Spin(9) structures and vector fields on spheres

Maurizio Parton¹ Paolo Piccinni² Victor Vuletescu³

¹Università di Chieti-Pescara, Italy

²Sapienza Università di Roma, Italy

³University of Bucharest, Romania

New Trends in Differential Geometry L'Aquila, September 7th-9th, 2011

MP, Paolo Piccinni.

Spin(9) and almost complex structures on 16-dimensional manifolds. arXiv: 1105.5318, to appear in Ann. Gl. An. Geom.

MP, Paolo Piccinni.

Spheres with more than 7 vector fields: all the fault of Spin(9). arXiv: 1107.0462.

MP, Paolo Piccinni, Victor Vuletescu.

16-dimensional manifolds with a locally conformal parallel ${\rm Spin}(9)$ metric.

Work in progress.

1 S¹⁵ and Spin(9)

• S¹⁵ is "more equal" among other spheres

• Spin(9) and Hopf fibrations

2 The Spin(9) fundamental form

- Quaternionic analogy
- Spin(9) and Kähler forms on \mathbb{R}^{16}
- An explicit formula for $\Phi_{\text{Spin}(9)}$

Over the second seco

- Maximal number and examples
- Any $S^{N-1} \subset \mathbb{R}^N$

4 Locally conformal parallel Spin(9) manifolds

- Definition and examples
- Structure Theorem

 S^{15} is the only sphere involved in three different Hopf fibrations.

Remark

The complex and quaternionic Hopf fibrations are not subfibrations of the octonionic one [Loo-Verjovsky, Topology 1992].

Second characterization: Einstein metrics

\mathcal{S}^{15} is the only sphere with three homogeneous Einstein metrics

[Ziller, Math. Ann. 1982].

Second characterization: Einstein metrics

S^{15} is the only sphere with three homogeneous Einstein metrics

[Ziller, Math. Ann. 1982].

• Round metric.

Second characterization: Einstein metrics

S^{15} is the only sphere with three homogeneous Einstein metrics

[Ziller, Math. Ann. 1982].

- Round metric.
- Einstein metric on $\mathrm{Sp}(4)/\mathrm{Sp}(3)$ [Jensen, J. Diff. Geom. 1973].

Second characterization: Einstein metrics

\mathcal{S}^{15} is the only sphere with three homogeneous Einstein metrics

[Ziller, Math. Ann. 1982].

- Round metric.
- Einstein metric on $\mathrm{Sp}(4)/\mathrm{Sp}(3)$ [Jensen, J. Diff. Geom. 1973].
- Einstein metric on Spin(9)/Spin(7)

[Bourguignon-Karcher, Ann. Sci. Ec. Norm. Sup. 1978].

Third characterization: vector fields on spheres

\mathcal{S}^{15} is the lowest dimensional sphere admitting more than 7 vector fields

[Hurwitz, Math. Ann. 1922], [Radon, Abh. Math. Hamburg 1923], [Adams, Ann. of Math. 1962].

S^{15} is the lowest dimensional sphere admitting more than 7 vector fields

[Hurwitz, Math. Ann. 1922], [Radon, Abh. Math. Hamburg 1923], [Adams, Ann. of Math. 1962].

• Number $\sigma(N)$ of linearly independent vector fields on S^{N-1} ?

S^{15} is the lowest dimensional sphere admitting more than 7 vector fields

[Hurwitz, Math. Ann. 1922], [Radon, Abh. Math. Hamburg 1923], [Adams, Ann. of Math. 1962].

Number σ(N) of linearly independent vector fields on S^{N-1}?
If N = (2k + 1)2^p16^q, with 0 ≤ p ≤ 3, then

$$\sigma(N) = 8q + 2^p - 1$$

S^{15} is the lowest dimensional sphere admitting more than 7 vector fields

[Hurwitz, Math. Ann. 1922], [Radon, Abh. Math. Hamburg 1923], [Adams, Ann. of Math. 1962].

Number σ(N) of linearly independent vector fields on S^{N-1}?
If N = (2k + 1)2^p16^q, with 0 ≤ p ≤ 3, then

S^{15} is the lowest dimensional sphere admitting more than 7 vector fields

[Hurwitz, Math. Ann. 1922], [Radon, Abh. Math. Hamburg 1923], [Adams, Ann. of Math. 1962].

Number σ(N) of linearly independent vector fields on S^{N-1}?
If N = (2k + 1)2^p16^q, with 0 ≤ p ≤ 3, then

1 *S*¹⁵ and Spin(9)

- S^{15} is "more equal" among other spheres
- Spin(9) and Hopf fibrations

2 The Spin(9) fundamental form

- Quaternionic analogy
- Spin(9) and Kähler forms on \mathbb{R}^{16}
- An explicit formula for $\Phi_{\text{Spin}(9)}$

Over the second seco

- Maximal number and examples
- Any $S^{N-1} \subset \mathbb{R}^N$

4 Locally conformal parallel Spin(9) manifolds

- Definition and examples
- Structure Theorem

Spin(9) and Hopf fibrations Berger's list and Spin(9) refutation

s^{15} and spin(9) Spin(9) and Hopf fibrations Berger's list and Spin(9) refutation

Simply connected, complete, holonomy Spin(9) \Leftrightarrow $\mathbb{O}P^2 = \frac{F_4}{\text{Spin}(9)}(s > 0), \quad \mathbb{R}^{16}(\text{flat}), \quad \mathbb{O}H^2 = \frac{F_4(-20)}{\text{Spin}(9)}(s < 0)$ [Alekseevsky, Funct, Anal, Prilozhen 1968].

s^{15} and spin(9) Spin(9) and Hopf fibrations Berger's list and Spin(9) refutation

Definition

 $\operatorname{Spin}(9) \subset \operatorname{SO}(16)$ is the group of symmetries of the Hopf fibration $\mathbb{O}^2 \supset S^{15} \xrightarrow{S^7} S^8 \cong \mathbb{O}P^1$ [Gluck-Warner-Ziller, L'Enseignement Math. 1986].

Definition

 $\operatorname{Spin}(9) \subset \operatorname{SO}(16)$ is the group of symmetries of the Hopf fibration $\mathbb{O}^2 \supset S^{15} \xrightarrow{S^7} S^8 \cong \mathbb{O}P^1$ [Gluck-Warner-Ziller, L'Enseignement Math. 1986].

• $\Lambda^8(\mathbb{R}^{16}) \stackrel{\mathrm{Spin}(9)}{=} \Lambda^8_1 + \dots$ [Friedrich, Asian Journ. Math 2001].

Definition

 $\operatorname{Spin}(9) \subset \operatorname{SO}(16)$ is the group of symmetries of the Hopf fibration $\mathbb{O}^2 \supset S^{15} \xrightarrow{S^7} S^8 \cong \mathbb{O}P^1$ [Gluck-Warner-Ziller, L'Enseignement Math. 1986].

- $\Lambda^8(\mathbb{R}^{16}) \stackrel{\mathrm{Spin}(9)}{=} \Lambda^8_1 + \dots$ [Friedrich, Asian Journ. Math 2001].
- Spin(9) is the stabilizer in SO(16) of any element of Λ_1^8

[Brown-Gray, Diff. Geom. in honor of K. Yano 1972].

Definition

 $\operatorname{Spin}(9) \subset \operatorname{SO}(16)$ is the group of symmetries of the Hopf fibration $\mathbb{O}^2 \supset S^{15} \xrightarrow{S^7} S^8 \cong \mathbb{O}P^1$ [Gluck-Warner-Ziller, L'Enseignement Math. 1986].

- $\Lambda^8(\mathbb{R}^{16}) \stackrel{\mathrm{Spin}(9)}{=} \Lambda^8_1 + \dots$ [Friedrich, Asian Journ. Math 2001].
- Spin(9) is the stabilizer in SO(16) of any element of Λ_1^8

[Brown-Gray, Diff. Geom. in honor of K. Yano 1972].

Definition

Spin(9) is the stabilizer in SO(16) of the 8-form

$$\Phi_{\rm Spin(9)} \stackrel{\rm \tiny utc}{=} \int_{\mathbb{O}P^1} p_l^* \nu_l \, dl \qquad \bullet {\rm Details}$$

Definition

 $\operatorname{Spin}(9) \subset \operatorname{SO}(16)$ is the group of symmetries of the Hopf fibration $\mathbb{O}^2 \supset S^{15} \xrightarrow{S^7} S^8 \cong \mathbb{O}P^1$ [Gluck-Warner-Ziller, L'Enseignement Math. 1986].

- $\Lambda^8(\mathbb{R}^{16}) \stackrel{\mathrm{Spin}(9)}{=} \Lambda^8_1 + \dots$ [Friedrich, Asian Journ. Math 2001].
- Spin(9) is the stabilizer in SO(16) of any element of Λ_1^8

[Brown-Gray, Diff. Geom. in honor of K. Yano 1972].

Definition

1 S¹⁵ and Spin(9)

• S^{15} is "more equal" among other spheres

• Spin(9) and Hopf fibrations

2 The Spin(9) fundamental form

Quaternionic analogy

• Spin(9) and Kähler forms on \mathbb{R}^{16}

• An explicit formula for $\Phi_{\text{Spin}(9)}$

Over the second seco

• Maximal number and examples $A = C^{N-1} = \mathbb{D}^N$

• Any $S^{N-1} \subset \mathbb{R}^N$

4 Locally conformal parallel Spin(9) manifolds

- Definition and examples
- Structure Theorem

The Spin(9) fundamental form Quaternionic analogy

A close relative: the quaternionic case

• $\operatorname{Sp}(2) \cdot \operatorname{Sp}(1) \subset \operatorname{SO}(8)$ is the group of symmetries of the Hopf fibration $\mathbb{H}^2 \supset S^7 \xrightarrow{S^3} S^4 \cong \mathbb{H}P^1$ [Gluck-Warner-Ziller, L'Enseignement Math. 1986].

The Spin(9) fundamental form Quaternionic analogy

A close relative: the quaternionic case

- $\operatorname{Sp}(2) \cdot \operatorname{Sp}(1) \subset \operatorname{SO}(8)$ is the group of symmetries of the Hopf fibration $\mathbb{H}^2 \supset S^7 \xrightarrow{S^3} S^4 \cong \mathbb{H}P^1$ [Gluck-Warner-Ziller, L'Enseignement Math. 1986].
- ${\rm Sp}(2)\cdot {\rm Sp}(1)$ is the stabilizer in ${\rm SO}(8)$ of the 4-form $\Phi_{{\rm Sp}(2)\cdot {\rm Sp}(1)}$ defined by

$$\Phi_{\mathrm{Sp}(2)\cdot\mathrm{Sp}(1)} = \int_{\mathbb{H}P^1} p_l^*
u_l \, dl$$

[Berger, Ann. Éc. Norm. Sup. 1972].

The Spin(9) fundamental form Quaternionic analogy Five involutions for Spin(5)

 \bullet Consider in $\operatorname{Sp}(2)$ the matrices

$$\left(\begin{array}{cc} r & R_{\overline{u}} \\ R_{u} & -r \end{array}\right)$$

where $(r, u) \in S^4 \subset \mathbb{R} \times \mathbb{H}$ and $\mathbb{H}^2 \cong \mathbb{R}^8$.

The Spin(9) fundamental form Quaternionic analogy Five involutions for Spin(5)

• Consider in $\operatorname{Sp}(2)$ the matrices

$$\left(\begin{array}{cc} r & R_{\overline{u}} \\ R_{u} & -r \end{array}\right)$$

where $(r, u) \in S^4 \subset \mathbb{R} \times \mathbb{H}$ and $\mathbb{H}^2 \cong \mathbb{R}^8$.

• The choice of (r, u) = (1, 0), (0, 1), (0, i), (0, j), (0, k) gives

 $\mathcal{I}_1,\ldots,\mathcal{I}_5\in\mathrm{SO}(8)$

The Spin(9) fundamental form Quaternionic analogy Five involutions for Spin(5)

• Consider in $\operatorname{Sp}(2)$ the matrices

$$\left(\begin{array}{cc} r & R_{\overline{u}} \\ R_{u} & -r \end{array}\right)$$

where $(r, u) \in S^4 \subset \mathbb{R} \times \mathbb{H}$ and $\mathbb{H}^2 \cong \mathbb{R}^8$.

• The choice of (r, u) = (1, 0), (0, 1), (0, i), (0, j), (0, k) gives

 $\mathcal{I}_1,\ldots,\mathcal{I}_5\in\mathrm{SO}(8)$ igvee Details

• $\mathcal{I}_1, \ldots, \mathcal{I}_5$ satisfy

$$\mathcal{I}_{\alpha}^2 = \mathrm{Id}, \quad \mathcal{I}_{\alpha}^* = \mathcal{I}_{\alpha}, \quad \mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} = -\mathcal{I}_{\beta} \circ \mathcal{I}_{\alpha}$$

The Spin(9) fundamental form Quaternionic analogy From involutions to Kähler forms

• Since $\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} = -\mathcal{I}_{\beta} \circ \mathcal{I}_{\alpha}$, one gets 10 complex structures

$$J_{\alpha\beta} = \mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} \qquad \text{for } \alpha < \beta$$

The Spin(9) fundamental form Quaternionic analogy From involutions to Kähler forms

• Since $\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} = -\mathcal{I}_{\beta} \circ \mathcal{I}_{\alpha}$, one gets 10 complex structures

$$J_{\alpha\beta} = \mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} \qquad \text{for } \alpha < \beta$$

• The Kähler forms $heta_{lphaeta}$ give rise to a 5 imes 5 skew-symmetric matrix

$$\theta = (\theta_{\alpha\beta})$$

• Since $\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} = -\mathcal{I}_{\beta} \circ \mathcal{I}_{\alpha}$, one gets 10 complex structures

$$J_{\alpha\beta} = \mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta}$$
 for $\alpha < \beta$

• The Kähler forms $heta_{lphaeta}$ give rise to a 5 imes 5 skew-symmetric matrix

 $\theta = (\theta_{\alpha\beta})$

Remark

Denote by $\tau_2(\theta)$ the second coefficient of the characteristic polynomial of $\theta = (\theta_{\alpha\beta})$.
• Since $\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} = -\mathcal{I}_{\beta} \circ \mathcal{I}_{\alpha}$, one gets 10 complex structures

$$J_{\alpha\beta} = \mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta}$$
 for $\alpha < \beta$

• The Kähler forms $heta_{lphaeta}$ give rise to a 5 imes 5 skew-symmetric matrix

 $\theta = (\theta_{\alpha\beta})$

Remark

Denote by $\tau_2(\theta)$ the second coefficient of the characteristic polynomial of $\theta = (\theta_{\alpha\beta})$. Then

$$\Phi_{\mathrm{Sp}(2)\cdot\mathrm{Sp}(1)} \stackrel{_{\mathrm{utc}}}{=} au_2(heta)$$

1 *S*¹⁵ and Spin(9)

• S^{15} is "more equal" among other spheres

• Spin(9) and Hopf fibrations

2 The Spin(9) fundamental form

Quaternionic analogy

• $\mathrm{Spin}(9)$ and Kähler forms on \mathbb{R}^{16}

• An explicit formula for $\Phi_{\text{Spin}(9)}$

Over the second seco

• Maximal number and examples

• Any $S^{N-1} \subset \mathbb{R}^N$

4 Locally conformal parallel Spin(9) manifolds

- Definition and examples
- Structure Theorem

The Spin(9) fundamental form Spin(9) and Kähler forms on \mathbb{R}^{16} Nine involutions for Spin(9)

• $\mathrm{Spin}(9)$ is the subgroup of $\mathrm{SO}(16)$ generated by matrices

$$\left(\begin{array}{cc} r & R_{\overline{u}} \\ R_{u} & -r \end{array}\right)$$

where $(r, u) \in S^8 \subset \mathbb{R} imes \mathbb{O}$ and $\mathbb{O}^2 \cong \mathbb{R}^{16}$

[Harvey, Spinors and Calibrations 1990].

The Spin(9) fundamental form Spin(9) and Kähler forms on \mathbb{R}^{16} Nine involutions for Spin(9)

 $\bullet~{\rm Spin}(9)$ is the subgroup of ${\rm SO}(16)$ generated by matrices

$$\left(\begin{array}{cc} r & R_{\overline{u}} \\ R_{u} & -r \end{array}\right)$$

where $(r, u) \in S^8 \subset \mathbb{R} \times \mathbb{O}$ and $\mathbb{O}^2 \cong \mathbb{R}^{16}$

[Harvey, Spinors and Calibrations 1990].

The choice of (r, u) = (1,0), (0,1), (0,i), (0,j), (0,k), (0,e), (0,f), (0,g), (0,h) gives

$$\mathcal{I}_1,\ldots,\mathcal{I}_9\in\mathrm{SO}(16)$$
 $ightarrow$ Details

The Spin(9) fundamental form Spin(9) and Kähler forms on \mathbb{R}^{16} Nine involutions for Spin(9)

• $\mathrm{Spin}(9)$ is the subgroup of $\mathrm{SO}(16)$ generated by matrices

$$\left(\begin{array}{cc} r & R_{\overline{u}} \\ R_{u} & -r \end{array}\right)$$

where $(r, u) \in S^8 \subset \mathbb{R} imes \mathbb{O}$ and $\mathbb{O}^2 \cong \mathbb{R}^{16}$

[Harvey, Spinors and Calibrations 1990].

The choice of (r, u) = (1,0), (0,1), (0,i), (0,j), (0,k), (0,e), (0,f), (0,g), (0,h) gives

$$\mathcal{I}_1,\ldots,\mathcal{I}_9\in\mathrm{SO}(16)$$
 $igsquare$ Detail

• $\mathcal{I}_1, \ldots, \mathcal{I}_9$ satisfy

$$\mathcal{I}_{\alpha}^2 = \mathrm{Id}, \quad \mathcal{I}_{\alpha}^* = \mathcal{I}_{\alpha}, \quad \mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} = -\mathcal{I}_{\beta} \circ \mathcal{I}_{\alpha}$$

• Since $\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} = -\mathcal{I}_{\beta} \circ \mathcal{I}_{\alpha}$, one gets 36 complex structures

$$J_{\alpha\beta} = \mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} \qquad \text{for } \alpha < \beta$$

• Since $\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} = -\mathcal{I}_{\beta} \circ \mathcal{I}_{\alpha}$, one gets 36 complex structures

$$J_{\alpha\beta} = \mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} \qquad \text{for } \alpha < \beta$$

 $\Lambda^2(\mathbb{R}^{16}) = \Lambda^2_{36} \oplus \Lambda^2_{84} = \mathfrak{spin}(9) \oplus \Lambda^2_{84}$

• Since $\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} = -\mathcal{I}_{\beta} \circ \mathcal{I}_{\alpha}$, one gets 36 complex structures

 $J_{\alpha\beta} = \mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} \qquad \text{for } \alpha < \beta$

• Since $\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} = -\mathcal{I}_{\beta} \circ \mathcal{I}_{\alpha}$, one gets 36 complex structures

 $J_{\alpha\beta} = \mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} \qquad \text{for } \alpha < \beta$

• Since $\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} = -\mathcal{I}_{\beta} \circ \mathcal{I}_{\alpha}$, one gets 36 complex structures

 $J_{\alpha\beta} = \mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} \qquad \text{for } \alpha < \beta$

• Their Kähler forms $heta_{lphaeta}$ give rise to a 9 imes 9 skew-symmetric matrix

 $\theta = (\theta_{\alpha\beta})$

The Spin(9) fundamental form Spin(9) and Kähler forms on \mathbb{R}^1

From the Kähler forms to the Spin(9) form

Theorem [P-Piccinni, Ann. Gl. An. Geom. 2011]

Denote the characteristic polynomial of $\boldsymbol{\theta}$ by

$$t^9 + au_2(heta)t^7 + au_4(heta)t^5 + au_6(heta)t^3 + au_8(heta)t^4$$

The Spin(9) fundamental form Spin(9) and Kähler forms on \mathbb{R}^{16} From the Kähler forms to the Spin(9) form

Theorem [P-Piccinni, Ann. Gl. An. Geom. 2011]

Denote the characteristic polynomial of $\boldsymbol{\theta}$ by

$$t^9+ au_2(heta)t^7+ au_4(heta)t^5+ au_6(heta)t^3+ au_8(heta)t^4$$

Then $(\tau_8(\theta) \stackrel{\text{\tiny utc}}{=}$ volume form and)

$$au_2(heta) = au_6(heta) = 0 \qquad \Phi_{\mathrm{Spin}(9)} \stackrel{\text{\tiny utc}}{=} au_4(heta)$$

The Spin(9) fundamental form Spin(9) and Kähler forms on \mathbb{R}^{16} From the Kähler forms to the Spin(9) form

Theorem [P-Piccinni, Ann. Gl. An. Geom. 2011]

Denote the characteristic polynomial of $\boldsymbol{\theta}$ by

$$t^9+ au_2(heta)t^7+ au_4(heta)t^5+ au_6(heta)t^3+ au_8(heta)t^4$$

Then $(\tau_8(\theta) \stackrel{\text{\tiny utc}}{=}$ volume form and)

$$\tau_{2}(\theta) = \tau_{6}(\theta) = 0 \qquad \Phi_{\text{Spin}(9)} \stackrel{\text{utc}}{=} \tau_{4}(\theta)$$

• Explicit formulas?

1 *S*¹⁵ and Spin(9)

• S^{15} is "more equal" among other spheres

• Spin(9) and Hopf fibrations

2 The Spin(9) fundamental form

- Quaternionic analogy
- Spin(9) and Kähler forms on \mathbb{R}^{16}
- An explicit formula for $\Phi_{Spin(9)}$

Over the second seco

Maximal number and examples
 Any S^{N-1} ⊂ ℝ^N

4 Locally conformal parallel Spin(9) manifolds

- Definition and examples
- Structure Theorem

The Spin(9) fundamental form An explicit formula for $\Phi_{Spin(9)}$ An explicit formula for $\Phi_{Spin(9)}$

• The $\binom{16}{8} = 12870$ integrals of

$$\Phi_{\rm Spin(9)} = \int_{\mathbb{O}P^1} p_l^* \nu_l \, dl$$

can be computed with the help of Mathematica.

The Spin(9) fundamental form An explicit formula for $\Phi_{Spin(9)}$ An explicit formula for $\Phi_{Spin(9)}$

• The $\binom{16}{8} = 12870$ integrals of

$$\Phi_{\rm Spin(9)} = \int_{\mathbb{O}P^1} p_l^* \nu_l \, dl$$

can be computed with the help of Mathematica.

(1) S^{15} and Spin(9)

• S^{15} is "more equal" among other spheres

• Spin(9) and Hopf fibrations

2 The Spin(9) fundamental form

- Quaternionic analogy
- Spin(9) and Kähler forms on \mathbb{R}^{16}
- An explicit formula for $\Phi_{\text{Spin}(9)}$

Over the second seco

Maximal number and examples

• Any $S^{N-1} \subset \mathbb{R}^N$

4 Locally conformal parallel Spin(9) manifolds

- Definition and examples
- Structure Theorem

• Spheres $S^{N-1} \subset \mathbb{R}^N$ admit 1, 3 or 7 linearly independent vector fields according to whether p = 1, 2 or 3 in

$$N = (2k+1)2^p$$

Spheres S^{N-1} ⊂ ℝ^N admit 1, 3 or 7 linearly independent vector fields according to whether p = 1, 2 or 3 in

$$N = (2k+1)2^p$$

In the general case

 $N = (2k+1)2^{p}16^{q}$ with $q \ge 1$ and p = 1, 2, 3

Spheres S^{N-1} ⊂ ℝ^N admit 1, 3 or 7 linearly independent vector fields according to whether p = 1, 2 or 3 in

$$N = (2k+1)2^p$$

In the general case

 $N = (2k+1)2^{p}16^{q}$ with $q \ge 1$ and p = 1, 2, 3

the maximal number of vector fields is

Spheres S^{N-1} ⊂ ℝ^N admit 1, 3 or 7 linearly independent vector fields according to whether p = 1, 2 or 3 in

$$N = (2k+1)2^p$$

In the general case

 $N = (2k+1)2^{p}16^{q}$ with $q \ge 1$ and p = 1, 2, 3

the maximal number of vector fields is

Spheres S^{N-1} ⊂ ℝ^N admit 1, 3 or 7 linearly independent vector fields according to whether p = 1, 2 or 3 in

$$N = (2k+1)2^p$$

In the general case

 $N = (2k+1)2^{p}16^{q}$ with $q \ge 1$ and p = 1, 2, 3

the maximal number of vector fields is

The lowest dimensional sphere with more than 7 vector field is S^{15}

[Hurwitz, Math. Ann. 1922], [Radon, Abh. Math. Hamburg 1923], [Adams, Ann. of Math. 1962].

The lowest dimension: S^{15}

• Coordinates on S^{15} :

$$B = (x,y) = (x_1,\ldots,x_8,y_1,\ldots,y_8)$$
 unit normal vector field

Vector fields on spheres Maximal number and examples The lowest dimension: S^{15}

• Coordinates on S^{15} :

$$B=(x,y)=(x_1,\ldots,x_8,y_1,\ldots,y_8)$$
 unit normal vector field

• $J_{\alpha\beta} = \text{complex structures on } \mathbb{R}^{16}$ associated to the Spin(9) structure.

The lowest dimension: S^{15}

• Coordinates on S¹⁵:

$$B = (x, y) = (x_1, \dots, x_8, y_1, \dots, y_8)$$
 unit normal vector field

• $J_{\alpha\beta} = \text{complex structures on } \mathbb{R}^{16}$ associated to the Spin(9) structure.

Proposition

A maximal system of 8 orthonormal vector fields on S^{15} is given by

 $J_{19}(B), J_{29}(B), J_{39}(B), J_{49}(B), J_{59}(B), J_{69}(B), J_{79}(B), J_{89}(B)$

The lowest dimension: S^{15}

• Coordinates on S¹⁵:

$$B = (x, y) = (x_1, \dots, x_8, y_1, \dots, y_8)$$
 unit normal vector field

• $J_{\alpha\beta} = \text{complex structures on } \mathbb{R}^{16}$ associated to the Spin(9) structure.

Proposition

A maximal system of 8 orthonormal vector fields on S^{15} is given by

 $J_{19}(B), J_{29}(B), J_{39}(B), J_{49}(B), J_{59}(B), J_{69}(B), J_{79}(B), J_{89}(B)$

Remark

The frame $\{J_{19}(B), \ldots, J_{89}(B)\}$ has nothing to do with Hopf fibrations.

Vector fields on spheres Maximal number and examples

Other spheres with $\sigma(N) > 7$

Sphere	$\sigma(N)$	Vector fields	Notations	Involved structures			
S ¹⁵	8	$J_{19}B,\ldots,J_{89}B$	B = s = (x, y)	Spin(9)			
ς31	q	$J_{19}B,\ldots,J_{89}B$	$B = s^1 + is^2, \mathcal{L}_i B = -s^2 + is^1$	$Spin(9) + \mathbb{C}$			
		$\star \mathcal{L}_i B$	$\star:(x,y)\to(x,-y)$	opm(9)+©			
ς 63	11	$J_{19}B,\ldots,J_{89}B$	$B = s^1 + is^2 + js^3 + ks^4$	Spin(9)+Ⅲ			
<u> </u>		$\star \mathcal{L}_i B, \star \mathcal{L}_j B, \star \mathcal{L}_k B$	$\mathcal{L}_i, \mathcal{L}_j, \mathcal{L}_k$ and \star as above	Spin(3) + m			
S 127	15	$J_{19}B,\ldots,J_{89}B$	$B = s^{1} + is^{2} + js^{3} + ks^{4} + es^{5} + fs^{6} + gs^{7} + hs^{8}$	$Spin(9) \perp 0$			
5	15	$\star \mathcal{L}_i B, \ldots, \star \mathcal{L}_h B$	$\mathcal{L}_i,\ldots,\mathcal{L}_h$ and \star as above	opin(5)+©			
ς255	16	$J_{19}B,\ldots,J_{89}B$	See explanations below	$(\operatorname{Spin}(0))^2$			
	10	$\star J_{19}^1 B, \dots, \star J_{89}^1 B$		(opm(9))			

Other spheres with $\sigma(N) > 7$

Spher	e σ((N)	Vector fi	elds	elds Notations		olved structures	
<i>S</i> ²⁵⁵ 16		16	$J_{19}B, \dots, J_{89}B \\ \star J_{19}^1B, \dots, \star J_{89}^1B$		See explanations below	(Spin(9)) ²		
Sphere	$\sigma(N)$		/ector fields		Notations		Involved structures	
	9							
S ⁶³	11		$*\mathcal{L}_{i}B$ $_{9}B,\ldots,J_{89}B$ $B + C \cdot B + C \cdot B$		$B = s^{1} + is^{2} + js^{3} + ks^{4}$		Spin(9)+H	
S ¹²⁷	15	$\begin{array}{c} *\mathcal{L}_{i}B, *\mathcal{L}_{j}B, *\mathcal{L}_{k}B \\ J_{19}B, \dots, J_{89}B \\ *\mathcal{C} \cdot B \\ $		$B = s^{1} + $	L_i, L_j, L_k and \star as above $+ is^2 + js^3 + ks^4 + es^5 + fs^6 + gs^7 + L_i, \dots, L_k$ and \star as above	+ hs ⁸	s Spin(9)+O	
S ²⁵⁵	16	$J_{19}B, \dots, J_{89}B \\ \star J_{19}^1B, \dots, \star J_{89}^1B$			See explanations below	(Spin(9)) ²		

Other spheres with $\sigma(N) > 7$

Sphere	$\sigma(N)$	Vector fields	Notations	Involved structures
S ²⁵⁵	16	$J_{19}B, \dots, J_{89}B$ $\star J_{19}^1B, \dots, \star J_{89}^1B$	See explanations below	(Spin(9)) ²

For $S^{255} \subset \mathbb{R}^{256}$ the J_{19}, \ldots, J_{89} are defined on the 16-dimensional components of

$$\mathbb{R}^{256} = \mathbb{R}^{16} \oplus \cdots \oplus \mathbb{R}^{16}$$

The $J_{19}^1, \ldots, J_{89}^1$ are defined by the same 16×16 real matrices as J_{19}, \ldots, J_{89} , but acting formally on 16-ples of sedenions

 $B = (s^1, \ldots, s^{16}) \in \mathbb{R}^{256}$

(1) S^{15} and Spin(9)

- S^{15} is "more equal" among other spheres
- Spin(9) and Hopf fibrations

2 The Spin(9) fundamental form

- Quaternionic analogy
- ${
 m Spin}(9)$ and Kähler forms on ${\mathbb R}^{16}$
- An explicit formula for $\Phi_{\text{Spin}(9)}$

3 Vector fields on spheres

- Maximal number and examples
- Any $S^{N-1} \subset \mathbb{R}^N$

4 Locally conformal parallel Spin(9) manifolds

- Definition and examples
- Structure Theorem

Vector fields on spheres Anv $S^{N-1} \subset \mathbb{R}^N$ Cayley-Dickson process

• A *-algebra \mathcal{A} is a real algebra equipped with a conjugation, namely a linear map $*: \mathcal{A} \to \mathcal{A}$ such that

$$a^{**} = a,$$
 $(ab)^* = b^*a^*$

Vector fields on spheres Anv $S^{N-1} \subset \mathbb{R}^N$ Cayley-Dickson process

• A *-algebra \mathcal{A} is a real algebra equipped with a conjugation, namely a linear map $* : \mathcal{A} \to \mathcal{A}$ such that

$$a^{**} = a,$$
 $(ab)^* = b^*a^*$

 \bullet A new *-algebra structure can be defined on $\mathcal{A}\times\mathcal{A}$ by

$$(a,b)(c,d) = (ac - d^*b, da + bc^*)$$
 and $(a,b)^* = (a^*, -b)$

Vector fields on spheres Anv $S^{N-1} \subset \mathbb{R}^N$ Cayley-Dickson process

• A *-algebra \mathcal{A} is a real algebra equipped with a conjugation, namely a linear map $* : \mathcal{A} \to \mathcal{A}$ such that

$$a^{**} = a,$$
 $(ab)^* = b^*a^*$

• A new *-algebra structure can be defined on $\mathcal{A}\times\mathcal{A}$ by

$$(a,b)(c,d) = (ac - d^*b, da + bc^*)$$
 and $(a,b)^* = (a^*, -b)$

This produces

$$\mathbb{R} \to \mathbb{C} \to \mathbb{H} \to \mathbb{O} \to \mathbb{S} \to \dots$$

Vector fields on spheres Any $S^{N-1} \subset \mathbb{R}^N$

Multiplication table for sedenions

1	e_1	e ₂	e ₃	e4	e ₅	e ₆	e ₇	e ₈	<i>e</i> g	e ₁₀	e ₁₁	e ₁₂	e ₁₃	e ₁₄	e ₁₅
<i>e</i> ₁	$^{-1}$	e ₃	$-e_{2}$	e ₅	$-e_4$	-e ₇	e ₆	e9	- <i>e</i> 8	$-e_{11}$	e ₁₀	$-e_{13}$	e ₁₂	e ₁₅	$-e_{14}$
e ₂	$-e_3$	-1	e1	e ₆	<i>e</i> 7	-e4	- <i>e</i> 5	e10	e ₁₁	$-e_{8}$	- <i>e</i> 9	$-e_{14}$	-e ₁₅	e ₁₂	e ₁₃
e ₃	e ₂	$-e_{1}$	-1	e7	$-e_{6}$	e ₅	$-e_4$	e ₁₁	$-e_{10}$	eg	$-e_{8}$	$-e_{15}$	e ₁₄	$-e_{13}$	e ₁₂
e ₄	$-e_{5}$	$-e_{6}$	-e ₇	-1	<i>e</i> ₁	e ₂	e ₃	e ₁₂	e ₁₃	e ₁₄	e ₁₅	$-e_{8}$	- <i>e</i> 9	$-e_{10}$	$-e_{11}$
<i>e</i> 5	e4	- <i>e</i> 7	e ₆	-e ₁	-1	$-e_3$	e ₂	e ₁₃	$-e_{12}$	e ₁₅	$-e_{14}$	<i>e</i> 9	- <i>e</i> 8	e ₁₁	$-e_{10}$
e ₆	e ₇	e4	$-e_{5}$	-e ₂	e ₃	-1	$-e_{1}$	e ₁₄	$-e_{15}$	$-e_{12}$	e ₁₃	e ₁₀	$-e_{11}$	$-e_{8}$	e9
e7	$-e_6$	e ₅	e4	-e ₃	$-e_{2}$	<i>e</i> ₁	-1	e ₁₅	e ₁₄	$-e_{13}$	$-e_{12}$	e ₁₁	e ₁₀	$-e_{9}$	$-e_{8}$
e ₈	- <i>e</i> 9	$-e_{10}$	-e ₁₁	-e ₁₂	$-e_{13}$	-e ₁₄	-e ₁₅	-1	<i>e</i> 1	e ₂	e ₃	e4	<i>e</i> 5	<i>e</i> 6	<i>e</i> 7
e9	<i>e</i> ₈	$-e_{11}$	e ₁₀	$-e_{13}$	e ₁₂	e ₁₅	-e ₁₄	$-e_1$	$^{-1}$	$-e_3$	<i>e</i> ₂	- <i>e</i> 5	e4	e ₇	$-e_{6}$
e ₁₀	e ₁₁	e ₈	- <i>e</i> 9	$-e_{14}$	$-e_{15}$	e ₁₂	e ₁₃	$-e_{2}$	e ₃	-1	$-e_1$	$-e_{6}$	-e ₇	e4	e ₅
e ₁₁	$-e_{10}$	e9	e ₈	$-e_{15}$	e ₁₄	$-e_{13}$	e ₁₂	-e ₃	$-e_{2}$	e_1	-1	-e ₇	e ₆	$-e_{5}$	e4
e ₁₂	e ₁₃	e ₁₄	e ₁₅	e ₈	- <i>e</i> 9	$-e_{10}$	-e ₁₁	-e4	<i>e</i> 5	<i>e</i> ₆	<i>e</i> 7	-1	-e ₁	-e ₂	$-e_3$
e ₁₃	$-e_{12}$	e ₁₅	$-e_{14}$	e9	e ₈	e ₁₁	$-e_{10}$	-e ₅	$-e_4$	e7	$-e_{6}$	e_1	-1	e ₃	$-e_{2}$
e ₁₄	$-e_{15}$	-e ₁₂	e ₁₃	e ₁₀	$-e_{11}$	e ₈	e9	$-e_{6}$	-e ₇	$-e_4$	e ₅	e ₂	$-e_{3}$	-1	<i>e</i> ₁
e ₁₅	e ₁₄	-e ₁₃	-e ₁₂	e ₁₁	e ₁₀	- <i>e</i> 9	<i>e</i> 8	-e7	e ₆	$-e_{5}$	-e4	e3	e ₂	$-e_1$	-1

Vector fields on spheres Any $S^{N-1} \subset \mathbb{R}^N$

Vector fields in the general case

Theorem [P-Piccinni, arXiv: 1107.0462, 2011]

 $\sigma(N) > 7$? All the fault of Spin(9)

Vector fields on spheres Any $S^{N-1} \subset \mathbb{R}^N$

Vector fields in the general case

Theorem [P-Piccinni, arXiv: 1107.0462, 2011]

 $\sigma(N) > 7$? All the fault of Spin(9)

(k, p, q)	Sphere	$\sigma(N)$	Vector fields	Involved structures
(k,0,q)	$S^{(2k+1)16^q-1}$	8q	$ \begin{array}{c} J_{19}B, \dots, J_{89}B \\ \star J_{19}^{1}B, \dots, \star J_{89}^{1}B \\ \dots \\ \star J_{19}^{q-1}B, \dots, \star J_{89}^{q-1}B \end{array} $	(Spin(9)) ^q
(k,1,q)	$S^{2(2k+1)16^q-1}$	8q+1	$\begin{array}{c} J_{19}B, \dots, J_{89}B \\ \star J_{19}^{1}B, \dots, \star J_{89}^{1}B \\ \dots \\ \star J_{19}^{q-1}B, \dots, \star J_{89}^{q-1}B \\ & \star \mathcal{L}_{i}B \end{array}$	$({ m Spin}(9))^q+\mathbb{C}$
(k,2,q)	$S^{4(2k+1)16^q-1}$	8q+3	$\begin{array}{c} J_{19}B,\ldots,J_{89}B\\ \star J_{19}^{1}B,\ldots,\star J_{89}^{1}B\\ \ldots\\ \star J_{19}^{q-1}B,\ldots,\star J_{89}^{q-1}B\\ \star \mathcal{L}_{i}B,\star \mathcal{L}_{j}B,\star \mathcal{L}_{k}B \end{array}$	$({ m Spin}(9))^q+\mathbb{H}$
(k, 3, q)	$S^{8(2k+1)16^q-1}$	8q+7	$\begin{array}{c} J_{19}B,\ldots,J_{89}B\\ \star J_{19}^{1}B,\ldots,\star J_{89}^{1}B\\ \ldots\\ \star J_{19}^{q-1}B,\ldots,\star J_{89}^{q-1}B\\ \star \mathcal{L}_{i}B\cdots\star \mathcal{L}_{h}B\end{array}$	$({ m Spin}(9))^q+\mathbb{O}$

Sketch of pro
1 S¹⁵ and Spin(9)

- S^{15} is "more equal" among other spheres
- Spin(9) and Hopf fibrations

(2) The Spin(9) fundamental form

- Quaternionic analogy
- Spin(9) and Kähler forms on \mathbb{R}^{16}
- An explicit formula for $\Phi_{\text{Spin}(9)}$

Over the second seco

- Maximal number and examples
- Any $S^{N-1} \subset \mathbb{R}^N$

4 Locally conformal parallel Spin(9) manifolds

- Definition and examples
- Structure Theorem

Examples

The product $S^{15} \times S^1 = \frac{\mathbb{O}^2 - 0}{\mathbb{Z}}$ = cone over S^{15} with the (conformal class) of the flat metric.

Examples

The product $S^{15} \times S^1 = \frac{\mathbb{O}^2 - 0}{\mathbb{Z}}$ = cone over S^{15} with the (conformal class) of the flat metric.

The trivial S^1 -bundle $\mathbb{R}P^{15} \times S^1$, with the metric induced by the flat cone $C(S^{15})$.

Examples

The product $S^{15} \times S^1 = \frac{\mathbb{O}^2 - 0}{\mathbb{Z}}$ = cone over S^{15} with the (conformal class) of the flat metric.

The trivial S^1 -bundle $\mathbb{R}P^{15} \times S^1$, with the metric induced by the flat cone $C(S^{15})$.

The non-trivial S^1 -bundle over $\mathbb{R}P^{15}$, with the metric induced by the flat cone $C(S^{15})$.

1 S¹⁵ and Spin(9)

- S^{15} is "more equal" among other spheres
- Spin(9) and Hopf fibrations

2 The Spin(9) fundamental form

- Quaternionic analogy
- Spin(9) and Kähler forms on \mathbb{R}^{16}
- An explicit formula for $\Phi_{\text{Spin}(9)}$

Over the second seco

- Maximal number and examples
- Any $S^{N-1} \subset \mathbb{R}^N$

4 Locally conformal parallel Spin(9) manifolds

- Definition and examples
- Structure Theorem

Structure of compact locally conformal parallel Spin(9) manifolds

Theorem [P-Piccinni-Vuletescu]

Let (M, g) be a compact, locally conformal but not globally conformal parallel Spin(9) manifold. Then

$$M = C(N)/\mathbb{Z}$$

where C(N) is a flat cone over a compact 15-dimensional manifold N with finite fundamental group.

() On each U_{α} it is defined a ∇^{α} -parallel 8-form Φ_{α} .

- **(**) On each U_{α} it is defined a ∇^{α} -parallel 8-form Φ_{α} .
- **Q** There is a 8-form Φ on *M* locally given by $e^{4f_{\alpha}}\Phi_{\alpha}$.

- **(**) On each U_{α} it is defined a ∇^{α} -parallel 8-form Φ_{α} .
- **2** There is a 8-form Φ on *M* locally given by $e^{4f_{\alpha}}\Phi_{\alpha}$.
- There is a closed 1-form ω (the Lee form) on M, locally given by $4df_{\alpha}$, such that $d\Phi = \omega \wedge \Phi$.

- **(**) On each U_{α} it is defined a ∇^{α} -parallel 8-form Φ_{α} .
- **2** There is a 8-form Φ on *M* locally given by $e^{4f_{\alpha}}\Phi_{\alpha}$.
- O There is a closed 1-form ω (the Lee form) on *M*, locally given by $4df_α$, such that dΦ = ω ∧ Φ.
- The 1-form ω defines a closed Weyl connection D on M by $Dg = \omega \otimes g$.

- **(**) On each U_{α} it is defined a ∇^{α} -parallel 8-form Φ_{α} .
- **(2)** There is a 8-form Φ on *M* locally given by $e^{4f_{\alpha}}\Phi_{\alpha}$.
- There is a closed 1-form ω (the Lee form) on M, locally given by $4df_{\alpha}$, such that $d\Phi = \omega \wedge \Phi$.
- The 1-form ω defines a closed Weyl connection D on M by $Dg = \omega \otimes g$.
- Since the local metrics g_{α} are Einstein, D is Einstein-Weyl.

O Let g be the Gauduchon metric, so that ∇ω = 0. Then the universal covering (*M̃*, *ğ̃*) is reducible: (*M̃*, *ğ̃*) = (ℝ, ds) × (*Ñ*, g_N), for a compact simply connected *Ñ*.

- O Let g be the Gauduchon metric, so that ∇ω = 0. Then the universal covering (*M̃*, *g̃*) is reducible: (*M̃*, *g̃*) = (ℝ, ds) × (*Ñ*, g_N), for a compact simply connected *Ñ*.
- **O** n \tilde{M} we have $\tilde{\omega} = df$, and $(\tilde{M}, e^{-f}\tilde{g})$ is the metric cone $C(\tilde{N})$.

- O Let g be the Gauduchon metric, so that ∇ω = 0. Then the universal covering (*M̃*, *g̃*) is reducible: (*M̃*, *g̃*) = (ℝ, ds) × (*Ñ*, g_N), for a compact simply connected *Ñ*.
- On \tilde{M} we have $\tilde{\omega} = df$, and $(\tilde{M}, e^{-f}\tilde{g})$ is the metric cone $C(\tilde{N})$.
- ${}^{\textcircled{O}}$ The local metrics are Ricci-flat, that is, $C(ilde{N})$ is Ricci-flat.

- O Let g be the Gauduchon metric, so that ∇ω = 0. Then the universal covering (*M̃*, *g̃*) is reducible: (*M̃*, *g̃*) = (ℝ, ds) × (*Ñ*, g_N), for a compact simply connected *Ñ*.
- On \tilde{M} we have $\tilde{\omega} = df$, and $(\tilde{M}, e^{-f}\tilde{g})$ is the metric cone $C(\tilde{N})$.
- ${}_{igodol{O}}$ The local metrics are Ricci-flat, that is, $C(ilde{N})$ is Ricci-flat.
- Ricci-flat + holonomy $Spin(9) \Rightarrow$ flat.

- O Let g be the Gauduchon metric, so that ∇ω = 0. Then the universal covering (*M̃*, *ğ̃*) is reducible: (*M̃*, *ğ̃*) = (ℝ, ds) × (*Ñ*, g_N), for a compact simply connected *Ñ*.
- On \tilde{M} we have $\tilde{\omega} = df$, and $(\tilde{M}, e^{-f}\tilde{g})$ is the metric cone $C(\tilde{N})$.
- ${\it O}$ The local metrics are Ricci-flat, that is, $C(ilde{N})$ is Ricci-flat.
- Ricci-flat + holonomy $Spin(9) \Rightarrow$ flat.
- ⁽⁰⁾ Since $\pi_1(M)$ acts by homotheties on $C(\tilde{N})$, and \tilde{N} is compact, $\pi_1(M)$ contains a finite normal subgroup I of isometries.

- O Let g be the Gauduchon metric, so that ∇ω = 0. Then the universal covering (*M̃*, *ğ̃*) is reducible: (*M̃*, *ğ̃*) = (ℝ, ds) × (*Ñ*, g_N), for a compact simply connected *Ñ*.
- On \tilde{M} we have $\tilde{\omega} = df$, and $(\tilde{M}, e^{-f}\tilde{g})$ is the metric cone $C(\tilde{N})$.
- ${\it O}$ The local metrics are Ricci-flat, that is, $C(ilde{N})$ is Ricci-flat.
- Ricci-flat + holonomy $Spin(9) \Rightarrow$ flat.
- Since $\pi_1(M)$ acts by homotheties on $C(\tilde{N})$, and \tilde{N} is compact, $\pi_1(M)$ contains a finite normal subgroup I of isometries.
- **4** We obtain $\pi_1(M) = I \rtimes \mathbb{Z}$, and $M = C(\tilde{N}/I)/\mathbb{Z}$.

Surprise: end of talk!

Details for $\Phi_{{
m Spin}(9)} = \int_{\mathbb{O}P^1} p_l^*
u_l \, dl$

- ν_l = volume form on the octonionic lines $l = \{(x, mx)\}$ or $l = \{(0, y)\}$ in \mathbb{O}^2 .
- $p_I : \mathbb{O}^2 \to I = \text{projection on } I.$
- $p_l^* \nu_l = 8$ -form in $\mathbb{O}^2 = \mathbb{R}^{16}$.
- The integral over $\mathbb{O}P^1$ can be computed over \mathbb{O} with polar coordinates.
- The formula arise from distinguished 8-planes in the Spin(9)-geometry \rightarrow (forthcoming) calibrations.

The five involutions of $\operatorname{Sp}(2) \cdot \operatorname{Sp}(1)$ as 8 \times 8 matrices

$$\mathcal{I}_{1} = \begin{pmatrix} 0 & | \operatorname{Id} \\ \hline \operatorname{Id} & 0 \end{pmatrix}$$
$$\mathcal{I}_{2} = \begin{pmatrix} 0 & | -R_{j}^{\mathbb{H}} \\ \hline R_{j}^{\mathbb{H}} & 0 \end{pmatrix}$$

$$\mathcal{I}_5 = \begin{pmatrix} \mathrm{Id} & \mathbf{0} \\ \hline \mathbf{0} & -\mathrm{Id} \end{pmatrix}$$

$$\begin{aligned} \mathcal{I}_{3} = \left(\begin{array}{c|c} 0 & -R_{j}^{\mathbb{H}} \\ \hline R_{j}^{\mathbb{H}} & 0 \end{array} \right) \\ \\ \mathcal{I}_{4} = \left(\begin{array}{c|c} 0 & -R_{k}^{\mathbb{H}} \\ \hline R_{k}^{\mathbb{H}} & 0 \end{array} \right) \end{aligned}$$

The nine involutions of Spin(9) as 16×16 matrices

$$\mathcal{I}_{3} = \begin{pmatrix} 0 & -R_{j} \\ R_{j} & 0 \end{pmatrix} = \begin{pmatrix} 0 & -R_{i} \\ R_{i} & 0 \end{pmatrix}$$

$$\mathcal{I}_{1} = \begin{pmatrix} 0 & \mathrm{Id} \\ \mathrm{Id} & 0 \end{pmatrix}$$

$$\mathcal{I}_{4} = \begin{pmatrix} 0 & -R_{k} \\ R_{k} & 0 \end{pmatrix}$$

$$\mathcal{I}_{9} = \begin{pmatrix} \mathrm{Id} & 0 \\ 0 & -\mathrm{Id} \end{pmatrix}$$

$$\mathcal{I}_{5} = \begin{pmatrix} 0 & -R_{e} \\ R_{e} & 0 \end{pmatrix}$$

$$\mathcal{I}_{6} = \begin{pmatrix} 0 & -R_{e} \\ R_{f} & 0 \\ \mathcal{I}_{7} = \begin{pmatrix} 0 & -R_{g} \\ R_{g} & 0 \end{pmatrix}$$

$$38/45$$

Explicit formula for Φ_{G_2}

Denote by x_1, \ldots, x_7 the coordinates in \mathbb{R}^7 . Then $G_2 = \text{stabilizer in SO(7)}$ of

$$egin{aligned} \Phi_{\mathrm{G}_2} &= dx_1 \wedge dx_2 \wedge dx_4 + dx_2 \wedge dx_3 \wedge dx_5 + dx_3 \wedge dx_4 \wedge dx_6 \ &+ dx_4 \wedge dx_5 \wedge dx_7 + dx_5 \wedge dx_6 \wedge dx_1 + dx_6 \wedge dx_7 \wedge dx_2 \ &+ dx_7 \wedge dx_1 \wedge dx_3 \end{aligned}$$

As a shortcut, we could write

$$\Phi_{\rm G_2} = {\bf 124} + {\bf 235} + {\bf 346} + {\bf 457} + {\bf 561} + {\bf 672} + {\bf 713}$$

Go back

Go bac

2	345678		-14	123456	1'2'	~	123456	3.4		123456	5.6	-2	123456	1,8,
_	123457	1'3'	2	123457	2'4'	2	123457	5.12	~	123457	6'8'	~	123458	1'4'
_	123458	2'3'	99	123458	5.8,	9 9	123458	1.9		123467	14	99	123467	2'3'
	123468	, a , a	19	123478	1,2,	2	123478	3.6	10	123478	5.6	4 0	123478	,8,1 1,8,1
_	1234	1'2'3'4'	-5	1234	5.6.7'8'	-2	123567	1.8	2	123567	2'6'	9	123567	3'7'
	123567	1.2.1	0 0	123568	1'6'	9 C	12 3568	22	0.0	123568	3.8.	ή c	123568	174
	1235	1.2.4.6	17	1235	1'3'4'7'	÷ Ţ	1235	1/5/6/7		1235	2'3'4'8'	4	1235	2'5'6'8'
_	1235	3'5'7'8'		1235	\$1.9.4		123678	1,8,	0	123678	2'7'	Ģ,	123678	3,6,
_	123678	2447	7 7	1236	1'2'3'6'	4 7	1236	1'2'4'5'	-1 -	1236	1'3'4'8'	7 7	12.36	1'5'6'8'
_	1237	1'2'4'8'	-	1237	1'3'4'5'		1237	1,2,1,8, -]		1237	2'3'4'6'		1237	2'6'7'8'
_	1237	3'5'6'7'	77	1237	4'5'6'8'		1238	1'2'3'8' -]		1238	1'2'4'7'	7.	12.38	1'3'4'6'
_	124567	1.6.7.8	10	124567	23.45	1 9	12.4567	2.2.2.1.8	- 0	1238	3'5'6'8'	1 9	12.38	4.2.6.1
_	124568	2.6	9	124568	3'7'	10	124568	2 in in		124578	1'8'	9	124578	2.7'2
_	124578	3.6	5	124578	4'5'	0	1245	1'2'3'6'	-	1245	1'2'4'5'	7	12.45	1'3'4'8'
_	1245	1'5'6'8'		1245	2'3'4'7'	4 9	1245	2'5'6'7' -]	- 0	1245	3.6,1.8	- c	1245	4'5'7'8'
	1246	1,2,4,6	۰ <u>-</u>	1246	1'3'4'7'	1	1246	1/5/6/7		1246	2'3'4'8'	4 7	1246	2'5'6'8'
	1246	3'5'7'8'	-	1246	\$,6,1,8,	1	1247	1'2'3'8' -]		1247	1'2'4'7'	7	1247	1'3'4'6'
	1247	1,6,1,8,		1247	2'3'4'5'		1247	2'5'7'8' -]		1247	3,2,6,8,	7.	1247	4.8.6.1
_	1248	1'2'3'7'		1248	1.2.48		1248	1.348	-1 -	1248	1/5/7/8/	7 9	1248	2'3'4'6'
_	125678	5'6'	1 0	125678	1000		1256	1,2,2,6,	1 0	1256	3,4,1,8,	19	1257	1,2,2,1
_	1257	1'2'6'8'	-	1257	1'3'5'6'	7	1257	1'3'7'8'		1257	2'4'5'6'	7	1257	2'4'7'8'
_	1257	3'4'5'7'	7	1257	3,4,6,8,	-	1258	1'2'5'8' -]	-	1258	1'2'6'7'	7	1258	1'4'5'6'
_	1258	1,4,1,8,		1258	2'3'5'6'		1258	2'3'7'8' -]		1258	3,4,2,8,		1258	3.4.6.1
_	1267	1.2.5.8	7	1267	1.2.6.1	7 7	1267	1454		1267	1.4.7.8	7 -	1267	2'3'5'6'
	1268	1/3/5/6/		1268	1/3/7/8		1268	2'4'5'6' -]		1268	2,4,1,8,		1268	3'4'5'7'
_	1268	3.4.6.8	7	1278	1'2'7'8'	9	1278	3.4.5.6		12	1'2'3'4'5'6'	~	12	1'2'3'4'7'8'
_	12	1'2'5'6'7'8'	-2	12	3,4,2,6,1,8,	-2	134567	1.1.	2	134567	2'8'	~	134567	3'5'
	134567	4.6	00	134568	1'8'	0 0	134568	7.7	0.0	134568	3,6,	99	1345 68	4/5/
	134578	1'5'	7-	134578	A.Z.	7	134578	377	N -	134578	2.7	7 -	1345	7'8'7'8'
	1345	3'5'6'7'	7	1345	4'5'6'8'	7	134678			134678	2'5'	9	134678	3'8'
_	134678	4.1.	0	1346	1'2'3'8'		1346	1'2'4'7' -]	-	1346	1'3'4'6'	7	13.46	1'6'7'8'
_	1346	2'3'4'5'		1346	,8,1,8,	7-	1346	3,2,6,8, -]	-	1346	4,2,6,1		1347	1'2'3'5'
	1347	8,1,5,5		1347	4.6.1.8		1348	1,2,3,6, -]		1348	1/2/4/5/	17	1348	1/3/4/8/
	1348	1'5'6'8'	-	1348	2'3'4'7'		1348	2'5'6'7' -]		1348	3,6,1,8,	- 7	1348	4'5'7'8'
_	135678	1'3'	9	135678	5.4	2	135678	5'7'	~	135678	6,8,9	~	1356	1'2'5'7'
	1356	1'2'6'8'		1356	1'3'5'6'		1356	1/3/7/8/ -]		1356	2'4'5'6'	- 9	1356	2'4'7'8'
	1358	1,3,6,1,		1358	1.4'5'7'		1358	1.4/6/8/ -]	v ==	1358	2,3,2,1,		1 2	2'3'6'8'
_	1358	2'4'5'8'	1	1358	2.4.67	1	1367	1'3'5'8' -]		1367	1'3'6'7'	7	1367	1.4.5.1
_	1367	1'4'6'8'	-	1367	2'3'5'7'	7	1367	2/3/6/8' -]	-	1367	2'4'5'8'		1367	2.4.67'
	1368	1'3'6'8'	<u>.</u>	1368	2'4'5'7'	-2	1378	1'2'5'7'		1378	1'2'6'8'		1378	1/3/5/6/
	1378	13.1.5.1	10	1378	A542	1 0	1378	2.4.1.8.2.1	- 0	1378	34'5'T	10	145678	3'4'6'8'
_	145678	2'3'	-2	145678	5'8'	2	145678	6.1.	2	1456	1'2'5'8'	7	1456	1'2'6'7'
_	1456	1,4,2,6,	7.	1456	1,4,1,8,	4.	1456	2'3'5'6' -]		1456	2'3'7'8'	7.	1456	3,4,2,8,
_	1456	7447	17	1457	7.76.8		1457	1'3'6'7'		1457	7.4.6.7	7 -	1457	1'4'6'8'
_	1458	2'3'6'7'	9	1467	1.4.6.1	- 2	1467	2/3/5/8/		1468	1'3'5'8'	- 7	1468	1'3'6'7'
_	1468	1'4'5'7'	-	1468	1'4'6'8'	7	1468	2'3'5'7'	-	1468	2'3'6'8'	7	1468	2'4'5'8'
_	1468	2'4'6'7'	-	1478	1'2'5'8'	-	1478	1'2'6'7' -]	-	1478	1'4'5'6'	7	1478	1'4'7'8'
_	1478	2/3/5/6/	77	1478	2'3'7'8'	4 9	1478	3/4/5/8/ -]		1478	3.4.6.1		14	1'2'3'4'5'8'
	1567	1.3.4.1		1567	1.9.6.1	17	1567	2/3/4/8/		1567	2,2,6,8,	7	1567	3'5'7'8'
_	1567	4.6.1'8'	-	1568	1'2'3'6'	7	1568	1'2'4'5' -]		1568	1'3'4'8'	-	1568	1'5'6'8'
_	1568	2'3'4'7'	7	1568	2'5'6'7'	1	1568	3'6'7'8' -]		1568	4'5'7'8'	7	1578	1'2'3'7'
	1578	1'2'4'8'	7	1578	1'3'4'5'	7	1578	1'5'7'8' -]	-	1578	2'3'4'6'	-	15.78	2'6'7'8'
_	1578	3'5'6'7'	0	1578	4.5.6'8'		1679	1'2'3'5'6'7'	0 -	1678	1'2'4'5'6'8'	9 -	1678	1'3'4'5'7'8'
	1678	2'3'4'5'	4	1678	2'5'7'8'	1 7	1678	3'5'6'8'		1678	4.2,6.7	77	1	1'2'3'5'6'8'
	16	1,2,4,2,6,1,	5	16	1'3'4'6'7'8'	9	16	2'3'4'5'7'8' -2	2	17	1'2'3'5'7'8'	Ģ	11	1,2,4,6,1,8,
_	11	1,3,4,2,6,1,	00	17	2'3'4'5'6'8'	0	18	1'2'3'6'7'8' -2	2	18	1'2'4'5'7'8'	9	81	1'3'4'5'6'8'
_	18	2'3'4'5'6'7'	2	_			_		-			Ī		

351 terms of $\Phi_{{ m Spin}(9)}$

70 terms of $\Phi_{\text{Spin}(9)}$

			-											
12345678		-14	123456	1'2'	2	123456	3'4'	-2	123456	5'6'	-2	123456	7'8'	-2
123457	1'3'	2	123457	2'4'	2	123457	5'7'	-2	123457	6'8'	2	123458	1'4'	2
123458	2'3'	-2	123458	5'8'	-2	123458	6'7'	-2	123467	1'4'	-2	123467	2'3'	2
123467	5'8'	-2	123467	6'7'	-2	123468	1'3'	2	123468	2'4'	2	123468	5'7'	2
123468	6'8'	-2	123478	1'2'	-2	123478	3'4'	2	123478	5'6'	-2	123478	7'8'	-2
1234	1'2'3'4'	-2	1234	5'6'7'8'	-2	123567	1'5'	-2	123567	2'6'	-2	123567	3'7'	-2
123567	4'8'	2	123568	1'6'	-2	123568	2'5'	2	123568	3'8'	-2	123568	4'7'	-2
123578	1'7'	-2	123578	2'8'	2	123578	3'5'	2	123578	4'6'	2	1235	1'2'3'5'	-1
1235	1'2'4'6'	-1	1235	1'3'4'7'	-1	1235	1'5'6'7'	-1	1235	2'3'4'8'	1	1235	2'5'6'8'	1
1235	3'5'7'8'	1	1235	4'6'7'8'	1	123678	1'8'	-2	123678	2'7'	-2	123678	3'6'	2
123678	4'5'	-2	1236	1'2'3'6'	-1	1236	1'2'4'5'	1	1236	1'3'4'8'	-1	1236	1'5'6'8'	-1
1236	2'3'4'7'	-1	1236	2'5'6'7'	-1	1236	3'6'7'8'	1	1236	4'5'7'8'	-1	1237	1'2'3'7'	-1
1237	1'2'4'8'	1	1237	1'3'4'5'	1	1237	1'5'7'8'	-1	1237	2'3'4'6'	1	1237	2'6'7'8'	-1
1237	3'5'6'7'	-1	1237	4′5′6′8′	1	1238	1'2'3'8'	-1	1238	1'2'4'7'	-1	1238	1'3'4'6'	1

- $\{1,2,3,4,5,6,7,8,1',2',3',4',5',6',7',8'\}$ are (indexes of) coordinates in \mathbb{R}^{16} .
- A table entry $||123578 \quad 1'7' \quad -2||$ means that $\Phi_{\text{Spin}(9)} = \cdots - 2dx_1 \wedge dx_2 \wedge dx_3 \wedge dx_5 \wedge dx_7 \wedge dx_8 \wedge dx_1' \wedge dx_7' + \ldots$
- Table obtained from Berger's definition of $\Phi_{\text{Spin}(9)}$ with the help of Mathematica.
- The coefficients are normalized in such a way that they are all integers with gcd = 1.

Pieces of source code for $\Phi_{{\rm Spin}(9)}$ computation

In progress.

Go back

The inductive argument

- Reduce to the case $S^{16^q-1} \subset \mathbb{R}^{16^q}$, and use induction on q.
- Assume that there are 8(q-1) independent vector fields $B_1, \ldots, B_{8(q-1)}$ on $S^{16^{q-1}-1} \subset \mathbb{R}^{16^{q-1}}$.
- Look at \mathbb{R}^{16^q} as 16 copies of $\mathbb{R}^{16^{q-1}}$:

$$\mathbb{R}^{16^q} = \{(s_1, \dots, s_{16}) | s_1, \dots, s_{16} \in \mathbb{R}^{16^{q-1}}\}$$

- Define complex structures J'₁₉,..., J'₈₉ on R^{16^q} by the same matrices defining J₁₉,..., J₈₉ but acting formally on the 16-ples (s₁,..., s₁₆) of elements in R^{16^{q-1}}.
- Let B be the radial vector field on $S^{16^q-1} \subset \mathbb{R}^{16^q}$. Prove that $\{B_1, \ldots, B_{8(q-1)}, J'_{19}B, \ldots, J'_{89}B\}$ is an orthonormal frame on S^{16^q-1} .

The inductive argument

- Reduce to the case $S^{16^q-1} \subset \mathbb{R}^{16^q}$, and use induction on q.
- Assume that there are 8(q-1) independent vector fields $B_1, \ldots, B_{8(q-1)}$ on $S^{16^{q-1}-1} \subset \mathbb{R}^{16^{q-1}}$.
- Look at \mathbb{R}^{16^q} as 16 copies of $\mathbb{R}^{16^{q-1}}$:

$$\mathbb{R}^{16^q} = \{(s_1, \dots, s_{16}) | s_1, \dots, s_{16} \in \mathbb{R}^{16^{q-1}}\}$$

- Define complex structures J'₁₉,..., J'₈₉ on R^{16^q} by the same matrices defining J₁₉,..., J₈₉ but acting formally on the 16-ples (s₁,..., s₁₆) of elements in R^{16^{q-1}}.
- Let *B* be the radial vector field on $S^{16^q-1} \subset \mathbb{R}^{16^q}$. Prove that $\{B_1, \ldots, B_{8(q-1)}, J'_{19}B, \ldots, J'_{89}B\}$ is an orthonormal frame on S^{16^q-1} .

needed!

Lemma

Lemma

The properties $(ab)^* = b^*a^*$, $\Re([a, b, c]) = 0$ and $\langle a, b \rangle = \Re(ab^*)$ hold in any Cayley-Dickson algebra.

Go back 2 levels

Go back 1 level

A more explicit $\Phi_{\text{Spin}(9)}$

$$\Phi_{\rm Spin(9)} \stackrel{\rm utc}{=} \sum_{1 \le \alpha_1 < \alpha_2 < \alpha_3 < \alpha_4 \le 9} (\psi_{\alpha_1 \alpha_2} \land \psi_{\alpha_3 \alpha_4} - \psi_{\alpha_1 \alpha_3} \land \psi_{\alpha_2 \alpha_4} + \psi_{\alpha_1 \alpha_4} \land \psi_{\alpha_2 \alpha_3})^2$$

$\psi_{12} = (-12 + 34 + 56 - 78) - ()'$	$\psi_{13} = (-13 - 24 + 57 + 68) - ()'$	$\psi_{14} = (-14 + 23 + 58 - 67) - ()'$
$\psi_{15} = (-15 - 26 - 37 - 48) - ()'$	$\psi_{16} = (-16 + 25 - 38 + 47) - ()'$	$\psi_{17} = (-17 + 28 + 35 - 46) - ()'$
$\psi_{18} = (-18 - 27 + 36 + 45) - ()'$	$\psi_{23} = (-14 + 23 - 58 + 67) + ()'$	$\psi_{24} = (13 + 24 + 57 + 68) + ()'$
$\psi_{25} = (-16 + 25 + 38 - 47) + ()'$	$\psi_{26} = (15 + 26 - 37 - 48) + ()'$	$\psi_{27} = (18 + 27 + 36 + 45) + ()'$
$\psi_{28} = (-17 + 28 - 35 + 46) + ()'$	$\psi_{34} = (-12 + 34 - 56 + 78) + ()'$	$\psi_{35} = (-17 - 28 + 35 + 46) + ()'$
$\psi_{36} = (-18 + 27 + 36 - 45) + ()'$	$\psi_{37} = (+15 - 26 + 37 - 48) + ()'$	$\psi_{38} = (16 + 25 + 38 + 47) + ()'$
$\psi_{45} = (-18 + 27 - 36 + 45) + ()'$	$\psi_{46} = (17 + 28 + 35 + 46) + ()'$	$\psi_{47} = (-16 - 25 + 38 + 47) + ()'$
$\psi_{48} = (15 - 26 - 37 + 48) + ()'$	$\psi_{56} = (-12 - 34 + 56 + 78) + ()'$	$\psi_{57} = (-13 + 24 + 57 - 68) + ()'$
$\psi_{58} = (-14 - 23 + 58 + 67) + ()'$	$\psi_{67} = (14 + 23 + 58 + 67) + ()'$	$\psi_{68} = (-13 + 24 - 57 + 68) + ()'$
$\psi_{78} = (12 + 34 + 56 + 78) + ()'$		

$$\begin{split} \psi_{19} &= -11' - 22' - 33' - 44' - 55' - 66' - 77' - 88' \\ \psi_{39} &= -13' - 24' + 31' + 42' + 57' + 68' - 75' - 86' \\ \psi_{59} &= -15' - 26' - 37' - 48' + 51' + 62' + 73' + 84' \\ \psi_{79} &= -17' + 28' + 35' - 46' - 53' + 64' + 71' - 82' \end{split}$$

$$\begin{split} \psi_{29} &= -12' + 21' + 34' - 43' + 56' - 65' - 78' + 87' \\ \psi_{49} &= -14' + 23' - 32' + 41' + 58' - 67' + 76' - 85' \\ \psi_{69} &= -16' + 25' - 38' + 47' - 52' + 61' - 74' + 83' \\ \psi_{89} &= -18' - 27' + 36' + 45' - 54' - 63' + 72' + 81' \end{split}$$

Go back