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Let X° be a 5-manifold with a 2-dimensional generic distribution
D c TX (real analytic). To such (X, D) is canonically associated a
8-dimensional quaternionic Kahler metric g.

» generic : [D, D] is 3-dimensional, [D,[D,D]] = TX
» there is a disc bundle

A——F
P
X

such that g is defined on a F X (0,€).

Fiber A = space of conformal metrics on D.



Behavior of g
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The asymptotics of g are fixed by (X, D):
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The orders of growth correspond to the filtration
T_3F =TF > T_3F = p*[D,D] > T_1F = p*D D TyF = kerp, = TA,

and y; is defined on T_;F with ker y; = T_; ;1 F:
» kerys = p*[D,D]
> y» is defined on p*[D, D] and ker y, = p*D
> y1 is defined only on p*D and ker y; = kerp, = TA:
y1 = tautological metric on p*D

> Yo is defined along the fibres of p:
Yo = hyperbolic metric on fibre A

and y; and y3 are defined algebraically.
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G =S50(4,k+1)

B. (2000): (X*k~1, quaternionic contact structure) ~> Q%
G = Sp(k,1), G/H = HH*

B. (2007): (X3,CR structure) ~» Q*
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Former similar constructions of qK metrics

v

LeBrun (82): (X3, conformal metric) ~ Q*

G =50(4,1), G/H = RH*

LeBrun (89): (XK, conformal (3,k) metric) ~» Q*k+1)
G =S50(4,k+1)

B. (2000): (X*k~1, quaternionic contact structure) ~> Q%
G = Sp(k,1), G/H = HH*

B. (2007): (X3,CR structure) ~» Q*

G =SU(1,2), G/H = CH?

Each time: there is a model G/P ~» G/H, with P C G parabolic
subgroup of a real group, and G/H a quaternionic Kahler symmetric
space of noncompact type.

New case: G = G}, with G} /P = {isotropic lines in R>%}, symmetric
space G;,/S0(4).

v
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Nonlinear Poisson transform

Program with R. Mazzeo.
Let G/H be a symmetric space of noncompact type.

Poisson transform
There is a 1:1 correspondence between
1. bounded harmonic functions on G/H

2. ‘functions’ on maximal Furstenberg boundary G/Pp,.

Nonlinear Poisson transform
There should be a 1:1 correspondence between

1. complete ‘asympt. symmetric’ Einstein deformations of G/H

2. certain deformations of the parabolic geometry of G/Pyin.

Elie Cartan (1910):
parabolic geometry modeled on G} /P = generic 2-distribution



Nonlinear Poisson transform is established for:
» (Graham-Lee 1991) G = SO(k,1)
> (B. 2000) all other rank 1 cases

» (B.-Mazzeo 2011) reducible rank 2 cases
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Lie group).



Question 1

All the previous constructions of quaternionic Kahler metrics are
local versions of this nonlinear Poisson transform: one recovers the
other parabolic subgroups by lifting to the minimal parabolic via

G/Pmin B G/P

Question 1

Find a unified construction of a local quaternionic Kahler metric
starting from a parabolic geometry modeled on a boundary G/P of a
quaternionic Kahler symmetric space G/H of noncompact type.

(Remind there is one such symmetric space for each simple complex
Lie group).

More modest question: unify the existing constructions.



Geodesics

Some of these constructions rely on the use of a space of geodesics
(LeBrun’s constructions, G»).
Proposition
The only examples which admit a space of geodesics are:
» conformal geometries (LeBrun’s examples)
> the G,/P example
» SO(3,4)/Ps; with Ps fixing a totally isotropic 3-plane.
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Start from (X°,D?) wih D generic, and consider the circle bundle
St —— F® = P(D)
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Beginning of the construction: the geodesic flow
Start from (X°,D?) wih D generic, and consider the circle bundle

S! —— FS = P(D)
P

XS

Proposition
F carries a canonical 1-dimensional distribution.

This can be proved using the Cartan connection of the geometry. In
the model, F® = G,/Ppin and there are two circle fibrations:

G2 /Pmin

N

G,/P = G, /P, G,/ P,
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Zoll distributions

Nonlinear Poisson transform predicts:

there exists a complete Einstein

geodesics are closed = metric on G;/SO(4) filling in the
parabolic geometry at infinity

Definition
A generic distribution D? ¢ TX® is Zoll if all the geodesics are
closed.
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Einstein metric quaternionic Kahler ?)

—> might get ‘positive frequencies’
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Question 2

1. are there other Zoll 2-distributions in dimension 5 ?

2. if yes, when can the quaternionic Kahler metric be extended to
a complete quaternionic Kahler metric ? (ie when is the
Einstein metric quaternionic Kahler ?)

—> might get ‘positive frequencies’

Same question in the other cases with geodesics: in particular for
G = 50(4,2), the question becomes:

are there other Zoll conformal Lorentzian metrics
on compactified Minkowski 4-space ?
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Sketch of proof of the Theorem

GZ/Pmin

PN

G2 /P G2/ P,

The twistor space of G,/SO(4) is N = (G2/P>)".
Complexify the whole situation:

CP!

Fc/
SN,
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Rational curves

Must construct a 8-dimensional family of rational curves extending
the 5-dimensional family

Cy = q(p~(x)), normal bundle: 6 ® 0 ® 0 & O(1).

One must consider Cy as non reduced (doubled in the (1)
direction).
As such it has a 8-dimensional family of deformations.

But: need also normal bundle to be (1) ® 0(1) ® &' (1) & O(1).
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Parabolic dilations

One uses the parabolic geometry of (X, D): the parabolic dilations
he(x1,%9,X3,X4,X5) = (£X1, 82, £°23, %4, x5)
on a small open set U have the property that

h;D — model G,/P.

It follows that

h;N(U) = N(h;U) - model N(G;/P).

In particular the rational curves converge to that of the model and
therefore have the same normal bundle (1) ® 0(1) ® 0(1) ® 0(1).

The behavior of the metric is found by inverse twistor transform.



