Conification of Kähler and hyper-Kähler manifolds and supergravity *c*-map

Dmitri Alekseevsky

Masaryk University, Brno, Czech Republic and Institute for Information Transmission Problems, Moscow, Russia

Villasimius, September 20, 2014 Joint work with V. Cortes, M. Dyckmanns and Th.Mohaupt CMPh-2013, ArXiv 1305.3549v1

Dedicated to Stefano Marchiafava with love and admiration

Abstract

Given a Kähler manifold M endowed with a Hamiltonian Killing vector field Z, we construct a conical Kähler manifold \hat{M} such that M is the Kähler quotient of \hat{M} .

Similarly, given a hyper-Kähler manifold $(M^{4n}, g, J_1, J_2, J_3)$ endowed with a Killing vector field Z, Hamiltonian with respect to the Kähler form of J_1 and satisfying $\mathcal{L}_Z J_2 = -2J_3$. We construct a hyper-Kähler cone \hat{M}^{4n+4} such that $M^{4n} =$ is a hyper-Kähler quotient of \hat{M} . Rigid *c*-map associates with a special Kähler manifold M^{2n} the hyper-Kähler manifold $N^{4n} = T^*M$. Supergravity *c*-map associates with a projective special Kähler manifold $\bar{M}^{2n-2} = M^{2n}/\mathbb{C}^*$ a quaternionic Kähler manifold \bar{N}^{4n} with the Ferrara-Sabharwal metric.

We show that it can be describe using conification \hat{N}^{4n} of the hyper-Kähler manifold N^{4n} via diagram:

$$egin{array}{ccc} M^{2n} & \stackrel{c}{\longrightarrow} N^{4n} = T^*M \stackrel{con}{\longrightarrow} \hat{N}^{4n+4} \ \downarrow \mathbb{C}^* & \downarrow (\mathbb{H}^*/\pm 1) \ ar{M}^{2n-2} & \stackrel{ar{c}}{\longrightarrow} & ar{N}^{4n} \end{array}$$

- Conification of a Kähler manifold
- 3-Sasaki bundle and Swann bundle of a quaternionic Kähler manifold
- The moment map of an infinitesimal automorphism
- Conical affine and projective special Kähler manifolds
- The rigid c-map
- The supergravity c-map and Ferrara-Subharwal metric
- HK/QK correspondence for c-map

Data:

Let $(M, g, J, \omega = g \circ J, Z)$ be a pseudo-Kähler manifold endowed with a time-like or space-like Hamiltonian Killing vector field Z with Hamiltonian -f s.t. $df = -\omega(Z, \cdot)$. We will assume that f and $f_1 := f - \frac{1}{2}g(Z, Z)$ are nowhere vanishing. Let $\pi : P \to M$ be an S¹-principal bundle with a principal connection η with the curvature $d\eta = \pi^*(\omega - \frac{1}{2}d(g \circ Z))$ and pseudo-Euclidean metric

$$g_P:=\frac{2}{f_1}\eta^2+\pi^*g.$$

On the manifold $\hat{\pi}:\hat{M}:=P\times\mathbb{R}$ we define tensor fields

$$\xi := \partial_t \in \mathfrak{X}(\hat{M}), \tag{1}$$

$$\hat{g} := e^{2t}(g_P + 2fdt^2 + 2(df) \cdot dt) \in \Gamma(S^2 T^* \hat{M}),$$
 (2)

$$\theta := e^{2t}(\eta + \frac{1}{2}(g \circ Z)) \in \Omega^1(\hat{M}),$$
(3)

$$\hat{\omega} := d\theta \in \Omega^2(\hat{M}),$$
 (4)

A conical pseudo-Riemannian manifold (M, g, ξ) is a pseudo-Riemannian manifold (M, g) endowed with a time-like or space-like vector field ξ such that $D\xi = Id$. **Theorem** Given (M, g, J, Z) as above, then $(\hat{M} = P \times \mathbb{R}, \hat{g}, \hat{J} := \hat{g}^{-1}\hat{\omega}, \xi)$ is a conical pseudo-Kähler manifold. The induced CR-structure on the hypersurface $P \subset \hat{M}$ coincides with the horizontal distribution $T^h P$ for the connection η and $\pi: P \to M$ is holomorphic. The projection $\hat{\pi}: \hat{M} \to M$ is not holomorphic. The metric \hat{g} has signature $(2k+2, 2\ell)$ if $f_1 > 0$ and $(2k, 2\ell + 2)$ if $f_1 < 0$, where $(2k, 2\ell)$ is the signature of the metric g.

We derive explicit formulas relating the metric of a quaternionic Kähler manifold to the pseudo-hyper-Kähler metric of its Swann bundle. This will be used to obtain an explicit formula for the quaternionic Kähler metric in the HK/QK correspondence from the conical pseudo-hyper-Kähler metric

3-Sasaki bundle S of a quaternionic Kähler manifold

Let (M, g, Q) be a (possibly indefinite) quaternionic Kähler manifold of nonzero scalar curvature and $\pi : S \to M$ the 3-Sasaki bundle, i.e. principal SO(3)- bundle 3 of frames (J_1, J_2, J_3) in Qs.t. $J_3 = J_1 J_2$ and $J_{\alpha}^2 = -\text{Id}$, $\alpha = 1, 2, 3$ and $A \in \text{SO}(3)$ acts by

$$s = (J_1, J_2, J_3) \mapsto \tau(A, s) := (J_1, J_2, J_3)A^{-1}.$$

Let $(e_{\alpha}) \in \mathfrak{so}(3)$ be the standard basis and Z_{α} the fundamental vector fields s.t.

$$[e_{\alpha}, e_{\beta}] = 2e_{\gamma}, \quad [Z_{\alpha}, Z_{\beta}] = -2Z_{\gamma}.$$
(5)

The Levi-Civita connection ∇ of (M, g) induces a principal connection

$$heta = \sum heta_{lpha} e_{lpha} : TS o \mathfrak{so}(3)$$

on *S* with curvature $\Omega := d\theta - \frac{1}{2}[\theta \wedge \theta]$, where $\frac{1}{2}[\theta \wedge \theta](X, Y) := [\theta(X), \theta(Y)], \quad X, Y \in T_s S, \quad s \in S.$

Conification of Kähler and hyper-Kähler manifolds and superg

A local section $\sigma = (J_1, J_2, J_3) \in \Gamma(\pi)$, defines a vector-valued 1-form on M

$$ar{ heta} = \sigma^* heta = \sum ar{ heta}_lpha m{e}_lpha$$

s.t. $\nabla J_{\alpha} = 2(\bar{\theta}_{\beta} \otimes J_{\gamma} - \bar{\theta}_{\gamma} \otimes J_{\beta}).$ The curvature $R^Q \in \Gamma(\wedge^2 T^*M \otimes Q)$ of θ is

$$R^Q = \sum ar{\Omega}_lpha J_lpha, \quad ar{\Omega}_lpha = - dar{ heta}_lpha + 2ar{ heta}_eta \wedge ar{ heta}_\gamma.$$

We have $\bar{\Omega}_{\alpha} = -\frac{\nu}{2}\omega_{\alpha}$, where $\omega_{\alpha} = gJ_{\alpha}$ and $\nu := \frac{scal}{4n(n+2)}$ (dim M = 4n) is the reduced scalar curvature.

We endow the manifold S with the pseudo-Riemannian metric

$$g_S = \sum heta_lpha^2 + rac{
u}{4} \pi^* g_A$$

Consider the Swann cone $(\hat{M} = \mathbb{R}^+ \times S, \hat{g} = dr^2 + r^2g_S)$ with the Euler field $\xi = Z_0 = r\partial_r$ and three exact forms

$$\omega_{lpha} := d\hat{ heta}_{lpha}, \, \hat{ heta}_{lpha} := rac{r^2}{2} heta_{lpha}.$$

Proposition The Swann cone \hat{M} is a (pseudo)hyper-Kähler manifold with the Kähler forms $\hat{\omega}_{\alpha}$. The signature is (4 + 4k, 4l) if $\nu > 0$ and (4 + 4l, 4k) if $\nu < 0$, where (4k, 4l) is the signature of the quaternionic Kähler metric g on M. Let \hat{M} be the Swann cone of M.

Let X be a tri-holomorphic space-like or time-like Killing vector field on \hat{M} , which commutes with the Euler vector field $\xi = r\partial_r = Z_0$. **Proposition** The vector field X is tri-Hamiltonian with moment map $-\mu$, where

$$\mu: \hat{M} \to \mathbb{R}^3, \quad x \mapsto (\mu_1(x), \mu_2(x), \mu_3(x)),$$

 $\mu_{\alpha} := \hat{\theta}_{\alpha}(X), \ d\mu_{\alpha} = -\iota_{X}\hat{\omega}_{\alpha}.$

Now we recover the quaternionic Kähler metric on M from the geometric data on the level set, see A.Haydys

$$P = \{\mu_1 = 1, \ \mu_2 = \mu_3 = 0\} \subset \hat{M}.$$

of the moment map μ .

The group $\mathbb{R}^+ \times SO(3)$ generated by ξ, Z_1, Z_2, Z_3 acts as conformal linear group CO(3) on $\mathbb{R}^3 = \operatorname{span}(\mu_{\alpha})$. the three-dimensional vector space spanned by the functions μ_{α} , in particular,

$$\mathcal{L}_{Z_0}\mu_{lpha}=2\mu_{lpha}, \quad \mathcal{L}_{Z_{lpha}}\mu_{eta}=-2\mu_{\gamma},$$

Data on P

This implies

$$\hat{M} = \bigcup_{a \in \mathbb{R}^+ \times \mathrm{SO}(3)} aP.$$

and $P \subset \hat{M}$ is a smooth submanifold of codimension 3. On P we have the following data:

$$\begin{split} g_P &:= g_{\hat{M}}|_P = \hat{g}|_P \in \Gamma(S^2 T^* P) \\ \theta^P_\alpha &:= \hat{\theta}_\alpha|_P \in \Omega^1(P) \ (\alpha = 1, 2, 3) \\ f &:= \frac{r^2}{2} \Big|_P \in C^\infty(P) \\ \theta^P_0 &:= -\frac{1}{2} df \in \Omega^1(P) \\ \chi_P &:= \chi|_P \in \mathfrak{X}(P) \\ Z^P_1 &:= Z_1|_P \in \mathfrak{X}(P). \end{split}$$

The quaternionic Kähler metric g on M is related as follows to the geometric data on the level set $P \subset \hat{M}$ of the moment map:

$$\nu \pi^* g|_P = \frac{2}{f} \left(g_P - \frac{2}{f} \sum_{a=0}^3 (\theta_a{}^P)^2 \right).$$
 (6)

The above symmetric form is Z_1^P -invariant and has 1-dimensional kernel $\mathbb{R}Z_1^P$. **Theorem** Let M' be a hypersurface in P transversal to the vector field Z_1^P . Then

$$g' := \frac{1}{2|f|} \tilde{g}_P|_{M'}$$

is a possibly indefinite quaternionic Kähler metric on M'.

Data: $(M, g, J_{\alpha}, \omega_{\alpha} := gJ_{\alpha}\alpha = 1, 2, 3)$ a pseudo-hyper-Kähler manifold;

Z Killing vector field, $g(Z,Z) \neq 0, \omega_1$ -hamiltonian s.t. $df = -\omega_1 Z$ where $f, f_1 := f - \frac{g(Z,Z)}{2}$ are non-vanishing functions; Consider the conification $\hat{M}_1 := P \times \mathbb{R}$ of the pseudo-Kähler manifold (M, g, J_1, ω_1) endowed with the ω_1 -Hamiltonian Killing vector field Z. (Here $\pi : P \to M$ is the circle bundle with the connection η and the pseudo-Riemannian metric g_P .) Recall that $\hat{M}_1 := P \times \mathbb{R}$ is endowed with the structure $(\hat{g}, \hat{J}_1, \xi)$ of a conical pseudo-Kähler manifold.

Conification of hyper-Kähler manifolds

We construct a conical hyper-Kähler manifold $(\hat{M}, \hat{g}, \hat{J}_1, \hat{J}_2, \hat{J}_3, \xi)$ such that $\hat{M}_1 \subset \hat{M}$ with the conical pseudo-Kähler structure induced by $(\hat{g}, \hat{J}_1, \xi)$. We define the vector field

$$Z_1 := Z + f_1 X_P$$

and the one-forms

$$\theta_1^P := \eta + \frac{1}{2}gZ$$

$$\theta_2^P := \frac{1}{2}\omega_3Z$$

$$\theta_3^P := -\frac{1}{2}\omega_2Z$$

(7)

on P.

We consider $\theta_{\alpha} := f^{-1}\theta_{\alpha}^{P}$ as the components of a one-form $\theta := \sum_{\alpha} \theta_{\alpha} i_{\alpha}$ with values in $\operatorname{im}\mathbb{H}$ and extend θ to a one-form $\tilde{\theta}$ on $\tilde{\mathcal{M}} := \mathbb{H}^{*} \times P \supset \{1\} \times P \cong P$ by

$$ilde{ heta}_lpha(m{q},m{p}):=arphi_lpha(m{q})+(\mathrm{Ad}_m{q} heta(m{p}))_lpha,\quad(m{q},m{p})\in ilde{ extsf{M}},$$

where $\varphi = \varphi_0 + \sum_{\alpha} \varphi_{\alpha} i_{\alpha}$ is the right-invariant Maurer-Cartan form of \mathbb{H}^* and $\operatorname{Ad}_q x = qxq^{-1} = x_0 + \sum_{\alpha} (\operatorname{Ad}_q x)_{\alpha} i_{\alpha}$ for all $x = x_0 + \sum x_{\alpha} i_{\alpha} \in \mathbb{H}$. Notice that

$$\varphi_a(e_b) = \partial_{ab},$$

where (e_0, \ldots, e_3) , is the right-invariant frame of \mathbb{H}^* which coincides with the standard basis of $\mathbb{H} = \text{Lie}(\mathbb{H}^*)$ at q = 1.

We define

$$\tilde{\omega}_{\alpha} := d(\rho^2 \tilde{\theta}^P_{\alpha}),$$

where $\tilde{\theta}^P_{\alpha} := f \tilde{\theta}_{\alpha}$ and $\rho := |q|$. Let us denote by e_1^L the left-invariant vector field on \mathbb{H}^* which coincides with e_1 at q = 1 and by \hat{M} the space of integral curves of the vector field $V_1 := e_1^L - Z_1$. We will assume that the quotient map $\tilde{\pi} : \tilde{M} \to \hat{M}$ is a submersion onto a Hausdorff manifold. (Locally this is always the case, since the vector field has no zeroes.)

Theorem

Let (M, g, J_1, J_2, J_3, Z) be a pseudo-hyper-Kähler manifold endowed with a Killing vector field Z satisfying the above assumptions and $\mathcal{L}_Z J_2 = -2J_3$. Then there exists a pseudo-hyper-Kähler structure $(\hat{g}, \hat{J}_1, \hat{J}_2, \hat{J}_3)$ on \hat{M} with exact Kähler forms $\hat{\omega}_{\alpha}$ determined by

$$\tilde{\pi}^* \hat{\omega}_\alpha = \tilde{\omega}_\alpha.$$

The vector field $r\partial_r$ on \tilde{M} projects to a vector field ξ on \hat{M} such that

$$(\hat{M}, \hat{g}, \hat{J}_1, \hat{J}_2, \hat{J}_3, \xi)$$

is a conical hyper-Kähler manifold.

The signature of the metric \hat{g} is $(4k, 4\ell + 4)$ if $f_1 < 0$ and $(4k + 4, 4\ell)$ if $f_1 > 0$, where $(4k, 4\ell)$ is the signature of the metric g.

The correspondence between hyper-Kähler manifold (M, g, J_{α}) with the data (Z, f) and quaternionic Kähler manifold $\overline{M} = \hat{M}/(\mathbb{H}^*/(\pm 1))$ associated with the hyper-Káhler cone \hat{M} is called HK/QK correspondence.

If Z_1^P generates a free and proper action of a one-dimensional Lie group $A \cong S^1$ or \mathbb{R}) and if M' is a global section for the A-action, then $M' \simeq P/A$, which inherits the quaternionic Kähler metric g'.

Application : Description of supergravity *c*-map in terms of rigid *c*-map and conification

We apply the above construction to the hyper-Kähler manifold $N = c(M) = T^*M$ which the image of a conical special Kähler manifold M under rigid c-map. We will show that the supergravity c-map which associates with a projective special Kähler manifold $\overline{M} = M/\mathbb{C}^*$ a quaternionic Kähler manifold can be obtained as a composition of the rigid c-map $M \to N = T^*M$, conification $N \to \hat{N}$ and Swann projection $\hat{N}/(\mathbb{H}^*/(\pm 1))$.

A conical affine special Kähler manifold (M, J, g_M, ∇, ξ) is a pseudo-Kähler manifold (M, J, g_M) endowed with a flat torsionfree connection ∇ and a vector field ξ such that

i)
$$\nabla \omega_M = 0$$
, where $\omega_M := g_M(J \cdot, \cdot)$ is the Kähler form,

ii)
$$(\nabla_X J)Y = (\nabla_Y J)X$$
 for all $X, Y \in \Gamma(TM)$,

- iii) $\nabla \xi = D\xi = \mathrm{Id}$, where D is the Levi-Civita connection,
- iv) g_M is positive definite on $\mathcal{D} = \operatorname{span}\{\xi, J\xi\}$ and negative definite on \mathcal{D}^{\perp} .

Projective special Kähler manifold

Then ξ and $J\xi$ are commuting holomorphic vector fields that are homothetic and Killing respectively. We assume that the holomorphic Killing vector field $J\xi$ induces a free S^1 -action and that the holomorphic homothety ξ induces a free \mathbb{R}^+ -action on M. Then (M, g_M) is a metric cone over (S, g_S) , where

$$S := \{p \in M | g_M(\xi(p), \xi(p)) = 1\}, \ g_S := g_M |_S$$

and $-g_S$ induces a Riemannian metric $g_{\bar{M}}$ on $\bar{M} := S/S_{J\xi}^1$. $(\bar{M}, -g_{\bar{M}})$ is obtained from (M, J, g) via a Kähler reduction with respect to $J\xi$ and, hence, $g_{\bar{M}}$ is a Kähler metric. The corresponding Kähler form $\omega_{\bar{M}}$ is obtained from ω_M by symplectic reduction. This determines the complex structure $J_{\bar{M}}$. More precisely, S is a (Lorentzian) Sasakian manifold in term of the radial coordinate $r := \sqrt{g(\xi, \xi)}$, we have

$$g_M = dr^2 + r^2 \pi^* g_S, \quad g_S = g_M |_S = \tilde{\eta} \otimes \tilde{\eta} |_S - \bar{\pi}^* g_{\bar{M}},$$
 (8)

where

$$\tilde{\eta} := \frac{1}{r^2} g_M(J\xi, \cdot) = d^c \log r = i(\overline{\partial} - \partial) \log r$$
(9)

is the contact one-form form when restricted to S and $\pi: M \to S = M/\mathbb{R}_{\xi}^{>0}$, $\bar{\pi}: S \to \bar{M} = S/S_{J\xi}^1$ are the canonical projection maps. We will drop π^* and $\bar{\pi}^*$ and identify, e.g., $g_{\bar{M}}$ with a (0,2) tensor field on M that has the distribution $\mathcal{D} = \operatorname{span}\{\xi, J\xi\}$ as its kernel.

Special holomorphic coordinates and the prepotential

Locally, there exist so-called **conical special holomorphic** coordinates $z = (z^{I}) = (z^{0}, ..., z^{n}) : U \xrightarrow{\sim} \tilde{U} \subset \mathbb{C}^{n+1}$ such that the geometric data in U is encoded in a holomorphic homogenepous of degree 2 function $F : \tilde{U} \to \mathbb{C}$ (prepotential). Namely, we have locally

$$g_M = \sum_{I,J} N_{IJ} dz^I d\bar{z}^J, \quad N_{IJ}(z,\bar{z}) := 2 \mathrm{Im} F_{IJ}(z) := 2 \mathrm{Im} \frac{\partial^2 F(z)}{\partial z^I \partial z^J}$$

$$(I, J = 0, \ldots, n), \, \xi|_U = \sum z' \frac{\partial}{\partial z'} + \overline{z}' \frac{\partial}{\partial \overline{z}'}.$$

The Kähler potential for g_M is given by $r^2|_U = g_M(\xi,\xi) = \sum z^I N_{IJ} \overline{z}^J$. The \mathbb{C}^* -invariant functions $X^{\mu} := \frac{z^{\mu}}{z^0}$, $\mu = 1, ..., n$, define a local holomorphic coordinate system on \overline{M} . The Kähler potential for $g_{\overline{M}}$ is $\mathcal{K} := -\log \sum_{I,J=0}^n X^I N_{IJ}(X) \overline{X}^J$, where $X := (X^0, ..., X^n)$ with $X^0 := 1$. } Now, we introduce the **rigid c-map**, which assigns to each affine special (pseudo-)Kähler manifold (M, J, g_M, ∇) and in particular to any conical affine special Kähler manifold (M, J, g_M, ∇, ξ) of real dimension 2n + 2 a (pseudo-)hyper-Kähler manifold $(N = T^*M, g_N, J_1, J_2, J_3)$ of dimension 4n + 4 given, in terms of the decomposition

$$TpN = T_p^{\nu}N \oplus T_p^hN \simeq T_xM \oplus T_x^*M$$
, by

$$g_N = \begin{pmatrix} g & 0 \\ 0 & g^{-1} \end{pmatrix}, J_1 = \begin{pmatrix} J & 0 \\ 0 & J^* \end{pmatrix}, J_2 = \begin{pmatrix} 0 & -\omega^{-1} \\ \omega & 0 \end{pmatrix}, J_3 = J_1 J_2.$$

Locally we may assume that $(M \subset \mathbb{C}^{n+1}, J = J_{can}, g_M, \nabla, \xi)$ is a conical (i.e. \mathbb{C}^* -invariant) affine special Kähler manifold that is globally described by a homogeneous holomorphic function $F = F(z^0, \dots, z^n) : \mathbb{C}^{n+1} \supset M \rightarrow \mathbb{C}$ of degree 2. The real coordinates

$$(q^a)_{a=1,\ldots,2n+2} := (x^I, y_J) := (\operatorname{Re} z^I, \operatorname{Re} F_J(z) := \operatorname{Re} \frac{\partial F(z)}{\partial z^J})$$

on M are ∇ -affine and fulfil $\omega_M = -2 \sum dx^I \wedge dy_I$, where $\omega_M = g(J, \cdot)$ is the Kähler form on M. On the cotangent bundle $\pi_N : N := T^*M \to M$ the real functions $(p_a) := (\bar{\zeta}_I, \zeta^J)$ together with q^a), form a system of canonical coordinates.

HyperKähler metric of $N = T^*M$ in canonical coordinates Proposition

In the above coordinates (z', p_a) , the hyper-Kähler structure on $N = T^*M$ obtained from the rigid c-map is given by

$$g_N = \sum dz^I N_{IJ} d\bar{z}^J + \sum A_I N^{IJ} \bar{A}_J, \qquad (10)$$

$$\omega_1 = \frac{i}{2} \sum_{IJ} N_{IJ} dz^I \wedge d\bar{z}^J + \frac{i}{2} \sum_{I} N^{IJ} A_I \wedge \bar{A}_J, \qquad (11)$$

$$\omega_2 = -\frac{i}{2} \sum (d\bar{z}' \wedge \bar{A}_I - dz' \wedge A_I), \qquad (12)$$

$$\omega_3 = \frac{1}{2} \sum (dz' \wedge A_I + d\bar{z}' \wedge \bar{A}_I), \qquad (13)$$

where $A_I := d\bar{\zeta}_I + \sum_J F_{IJ}(z) d\zeta^J$ (I = 0, ..., n) are complex-valued one-forms on N and $\omega_{\alpha} = g_N(J_{\alpha}, \cdot)$.

The supergravity c-map and Ferrara-Subharwal metric

Let $(\bar{M}, g_{\bar{M}})$ be a 2n-dimensional projective special Kähler manifold defined by a holomorphic prepotential F. The **supergravity c-map** associates with $(\bar{M}, g_{\bar{M}})$ a quaternionic Kähler manifold $(\bar{N} = \bar{M} \times \mathbb{R}^+ \times \mathbb{R}^{2n+3}, g_{\bar{N}})$ of dimension 4n + 4with the following Ferrara-Subharwal metric

$$\begin{split} g_{\bar{N}} &= g_{\bar{M}} + g_{G}, \\ g_{G} &= \frac{1}{4\rho^{2}} d\rho^{2} + \frac{1}{4\rho^{2}} (d\tilde{\phi} + \sum (\zeta^{I} d\tilde{\zeta}_{I} - \tilde{\zeta}_{I} d\zeta^{I}))^{2} \\ &+ \frac{1}{2\rho} \sum \mathcal{I}_{IJ}(m) d\zeta^{I} d\zeta^{J} \\ &+ \frac{1}{2\rho} \sum \mathcal{I}^{IJ}(m) (d\tilde{\zeta}_{I} \mathcal{R}_{IK}(m) d\zeta^{K}) (d\tilde{\zeta}_{J} + \mathcal{R}_{JL}(m) d\zeta^{L}). \end{split}$$

Here $(\rho, \tilde{\phi}, \tilde{\zeta}_I, \zeta^I)$, I = 0, 1, ..., n, are standard coordinates on $\mathbb{R}^+ \times \mathbb{R}^{2n+3}$.

The real-valued matrices $\mathcal{I}(m) := (\mathcal{I}_{IJ}(m))$ and $\mathcal{R}(m) := (\mathcal{R}_{IJ}(m))$ depend only on $m \in \overline{M}$ and $\mathcal{I}(m)$ and is defined in terms of the prepotential F:

$$\mathcal{N}_{IJ} := \mathcal{R}_{IJ} + i\mathcal{I}_{IJ} := \bar{F}_{IJ} + i\frac{\sum_{K} N_{IK} z^{K} \sum_{L} N_{JL} z^{L}}{\sum_{IJ} N_{IJ} z^{I} z^{J}}, \quad N_{IJ} := 2\mathrm{Im}F_{IJ}.$$
(14)

Let $(M \subset \mathbb{C}^{n+1}, J = J_{can}, g_M, \nabla, \xi)$ be a conical affine special Kähler manifold that is globally described by a homogeneous holomorphic function F of degree 2 in standard holomorphic coordinates $z = (z^{\prime}) = (z^{0}, \dots, z^{n})$. Then we can apply the HK/QK correspondence to the hyper-Kähler manifold $(N = T^*M, g_N, J_1, J_2, J_3)$ of signature (4, 4*n*) obtained from the rigid c-map. The vector field $Z := 2(J\xi)^h = 2J_1\xi^h$ on N fulfils the assumptions of the HK/QK correspondence, i.e. it is a space-like ω_1 -Hamiltonian Killing vector field with $\mathcal{L}_Z J_2 = -2J_3$. Here, $X^h \in \Gamma(TN)$ is defined for any vector field $X \in \Gamma(TM)$ by $X^{h}(\pi_{M}^{*}q^{a}) = \pi_{M}^{*}X(q^{a})$ and $X^{h}(p_{a}) = 0$ for all a = 1, ..., 2n + 2. $(X^{h}$ is the horizontal lift with respect to the flat connection ∇).

Applying the HK/QK correspondence to (N, g_N, J_1, J_2, J_3) endowed with the ω_1 -Hamiltonian Killing vector field Z gives (up to a constant conventional factor) the one-parameter family g_{FS}^c of quaternionic pseudo-Kähler metrics, which includes the Ferrara-Sabharwal metric g_{FS} . The metric g_{FS}^c is positive definite and of negative scalar curvature on the domain $\{\rho > -2c\} \subset \overline{N}$ (which coincides with \overline{N} if $c \ge 0$). If c < 0 the metric g_{FS}^c is of signature (4n, 4) on the domain $\{-c < \rho < -2c\} \subset \overline{N}$. Furthermore, if c > 0 the metric g_{FS}^c is of signature (4, 4n) on the domain $\overline{M} \times \{-c < \rho < 0\} \times \mathbb{R}^{2n+3} \subset \overline{M} \times \mathbb{R}^{<0} \times \mathbb{R}^{2n+3}$.