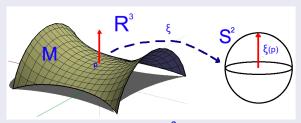
The geometry of constant mean curvature surfaces embedded in R³.

(joint work with Meeks)

Giuseppe Tinaglia King's College London

Outline:

- Introduction to the theory of constant mean curvature (CMC) surfaces.
- Historical perspective
- Main results.
- Future directions.



Let M be an oriented surface in \mathbb{R}^3 , let ξ be the unit vector field normal to M:

$$\mathbf{A} = -d\xi \colon T_p \mathbf{M} \to T_{\xi(p)} \mathbf{S^2} \simeq T_p \mathbf{M}$$

is the shape operator of M (second fundamental form).

Definition

- The eigenvalues k_1 , k_2 of \mathbf{A}_p are the **principal** curvatures of \mathbf{M} at p.
- $H = \frac{1}{2} tr(A) = \frac{k_1 + k_2}{2}$ is the mean curvature.
- $|\mathbf{A}| = \sqrt{k_1^2 + k_2^2}$ is the norm of the second fundamental form.

Gauss equation

$$4H^2 = |\mathbf{A}|^2 + 2K_G$$
 ($K_G = Gaussian curvature$)

First Variation Formula

$$\mathbf{M}_t = \{ p + t\phi(p)\xi(p) \mid p \in \mathbf{M} \}, \quad \phi \in C_0^{\infty}(\mathbf{M})$$

$$\frac{d}{dt} \operatorname{Area}(\mathbf{M}_t) \mid_{t=0} = -2 \int_{\mathbf{M}} \mathbf{H} \phi$$

Definition

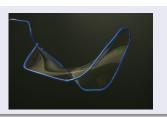
M is a **minimal surface** \iff **M** is a critical point for the area functional \iff **H** \equiv 0.

Definition

M is a **CMC surface** \iff **M** is a critical point for the area functional under variations **preserving the volume**, $\int_{\mathbf{M}} \phi = 0$ \iff **H** \equiv constant.

CMC surfaces in nature

Soap films are minimal surfaces



Soap bubbles are nonzero CMC surfaces

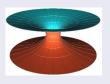
Example (Graph of a function)

$$\bullet \ \ H = \tfrac{1}{2} \text{div} \tfrac{\nabla u}{\sqrt{1 + |\nabla u|^2}} \quad \ \text{Quasi-linear elliptic PDE}$$

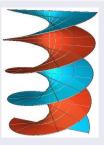
$$\bullet \frac{|\mathit{Hess}(u)|^2}{(1+|\nabla u|^2)^2} \le |\mathbf{A}|^2 \le 2\frac{|\mathit{Hess}(u)|^2}{1+|\nabla u|^2}$$

Definition

M is a **minimal surface** \iff **M** is a critical point for the area functional \iff **H** \equiv 0.



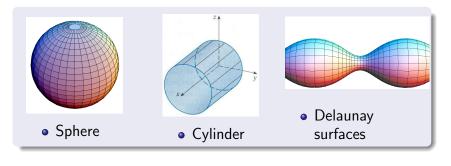
Catenoid



Helicoid

Definition

M is a CMC surface \iff H \equiv constant \iff M is a critical point for the area functional under variations preserving the volume.



Let M be a **closed** (compact without boundary) CMC surface in \mathbb{R}^3 :

Let M be a **closed** (compact without boundary) CMC surface in \mathbb{R}^3 :

• M cannot be minimal. (coordinate maps are harmonic)

Let **M** be a **closed** (compact without boundary) CMC surface in **R**³:

- M cannot be minimal. (coordinate maps are harmonic)
- If M has genus 0, then it is a round sphere (1951, Hopf).

Let **M** be a **closed** (compact without boundary) CMC surface in **R**³:

- M cannot be minimal. (coordinate maps are harmonic)
- If M has genus 0, then it is a round sphere (1951, Hopf).
- If M is embedded, then it is a round sphere (1956, Alexandrov).

Let **M** be a **closed** (compact without boundary) CMC surface in **R**³:

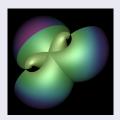
- M cannot be minimal. (coordinate maps are harmonic)
- If M has genus 0, then it is a round sphere (1951, Hopf).
- If M is embedded, then it is a round sphere (1956, Alexandrov).
- . . .

Let M be a **closed** (compact without boundary) CMC surface in \mathbb{R}^3 :

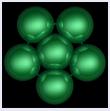
- M cannot be minimal. (coordinate maps are harmonic)
- If M has genus 0, then it is a round sphere (1951, Hopf).
- If M is embedded, then it is a round sphere (1956, Alexandrov).
- . . .
- If M is stable, then it is a round sphere (1983, Barbosa-Do Carmo).

• Existence of immersed CMC Tori (1984, Wente).

• Existence of immersed CMC Tori (1984, Wente).



 Many examples of closed CMC surfaces (1994, Kapouleas; Mazzeo-Pacard, Mazzeo-Pacard-Pollack, et al.)



Question

Is the round sphere the only complete simply connected surface **embedded** in **R**³ with nonzero constant mean curvature?

NOT simply connected

Cylinder

NOT embedded

Smyth surface

Question

Is the round sphere the only complete simply connected surface **embedded** in **R**³ with nonzero constant mean curvature?

NOT simply connected

Cylinder

NOT embedded

Smyth surface

Answer (Meeks-T.)

Yes.

Theorem (**Meeks-T.**)

Round spheres are the only complete simply connected surfaces embedded in \mathbb{R}^3 with nonzero constant mean curvature.

1997, Meeks for properly embedded.

Theorem (**Meeks-T.**)

Round spheres are the only complete simply connected surfaces embedded in \mathbb{R}^3 with nonzero constant mean curvature.

1997, Meeks for properly embedded.

Let M be a complete and simply-connected CMC surface embedded in R³, then it is either

a plane, a helicoid or a round sphere.

(2008, Colding-Minicozzi and Meeks-Rosenberg for H = 0)

Definition

A 1-disk is a simply-connected surface (possibly with boundary) **embedded** in \mathbb{R}^3 with constant mean curvature 1.

Definition

A 1-disk is a simply-connected surface (possibly with boundary) embedded in \mathbb{R}^3 with constant mean curvature 1.

Radius Estimate

There exists a universal constant R such that: If M is a 1-disk, then M has radius less than R, $\operatorname{dist}_{M}(\rho, \partial M) < R$.

Definition

A 1-disk is a simply-connected surface (possibly with boundary) **embedded** in \mathbb{R}^3 with constant mean curvature 1.

Radius Estimate

There exists a universal constant \mathbf{R} such that: If \mathbf{M} is a 1-disk, then \mathbf{M} has radius less than \mathbf{R} , $\operatorname{dist}_{\mathbf{M}}(\mathbf{p}, \partial \mathbf{M}) < \mathbf{R}$.

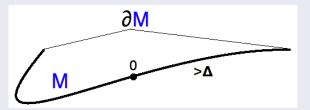
In particular, if M is a complete 1-disk then Radius Estimate $\implies M$ is compact $\implies M$ is an embedded sphere $\implies M$ is a round sphere.

The Radius Estimate is a non-trivial consequence of the following Intrinsic Curvature Estimate.

Intrinsic Curvature Estimate

Given $\Delta > 0$ there exists $C = C(\Delta)$ such that: If M is a 1-disk with $0 \in M$ and $dist_M(0, \partial M) > \Delta$, then

$$|\mathbf{A}|(0) \leq \mathbf{C}$$
.



Question

Question

What does a uniform bound on |A| imply?

• In general, a neighborhood of a point $p \in M$ is always a graph over T_pM . However, the size of such neighborhood depends on p.

Question

- In general, a neighborhood of a point $p \in M$ is always a graph over T_pM . However, the size of such neighborhood depends on p.
- If $\sup_{\mathbf{M}} |\mathbf{A}| = \sup_{\mathbf{M}} |d\xi| \le \mathbf{C}$ then the size of such neighborhood only depends on \mathbf{C} and NOT on p.

Question

- In general, a neighborhood of a point $p \in M$ is always a graph over T_pM . However, the size of such neighborhood depends on p.
- If $\sup_{\mathbf{M}} |\mathbf{A}| = \sup_{\mathbf{M}} |d\xi| \le \mathbf{C}$ then the size of such neighborhood only depends on \mathbf{C} and NOT on p.
- ullet Let the surface be CMC and ullet be such graph then
 - $\|\mathbf{u}\|_{C^2} \le 10\mathbf{C}$
 - $\bullet \ \operatorname{div} \frac{\nabla \mathbf{u}}{\sqrt{1+|\nabla \mathbf{u}|^2}} = 2H$

Question

- In general, a neighborhood of a point $p \in M$ is always a graph over T_pM . However, the size of such neighborhood depends on p.
- If $\sup_{\mathbf{M}} |\mathbf{A}| = \sup_{\mathbf{M}} |d\xi| \le \mathbf{C}$ then the size of such neighborhood only depends on \mathbf{C} and NOT on p.
- ullet Let the surface be CMC and ullet be such graph then
 - $\|\mathbf{u}\|_{C^2} \le 10\mathbf{C}$
 - $\bullet \ \operatorname{div} \frac{\nabla \mathbf{u}}{\sqrt{1+|\nabla \mathbf{u}|^2}} = 2H$
 - then, $\|\mathbf{u}\|_{C^{2,\alpha}}$ is uniformly bounded independently of p.

The Intrinsic Curvature Estimate

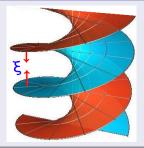
Intrinsic Curvature Estimate

Given Δ there exists $\mathbf{C}=\mathbf{C}(\Delta)$ such that: If \mathbf{M} is a 1-disk with $0\in\mathbf{M}$ and $\mathrm{dist}_{\mathbf{M}}(0,\partial\mathbf{M})>\Delta$, then

$$|{\bf A}|(0) \leq {\bf C}.$$

Note

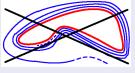
The local estimate on |A| fails in the minimal case; counterexamples being rescaled helicoids.



A global result

Theorem (**Meeks-T.**)

Let M be a complete, nonzero CMC surface **embedded** in \mathbb{R}^3 with finite topology. Then:

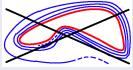


 M has bounded curvature and is properly embedded.

A global result

Theorem (**Meeks-T.**)

Let M be a complete, nonzero CMC surface **embedded** in \mathbb{R}^3 with finite topology. Then:



- M has bounded curvature and is properly embedded.
- M has more than one end or it is a round sphere.

A global result

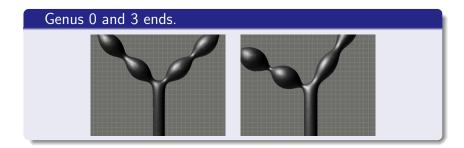
Theorem (**Meeks-T.**)

Let M be a complete, nonzero CMC surface **embedded** in \mathbb{R}^3 with finite topology. Then:

- M has bounded curvature and is properly embedded.
- M has more than one end or it is a round sphere.
- If M has exactly two ends then it is a Delaunay surface.
- If M has more than one end then each end is asymptotic to a Delaunay surface.

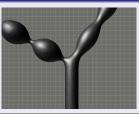
For properly embedded: 1997, Meeks; 1998, Korevaar-Kusner-Solomon.

Examples of finite topology nonzero CMC surfaces



Examples of finite topology nonzero CMC surfaces

Genus 0 and 3 ends.



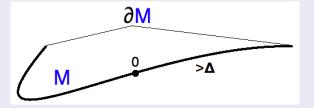
Genus 0 and 4, 6 ends.

Genus 1 and 6 ends.

Intrinsic Curvature Estimate

Given Δ there exists $\mathbf{C} = \mathbf{C}(\Delta)$ such that: If \mathbf{M} is a 1-disk with $0 \in \mathbf{M}$ and $\operatorname{dist}_{\mathbf{M}}(0, \partial \mathbf{M}) > \Delta$, then

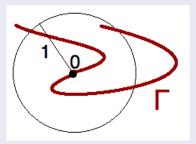
$$|{\bf A}|(0) \le {\bf C}.$$



Step 1: Cord-arc Bound (**Colding-Minicozzi** for H = 0)

There exists a universal constant Ω such that: If M is a 1-disk with $0 \in M$, $\operatorname{dist}_M(0,\partial M) > r\Omega$, r > 0, and Γ is a geodesic starting at the origin with length $> r\Omega$, then

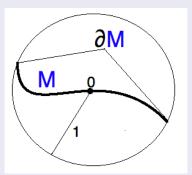
$$\Gamma \cap \partial \mathbf{B}(\mathbf{r}) \neq \emptyset.$$



Step 2: Extrinsic Curvature Estimate

Given $\Lambda > 0$ there exists a constant $C = C(\Lambda)$ such that: If M is a 1-disk with $0 \in M$ and $\partial M \subset \partial B(\Lambda)$, then

$$|\mathbf{A}|(0) \leq \mathbf{C}$$
.



Intrinsic Curvature Estimate

Given $\Delta > 0$ there exists $\mathbf{C} = \mathbf{C}(\Delta)$ such that: If \mathbf{M} is a 1-disk with $0 \in \mathbf{M}$ and $\mathrm{dist}_{\mathbf{M}}(0, \partial \mathbf{M}) > \Delta$, then

$$|{\bf A}|(0) \le {\bf C}.$$

Proof

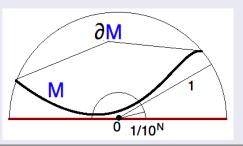
- Cord-arc Bound says that the connected component of $\mathbf{M} \cap \mathbf{B}(\frac{\Delta}{\Omega})$ containing the origin is a 1-disk with boundary in $\partial \mathbf{B}(\frac{\Delta}{\Omega})$.
- Apply the Extrinsic Curvature Estimate to such 1-disk.

The proof of the Chord-arc Bound

Key ingredient: One-sided Curvature Estimate (Colding-Minicozzi for $\mathbf{H}=\mathbf{0}$)

There exist universal constants **K** and **N** such that: If **M** is an **H**-disk with $|\mathbf{H}| \leq 1$, $\partial \mathbf{M} \subset \partial \mathbf{B}(1)$ and $\mathbf{M} \subset \{x_3 > 0\}$, then

$$\sup_{\mathbf{M}\cap \mathbf{B}(\frac{1}{10^N})}|\mathbf{A}|\leq \mathbf{K}.$$



• Characterisation of the round sphere

Characterisation of the round sphere

Radius Estimate

• Characterisation of the round sphere

Radius Estimate

Intrinsic Curvature Estimate

Characterisation of the round sphere

Radius Estimate

- Intrinsic Curvature Estimate
 - Chord-arc Bound
 - One-sided Curvature Estimate
 - Extrinsic Curvature Estimate

Question

What can be said about the geometry of a complete nonzero CMC surface M embedded in a complete 3-manifolds N?

Question

What can be said about the geometry of a complete nonzero CMC surface M embedded in a complete 3-manifolds N?

Question

M has positive injectivity radius + **N** has bounded sectional curvatures \implies curvature estimates \implies proper when the scalar curvature> $\varepsilon > 0$

Question

What can be said about the geometry of a complete nonzero CMC surface M embedded in a complete 3-manifolds N?

Question

M has positive injectivity radius + **N** has bounded sectional curvatures \implies curvature estimates \implies proper when the scalar curvature> $\varepsilon > 0$

Question

M has finite topology + N is homogeneous \implies

M has locally bounded second fundamental form

Question

Let M be a complete nonzero CMC surface embedded in H^3 with $H \ge 1$ and finite topology. Then:

- M has bounded curvature and is properly embedded.
- If H = 1, then each annular end of M is asymptotic to a horosphere or a catenoid. Furthermore, if M has one end, then M is a horosphere.
- If H > 1, then each annular end of M is asymptotic to the end of a Hsiang surface.

```
For properly embedded + H=1: 2001, Collin-Hauswirth-Rosenberg.
For properly embedded + H>1: 1992, Korevaar-Kusner-Meeks-Solomon.
```

Question

What can be said about the geometry of a surface M embedded in R^3 with bounded mean curvature in L^p ?

Theorem (**Bourni-T.**)

Let M be a surface embedded in R^3 containing the origin with $Inj_M(0) \ge s > 0$,

$$\int_{B_{\mathsf{M}}(s)} |\textbf{A}|^2 \leq \textbf{C}_1$$

and either

i.
$$\|\mathsf{H}\|_{\mathsf{W}^{2,2}(\mathsf{B}_\mathsf{M}(\mathsf{s}))}^* \leq \Lambda_2(\mathsf{C}_1),$$
 if $\mathsf{p}=2$ or

ii.
$$\|H\|_{W^{1,p}(B_M(s))}^* \le \Lambda_p(C_1)$$
, if $p > 2$,

then

$$|\mathbf{A}|^2(\mathbf{0}) \leq C_2(\mathbf{p}, C_1)s^{-2}$$
.

For **H=0**: 2004, **Colding-Minicozzi**.

Radius Estimate

There exists a universal constant \mathbf{R} such that: If \mathbf{M} is a 1-disk, then \mathbf{M} has radius less than \mathbf{R} .

Sketch of the proof

• Arguing by contradiction let M_n be a sequence of 1-disks with radii >n and |A| uniformly bounded.

- Arguing by contradiction let M_n be a sequence of 1-disks with radii >n and |A| uniformly bounded.
- A subsequence of M_n converges C² to a complete "embedded" CMC=1 surface M with bounded curvature and genus zero.

- Arguing by contradiction let M_n be a sequence of 1-disks with radii >n and |A| uniformly bounded.
- A subsequence of M_n converges C² to a complete "embedded" CMC=1 surface M with bounded curvature and genus zero.
- M is proper. If NOT then the universal cover of M M would be a (strongly) stable, complete surface with CMC=1 but there is none.

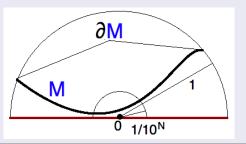
- Arguing by contradiction let M_n be a sequence of 1-disks with radii >n and |A| uniformly bounded.
- A subsequence of M_n converges C² to a complete "embedded" CMC=1 surface M with bounded curvature and genus zero.
- M is proper. If NOT then the universal cover of M M would be a (strongly) stable, complete surface with CMC=1 but there is none.
- M contains a Delaunay surface at "infinity" (Meeks-T.; 1998, Korevaar-Kusner-Solomon for properly embedded + finite topology).

- Arguing by contradiction let M_n be a sequence of 1-disks with radii >n and |A| uniformly bounded.
- A subsequence of M_n converges C² to a complete "embedded" CMC=1 surface M with bounded curvature and genus zero.
- M is proper. If NOT then the universal cover of M M would be a (strongly) stable, complete surface with CMC=1 but there is none.
- M contains a Delaunay surface at "infinity" (Meeks-T.; 1998, Korevaar-Kusner-Solomon for properly embedded + finite topology).
- A Delaunay surface cannot be a limit of 1-disks.
 Contradiction!

One-sided Curvature Estimate (Colding-Minicozzi for $\mathbf{H} = \mathbf{0}$)

There exist universal constants **K** and **N** such that: If **M** is an **H**-disk with $|\mathbf{H}| \leq 1$, $\partial \mathbf{M} \subset \partial \mathbf{B}(1)$ and $\mathbf{M} \subset \{x_3 > 0\}$, then

$$\sup_{\mathsf{M}\cap\mathsf{B}(\frac{1}{10^N})}|\mathsf{A}|\leq\mathsf{K}.$$



Sketch of the proof

• Arguing by contradiction, let $p_n \in \mathbf{M}_n$ be a sequence of points converging to the origin where $|\mathbf{A}_n|$ is arbitrarily large.

- Arguing by contradiction, let $p_n \in \mathbf{M}_n$ be a sequence of points converging to the origin where $|\mathbf{A}_n|$ is arbitrarily large.
- Around p_n , M_n looks like a vertical helicoid and thus the tangent plane at p_n is vertical.

- Arguing by contradiction, let $p_n \in \mathbf{M}_n$ be a sequence of points converging to the origin where $|\mathbf{A}_n|$ is arbitrarily large.
- Around p_n , M_n looks like a vertical helicoid and thus the tangent plane at p_n is vertical.
- Let Γ_n be connected component of the pre-image of the equator via the Gauss map containing p_n (tangent plane is vertical).

- Arguing by contradiction, let $p_n \in \mathbf{M}_n$ be a sequence of points converging to the origin where $|\mathbf{A}_n|$ is arbitrarily large.
- Around p_n , M_n looks like a vertical helicoid and thus the tangent plane at p_n is vertical.
- Let Γ_n be connected component of the pre-image of the equator via the Gauss map containing p_n (tangent plane is vertical).
- Around each point $p \in \Gamma_n$, M_n looks like a vertical helicoid and thus the curve Γ_n cannot be contained in a half-space.

Key ingredients

Colding-Minicozzi Theory.

Key ingredients

- Colding-Minicozzi Theory.
- Uniqueness of the helicoid (Meeks-Rosenberg).

Key ingredients

- Colding-Minicozzi Theory.
- Uniqueness of the helicoid (Meeks-Rosenberg).
- Geometry of minimal and CMC laminations (Meeks-Perez-Ros).

Thanks