: \mathbb{C}_{S} \rightarrow \mathbb{C}$, the standard (linear) complex coordinates on \mathbb{C}_{S}. Then $\mathbb{T}_{S}=\mathfrak{t}_{\mathcal{S}} / 2 \pi \mathbb{Z}_{S} \cong\left(\mathbb{S}^{1}\right)^{d}$ acts diagonally on \mathbb{C}_{S}, via $\left[\sum_{s} t_{s} e_{s}\right] \cdot\left(\sum_{s} z_{s} e_{s}\right)=\sum_{s} \exp \left(i t_{s}\right) z_{s} e_{s}$; action is hamiltonian (wrt. standard symplectic form $\omega_{\mathcal{S}}$) with momentum map $\sigma: \mathbb{C}_{\mathcal{S}} \rightarrow \mathfrak{t}_{\mathcal{S}}^{*}$:

$$
\left\langle\boldsymbol{\sigma}(z), e_{s}\right\rangle=\sigma_{s}(z)=\frac{1}{2}\left|z_{s}\right|^{2} .
$$

The flat Kähler metric in action-angle coordinates on \mathbb{C}_{δ} is then

$$
g_{S}=\sum_{s \in \mathcal{S}}\left(\frac{\mathrm{~d} \sigma_{s}^{2}}{2 \sigma_{s}}+2 \sigma_{s} \mathrm{~d} \boldsymbol{\vartheta}_{s}^{2}\right), \quad \omega_{S}=\sum_{s \in \mathcal{S}} \mathrm{~d} \sigma_{s} \wedge \mathrm{~d} \boldsymbol{\vartheta}_{s}
$$

where $\boldsymbol{\vartheta}: \mathbb{C}_{\mathcal{S}}^{\times} \rightarrow \mathbb{T}_{\mathcal{S}}$ are angle coordinates with $J \mathrm{~d} \sigma_{s}=2 \sigma_{s} \mathrm{~d} \boldsymbol{\vartheta}_{s}$.

2. Toric CR submanifolds of flat space

Defn. A toric $C R$ submanifold (N, \mathcal{D}, J) of \mathbb{C}_{S} is a compact connected $C R$ submanifold which is invariant under the $\mathbb{T}_{\mathcal{S}}$ action. A (toric, codimension ℓ) Levi-Kähler reduction M of \mathbb{C}_{S} is a Levi-Kähler quotient of (N, \mathcal{D}, J) by (\mathfrak{g}, λ), where (N, \mathcal{D}, J) is a toric CR submanifold of $\mathbb{C}_{\mathcal{S}}$ of codimension ℓ, and $\mathfrak{g} \subseteq \mathfrak{t}_{\delta}$ is the Lie algebra of an ℓ-dimensional subgroup G of $\mathbb{T}_{\mathcal{S}}$.

2. Toric CR submanifolds of flat space

Defn. A toric $C R$ submanifold (N, \mathcal{D}, J) of \mathbb{C}_{S} is a compact connected $C R$ submanifold which is invariant under the $\mathbb{T}_{\mathcal{S}}$ action.
A (toric, codimension ℓ) Levi-Kähler reduction M of \mathbb{C}_{s} is a Levi-Kähler quotient of (N, \mathcal{D}, J) by (\mathfrak{g}, λ), where (N, \mathcal{D}, J) is a toric CR submanifold of $\mathbb{C}_{\mathcal{S}}$ of codimension ℓ, and $\mathfrak{g} \subseteq \mathfrak{t}_{\delta}$ is the Lie algebra of an ℓ-dimensional subgroup G of $\mathbb{T}_{\mathcal{S}}$.
Specify the choice of (\mathfrak{g}, λ) via an epimorphism $\mathbf{L}: \mathfrak{t}_{\mathcal{S}} \rightarrow \mathfrak{h}$, or equivalently, an indexed family $L_{s}: s \in \mathcal{S}$ of vectors in \mathfrak{h} which span (where $L_{s}=\mathbf{L}\left(e_{s}\right)$). Thus \mathfrak{g} is the kernel of $\mathbf{u}=\mathrm{d} \circ \mathbf{L}: \mathfrak{t}_{\mathcal{S}} \rightarrow \mathfrak{t}$, sending $\sum_{s} t_{s} e_{s}$ to $\sum_{s} t_{s} u_{s}$ for an indexed family $u_{s}: s \in \mathcal{S}$ of vectors in \mathfrak{t} which span.
Data (N, \mathcal{D}, J) and (\mathfrak{g}, λ) are then linked by Condition 1 , which may now be viewed as a constraint on (N, \mathcal{D}, J) given (\mathfrak{g}, λ) or vice versa.

3. Toric geometry: Rational Delzant theory

A toric symplectic orbifold is a symplectic $2 m$-orbifold (M, ω) with a hamiltonian action of an m-torus $\mathbb{T}=\mathfrak{t} / 2 \pi \Lambda$, where \mathfrak{t} is the Lie algebra of \mathbb{T} and Λ is the lattice of circle subgroups.
Fact (Delzant, Lerman-Tolman). The image of the natural momentum map $\mu: M \rightarrow \mathcal{A} \subseteq \mathfrak{h}^{*}$ is a compact convex polytope

$$
\Delta:=\left\{\xi \in \mathcal{A} \mid \forall s \in \mathcal{S}, \quad L_{s}(\xi) \geq 0\right\} \subseteq \mathcal{A}
$$

for affine normals $L_{s} \in \mathfrak{h}(s \in \mathcal{S})$, defining affine functions on $\mathcal{A} \subseteq \mathfrak{h}^{*}$.

3. Toric geometry: Rational Delzant theory

A toric symplectic orbifold is a symplectic $2 m$-orbifold (M, ω) with a hamiltonian action of an m-torus $\mathbb{T}=\mathfrak{t} / 2 \pi \Lambda$, where \mathfrak{t} is the Lie algebra of \mathbb{T} and Λ is the lattice of circle subgroups.
Fact (Delzant, Lerman-Tolman). The image of the natural momentum map $\mu: M \rightarrow \mathcal{A} \subseteq \mathfrak{h}^{*}$ is a compact convex polytope

$$
\Delta:=\left\{\xi \in \mathcal{A} \mid \forall s \in \mathcal{S}, \quad L_{s}(\xi) \geq 0\right\} \subseteq \mathcal{A}
$$

for affine normals $L_{s} \in \mathfrak{h}(s \in \mathcal{S})$, defining affine functions on $\mathcal{A} \subseteq \mathfrak{h}^{*}$. The L_{s} are determined uniquely up to scale by Δ, and the orbifold structure of M determines these scales such that:

- $\forall s \in \mathcal{S}$ the inward normals $u_{s}:=\mathrm{d} L_{s}$ are in $\Lambda \subseteq \mathfrak{t}$;
- $\forall \xi \in \Delta,\left\{u_{s} \in \mathfrak{t}: L_{s}(\xi)=0\right\} \subseteq \mathfrak{t}$ is linearly independent.
(Δ, \mathbf{L}) is called a rational Delzant polytope; it determines (M, ω, \mathbb{T}) up to equiv. symplectomorphism and orbifold covering.

3. Toric geometry: the Delzant construction

Given a rational Delzant polytope (Δ, \mathbf{L}), we construct a symplectic toric orbifold as a symplectic quotient of the flat space \mathbb{C}_{δ} generated by the set \mathcal{S} parameterizing the facets of Δ. For this we use \mathbf{L}, viewed as a linear map $\mathfrak{t}_{s} \rightarrow \mathfrak{h}$, to define a pair (\mathfrak{g}, λ)

with $\mathfrak{g} \subseteq \mathfrak{t}_{s}$ and $\lambda \in \mathfrak{g}^{*}$. The rationality conditions on Δ ensure \mathfrak{g} is the Lie algebra of a subtorus G of $\mathbb{T}_{\mathscr{S}}$, and M is given as a symplectic quotient $\left(\iota_{\mathfrak{g}}^{\top} \circ \sigma\right)^{-1}(0) / G$.

3. Toric geometry: the Delzant construction

Given a rational Delzant polytope (Δ, \mathbf{L}), we construct a symplectic toric orbifold as a symplectic quotient of the flat space \mathbb{C}_{S} generated by the set \mathcal{S} parameterizing the facets of Δ. For this we use \mathbf{L}, viewed as a linear map $\mathfrak{t}_{\delta} \rightarrow \mathfrak{h}$, to define a pair (\mathfrak{g}, λ)

with $\mathfrak{g} \subseteq \mathfrak{t}_{s}$ and $\lambda \in \mathfrak{g}^{*}$. The rationality conditions on Δ ensure \mathfrak{g} is the Lie algebra of a subtorus G of $\mathbb{T}_{\mathscr{S}}$, and M is given as a symplectic quotient $\left(\iota_{\mathfrak{g}}^{\top} \circ \sigma\right)^{-1}(0) / G$.
Since $\left\langle\boldsymbol{\sigma}(z), e_{s}\right\rangle=\frac{1}{2}\left|z_{s}\right|^{2}, N:=\left(\iota_{\mathfrak{g}}^{\top} \circ \sigma\right)^{-1}(0)$ is an intersection of hermitian quadrics, hence a toric CR submanifold of \mathbb{C}_{δ}.

3. Example: spheres and projective spaces

$\mathcal{S}=\{0,1, \ldots m\}, \mathfrak{h}=\mathfrak{t}_{\mathcal{S}}$ with $\mathfrak{t}=\mathfrak{h} / \ell$, where ℓ is the span of $\sum_{s \in S} e_{s}$. Thus $\mathcal{A} \subseteq \mathfrak{h}^{*}$ is the affine subspace whose coordinates sum to one, and $L_{s}=e_{s}$ so Δ is the standard simplex in \mathcal{A}. Thus $C_{\mathcal{S}} \cong \mathbb{C}^{m+1}, G$ diagonal subgroup of $\mathbb{T}_{S}, N=\mathbb{S}^{2 m+1}$ and $M=\mathbb{C} P^{m}$.
Can vary example by taking $L_{s}=w_{s} e_{s}$ for some $w_{s} \in \mathbb{Q}$. The diagonal G is replaced by a weighted action, and M is a weighted projective space.

3. Example: spheres and projective spaces

$\mathcal{S}=\{0,1, \ldots m\}, \mathfrak{h}=\mathfrak{t}_{\mathcal{S}}$ with $\mathfrak{t}=\mathfrak{h} / \ell$, where ℓ is the span of $\sum_{s \in S} e_{s}$. Thus $\mathcal{A} \subseteq \mathfrak{h}^{*}$ is the affine subspace whose coordinates sum to one, and $L_{s}=e_{s}$ so Δ is the standard simplex in \mathcal{A}. Thus $C_{S} \cong \mathbb{C}^{m+1}, G$ diagonal subgroup of $\mathbb{T}_{S}, N=\mathbb{S}^{2 m+1}$ and $M=\mathbb{C} P^{m}$.
Can vary example by taking $L_{s}=w_{s} e_{s}$ for some $w_{s} \in \mathbb{Q}$. The diagonal G is replaced by a weighted action, and M is a weighted projective space.
Can also take products. For this, fix $\ell \in \mathbb{Z}^{+}$and $m_{1}, \ldots m_{\ell} \in \mathbb{Z}^{+}$, and let $\mathcal{I}=\{1, \ldots \ell\}, I_{i}=\left\{0, \ldots m_{i}\right\}$ and $\mathcal{S}=\{(i, r) \mid i \in \mathcal{I}$ and $\left.r \in l_{i}\right\}$. Let $m=\sum_{i=1}^{\ell} m_{i}$ and $d=m+\ell$.
Thus $\mathbb{C}_{S} \cong \mathbb{C}^{m_{1}+1} \times \mathbb{C}^{m_{2}+1} \times \cdots \times \mathbb{C}^{m_{\ell}+1} \cong \mathbb{C}^{d}$ and \mathfrak{t}_{δ} has a subspace $\mathfrak{g}_{o}=\left\{x \in \mathfrak{t}_{\delta} \mid x_{i q}=x_{i r}\right.$ for all $\left.i \in \mathcal{I}, q, r \in I_{i}\right\}$.
Let x_{i} be the common value of the $x_{i r}$ and thus identify \mathfrak{g}_{0} with \mathbb{R}^{ℓ}. On \mathfrak{g}_{0} we have a natural linear form λ_{0} sending $\left(x_{1}, x_{2}, \ldots x_{\ell}\right)$ to $x_{1}+x_{2}+\cdots+x_{\ell} \in \mathbb{R}$, and we let $\mathbf{L}^{0}: \mathfrak{t}_{\mathcal{S}} \rightarrow \mathfrak{h}=\mathfrak{t}_{\delta} / \operatorname{ker} \lambda_{\circ}$ and $\mathbf{u}^{\circ}: \mathfrak{t}_{\mathcal{S}} \rightarrow \mathfrak{t}=\mathfrak{t}_{\mathcal{S}} / \mathfrak{g}_{0}$ be the quotient maps.

3. Products of spheres

Theorem. Let $N=\mathbb{S}^{2 m_{1}+1} \times \cdots \times \mathbb{S}^{2 m_{\ell}+1} \subseteq \mathbb{C}_{S}$ be a product of standard $C R$ spheres and let (Δ, \mathbf{L}) be a rational Delzant polytope of the same combinatorial type as the product of simplices such that the kernel \mathfrak{g} of $\mathbf{u}=\mathrm{d} \circ \mathbf{L}$ satisfies Condition 1.
Then N is Levi-Kähler with respect to \mathfrak{g} at the momentum level λ determined by \mathbf{L}, and the quotient is a compact toric Kähler orbifold with whose Kähler metric has symplectic potential

$$
\begin{aligned}
G & =\frac{1}{2} \sum_{i=1}^{\ell}\left(\sum_{r=0}^{m_{i}} L_{i r} \log L_{i r}-\left(\sum_{r=0}^{m_{i}} L_{i r}\right) \log \left(\sum_{r=0}^{m_{i}} L_{i r}\right)\right) \\
& =\frac{1}{2} \sum_{i=1}^{\ell} \sum_{r=0}^{m_{i}} L_{i r} \log \left(\frac{L_{i r}}{\sum_{s=0}^{m_{i}} L_{i s}}\right) .
\end{aligned}
$$

Equivalently, the reduced metric on the image of μ^{λ} is given by

$$
g_{\mathrm{red}}=\frac{1}{2} \sum_{i=1}^{\ell}\left(\sum_{r=0}^{m_{i}} \frac{\mathrm{~d} L_{i r}^{2}}{L_{i r}}-\frac{\left(\sum_{r=0}^{m_{i}} \mathrm{~d} L_{i r}\right)^{2}}{\sum_{r=0}^{m_{i}} L_{i r}}\right) .
$$

3. Products of spheres continued

For $\ell=1$, we reobtain (from the preceding theorem) R. Bryant's description of Bochner-flat Kähler metrics on weighted projective spaces. We have also studied the case that $N=\mathbb{S}^{3} \times \mathbb{S}^{3}$.

3. Products of spheres continued

For $\ell=1$, we reobtain (from the preceding theorem) R. Bryant's description of Bochner-flat Kähler metrics on weighted projective spaces. We have also studied the case that $N=\mathbb{S}^{3} \times \mathbb{S}^{3}$.
Theorem. Let (M, g, ω, J) a compact simply-connected Kähler 4 -orbifold. Then the following conditions are equivalent.

1. (M, g, ω, J) is a Levi-Kähler quotient of $\mathbb{S}^{3} \times \mathbb{S}^{3}$.
2. (M, g, ω, J) is toric with respect to a 2-torus $\mathbb{T}, g=g_{+}$is compatible with a second complex structures J_{-}which commutes with $J_{+}=J$ but induces the opposite orientation on M, and g_{+}is conformal to a metric g_{-}which is Kähler with respect to J_{-}, such that ($\left.\mathbb{T}, g_{ \pm}, J_{ \pm}, \omega_{ \pm}\right)$is ambitoric in the sense of Apostolov-C-Gauduchon. Furthermore, the scalar curvature of g_{-}is a Killing potential with respect to $\left(g_{+}, \omega_{+}\right)$for a vector field induced by the action of \mathbb{T}.

That's all folks

Thank you!

