Quaternionic Kähler metrics from G_{2} geometry

Olivier Biquard

École Normale Supérieure, Paris

New trends in Differential Geometry, Villasimius 2014

Main result

Theorem

Let X^{5} be a 5-manifold with a 2-dimensional generic distribution $D \subset T X$ (real analytic). To such (X, D) is canonically associated a 8-dimensional quaternionic Kähler metric g.
\Rightarrow generic : $[D, D]$ is 3-dimensional, $[D,[D, D]]=T X$

- there is a disc bundle
such that g is defined on a $F \times(0, \epsilon)$.
Fiber $\Delta=$ space of conformal metrics on D.

Main result

Theorem

Let X^{5} be a 5 -manifold with a 2-dimensional generic distribution $D \subset T X$ (real analytic). To such (X, D) is canonically associated a 8-dimensional quaternionic Kähler metric g.

- generic : $[D, D]$ is 3-dimensional, $[D,[D, D]]=T X$
- there is a disc bundle

such that g is defined on a $F \times(0, \epsilon)$.
Fiber $\Delta=$ space of conformal metrics on D.

Behavior of g

The asymptotics of g are fixed by (X, D) :

$$
g \sim \frac{d s^{2}}{s^{2}}+\frac{\gamma_{3}}{s^{3}}+\frac{\gamma_{2}}{s^{2}}+\frac{\gamma_{1}}{s}+\gamma_{0}
$$

The orders of growth correspond to the filtration

$$
T_{-3} F=T F \supset T_{-2} F=p^{*}[D, D] \supset T_{-1} F=p^{*} D \supset T_{0} F=\operatorname{ker} p_{*}=T \Delta,
$$

and γ_{i} is defined on $T_{-i} F$ with ker $\gamma_{i}=T_{-i+1} F$:

- $\operatorname{ker} \gamma_{3}=p^{*}[D, D]$
- γ_{2} is defined on $p^{*}[D, D]$ and $\operatorname{ker} \gamma_{2}=p^{*} D$
- γ_{1} is defined only on $p^{*} D$ and $\operatorname{ker} \gamma_{1}=\operatorname{ker} p_{*}=T \Delta$:
- γ_{0} is defined along the fibres of p :

Behavior of g

The asymptotics of g are fixed by (X, D) :

$$
g \sim \frac{d s^{2}}{s^{2}}+\frac{\gamma_{3}}{s^{3}}+\frac{\gamma_{2}}{s^{2}}+\frac{\gamma_{1}}{s}+\gamma_{0}
$$

The orders of growth correspond to the filtration

$$
T_{-3} F=T F \supset T_{-2} F=p^{*}[D, D] \supset T_{-1} F=p^{*} D \supset T_{0} F=\operatorname{ker} p_{*}=T \Delta,
$$

and γ_{i} is defined on $T_{-i} F$ with ker $\gamma_{i}=T_{-i+1} F$:

- $\operatorname{ker} \gamma_{3}=p^{*}[D, D]$
- γ_{2} is defined on $p^{*}[D, D]$ and ker $\gamma_{2}=p^{*} D$
- γ_{1} is defined only on $p^{*} D$ and $\operatorname{ker} \gamma_{1}=\operatorname{ker} p_{*}=T \Delta$:
$\gamma_{1}=$ tautological metric on $p^{*} D$
- γ_{0} is defined along the fibres of p :
$\gamma_{0}=$ hyperbolic metric on fibre Δ
and γ_{2} and γ_{3} are defined algebraically.

Former similar constructions of qK metrics

- LeBrun (82): $\left(X^{3}\right.$, conformal metric) $\leadsto Q^{4}$
- LeBrun (89): $\left(X^{3+k}\right.$, conformal $(3, k)$ metric $) \rightsquigarrow Q^{4(k+1)}$
- B. (2000): $\left(X^{4 k-1}\right.$, quaternionic contact structure $) \rightsquigarrow Q^{4 k}$
- B. (2007): $\left(X^{3}\right.$, CR structure $) \rightsquigarrow Q^{4}$

Former similar constructions of qK metrics

- LeBrun (82): $\left(X^{3}\right.$, conformal metric) $\leadsto Q^{4}$
- LeBrun (89): $\left(X^{3+k}\right.$, conformal $(3, k)$ metric $) \rightsquigarrow Q^{4(k+1)}$
- B. (2000): $\left(X^{4 k-1}\right.$, quaternionic contact structure $) \rightsquigarrow Q^{4 k}$
- B. (2007): $\left(X^{3}\right.$, CR structure $) \rightsquigarrow Q^{4}$

Each time: there is a model $G / P \leadsto G / H$, with $P \subset G$ parabolic subgroup of a real group, and G / H a quaternionic Kähler symmetric space of noncompact type.

Former similar constructions of qK metrics

- LeBrun (82): (X^{3}, conformal metric) $\rightsquigarrow \rightarrow Q^{4}$

$$
G=S O(4,1), G / H=\mathbb{R} H^{4}
$$

- LeBrun (89): $\left(X^{3+k}\right.$, conformal $(3, k)$ metric $) \rightsquigarrow Q^{4(k+1)}$

$$
G=S O(4, k+1)
$$

- B. (2000): $\left(X^{4 k-1}\right.$, quaternionic contact structure) $\rightsquigarrow Q^{4 k}$

$$
G=S p(k, 1), G / H=\mathbb{H} H^{k}
$$

- B. (2007): $\left(X^{3}\right.$, CR structure $) \rightsquigarrow Q^{4}$

$$
G=S U(1,2), G / H=\mathbb{C} H^{2}
$$

Each time: there is a model $G / P \leadsto G / H$, with $P \subset G$ parabolic subgroup of a real group, and G / H a quaternionic Kähler symmetric space of noncompact type.

Former similar constructions of qK metrics

- LeBrun (82): (X^{3}, conformal metric) $\rightsquigarrow \rightarrow Q^{4}$

$$
G=S O(4,1), G / H=\mathbb{R} H^{4}
$$

- LeBrun (89): $\left(X^{3+k}\right.$, conformal $(3, k)$ metric $) \rightsquigarrow Q^{4(k+1)}$

$$
G=S O(4, k+1)
$$

- B. (2000): $\left(X^{4 k-1}\right.$, quaternionic contact structure) $\rightsquigarrow Q^{4 k}$

$$
G=S p(k, 1), G / H=\mathbb{H} H^{k}
$$

- B. (2007): $\left(X^{3}\right.$, CR structure $) \rightsquigarrow Q^{4}$

$$
G=S U(1,2), G / H=\mathbb{C} H^{2}
$$

Each time: there is a model $G / P \leadsto G / H$, with $P \subset G$ parabolic subgroup of a real group, and G / H a quaternionic Kähler symmetric space of noncompact type.
New case: $G=G_{2}^{r}$, with $G_{2}^{r} / P=\left\{\right.$ isotropic lines in $\left.\mathbb{R}^{3,4}\right\}$, symmetric space $G_{2}^{r} / S O(4)$.

Nonlinear Poisson transform

Program with R. Mazzeo.
Let G / H be a symmetric space of noncompact type.
Poisson transform
There is a $1: 1$ correspondence between

1. bounded harmonic functions on G / H
2. 'functions' on maximal Furstenberg boundary $G / P_{\min }$.

There should be a $1: 1$ correspondence between 1. complete 'asympt. symmetric' Einstein deformations of G / H 2. certain deformations of the parabolic geometry of $G / P_{\min }$.

Elie Cartan (1910):
parabolic geometry modeled on $G_{2}^{r} / P=$ generic 2 -distribution

Nonlinear Poisson transform

Program with R. Mazzeo.
Let G / H be a symmetric space of noncompact type.
Poisson transform
There is a $1: 1$ correspondence between

1. bounded harmonic functions on G / H
2. 'functions' on maximal Furstenberg boundary $G / P_{\text {min }}$.

Nonlinear Poisson transform
There should be a $1: 1$ correspondence between

1. complete 'asympt. symmetric' Einstein deformations of G / H
2. certain deformations of the parabolic geometry of $G / P_{\min }$.

Elie Cartan (1910):
parabolic geometry modeled on $G_{2}^{r} / P=$ generic 2 -distribution

Nonlinear Poisson transform

Program with R. Mazzeo.
Let G / H be a symmetric space of noncompact type.
Poisson transform
There is a $1: 1$ correspondence between

1. bounded harmonic functions on G / H
2. 'functions' on maximal Furstenberg boundary $G / P_{\text {min }}$.

Nonlinear Poisson transform
There should be a $1: 1$ correspondence between

1. complete 'asympt. symmetric' Einstein deformations of G / H
2. certain deformations of the parabolic geometry of $G / P_{\min }$.

Elie Cartan (1910):
parabolic geometry modeled on $G_{2}^{r} / P=$ generic 2 -distribution

Nonlinear Poisson transform is established for:

- (Graham-Lee 1991) $G=S O(k, 1)$
- (B. 2000) all other rank 1 cases
- (B.-Mazzeo 2011) reducible rank 2 cases

Question 1

All the previous constructions of quaternionic Kähler metrics are local versions of this nonlinear Poisson transform: one recovers the other parabolic subgroups by lifting to the minimal parabolic via

$$
G / P_{\min } \longrightarrow G / P
$$

\square
Find a unified construction of a local quaternionic Kähler metric starting from a parabolic geometry modeled on a boundary G / P of quaternionic Kähler symmetric space G / H of noncompact type. (Remind there is one such summetric snace for each simnle comnlex Lie group).

More modest question: unify the existing constructions.

Question 1

All the previous constructions of quaternionic Kähler metrics are local versions of this nonlinear Poisson transform: one recovers the other parabolic subgroups by lifting to the minimal parabolic via

$$
G / P_{\min } \longrightarrow G / P
$$

Question 1

Find a unified construction of a local quaternionic Kähler metric starting from a parabolic geometry modeled on a boundary G / P of a quaternionic Kähler symmetric space G / H of noncompact type.
(Remind there is one such symmetric space for each simple complex Lie group).

More modest question: unify the existing constructions.

Question 1

All the previous constructions of quaternionic Kähler metrics are local versions of this nonlinear Poisson transform: one recovers the other parabolic subgroups by lifting to the minimal parabolic via

$$
G / P_{\min } \longrightarrow G / P
$$

Question 1

Find a unified construction of a local quaternionic Kähler metric starting from a parabolic geometry modeled on a boundary G / P of a quaternionic Kähler symmetric space G / H of noncompact type.
(Remind there is one such symmetric space for each simple complex Lie group).
More modest question: unify the existing constructions.

Geodesics

Some of these constructions rely on the use of a space of geodesics (LeBrun's constructions, G_{2}).

Proposition
The only examples which admit a space of geodesics are:

- conformal geometries (LeBrun's examples)
- the G_{2} / P example
- $S O(3,4) / P_{3}$ with P_{3} fixing a totally isotropic 3-plane.

Beginning of the construction: the geodesic flow

 Start from (X^{5}, D^{2}) wih D generic, and consider the circle bundle$$
\begin{aligned}
& S^{1} \longrightarrow F^{6}=\mathbb{P}(D) \\
& \downarrow^{2} \\
& X^{5}
\end{aligned}
$$

Proposition
F carries a canonical 1-dimensional distribution.
This can be proved using the Cartan connection of the geometry. In the model, $F^{6}=G_{2} / P_{\min }$ and there are two circle fibrations:

Beginning of the construction: the geodesic flow

 Start from (X^{5}, D^{2}) wih D generic, and consider the circle bundle

Proposition

F carries a canonical 1-dimensional distribution.
This can be proved using the Cartan connection of the geometry. In the model, $F^{6}=G_{2} / P_{\min }$ and there are two circle fibrations:

Zoll distributions

Nonlinear Poisson transform predicts:
there exists a complete Einstein geodesics are closed \Longrightarrow metric on $G_{2} / S O(4)$ filling in the parabolic geometry at infinity

Zoll distributions

Nonlinear Poisson transform predicts:

$$
\begin{aligned}
\text { geodesics are closed } \Longrightarrow & \begin{array}{l}
\text { there exists a complete Einstein } \\
\text { metric on } G_{2} / S O(4) \text { filling in the } \\
\text { parabolic geometry at infinity }
\end{array}
\end{aligned}
$$

Definition

A generic distribution $D^{2} \subset T X^{5}$ is Zoll if all the geodesics are closed.

Question 2

Question 2

1. are there other Zoll 2-distributions in dimension 5 ?
2. if yes, when can the quaternionic Kähler metric be extended to a complete quaternionic Kähler metric ? (ie when is the Einstein metric quaternionic Kähler ?)
\longrightarrow might get 'positive frequencies'

Same question in the other cases with geodesics: in particular for
$G=S O(4,2)$, the question becomes:
are there other Zoll conformal Lorentzian metrics
on compactified Minkowski 4-space ?

Question 2

Question 2

1. are there other Zoll 2-distributions in dimension 5 ?
2. if yes, when can the quaternionic Kähler metric be extended to a complete quaternionic Kähler metric ? (ie when is the Einstein metric quaternionic Kähler ?)
\longrightarrow might get 'positive frequencies'
Same question in the other cases with geodesics: in particular for $G=S O(4,2)$, the question becomes:
are there other Zoll conformal Lorentzian metrics on compactified Minkowski 4-space ?

Sketch of proof of the Theorem

The twistor space of $G_{2} / S O(4)$ is $N=\left(G_{2} / P_{2}\right)^{C}$.

Sketch of proof of the Theorem

The twistor space of $G_{2} / S O(4)$ is $N=\left(G_{2} / P_{2}\right)^{\text {C }}$.
Complexify the whole situation:

Rational curves

Must construct a 8-dimensional family of rational curves extending the 5-dimensional family

$$
C_{x}=q\left(p^{-1}(x)\right), \quad \text { normal bundle: } \mathscr{O} \oplus \mathscr{O} \oplus \mathscr{O} \oplus \mathscr{O}(1) .
$$

One must consider C_{x} as non reduced (doubled in the $\mathscr{O}(1)$ direction).
As such it has a 8-dimensional family of deformations.
But: need also normal bundle to be $\mathscr{O}(1) \oplus \mathscr{O}(1) \oplus \mathscr{O}(1) \oplus \mathscr{O}(1)$.

Rational curves

Must construct a 8-dimensional family of rational curves extending the 5-dimensional family

$$
C_{x}=q\left(p^{-1}(x)\right), \quad \text { normal bundle: } \mathscr{O} \oplus \mathscr{O} \oplus \mathscr{O} \oplus \mathscr{O}(1) .
$$

One must consider C_{x} as non reduced (doubled in the $\mathscr{O}(1)$ direction).
As such it has a 8-dimensional family of deformations.

Rational curves

Must construct a 8-dimensional family of rational curves extending the 5-dimensional family

$$
C_{x}=q\left(p^{-1}(x)\right), \quad \text { normal bundle: } \mathscr{O} \oplus \mathscr{O} \oplus \mathscr{O} \oplus \mathscr{O}(1) .
$$

One must consider C_{x} as non reduced (doubled in the $\mathscr{O}(1)$ direction).
As such it has a 8-dimensional family of deformations.
But: need also normal bundle to be $\mathscr{O}(1) \oplus \mathscr{O}(1) \oplus \mathscr{O}(1) \oplus \mathscr{O}(1)$.

Parabolic dilations

One uses the parabolic geometry of (X, D) : the parabolic dilations

$$
h_{t}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\left(t x_{1}, t x_{2}, t^{2} x_{3}, t^{3} x_{4}, t^{3} x_{5}\right)
$$

on a small open set U have the property that

$$
h_{t}^{*} D \underset{t \rightarrow 0}{\longrightarrow} \text { model } G_{2} / P
$$

In particular the rational curves converge to that of the model and therefore have the same normal bundle $\mathscr{O}(1) \oplus \mathscr{O}(1) \oplus \mathscr{O}(1) \oplus \mathscr{O}(1)$

The behavior of the metric is found by inverse twistor transform.

Parabolic dilations

One uses the parabolic geometry of (X, D) : the parabolic dilations

$$
h_{t}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\left(t x_{1}, t x_{2}, t^{2} x_{3}, t^{3} x_{4}, t^{3} x_{5}\right)
$$

on a small open set U have the property that

$$
h_{t}^{*} D \underset{t \rightarrow 0}{\longrightarrow} \text { model } G_{2} / P
$$

It follows that

$$
h_{t}^{*} N(U)=N\left(h_{t}^{*} U\right) \underset{t \rightarrow 0}{\longrightarrow} \text { model } N\left(G_{2} / P\right)
$$

In particular the rational curves converge to that of the model and therefore have the same normal bundle $\mathscr{O}(1) \oplus \mathscr{O}(1) \oplus \mathscr{O}(1) \oplus \mathscr{O}(1)$.

The behavior of the metric is found by inverse twistor transform.

Parabolic dilations

One uses the parabolic geometry of (X, D) : the parabolic dilations

$$
h_{t}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\left(t x_{1}, t x_{2}, t^{2} x_{3}, t^{3} x_{4}, t^{3} x_{5}\right)
$$

on a small open set U have the property that

$$
h_{t}^{*} D \underset{t \rightarrow 0}{\longrightarrow} \text { model } G_{2} / P
$$

It follows that

$$
h_{t}^{*} N(U)=N\left(h_{t}^{*} U\right) \underset{t \rightarrow 0}{\longrightarrow} \text { model } N\left(G_{2} / P\right)
$$

In particular the rational curves converge to that of the model and therefore have the same normal bundle $\mathscr{O}(1) \oplus \mathscr{O}(1) \oplus \mathscr{O}(1) \oplus \mathscr{O}(1)$.

The behavior of the metric is found by inverse twistor transform.

