Quaternionic Kähler metrics from G₂ geometry

Olivier Biquard

École Normale Supérieure, Paris

New trends in Differential Geometry, Villasimius 2014

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Main result

Theorem

Let X^5 be a 5-manifold with a 2-dimensional generic distribution $D \subset TX$ (real analytic). To such (X,D) is canonically associated a 8-dimensional quaternionic Kähler metric *g*.

• generic : [D,D] is 3-dimensional, [D,[D,D]] = TX

there is a disc bundle

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

such that *g* is defined on a $F \times (0, \epsilon)$.

Fiber Δ = space of conformal metrics on *D*.

Main result

Theorem

Let X^5 be a 5-manifold with a 2-dimensional generic distribution $D \subset TX$ (real analytic). To such (X,D) is canonically associated a 8-dimensional quaternionic Kähler metric *g*.

- generic : [D,D] is 3-dimensional, [D,[D,D]] = TX
- there is a disc bundle

$$\begin{array}{c} \Delta \longrightarrow F \\ & \downarrow p \\ & \chi \end{array}$$

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

such that *g* is defined on a $F \times (0, \epsilon)$.

Fiber Δ = space of conformal metrics on *D*.

Behavior of g

The asymptotics of g are fixed by (X, D):

$$g \sim rac{ds^2}{s^2} + rac{\gamma_3}{s^3} + rac{\gamma_2}{s^2} + rac{\gamma_1}{s} + \gamma_0$$

The orders of growth correspond to the filtration

$$T_{-3}F = TF \supset T_{-2}F = p^*[D,D] \supset T_{-1}F = p^*D \supset T_0F = \ker p_* = T\Delta,$$

and γ_i is defined on $T_{-i}F$ with ker $\gamma_i = T_{-i+1}F$:

- ker $\gamma_3 = p^*[D,D]$
- γ_2 is defined on $p^*[D,D]$ and ker $\gamma_2 = p^*D$
- γ_1 is defined only on p^*D and ker $\gamma_1 = \ker p_* = T\Delta$:

 $\gamma_1 = tautological metric on p^*D$

γ₀ is defined along the fibres of p:

 γ_0 = hyperbolic metric on fibre Δ

and γ_2 and γ_3 are defined algebraically.

Behavior of g

The asymptotics of g are fixed by (X, D):

$$g \sim rac{ds^2}{s^2} + rac{\gamma_3}{s^3} + rac{\gamma_2}{s^2} + rac{\gamma_1}{s} + \gamma_0$$

The orders of growth correspond to the filtration

$$T_{-3}F = TF \supset T_{-2}F = p^*[D,D] \supset T_{-1}F = p^*D \supset T_0F = \ker p_* = T\Delta,$$

and γ_i is defined on $T_{-i}F$ with ker $\gamma_i = T_{-i+1}F$:

- ker $\gamma_3 = p^*[D,D]$
- γ_2 is defined on $p^*[D,D]$ and ker $\gamma_2 = p^*D$
- γ₁ is defined only on p*D and ker γ₁ = ker p_{*} = T∆:
 γ₁ = tautological metric on p*D
- γ₀ is defined along the fibres of p:
 γ₀ = hyperbolic metric on fibre Δ
 and γ₂ and γ₃ are defined algebraically.

- ► LeBrun (82): $(X^3, \text{conformal metric}) \rightsquigarrow Q^4$ $G = SO(4, 1), G/H = \mathbb{R}H^4$
- ► LeBrun (89): $(X^{3+k}, \text{conformal } (3,k) \text{ metric}) \rightsquigarrow Q^{4(k+1)}$ G = SO(4, k+1)
- ► B. (2000): $(X^{4k-1}, \text{quaternionic contact structure}) \rightsquigarrow Q^{4k}$ $G = Sp(k, 1), G/H = \mathbb{H}H^k$
- ► B. (2007): $(X^3, CR \text{ structure}) \rightsquigarrow Q^4$ G = SU(1,2), G/H = CH²

Each time: there is a model $G/P \rightsquigarrow G/H$, with $P \subset G$ parabolic subgroup of a real group, and G/H a quaternionic Kähler symmetric space of noncompact type. New case: $G = G_2^r$, with $G_2^r/P = \{\text{isotropic lines in } \mathbb{R}^{3,4}\}$, symmetric space $G^{r}/SO(4)$.

space $G'_2/SO(4)$.

- ► LeBrun (82): $(X^3, \text{conformal metric}) \rightsquigarrow Q^4$ $G = SO(4, 1), G/H = \mathbb{R}H^4$
- ► LeBrun (89): $(X^{3+k}, \text{conformal } (3,k) \text{ metric}) \rightsquigarrow Q^{4(k+1)}$ G = SO(4, k+1)
- ► B. (2000): $(X^{4k-1}, \text{quaternionic contact structure}) \rightsquigarrow Q^{4k}$ $G = Sp(k, 1), G/H = \mathbb{H}H^k$
- ► B. (2007): $(X^3, CR \text{ structure}) \rightsquigarrow Q^4$ $G = SU(1,2), G/H = \mathbb{C}H^2$

Each time: there is a model $G/P \rightsquigarrow G/H$, with $P \subset G$ parabolic subgroup of a real group, and G/H a quaternionic Kähler symmetric space of noncompact type.

New case: $G = G_2^r$, with $G_2^r/P = \{\text{isotropic lines in } \mathbb{R}^{3,4}\}$, symmetric space $G_2^r/SO(4)$.

- ► LeBrun (82): $(X^3, \text{conformal metric}) \rightsquigarrow Q^4$ $G = SO(4, 1), G/H = \mathbb{R}H^4$
- ► LeBrun (89): $(X^{3+k}, \text{conformal } (3,k) \text{ metric}) \rightsquigarrow Q^{4(k+1)}$ G = SO(4, k + 1)
- ► B. (2000): $(X^{4k-1}, \text{quaternionic contact structure}) \rightsquigarrow Q^{4k}$ $G = Sp(k, 1), G/H = \mathbb{H}H^k$
- ► B. (2007): $(X^3, CR \text{ structure}) \rightsquigarrow Q^4$ $G = SU(1,2), G/H = \mathbb{C}H^2$

Each time: there is a model $G/P \rightsquigarrow G/H$, with $P \subset G$ parabolic subgroup of a real group, and G/H a quaternionic Kähler symmetric space of noncompact type.

New case: $G = G_2^r$, with $G_2^r/P = \{\text{isotropic lines in } \mathbb{R}^{3,4}\}$, symmetric space $G_2^r/SO(4)$.

- ► LeBrun (82): $(X^3, \text{conformal metric}) \rightsquigarrow Q^4$ $G = SO(4, 1), G/H = \mathbb{R}H^4$
- ► LeBrun (89): $(X^{3+k}, \text{conformal } (3,k) \text{ metric}) \rightsquigarrow Q^{4(k+1)}$ G = SO(4, k + 1)
- ► B. (2000): $(X^{4k-1}, \text{quaternionic contact structure}) \rightsquigarrow Q^{4k}$ $G = Sp(k, 1), G/H = \mathbb{H}H^k$
- ► B. (2007): $(X^3, CR \text{ structure}) \rightsquigarrow Q^4$ $G = SU(1,2), G/H = \mathbb{C}H^2$

Each time: there is a model $G/P \rightsquigarrow G/H$, with $P \subset G$ parabolic subgroup of a real group, and G/H a quaternionic Kähler symmetric space of noncompact type.

New case: $G = G_2^r$, with $G_2^r/P = \{\text{isotropic lines in } \mathbb{R}^{3,4}\}$, symmetric space $G_2^r/SO(4)$.

Nonlinear Poisson transform

Program with R. Mazzeo.

Let G/H be a symmetric space of noncompact type.

Poisson transform

There is a 1:1 correspondence between

- 1. bounded harmonic functions on G/H
- 2. 'functions' on maximal Furstenberg boundary G/P_{min} .

Nonlinear Poisson transform

There should be a 1:1 correspondence between

- 1. complete 'asympt. symmetric' Einstein deformations of G/H
- 2. certain deformations of the parabolic geometry of G/P_{min} .

Elie Cartan (1910):

parabolic geometry modeled on G_2^r/P = generic 2-distribution

・ロト・日本・日本・日本・日本

Nonlinear Poisson transform

Program with R. Mazzeo.

Let G/H be a symmetric space of noncompact type.

Poisson transform

There is a 1:1 correspondence between

- 1. bounded harmonic functions on G/H
- 2. 'functions' on maximal Furstenberg boundary G/P_{min} .

Nonlinear Poisson transform

There should be a 1:1 correspondence between

- 1. complete 'asympt. symmetric' Einstein deformations of G/H
- 2. certain deformations of the parabolic geometry of G/P_{\min} .

Elie Cartan (1910):

parabolic geometry modeled on G_2^r/P = generic 2-distribution

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Nonlinear Poisson transform

Program with R. Mazzeo.

Let G/H be a symmetric space of noncompact type.

Poisson transform

There is a 1:1 correspondence between

- 1. bounded harmonic functions on G/H
- 2. 'functions' on maximal Furstenberg boundary G/P_{min} .

Nonlinear Poisson transform

There should be a 1:1 correspondence between

- 1. complete 'asympt. symmetric' Einstein deformations of G/H
- 2. certain deformations of the parabolic geometry of G/P_{\min} .

Elie Cartan (1910):

parabolic geometry modeled on G_2^r/P = generic 2-distribution

Nonlinear Poisson transform is established for:

- (Graham-Lee 1991) G = SO(k, 1)
- (B. 2000) all other rank 1 cases
- (B.-Mazzeo 2011) reducible rank 2 cases

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

All the previous constructions of quaternionic Kähler metrics are local versions of this nonlinear Poisson transform: one recovers the other parabolic subgroups by lifting to the minimal parabolic via

 $G/P_{\min} \longrightarrow G/P.$

Question 1

Find a unified construction of a local quaternionic Kähler metric starting from a parabolic geometry modeled on a boundary G/P of a quaternionic Kähler symmetric space G/H of noncompact type. (Remind there is one such symmetric space for each simple complex Lie group)

More modest question: unify the existing constructions.

All the previous constructions of quaternionic Kähler metrics are local versions of this nonlinear Poisson transform: one recovers the other parabolic subgroups by lifting to the minimal parabolic via

 $G/P_{\min} \longrightarrow G/P.$

Question 1

Find a unified construction of a local quaternionic Kähler metric starting from a parabolic geometry modeled on a boundary G/P of a quaternionic Kähler symmetric space G/H of noncompact type. (Remind there is one such symmetric space for each simple complex Lie group).

More modest question: unify the existing constructions.

All the previous constructions of quaternionic Kähler metrics are local versions of this nonlinear Poisson transform: one recovers the other parabolic subgroups by lifting to the minimal parabolic via

 $G/P_{\min} \longrightarrow G/P.$

Question 1

Find a unified construction of a local quaternionic Kähler metric starting from a parabolic geometry modeled on a boundary G/P of a quaternionic Kähler symmetric space G/H of noncompact type. (Remind there is one such symmetric space for each simple complex Lie group).

More modest question: unify the existing constructions.

Geodesics

Some of these constructions rely on the use of a space of geodesics (LeBrun's constructions, G_2).

Proposition

The only examples which admit a space of geodesics are:

- conformal geometries (LeBrun's examples)
- the G_2/P example
- $SO(3,4)/P_3$ with P_3 fixing a totally isotropic 3-plane.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Beginning of the construction: the geodesic flow

Start from (X^5, D^2) wih D generic, and consider the circle bundle

$$S^1 \longrightarrow F^6 = \mathbb{P}(D)$$

$$\downarrow^p$$

$$X^5$$

Proposition

F carries a canonical 1-dimensional distribution.

This can be proved using the Cartan connection of the geometry. In the model, $F^6 = G_2/P_{min}$ and there are two circle fibrations:

Beginning of the construction: the geodesic flow

Start from (X^5, D^2) wih D generic, and consider the circle bundle

$$S^1 \longrightarrow F^6 = \mathbb{P}(D)$$

$$\downarrow^p$$

$$X^5$$

Proposition

F carries a canonical 1-dimensional distribution.

This can be proved using the Cartan connection of the geometry. In the model, $F^6 = G_2/P_{min}$ and there are two circle fibrations:

Zoll distributions

Nonlinear Poisson transform predicts:

there exists a complete Einstein geodesics are closed \implies metric on $G_2/SO(4)$ filling in the parabolic geometry at infinity

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

A generic distribution $D^2 \subset TX^5$ is **Zoll** if all the geodesics are closed.

Zoll distributions

Nonlinear Poisson transform predicts:

there exists a complete Einstein geodesics are closed \implies metric on $G_2/SO(4)$ filling in the parabolic geometry at infinity

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

A generic distribution $D^2 \subset TX^5$ is **Zoll** if all the geodesics are closed.

Question 2

- 1. are there other Zoll 2-distributions in dimension 5?
- 2. if yes, when can the quaternionic Kähler metric be extended to a complete quaternionic Kähler metric ? (ie when is the Einstein metric quaternionic Kähler ?)
 - \longrightarrow might get 'positive frequencies'

Same question in the other cases with geodesics: in particular for G = SO(4, 2), the question becomes:

are there other Zoll conformal Lorentzian metrics on compactified Minkowski 4-space ?

Question 2

- 1. are there other Zoll 2-distributions in dimension 5?
- 2. if yes, when can the quaternionic Kähler metric be extended to a complete quaternionic Kähler metric ? (ie when is the Einstein metric quaternionic Kähler ?)

 \longrightarrow might get 'positive frequencies'

Same question in the other cases with geodesics: in particular for G = SO(4, 2), the question becomes:

are there other Zoll conformal Lorentzian metrics on compactified Minkowski 4-space ?

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Sketch of proof of the Theorem

The twistor space of $G_2/SO(4)$ is $N = (G_2/P_2)^{\mathbb{C}}$.

Complexify the whole situation:

Sketch of proof of the Theorem

The twistor space of $G_2/SO(4)$ is $N = (G_2/P_2)^{\mathbb{C}}$. Complexify the whole situation:

э

Must construct a 8-dimensional family of rational curves extending the 5-dimensional family

$C_x = q(p^{-1}(x)),$ normal bundle: $\mathcal{O} \oplus \mathcal{O} \oplus \mathcal{O} \oplus \mathcal{O}(1).$

One must consider C_x as non reduced (doubled in the $\mathcal{O}(1)$ direction).

As such it has a 8-dimensional family of deformations.

But: need also normal bundle to be $\mathscr{O}(1) \oplus \mathscr{O}(1) \oplus \mathscr{O}(1) \oplus \mathscr{O}(1)$.

Must construct a 8-dimensional family of rational curves extending the 5-dimensional family

 $C_x = q(p^{-1}(x)),$ normal bundle: $\mathcal{O} \oplus \mathcal{O} \oplus \mathcal{O} \oplus \mathcal{O}(1).$

One must consider C_x as non reduced (doubled in the $\mathcal{O}(1)$ direction).

As such it has a 8-dimensional family of deformations.

But: need also normal bundle to be $\mathscr{O}(1) \oplus \mathscr{O}(1) \oplus \mathscr{O}(1) \oplus \mathscr{O}(1)$.

Must construct a 8-dimensional family of rational curves extending the 5-dimensional family

 $C_x = q(p^{-1}(x)),$ normal bundle: $\mathcal{O} \oplus \mathcal{O} \oplus \mathcal{O} \oplus \mathcal{O}(1).$

One must consider C_x as non reduced (doubled in the $\mathcal{O}(1)$ direction).

As such it has a 8-dimensional family of deformations.

But: need also normal bundle to be $\mathscr{O}(1) \oplus \mathscr{O}(1) \oplus \mathscr{O}(1) \oplus \mathscr{O}(1)$.

Parabolic dilations

One uses the parabolic geometry of (X, D): the parabolic dilations

$$h_t(x_1, x_2, x_3, x_4, x_5) = (tx_1, tx_2, t^2x_3, t^3x_4, t^3x_5)$$

on a small open set U have the property that

$$h_t^*D \xrightarrow[t \to 0]{} \text{model } G_2/P.$$

It follows that

$$h_t^*N(U) = N(h_t^*U) \xrightarrow[t \to 0]{} model N(G_2/P).$$

In particular the rational curves converge to that of the model and therefore have the same normal bundle $\mathscr{O}(1) \oplus \mathscr{O}(1) \oplus \mathscr{O}(1) \oplus \mathscr{O}(1)$.

The behavior of the metric is found by inverse twistor transform.

Parabolic dilations

One uses the parabolic geometry of (X, D): the parabolic dilations

$$h_t(x_1, x_2, x_3, x_4, x_5) = (tx_1, tx_2, t^2x_3, t^3x_4, t^3x_5)$$

on a small open set U have the property that

$$h_t^*D \xrightarrow[t \to 0]{} model G_2/P.$$

It follows that

$$h_t^*N(U) = N(h_t^*U) \xrightarrow[t \to 0]{} \text{model } N(G_2/P).$$

In particular the rational curves converge to that of the model and therefore have the same normal bundle $\mathcal{O}(1) \oplus \mathcal{O}(1) \oplus \mathcal{O}(1) \oplus \mathcal{O}(1)$.

The behavior of the metric is found by inverse twistor transform.

Parabolic dilations

One uses the parabolic geometry of (X, D): the parabolic dilations

$$h_t(x_1, x_2, x_3, x_4, x_5) = (tx_1, tx_2, t^2x_3, t^3x_4, t^3x_5)$$

on a small open set U have the property that

$$h_t^*D \xrightarrow[t \to 0]{} model G_2/P.$$

It follows that

$$h_t^*N(U) = N(h_t^*U) \xrightarrow[t \to 0]{} \text{model } N(G_2/P).$$

In particular the rational curves converge to that of the model and therefore have the same normal bundle $\mathscr{O}(1) \oplus \mathscr{O}(1) \oplus \mathscr{O}(1) \oplus \mathscr{O}(1)$.

The behavior of the metric is found by inverse twistor transform.