The geometry of constant mean curvature surfaces embedded in \mathbb{R}^3.
(joint work with Meeks)

Giuseppe Tinaglia
King’s College London
Outline:

- Introduction to the theory of constant mean curvature (CMC) surfaces.
- Historical perspective
- Main results.
- Future directions.
Let M be an oriented surface in \mathbb{R}^3, let ξ be the unit vector field normal to M:

$$A = -d\xi : T_pM \to T_{\xi(p)}S^2 \cong T_pM$$

is the shape operator of M (second fundamental form).
Introduction to the theory of CMC surfaces

Definition

- The eigenvalues k_1, k_2 of A_p are the **principal curvatures** of M at p.
- $H = \frac{1}{2} \text{tr}(A) = \frac{k_1 + k_2}{2}$ is the **mean curvature**.
- $|A| = \sqrt{k_1^2 + k_2^2}$ is the **norm of the second fundamental form**.

Gauss equation

$$4H^2 = |A|^2 + 2K_G \quad (K_G = \text{Gaussian curvature})$$
Introduction to the theory of CMC surfaces

First Variation Formula

\[M_t = \{ p + t\phi(p)\xi(p) \mid p \in M \}, \quad \phi \in C_0^\infty(M) \]

\[\frac{d}{dt} \text{Area}(M_t) \bigg|_{t=0} = -2 \int_M H\phi \]

Definition

M is a **minimal surface** \iff M is a critical point for the area functional \iff H \equiv 0.

Definition

M is a **CMC surface** \iff M is a critical point for the area functional under variations preserving the volume, \(\int_M \phi = 0 \) \iff H \equiv \text{constant}.
Soap films are minimal surfaces

Soap bubbles are nonzero CMC surfaces
Introduction to the theory of CMC surfaces

Example (Graph of a function)

\[H = \frac{1}{2} \text{div} \frac{\nabla u}{\sqrt{1 + |\nabla u|^2}} \]

Quasi-linear elliptic PDE

\[\frac{|\text{Hess}(u)|^2}{(1 + |\nabla u|^2)^2} \leq |A|^2 \leq 2 \frac{|\text{Hess}(u)|^2}{1 + |\nabla u|^2} \]
Definition

\(M \) is a **minimal surface** \(\iff \) \(M \) is a critical point for the area functional \(\iff H \equiv 0. \)

- Catenoid
- Helicoid
Definition

M is a **CMC surface** $\iff H \equiv \text{constant} \iff M$ is a critical point for the area functional under variations preserving the volume.

- **Sphere**
- **Cylinder**
- **Delaunay surfaces**
Let M be a closed (compact without boundary) CMC surface in \mathbb{R}^3:
Let M be a **closed** (compact without boundary) CMC surface in \mathbb{R}^3:

- M cannot be minimal. (coordinate maps are harmonic)
Let M be a closed (compact without boundary) CMC surface in \mathbb{R}^3:

- M cannot be minimal. (coordinate maps are harmonic)
- If M has genus 0, then it is a round sphere (1951, Hopf).
Let M be a **closed** (compact without boundary) CMC surface in \mathbb{R}^3:

- M cannot be minimal. (coordinate maps are harmonic)
- If M has **genus 0**, then it is a round sphere (1951, Hopf).
- If M is **embedded**, then it is a round sphere (1956, Alexandrov).
Let M be a \textbf{closed} (compact without boundary) CMC surface in \mathbb{R}^3:

- M cannot be minimal. (coordinate maps are harmonic)
- If M has \textbf{genus 0}, then it is a round sphere (1951, \textit{Hopf}).
- If M is \textbf{embedded}, then it is a round sphere (1956, \textit{Alexandrov}).
- ...
Let M be a **closed** (compact without boundary) CMC surface in \mathbb{R}^3:

- M cannot be minimal. (coordinate maps are harmonic)
- If M has genus 0, then it is a round sphere (1951, Hopf).
- If M is **embedded**, then it is a round sphere (1956, Alexandrov).
- . . .
- If M is **stable**, then it is a round sphere (1983, Barbosa-Do Carmo).
Historical perspective

Many examples of closed CMC surfaces (1994, Kapouleas; Mazzeo-Pacard, Mazzeo-Pacard-Pollack, et al.)
Question

Is the round sphere the only complete simply connected surface \textbf{embedded} in \mathbb{R}^3 with nonzero constant mean curvature?

\[\begin{tabular}{ll}
\textbf{NOT simply connected} & \textbf{NOT embedded} \\
\includegraphics[width=0.3\textwidth]{cylinder.png} & \includegraphics[width=0.3\textwidth]{smyth_surface.png} \\
\textbullet Cylinder & \textbullet Smyth surface
\end{tabular} \]

Answer (Meeks-T.): Yes.
New uniqueness results for CMC surfaces

Question
Is the round sphere the only complete simply connected surface embedded in \mathbb{R}^3 with nonzero constant mean curvature?

Answer (Meeks-T.)
Yes.

- **NOT simply connected**
 - Cylinder

- **NOT embedded**
 - Smyth surface
New uniqueness results for CMC surfaces

<table>
<thead>
<tr>
<th>Theorem (Meeks-T.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round spheres are the only complete simply connected surfaces embedded in \mathbb{R}^3 with nonzero constant mean curvature.</td>
</tr>
</tbody>
</table>

1997, Meeks for properly embedded.
New uniqueness results for CMC surfaces

Theorem (Meeks-T.)

Round spheres are the only complete simply connected surfaces embedded in \mathbb{R}^3 with nonzero constant mean curvature.

1997, Meeks for properly embedded.

Let M be a complete and simply-connected CMC surface embedded in \mathbb{R}^3, then it is either

- a plane,
- a helicoid, or
- a round sphere.

(2008, Colding-Minicozzi and Meeks-Rosenberg for $H = 0$)
Main Results

Definition

A 1-disk is a simply-connected surface (possibly with boundary) embedded in \mathbb{R}^3 with constant mean curvature 1.
Main Results

Definition

A 1-disk is a simply-connected surface (possibly with boundary) embedded in \mathbb{R}^3 with constant mean curvature 1.

Radius Estimate

There exists a universal constant R such that:
If M is a 1-disk, then M has radius less than R, $\text{dist}_M(p, \partial M) < R$.

In particular, if M is a complete 1-disk then Radius Estimate $\Rightarrow M$ is compact $\Rightarrow M$ is an embedded sphere $\Rightarrow M$ is a round sphere.
Main Results

Definition

A 1-disk is a simply-connected surface (possibly with boundary) \textit{embedded} in \mathbb{R}^3 with constant mean curvature 1.

Radius Estimate

There exists a universal constant R such that:
If M is a 1-disk, then M has radius less than R, $\text{dist}_M(p, \partial M) < R$.

In particular, if M is a complete 1-disk then
Radius Estimate \implies M is compact \implies M is an embedded sphere \implies M is a round sphere.
The Radius Estimate is a non-trivial consequence of the following Intrinsic Curvature Estimate.

Intrinsic Curvature Estimate

Given \(\Delta > 0 \) there exists \(C = C(\Delta) \) such that:

If \(M \) is a 1-disk with \(0 \in M \) and \(\text{dist}_M(0, \partial M) > \Delta \), then

\[
|A|(0) \leq C.
\]
Main Results

Question

What does a uniform bound on $|A|$ imply?
Main Results

Question
What does a uniform bound on $|A|$ imply?

- In general, a neighborhood of a point $p \in M$ is always a graph over T_pM. However, the size of such neighborhood depends on p.

$$\text{sup}_M |A| \leq C$$

Let the surface be CMC and u be such graph then

$$\|u\|_{C^2} \leq 10C \text{div}\nabla u \sqrt{1 + |\nabla u|^2} = 2H$$

then, $\|u\|_{C^2,\alpha}$ is uniformly bounded independently of p.

Main Results

Question
What does a uniform bound on $|A|$ imply?

- In general, a neighborhood of a point $p \in M$ is always a graph over $T_p M$. However, the size of such neighborhood depends on p.

- If $\sup_M |A| = \sup_M |d\xi| \leq C$ then the size of such neighborhood only depends on C and NOT on p.

Let the surface be CMC and u be such graph then $\|u\|_{C^2} \leq 10C \div \sqrt{1 + |\nabla u|^2} = 2H$ then, $\|u\|_{C^2,\alpha}$ is uniformly bounded independently of p.
Main Results

Question

What does a uniform bound on $|A|$ imply?

- In general, a neighborhood of a point $p \in M$ is always a graph over $T_p M$. However, the size of such neighborhood depends on p.
- If $\sup_M |A| = \sup_M |d\xi| \leq C$ then the size of such neighborhood only depends on C and NOT on p.
- Let the surface be CMC and u be such graph then
 - $\|u\|_{C^2} \leq 10C$
 - $\text{div} \frac{\nabla u}{\sqrt{1+|\nabla u|^2}} = 2H$
Main Results

Question
What does a uniform bound on $|A|$ imply?

- In general, a neighborhood of a point $p \in M$ is always a graph over T_pM. However, the size of such neighborhood depends on p.
- If $\sup_M |A| = \sup_M |d\xi| \leq C$ then the size of such neighborhood only depends on C and NOT on p.
- Let the surface be CMC and u be such graph then
 - $\|u\|_{C^2} \leq 10C$
 - $\text{div} \frac{\nabla u}{\sqrt{1+|\nabla u|^2}} = 2H$
 - then, $\|u\|_{C^{2,\alpha}}$ is uniformly bounded independently of p.
Intrinsic Curvature Estimate

Given Δ there exists $C = C(\Delta)$ such that:
If M is a 1-disk with $0 \in M$ and $\text{dist}_M(0, \partial M) > \Delta$, then

$$|A|(0) \leq C.$$

Note

The local estimate on $|A|$ fails in the minimal case; counterexamples being rescaled helicoids.
A global result

Theorem (Meeks-T.)

Let M be a complete, nonzero CMC surface embedded in \mathbb{R}^3 with finite topology. Then:

- M has bounded curvature and is properly embedded.
- M has more than one end or it is a round sphere.
- If M has exactly two ends then it is a Delaunay surface.
- If M has more than one end then each end is asymptotic to a Delaunay surface.

Theorem (Meeks-T.)

Let M be a complete, nonzero CMC surface embedded in \mathbb{R}^3 with finite topology. Then:

- M has bounded curvature and is properly embedded.

- M has more than one end or it is a round sphere.
Theorem (Meeks-T.)

Let M be a complete, nonzero CMC surface embedded in \mathbb{R}^3 with finite topology. Then:

- M has bounded curvature and is properly embedded.
- M has more than one end or it is a round sphere.
- If M has exactly two ends then it is a Delaunay surface.
- If M has more than one end then each end is asymptotic to a Delaunay surface.

Examples of finite topology nonzero CMC surfaces

Genus 0 and 3 ends.
Examples of finite topology nonzero CMC surfaces

<table>
<thead>
<tr>
<th>Genus 0 and 3 ends.</th>
<th>Genus 0 and 4, 6 ends.</th>
<th>Genus 1 and 6 ends.</th>
</tr>
</thead>
<tbody>
<tr>
<td> </td>
<td></td>
<td></td>
</tr>
<tr>
<td> </td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Intrinsic Curvature Estimate

Given Δ there exists $C = C(\Delta)$ such that:
If M is a 1-disk with $0 \in M$ and $\text{dist}_M(0, \partial M) > \Delta$, then

$$|A|(0) \leq C.$$
Step 1: Cord-arc Bound (Colding-Minicozzi for $H = 0$)

There exists a universal constant Ω such that:

If M is a 1-disk with $0 \in M$, $\text{dist}_M(0, \partial M) > r\Omega$, $r > 0$, and Γ is a geodesic starting at the origin with length $> r\Omega$, then

$$\Gamma \cap \partial B(r) \neq \emptyset.$$
The proof of the Intrinsic Curvature Estimate

Step 2: Extrinsic Curvature Estimate

Given $\Lambda > 0$ there exists a constant $C = C(\Lambda)$ such that:

If M is a 1-disk with $0 \in M$ and $\partial M \subset \partial B(\Lambda)$, then

$$|A|(0) \leq C.$$
Intrinsic Curvature Estimate

Given $\Delta > 0$ there exists $C = C(\Delta)$ such that:

If M is a 1-disk with $0 \in M$ and $\text{dist}_M(0, \partial M) > \Delta$, then

$$|A|(0) \leq C.$$

Proof

- Cord-arc Bound says that the connected component of $M \cap B\left(\frac{A}{\Omega}\right)$ containing the origin is a 1-disk with boundary in $\partial B\left(\frac{A}{\Omega}\right)$.
- Apply the Extrinsic Curvature Estimate to such 1-disk.
The proof of the Chord-arc Bound

Key ingredient: One-sided Curvature Estimate
(Colding-Minicozzi for $H = 0$)

There exist universal constants K and N such that:
If M is an H-disk with $|H| \leq 1$, $\partial M \subset \partial B(1)$ and $M \subset \{x_3 > 0\}$, then

\[
\sup_{M \cap B \left(\frac{1}{10^N}\right)} |A| \leq K.
\]
Main Results

- Characterisation of the round sphere
Main Results

- Characterisation of the round sphere
 - Radius Estimate

- Intrinsic Curvature Estimate

- Chord-arc Bound

- Extrinsic Curvature Estimate
Main Results

- Characterisation of the round sphere
 - Radius Estimate
 - Intrinsic Curvature Estimate
Main Results

- Characterisation of the round sphere
 - Radius Estimate
 - Intrinsic Curvature Estimate
 - Chord-arc Bound
 - One-sided Curvature Estimate
 - Extrinsic Curvature Estimate
Future Directions

Question

What can be said about the geometry of a complete nonzero CMC surface M embedded in a complete 3-manifolds N?
Future Directions

Question

What can be said about the geometry of a complete nonzero CMC surface M embedded in a complete 3-manifolds N?

Question

M has positive injectivity radius + N has bounded sectional curvatures \implies curvature estimates \implies proper when the scalar curvature $\geq \varepsilon > 0$
Future Directions

Question
What can be said about the geometry of a complete nonzero CMC surface M embedded in a complete 3-manifolds N?

Question
M has positive injectivity radius $+$ N has bounded sectional curvatures \implies curvature estimates \implies proper when the scalar curvature $> \varepsilon > 0$

Question
M has finite topology $+$ N is homogeneous \implies M has locally bounded second fundamental form
Future Directions

Question

Let M be a complete nonzero CMC surface embedded in H^3 with $H \geq 1$ and finite topology. Then:

- M has bounded curvature and is properly embedded.

- If $H = 1$, then each annular end of M is asymptotic to a horosphere or a catenoid. Furthermore, if M has one end, then M is a horosphere.

- If $H > 1$, then each annular end of M is asymptotic to the end of a Hsiang surface.

For properly embedded $+ H>1$: 1992, Korevaar-Kusner-Meeks-Solomon.
Future Directions

Question
What can be said about the geometry of a surface M embedded in \mathbb{R}^3 with bounded mean curvature in L^p?
Theorem (Bourni-T.)

Let M be a surface embedded in \mathbb{R}^3 containing the origin with $\text{Inj}_M(0) \geq s > 0$,

$$\int_{B_M(s)} |A|^2 \leq C_1$$

and either

i. $\|H\|_{W^{2,2}(B_M(s))}^* \leq \Lambda_2(C_1)$, if $p = 2$ or

ii. $\|H\|_{W^{1,p}(B_M(s))}^* \leq \Lambda_p(C_1)$, if $p > 2$,

then

$$|A|^2(0) \leq C_2(p, C_1)s^{-2}.$$

For $H=0$: 2004, Colding-Minicozzi.
The proof of the Radius Estimate

Radius Estimate

There exists a universal constant R such that:
If M is a 1-disk, then M has radius less than R.
Arguing by contradiction let M_n be a sequence of 1-disks with radii $>n$ and $|A|$ uniformly bounded.
Sketch of the proof

- Arguing by contradiction let M_n be a sequence of 1-disks with radii $>n$ and $|A|$ uniformly bounded.
- A subsequence of M_n converges C^2 to a complete "embedded" CMC=1 surface M with bounded curvature and genus zero.
Sketch of the proof

- Arguing by contradiction let M_n be a sequence of 1-disks with radii n and $|A|$ uniformly bounded.
- A subsequence of M_n converges C^2 to a complete “embedded” $\text{CMC}=1$ surface M with bounded curvature and genus zero.
- M is proper. If NOT then the universal cover of $\overline{M} - M$ would be a (strongly) stable, complete surface with $\text{CMC}=1$ but there is none.
The proof of the Radius Estimate

Sketch of the proof

- Arguing by contradiction let M_n be a sequence of 1-disks with radii $>n$ and $|A|$ uniformly bounded.
- A subsequence of M_n converges C^2 to a complete “embedded” CMC=1 surface M with bounded curvature and genus zero.
- M is *proper*. If NOT then the universal cover of $\overline{M} - M$ would be a (strongly) stable, complete surface with CMC=1 but there is none.
The proof of the Radius Estimate

Sketch of the proof

- Arguing by contradiction let M_n be a sequence of 1-disks with radii $> n$ and $|A|$ uniformly bounded.
- A subsequence of M_n converges C^2 to a complete “embedded” CMC$=1$ surface M with bounded curvature and genus zero.
- M is proper. If NOT then the universal cover of $\overline{M} - M$ would be a (strongly) stable, complete surface with CMC$=1$ but there is none.
- A Delaunay surface cannot be a limit of 1-disks. Contradiction!
The proof of the One-sided Curvature Estimate

One-sided Curvature Estimate
(Colding-Minicozzi for $H = 0$)

There exist universal constants K and N such that:
If M is an H-disk with $|H| \leq 1$, $\partial M \subset \partial B(1)$ and $M \subset \{x_3 > 0\}$, then

$$\sup_{M \cap B\left(\frac{1}{10N}\right)} |A| \leq K.$$
Arguing by contradiction, let $p_n \in \mathbf{M}_n$ be a sequence of points converging to the origin where $|A_n|$ is arbitrarily large.
Sketch of the proof

- Arguing by contradiction, let $p_n \in M_n$ be a sequence of points converging to the origin where $|A_n|$ is arbitrarily large.

- Around p_n, M_n looks like a vertical helicoid and thus the tangent plane at p_n is vertical.
Sketch of the proof

- Arguing by contradiction, let $p_n \in M_n$ be a sequence of points converging to the origin where $|A_n|$ is arbitrarily large.
- Around p_n, M_n looks like a vertical helicoid and thus the tangent plane at p_n is vertical.
- Let Γ_n be connected component of the pre-image of the equator via the Gauss map containing p_n (tangent plane is vertical).
Sketch of the proof

- Arguing by contradiction, let \(p_n \in \mathcal{M}_n \) be a sequence of points converging to the origin where \(|A_n| \) is arbitrarily large.

- Around \(p_n \), \(\mathcal{M}_n \) looks like a vertical helicoid and thus the tangent plane at \(p_n \) is vertical.

- Let \(\Gamma_n \) be connected component of the pre-image of the equator via the Gauss map containing \(p_n \) (tangent plane is vertical).

- Around each point \(p \in \Gamma_n \), \(\mathcal{M}_n \) looks like a vertical helicoid and thus the curve \(\Gamma_n \) cannot be contained in a half-space.
The proof of the One-sided Curvature Estimate

Key ingredients

- Colding-Minicozzi Theory.
The proof of the One-sided Curvature Estimate

Key ingredients

- **Colding-Minicozzi** Theory.
- Uniqueness of the helicoid (**Meeks-Rosenberg**).
The proof of the One-sided Curvature Estimate

Key ingredients

- **Colding-Minicozzi** Theory.
- Uniqueness of the helicoid (*Meeks-Rosenberg*).
- Geometry of minimal and CMC laminations (*Meeks-Perez-Ros*).
Thanks