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S and Spin(9) SP is “more equal” among other spheres

First characterization: Hopf fibrations

515 is the only sphere involved in three different Hopf fibrations. J
1
o7 oP
st s3
5;2
CP’ HP3

The complex and quaternionic Hopf fibrations are not subfibrations of the
OCtOI‘liOI‘liC ONE€ [Loo-Verjovsky, Topology 1992].
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S and Spin(9) SP is “more equal” among other spheres

Second characterization: Einstein metrics

5™ is the only sphere with three homogeneous Einstein metrics J

[Ziller, Math. Ann. 1982].

o Round metric.
o Einstein metric on Sp(4)/Sp(3) tsensen, 5. pizs. ceon. 19721,
o Einstein metric on Spin(9)/Spin(7)

[Bourguignon-Karcher, Ann. Sci. Ec. Norm. Sup. 1978].
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S and Spin(9) Spin(9) and Hopf fibrations

What is Spin(9)?

Definition
Spin(9) € SO(16) is the group of symmetries of the Hopf fibration

S7
@2 D 515 — 58 = @Pl [Gluck-Warner-Ziller, L’Enseignement Math. 1986].

Spin(9)
o AS(RIG) = A? + « .. [Friedrich, Asian Journ. Math 2001].

o Spin(9) is the stabilizer in SO(16) of any element of A$

[Brown-Gray, Diff. Geom. in honor of K. Yano 1972].

Definition
Spin(9) is the stabilizer in SO(16) of the 8-form

Up to constants
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The Spin(9) fundamental form Quaternionic analogy

A close relative: the quaternionic case

@ Sp(2) - Sp(1) C SO(8) is the group of symmetries of the Hopf

. . s3
flbrat|0n Hz D 57 _> 54 g HPl [Gluck-Warner-Ziller, L’Enseignement Math. 1986].
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The Spin(9) fundamental form Quaternionic analogy

A close relative: the quaternionic case

@ Sp(2) - Sp(1) C SO(8) is the group of symmetries of the Hopf
3
ﬁbration H2 D 57 i 54 g HPl [Gluck-Warner-Ziller, L’Enseignement Math. 1986].

@ Sp(2) - Sp(1) is the stabilizer in SO(8) of the 4-form ®gp2).9p(1)
defined by

Psp(2)-p(1) = /H . pivdl

[Berger, Ann. Ec. Norm. Sup. 1972].
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where (r,u) € S* C R x H and H? = RS,
o The choice of (r,u) = (1,0), (0,1), (0,), (0,), (0, k) gives

Ti,...,Ts € SO(8)

o 7j,...,7Is satisfy
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@ Since 7, 0Zg = —Ig 0 1,, one gets 10 complex structures
Jap=TZao1g fora < p
o The Kahler forms 0,3 give rise to a 5 x 5 skew-symmetric matrix

0= (eaﬁ)

Denote by () the second coefficient of the characteristic polynomial of
0 = (0a). Then

utc

Psp(2)-sp(1) = 72(0)
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Nine involutions for Spin(9)

@ Spin(9) is the subgroup of SO(16) generated by matrices

r RU
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where (r,u) € S8 C R x O and 0? = R16

[Harvey, Spinors and Calibrations 1990].
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The Spin(9) fundamental form Spin(9) and Kahler forms on R*°

From involutions to Kahler forms

o Since Z, 0Zg = —Ig 0 I,, one gets 36 complex structures

Jop =Zao1s fora<f

A2(R10) = @ @:spin(9)@/\§4
<

o Their Kahler forms 6,3 give rise to a 9 x 9 skew-symmetric matrix

0= (901,8)
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From the Kahler forms to the Spin(9) form

Theorem [P-Piccinni, Ann. Gl. An. Geom. 2011]

Denote the characteristic polynomial of 6 by

t0 + 1 (0)t" + 74(0)t° + 16(0) > + T8(0)t
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From the Kahler forms to the Spin(9) form

Theorem [P-Piccinni, Ann. Gl. An. Geom. 2011]

Denote the characteristic polynomial of 6 by
t0 + ()t + 74(0)t° + 76(0) > + 75(0)t
Then (78(8) = volume form and)

utc

7‘2(9) = 7'6(9) =0 cI>Spin(9) = 7‘4(9)
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The Spin(9) fundamental form Spin(9) and Kahler forms on R*°

From the Kahler forms to the Spin(9) form

Theorem [P-Piccinni, Ann. Gl. An. Geom. 2011]

Denote the characteristic polynomial of 6 by
t0 + ()t + 74(0)t° + 76(0) > + 75(0)t

Then (78(8) = volume form and)

7(0) = 16(0) =0

N
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The Spin(9) fundamental form An explicit formula for ®a.inra

An explicit formula for ®gp;, ()

o The (186) = 12870 integrals of

Pspin(9) = [@ o pivdl

can be computed with the help of Mathematica.

PreViOUS WOFk for d)Spln(g) in [Abe-Matsubara, Korea Japan Conf. Transf. Groups 19971, J

[Friedrich, Asian J. Math. 2001], [C. Lopez-Gadea-Mykytyuk, int. J. Geom. Methods 2010].
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Vector fields on spheres Maximal number and examples

How many vector fields on spheres?

o Spheres SN~ ¢ RN admit 1, 3 or 7 linearly independent vector fields
according to whether p =1, 2 or 3 in

N = (2k +1)2°
@ In the general case

N = (2k + 1)2P169 withg>1 and p=1,2,3

the maximal number of vector fields is

[Hurwitz, Math. Ann. 1922], [Radon, Abh. Math. Hamburg 1923], [Adams, Ann. of Math. 1962].

The lowest dimensional sphere with more than 7 vector field is S*° J
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Vector fields on spheres Maximal number and examples

The lowest dimension: S1°

o Coordinates on S°:

B=(x,y)=(X1,---y X8, Y1,---,Y8) unit normal vector field

o Jop = complex structures on R!® associated to the Spin(9) structure.

Proposition

A maximal system of 8 orthonormal vector fields on S1° is given by

J19(B), Jo9(B), J39(B), Jag(B), Jso(B), Jeo(B), J79(B), Jso(B)

The frame {J19(B), ..., Jgo(B)} has nothing to do with Hopf fibrations.
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Vector fields on spheres Maximal number and examples

Other spheres with o(N) > 7

Sphere || o(N) Vector fields Notations Involved structures
st 8 J19B, ..., JgoB B=s=(x,y) Spin(9)
Ji9B, ..., JgoB B=s'+is? L;B=—s%+ st
58t 9 198, ..., J89 s 4 is%, L; s+ is Spin(9)+C
*L;B *(xy) = (=)
Ji9B, ..., JgoB B = s 4 is? + js3 + ks*
§63 | qp | F® Sttt Spin(9)+H
*LiB,xL;B,xL,B Li, Lj, Ly and x as above
gl 2.3 4 5, 6 7 8
17 5 J19B, ..., JgoB B =s' +is* + js* + ks* + es®> + fs° + gs" + hs Spin(9)+0
*LiB,...,xLyB Li,...,Lp and * as above
Ji9B, ..., JgoB
5255 16 190 789 See explanations below (Spin(9))?
* 3B, ..., *J%B
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Other spheres with o(N) > 7

Sphere || o(N) Vector fields Notations Involved structures ‘
Ji9B, ..., JgoB , )
5255 16 19 8 See explanations below (Spin(9))?
*xJLoB, ..., *J3B

*LiB,*xL;B,xLxB L;, Lj, Ly and * as above
_ 1,2, 3 4 5 6 7 8
g127 - J19B, ..., JggB B =s' +is* + js* + ks® + es®> + fs® + gs’ + hs' Spin(9)+0
*LiB,...,xLyB Li,...,Lp and * as above
Ji19B, ..., JgoB . .
522 16 9 89 See explanations below (Spin(9))?
* 3B, ..., xJ5B
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Vector fields on spheres Maximal number and examples

Other spheres with o(N) > 7

‘ Sphere H o(N) ‘ Vector fields ‘ Notations ‘ Involved structures ‘
J19B, ..., JgoB ) .
5255 16 1o 89 See explanations below (Spin(9))?
*JllgB,...,*JégB

W defined on the 16-dimensional

components of
R256 :R16®'--@R16

The Jiy, ..., 3y are defined by the same 16 x 16 real matrices as
J9, ..., Jgo, but acting formally on 16-ples of sedenions

B =(s%,...,s'%) e R%"
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Vector fields on spheres [“Any S o rY

© 5'° and Spin(9)

© The Spin(9) fundamental form

e Vector fields on spheres
o Any SN-1 c RN

@ Locally conformal parallel Spin(9) manifolds
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Cayley-Dickson process

o A x-algebra A is a real algebra equipped with a conjugation, namely a
linear map * : A — A such that

a** = a, (ab)* = b*a*
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Vector fields on spheres Any S b CR b

Cayley-Dickson process

o A x-algebra A is a real algebra equipped with a conjugation, namely a
linear map * : A — A such that

a** = a, (ab)* = b*a*

o A new *-algebra structure can be defined on A x A by

(a, b)(c,d) = (ac — d*b,da+ bc*) and (a,b)* =(a",—b)

o This produces
R-C—-H—-0—-S—...
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Vector fields on spheres

Vector fields in the general case

Theorem [P-Piccinni, arXiv: 1107.0462, 2011]
o(N)> 77 All the fault of Spin(9)

27 /45



Vector fields on spheres

Vector fields in the general case

Theorem [P-Piccinni, arXiv: 1107.0462, 2011]

o(N)> 77 All the fault of Spin(9)
(k,p,q) Sphere a(N) Vector fields Involved structures
JlgB7 ey JggB
(k,0,q) || S@k+D167-1 8q *JoB. ..., xJeB (Spin(9))7
«JOIB, .. % JE B
JlgB7 ey JsgB
*JYB, ... xJLB
(k,1,q) | S2CGk+116°-1 | 8q 41 o (Spin(9))7 +C
* B, .. %GB
*LiB
J1gB7 ey JagB
*xJ}oB, ..., xJ3B
(k,2,q) || SHCK+67-1 | gq +3 . (Spin(9))? + H
*JOIB, . xSt B
*,C,'B, *,CJ'B, *,CkB
J1gB, ey JsgB
*xJ}oB, ..., xJ3B
(k,3,q) || S8k+1106°-1 | 8q .47 o (Spin(9))7 + O
- B |
*ﬂ,‘B ek ﬁhB
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Locally conformal parallel Spin(9) manifolds Definition and examples

© 5'° and Spin(9)

© The Spin(9) fundamental form

e Vector fields on spheres

@ Locally conformal parallel Spin(9) manifolds
o Definition and examples
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Definition

A locally conformal parallel Spin(9) manifold is a 16-dimensional Spin(9)
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holonomy contained in Spin(9).
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Locally conformal parallel Spin(9) manifolds Definition and examples

Definition

A locally conformal parallel Spin(9) manifold is a 16-dimensional Spin(9)
manifold whose induced metric is locally conformal to metrics with
holonomy contained in Spin(9).

g|U, = e’g, whergyg, has holonomy contained in Spin(9)
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Locally conformal parallel Spin(9) manifolds Definition and examples

Examples

2 5
The product S*° x S = 20 = cone over S'° with the (conformal cIass)J
of the flat metric.
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Locally conformal parallel Spin(9) manifolds Definition and examples

Examples

2_ 5
The product S5*° x S = 20 = cone over S'° with the (conformal class)
of the flat metric.

The trivial S*-bundle RP® x S, with the metric induced by the flat cone
C(S™).

The non-trivial S'-bundle over RP®, with the metric induced by the flat
cone C(S19).
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© 5'° and Spin(9)

© The Spin(9) fundamental form

e Vector fields on spheres

@ Locally conformal parallel Spin(9) manifolds

o Structure Theorem
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Locally conformal parallel Spin(9) manifolds Structure Theorem

Structure of compact locally conformal parallel Spin(9)

manifolds

Theorem [P-Piccinni-Vuletescu]

Let (M, g) be a compact, locally conformal but not globally conformal
parallel Spin(9) manifold. Then

M = C(N)/Z

where C(N) is a flat cone over a compact 15-dimensional manifold N with

finite fundamental group.

v
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Locally conformal parallel Spin(9) manifolds Structure Theorem

Proof

@ On each U, it is defined a V%-parallel 8-form ®,,.
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Locally conformal parallel Spin(9) manifolds Structure Theorem

Proof

@ On each U, it is defined a V%-parallel 8-form ®,,.
@ There is a 8-form ® on M locally given by e*d,,.

@ There is a closed 1-form w (the Lee form) on M, locally given by
4df,, such that d® = w A .

@ The 1-form w defines a closed Weyl connection D on M by
Dg=w®g.
@ Since the local metrics g, are Einstein, D is Einstein-Weyl.
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Locally conformal parallel Spin(9) manifolds Structure Theorem

Proof, on the universal covering

O Let g be the Gauduchon metric, so that Vw = 0. Then the universal
covering (M, g) is reducible: (M, g) = (R, ds) x (N, gn), for a
compact simply connected N.
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O Let g be the Gauduchon metric, so that Vw = 0. Then the universal
covering (M, g) is reducible: (M, g) = (R, ds) x (N, gn), for a
compact simply connected N.

@ On M we have & = df, and (M, e~"g) is the metric cone C(N).

@ The local metrics are Ricci-flat, that is, C(N) is Ricci-flat.

Q Ricci-flat + holonomy Spin(9) = flat.
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Locally conformal parallel Spin(9) manifolds Structure Theorem

Proof, on the universal covering

Let g be the Gauduchon metric, so that Vw = 0. Then the universal
covering (M, g) is reducible: (M, g) = (R, ds) x (N, gn), for a
compact simply connected N.

On M we have & = df, and (M, e~"g) is the metric cone C(N).
The local metrics are Ricci-flat, that is, C(N) is Ricci-flat.

Ricci-flat + holonomy Spin(9) = flat.

Since m1(M) acts by homotheties on C(N), and N is compact, 71(M)
contains a finite normal subgroup / of isometries.
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Locally conformal parallel Spin(9) manifolds Structure Theorem

Proof, on the universal covering

Let g be the Gauduchon metric, so that Vw = 0. Then the universal
covering (M, g) is reducible: (M, g) = (R, ds) x (N, gn), for a
compact simply connected N.

On M we have & = df, and (M, e~"g) is the metric cone C(N).
The local metrics are Ricci-flat, that is, C(N) is Ricci-flat.

Ricci-flat + holonomy Spin(9) = flat.

Since m1(M) acts by homotheties on C(N), and N is compact, 71(M)
contains a finite normal subgroup / of isometries.

We obtain 71(M) = I x Z, and M = C(N/1)/Z.
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Locally conformal parallel Spin(9) manifolds | Structure Theorem

Surprise: end of talk!
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Locally conformal parallel Spin(9) manifolds Structure Theorem

Details for ®gpinio) = [op: PV dl

o v = volume form on the octonionic lines | = {(x, mx)} or
I=1{(0,y)} in Q2.

o p;: O — | = projection on /.

o pfv; = 8-form in 0? = RS,

o The integral over OP! can be computed over @ with polar
coordinates.

o The formula arise from distinguished 8-planes in the
Spin(9)-geometry — (forthcoming) calibrations.
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Locally conformal parallel Spin(9) manifolds Structure Theorem

The five involutions of Sp(2) - Sp(1) as 8 x 8 matrices

7 =
%r
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Locally conformal parallel Spin(9) manifolds Structure Theorem

The nine involutions of Spin(9) as 16 x 16 matrices




Locally conformal parallel Spin(9) manifolds Structure Theorem

Explicit formula for ®¢,

Denote by x1, ..., x7 the coordinates in R”. Then G = stabilizer in SO(7)
of

bq, = dxg Adxo A dxg + dxo A dx3 A dxs + dx3 A dxa A dxg
+ dxg A dxs A dxz + dxs A dxg A dxy + dxg N dxz A dxo
+ dx7 A dxq A dxs

As a shortcut, we could write

®, = 124 + 235 + 346 + 457 + 561 + 672 + 713
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Structure Theorem

Locally conformal parallel Spin(9) manifolds
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Locally conformal parallel Spin(9) manifolds Structure Theorem

70 terms of &g (o)

12345678 -14 || 123456 12 2 | 123456 34’ -2 || 123456 56’ -2 || 123456 78 -2
123457 13 2 || 123457 24 2 | 123457 57 -2 || 123457 6’8’ 2 || 123458 vy 2
123458 23" -2 || 123458 58’ -2 || 123458 67 -2 || 123467 14 -2 || 123467 23 2
123467 58 -2 || 123467 6’7 -2 | 123468 13" 2 || 123468 24’ 2 || 123468 57 2
123468 68" -2 || 123478 12 -2 | 123478 34’ 2 || 123478 56" -2 || 123478 78 -2

1234 V2yY -2 1234 56’78’ -2 || 123567 s’ -2 || 123567 26’ -2 || 123567 37T -2
123567 g 2 || 123568 16’ -2 | 123568 25" 2 || 123568 38’ -2 || 123568 ¥y -2
123578 17 -2 || 123578 28 2 | 123578 35" 2 || 123578 a6 2 1235 123’5’ -1

1235 1246/ -1 1235 U347 -1 1235 156’7 -1 1235 2348 1 1235 25’6’8’ 1

1235 3’5’7’8’ 1 1235 46’7’8’ 1 | 123678 18" -2 || 123678 27 -2 || 123678 36’ 2
123678 4y -2 1236 1/2'3'6’ -1 1236 1274’5' 1 1236 1348 -1 1236 1/5'6’8" -1

1236 2347 -1 1236 2'5°6'7" -1 1236 367’8’ 1 1236 4578 -1 1237 1237 -1

1237 12'4’8/ 1 1237 vyas 1 1237 157’8’ -1 1237 2346 1 1237 26’7’8 -1

1237 ¥56'7 -1 1237 456’8’ 1 1238 1'2/3'8’ -1 1238 1247 -1 1238 1346’ 1

o {1,2,3,4,5,6,7,8,1,2/,3' 4’ 5/,6/,7".8'} are (indexes of ) coordinates in R1°.
o A table entry |[123578 17”7 — 2|| means that
¢Spin(9) = ... —2dxy Ndxo A dxz A dxs A dxz A dxg A dX{ N dX§ + ...
o Table obtained from Berger's definition of ®g,;,(g) with the help of
Mathematica.
o The coefficients are normalized in such a way that they are all

integers with gcd = 1.
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Locally conformal parallel Spin(9) manifolds Structure Theorem

Pieces of source code for ®g;,(9) computation

In progress.
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Locally conformal parallel Spin(9) manifolds Structure Theorem

The inductive argument

Reduce to the case S16*~1 ¢ R16 and use induction on g.

Assume that there are 8(¢ — 1) independent vector fields
-1 -1

Bi,...,Barg_1) on S7 L C RI67,

Look at R16? as 16 copies of R16° ":
qu = {(51, Ceey 516)|517 ...,816 € qu_l}

Define complex structures Jjg, ..., Js5 on R®? by the same matrices
defining Jig, ..., Jgg but acting formally on the 16-ples (s1,.. ., si6)
of elements in R16°",

Let B be the radial vector field on S10°~1 ¢ R, Prove that
{Bi,...,Bgg-1): J1gB: - - ., JigB} is an orthonormal frame on S10°~1.
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Locally conformal parallel Spin(9) manifolds Structure Theorem

The inductive argument

Reduce to the case S16*~1 ¢ R16 and use induction on g.

Assume that there are 8(¢ — 1) independent vector fields
Bi,...,Barg_1) on S7 L C RI67,

Look at R16? as 16 copies of R16° ":
qu = {(51, Ceey 516)|517 ...,816 € qu_l}

Define complex structures Jjg, ..., Js5 on R®? by the same matrices

defining Jig, ..., Jgg but acting formally on the 16-ples (s1,.. ., si6)
. -1

of elements in R"""

Let B be the radial vector field on S167~1 — R167, m that

{Bi,...,Bgg-1): J1gB: - - ., JigB} is an orthonormal franje on S10°~1.

needed!
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Locally conformal parallel Spin(9) manifolds Structure Theorem

Lemma

The properties (ab)* = b*a*, R([a, b, c]) =0 and < a, b >= R(ab*) hold
in any Cayley-Dickson algebra.
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Locally conformal parallel Spin(9) manifolds Structure Theorem

A more explicit Pg;i,

utc
¢Spin(9) = Z ("/)a1a2/\wa3a4 _1/}041043 /\¢a2a4 +¢a1a4 /\'@/)agog)z

1<ai<ar<az<as<9

P19 = (—12+ 34 + 56 — 78) — ()’ P13 =(—13—24+57+68) — () Y14 =(—14+23+5 —67) — ()
P15 = (—15—26 —37 —48) — ( )/ 1 =(—16+25—38+47) — ( )/ 17 = (—17+28+35 —46) — ( )/
P13 = (—18 —27+36+45) — ( )/ o3 =(—14+23—58+67)+ () s =(13+24+57+68)+ ()
Yos = (—16 + 25 + 38 — 47) + ( )/ P = (15 + 26 — 37 — 48) + ()’ o7 = (18 + 27 + 36 + 45) + ( )’
Pog = (—17+ 28 — 35+ 46) + ( )/ P34 = (—12+34 —56+78) + ( )/ ab3s = (—17 — 28 +35+46) + ( )’
P36 = (—18 + 27 + 36 — 45) + ( )/ P37 = (+15 — 26 +37 — 48) + ( )/ 3z = (16 + 25 + 38 + 47) + ( )/
g5 = (—18 + 27 — 36 + 45) + ( ) a6 = (17 + 28 + 35 4 46) + ( )’ g7 = (—16 — 25+ 38 +47) + ()’
ag = (15 — 26 — 37 + 48) + ( )’ P56 = (—12 —34+56 +78) + ( )’ b5z = (—13+24+57 — 68) + ()’
Psg = (—14 — 23 + 58 +67) + ( )/ Y7 = (14 + 23 + 58 + 67) + ()’ Peg = (—13 +24 — 57+ 68) + ( )/
7g = (12 + 34 456 + 78) + ( )/

119 = —11/ — 22/ — 33/ — a4’ — 55/ — 66’ — 77/ — 88’  ppg = —12/ + 21/ + 34’ — 43’ 4 56’ — 65/ — 78’ + 87/
139 = —13/ — 24’ + 31/ + 42/ + 57/ + 68’ — 75/ — 86’ a9 = —147 + 23/ — 32/ + 41’ + 58’ — 67/ + 76/ — 85/
P59 = —157 — 26’ — 37/ — 48’ + 517 + 62/ + 73/ + 84’ Y9 = —16’ + 25/ — 38/ + 47/ — 52/ + 61/ — 74’ + 83/
P79 = —17/ + 28/ + 35/ — 46’ — 53/ + 64’ + 71/ — 82/ g9 = —18/ — 27/ + 36’ + 45/ — 54’ — 63/ + 72/ + 81/
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