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Main result

Theorem
Let X 5 be a 5-manifold with a 2-dimensional generic distribution
D ⊂ TX (real analytic). To such (X ,D) is canonically associated a
8-dimensional quaternionic Kähler metric д.

I generic : [D,D] is 3-dimensional, [D,[D,D]] = TX
I there is a disc bundle

∆ F

X

p

such that д is defined on a F × (0,ϵ ).

Fiber ∆ = space of conformal metrics on D.
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Behavior of д
The asymptotics of д are fixed by (X ,D):

д ∼
ds2

s2
+
γ3
s3
+
γ2
s2
+
γ1
s
+ γ0

The orders of growth correspond to the filtration

T−3F = TF ⊃ T−2F = p
∗[D,D] ⊃ T−1F = p∗D ⊃ T0F = kerp∗ = T∆,

and γi is defined on T−iF with kerγi = T−i+1F :
I kerγ3 = p∗[D,D]
I γ2 is defined on p∗[D,D] and kerγ2 = p∗D
I γ1 is defined only on p∗D and kerγ1 = kerp∗ = T∆:

γ1 = tautological metric on p∗D

I γ0 is defined along the fibres of p:
γ0 = hyperbolic metric on fibre ∆

and γ2 and γ3 are defined algebraically.
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Former similar constructions of qK metrics

I LeBrun (82): (X 3,conformal metric) Q4

G = SO (4,1), G/H = RH 4

I LeBrun (89): (X 3+k ,conformal (3,k ) metric) Q4(k+1)

G = SO (4,k + 1)
I B. (2000): (X 4k−1,quaternionic contact structure) Q4k

G = Sp (k,1), G/H = HHk

I B. (2007): (X 3,CR structure) Q4

G = SU (1,2), G/H = CH 2

Each time: there is a model G/P  G/H , with P ⊂ G parabolic
subgroup of a real group, and G/H a quaternionic Kähler symmetric
space of noncompact type.
New case: G = Gr

2 , with Gr
2/P = {isotropic lines in R3,4}, symmetric

space Gr
2/SO (4).
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Nonlinear Poisson transform

Program with R. Mazzeo.
Let G/H be a symmetric space of noncompact type.

Poisson transform
There is a 1:1 correspondence between

1. bounded harmonic functions on G/H

2. ‘functions’ on maximal Furstenberg boundary G/Pmin.

Nonlinear Poisson transform
There should be a 1:1 correspondence between

1. complete ‘asympt. symmetric’ Einstein deformations of G/H

2. certain deformations of the parabolic geometry of G/Pmin.

Elie Cartan (1910):
parabolic geometry modeled on Gr

2/P = generic 2-distribution
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Nonlinear Poisson transform is established for:
I (Graham-Lee 1991) G = SO (k,1)
I (B. 2000) all other rank 1 cases
I (B.-Mazzeo 2011) reducible rank 2 cases



�estion 1

All the previous constructions of quaternionic Kähler metrics are
local versions of this nonlinear Poisson transform: one recovers the
other parabolic subgroups by li�ing to the minimal parabolic via

G/Pmin −→ G/P .

�estion 1
Find a unified construction of a local quaternionic Kähler metric
starting from a parabolic geometry modeled on a boundary G/P of a
quaternionic Kähler symmetric space G/H of noncompact type.

(Remind there is one such symmetric space for each simple complex
Lie group).

More modest question: unify the existing constructions.
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Geodesics

Some of these constructions rely on the use of a space of geodesics
(LeBrun’s constructions, G2).

Proposition
The only examples which admit a space of geodesics are:
I conformal geometries (LeBrun’s examples)
I the G2/P example
I SO (3,4)/P3 with P3 fixing a totally isotropic 3-plane.



Beginning of the construction: the geodesic flow
Start from (X 5,D2) wih D generic, and consider the circle bundle

S1 F 6 = P(D)

X 5

p

Proposition
F carries a canonical 1-dimensional distribution.

This can be proved using the Cartan connection of the geometry. In
the model, F 6 = G2/Pmin and there are two circle fibrations:

G2/Pmin

G2/P = G2/P1 G2/P2

p q
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Zoll distributions

Nonlinear Poisson transform predicts:

geodesics are closed =⇒
there exists a complete Einstein
metric on G2/SO (4) filling in the
parabolic geometry at infinity

Definition
A generic distribution D2 ⊂ TX 5 is Zoll if all the geodesics are
closed.
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�estion 2

�estion 2

1. are there other Zoll 2-distributions in dimension 5 ?

2. if yes, when can the quaternionic Kähler metric be extended to
a complete quaternionic Kähler metric ? (ie when is the
Einstein metric quaternionic Kähler ?)

−→ might get ‘positive frequencies’

Same question in the other cases with geodesics: in particular for
G = SO (4,2), the question becomes:

are there other Zoll conformal Lorentzian metrics
on compactified Minkowski 4-space ?
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Sketch of proof of the Theorem

G2/Pmin

G2/P1 G2/P2

p q

The twistor space of G2/SO (4) is N = (G2/P2)
C.

Complexify the whole situation:

CP1

FC

XC N

p q
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Rational curves

Must construct a 8-dimensional family of rational curves extending
the 5-dimensional family

Cx = q(p
−1 (x )), normal bundle: O ⊕ O ⊕ O ⊕ O (1).

One must consider Cx as non reduced (doubled in the O (1)
direction).
As such it has a 8-dimensional family of deformations.

But: need also normal bundle to be O (1) ⊕ O (1) ⊕ O (1) ⊕ O (1).
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Parabolic dilations

One uses the parabolic geometry of (X ,D): the parabolic dilations

ht (x1,x2,x3,x4,x5) = (tx1,tx2,t
2x3,t

3x4,t
3x5)

on a small open set U have the property that

h∗tD −→t→0
model G2/P .

It follows that

h∗tN (U ) = N (h∗tU ) −→
t→0

model N (G2/P ).

In particular the rational curves converge to that of the model and
therefore have the same normal bundle O (1) ⊕ O (1) ⊕ O (1) ⊕ O (1).

The behavior of the metric is found by inverse twistor transform.
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