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S15 and Spin(9) S15 is “more equal” among other spheres

First characterization: Hopf fibrations

S15 is the only sphere involved in three different Hopf fibrations.

S15

Remark

The complex and quaternionic Hopf fibrations are not subfibrations of the
octonionic one [Loo-Verjovsky, Topology 1992].
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S15 and Spin(9) S15 is “more equal” among other spheres

Second characterization: Einstein metrics

S15 is the only sphere with three homogeneous Einstein metrics
[Ziller, Math. Ann. 1982].

Round metric.

Einstein metric on Sp(4)/Sp(3)

[Jensen, J. Diff. Geom. 1973].

Einstein metric on Spin(9)/Spin(7)
[Bourguignon-Karcher, Ann. Sci. Ec. Norm. Sup. 1978].
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S15 and Spin(9) S15 is “more equal” among other spheres

Third characterization: vector fields on spheres

S15 is the lowest dimensional sphere admitting more than 7 vector fields
[Hurwitz, Math. Ann. 1922], [Radon, Abh. Math. Hamburg 1923], [Adams, Ann. of Math. 1962].

Number σ(N) of linearly independent vector fields on SN−1?

If N = (2k + 1)2p16q, with 0 ≤ p ≤ 3, then

σ(N) = 8q + 2p − 1

Spin(9) contribution C,H,O contribution
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S15 and Spin(9) Spin(9) and Hopf fibrations

Berger’s list and Spin(9) refutation

SO(n)
U(n)

SU(n)

Sp(n) · Sp(1)

Sp(n)
G2

Spin(7)Spin(9)

Simply connected, complete, holonomy Spin(9)
⇔

OP2 = F4
Spin(9) (s > 0), R16(flat), OH2 = F4(−20)

Spin(9) (s < 0)
[Alekseevsky, Funct. Anal. Prilozhen 1968].
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S15 and Spin(9) Spin(9) and Hopf fibrations

What is Spin(9)?

Definition

Spin(9) ⊂ SO(16) is the group of symmetries of the Hopf fibration

O2 ⊃ S15 S7

→ S8 ∼= OP1
[Gluck-Warner-Ziller, L’Enseignement Math. 1986].

Λ8(R16)
Spin(9)

= Λ8
1 + . . . [Friedrich, Asian Journ. Math 2001].

Spin(9) is the stabilizer in SO(16) of any element of Λ8
1

[Brown-Gray, Diff. Geom. in honor of K. Yano 1972].

Definition

Spin(9) is the stabilizer in SO(16) of the 8-form

ΦSpin(9)
utc
=

∫
OP1

p∗l νl dl Details

Up to constants
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The Spin(9) fundamental form Quaternionic analogy

A close relative: the quaternionic case

Sp(2) · Sp(1) ⊂ SO(8) is the group of symmetries of the Hopf

fibration H2 ⊃ S7 S3

→ S4 ∼= HP1
[Gluck-Warner-Ziller, L’Enseignement Math. 1986].

Sp(2) · Sp(1) is the stabilizer in SO(8) of the 4-form ΦSp(2)·Sp(1)

defined by

ΦSp(2)·Sp(1) =

∫
HP1

p∗l νl dl

[Berger, Ann. Éc. Norm. Sup. 1972].
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The Spin(9) fundamental form Quaternionic analogy

Five involutions for Spin(5)

Consider in Sp(2) the matrices(
r Ru

Ru −r

)
where (r , u) ∈ S4 ⊂ R×H and H2 ∼= R8.

The choice of (r , u) = (1, 0), (0, 1), (0, i), (0, j), (0, k) gives

I1, . . . , I5 ∈ SO(8) Details

I1, . . . , I5 satisfy

I2
α = Id, I∗α = Iα, Iα ◦ Iβ = −Iβ ◦ Iα

12 / 45



The Spin(9) fundamental form Quaternionic analogy

Five involutions for Spin(5)

Consider in Sp(2) the matrices(
r Ru

Ru −r

)
where (r , u) ∈ S4 ⊂ R×H and H2 ∼= R8.

The choice of (r , u) = (1, 0), (0, 1), (0, i), (0, j), (0, k) gives

I1, . . . , I5 ∈ SO(8) Details

I1, . . . , I5 satisfy

I2
α = Id, I∗α = Iα, Iα ◦ Iβ = −Iβ ◦ Iα

12 / 45



The Spin(9) fundamental form Quaternionic analogy

Five involutions for Spin(5)

Consider in Sp(2) the matrices(
r Ru

Ru −r

)
where (r , u) ∈ S4 ⊂ R×H and H2 ∼= R8.

The choice of (r , u) = (1, 0), (0, 1), (0, i), (0, j), (0, k) gives

I1, . . . , I5 ∈ SO(8) Details

I1, . . . , I5 satisfy

I2
α = Id, I∗α = Iα, Iα ◦ Iβ = −Iβ ◦ Iα

12 / 45



The Spin(9) fundamental form Quaternionic analogy

From involutions to Kähler forms

Since Iα ◦ Iβ = −Iβ ◦ Iα, one gets 10 complex structures

Jαβ = Iα ◦ Iβ for α < β

The Kähler forms θαβ give rise to a 5× 5 skew-symmetric matrix

θ = (θαβ)

Remark

Denote by τ2(θ) the second coefficient of the characteristic polynomial of
θ = (θαβ).

Then

ΦSp(2)·Sp(1)
utc
= τ2(θ)
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The Spin(9) fundamental form Spin(9) and Kähler forms on R16

Nine involutions for Spin(9)

Spin(9) is the subgroup of SO(16) generated by matrices(
r Ru

Ru −r

)
where (r , u) ∈ S8 ⊂ R×O and O2 ∼= R16

[Harvey, Spinors and Calibrations 1990].

The choice of (r , u) = (1, 0), (0, 1), (0, i), (0, j), (0, k), (0, e), (0, f ),
(0, g), (0, h) gives

I1, . . . , I9 ∈ SO(16) Details

I1, . . . , I9 satisfy

I2
α = Id, I∗α = Iα, Iα ◦ Iβ = −Iβ ◦ Iα
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The Spin(9) fundamental form Spin(9) and Kähler forms on R16

From involutions to Kähler forms

Since Iα ◦ Iβ = −Iβ ◦ Iα, one gets 36 complex structures

Jαβ = Iα ◦ Iβ for α < β

Λ2(R16) = Λ2
36 ⊕ Λ2

84 = spin(9)⊕ Λ2
84

generated by Jαβ generated by Jαβγ

Their Kähler forms θαβ give rise to a 9× 9 skew-symmetric matrix

θ = (θαβ)
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The Spin(9) fundamental form Spin(9) and Kähler forms on R16

From the Kähler forms to the Spin(9) form

Theorem [P-Piccinni, Ann. Gl. An. Geom. 2011]

Denote the characteristic polynomial of θ by

t9 + τ2(θ)t7 + τ4(θ)t5 + τ6(θ)t3 + τ8(θ)t

Then (τ8(θ)
utc
= volume form and)

τ2(θ) = τ6(θ) = 0 ΦSpin(9)
utc
= τ4(θ)

Explicit formulas?
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The Spin(9) fundamental form An explicit formula for ΦSpin(9)

An explicit formula for ΦSpin(9)

The
(16

8

)
= 12870 integrals of

ΦSpin(9) =

∫
OP1

p∗l νl dl

can be computed with the help of Mathematica.

Show all 702 terms Show only 70 terms Show source code

Previous work for ΦSpin(9) in [Abe-Matsubara, Korea Japan Conf. Transf. Groups 1997],
[Friedrich, Asian J. Math. 2001], [C. Lopez-Gadea-Mykytyuk, int. J. Geom. Methods 2010].
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Vector fields on spheres Maximal number and examples

1 S15 and Spin(9)
S15 is “more equal” among other spheres
Spin(9) and Hopf fibrations

2 The Spin(9) fundamental form
Quaternionic analogy
Spin(9) and Kähler forms on R16

An explicit formula for ΦSpin(9)

3 Vector fields on spheres
Maximal number and examples
Any SN−1 ⊂ RN

4 Locally conformal parallel Spin(9) manifolds
Definition and examples
Structure Theorem
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Vector fields on spheres Maximal number and examples

How many vector fields on spheres?

Spheres SN−1 ⊂ RN admit 1, 3 or 7 linearly independent vector fields
according to whether p = 1, 2 or 3 in

N = (2k + 1)2p

In the general case

N = (2k + 1)2p16q with q ≥ 1 and p = 1, 2, 3

the maximal number of vector fields is

σ(N) = 8q + 2p − 1

Spin(9) contribution C,H,O contribution

The lowest dimensional sphere with more than 7 vector field is S15

[Hurwitz, Math. Ann. 1922], [Radon, Abh. Math. Hamburg 1923], [Adams, Ann. of Math. 1962].
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Vector fields on spheres Maximal number and examples

The lowest dimension: S15

Coordinates on S15:

B = (x , y) = (x1, . . . , x8, y1, . . . , y8) unit normal vector field

Jαβ = complex structures on R16 associated to the Spin(9) structure.

Proposition

A maximal system of 8 orthonormal vector fields on S15 is given by

J19(B), J29(B), J39(B), J49(B), J59(B), J69(B), J79(B), J89(B)

Remark

The frame {J19(B), . . . , J89(B)} has nothing to do with Hopf fibrations.
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Vector fields on spheres Maximal number and examples

Other spheres with σ(N) > 7

Sphere σ(N) Vector fields Notations Involved structures

S255 16
J19B, . . . , J89B

See explanations below (Spin(9))2

?J1
19B, . . . , ?J

1
89B

Sphere σ(N) Vector fields Notations Involved structures

S15 8 J19B, . . . , J89B B = s = (x , y) Spin(9)

S31 9
J19B, . . . , J89B B = s1 + is2,LiB = −s2 + is1

Spin(9)+C
?LiB ? : (x , y)→ (x ,−y)

S63 11
J19B, . . . , J89B B = s1 + is2 + js3 + ks4

Spin(9)+H
?LiB, ?LjB, ?LkB Li ,Lj ,Lk and ? as above

S127 15
J19B, . . . , J89B B = s1 + is2 + js3 + ks4 + es5 + fs6 + gs7 + hs8

Spin(9)+O
?LiB, . . . , ?LhB Li , . . . ,Lh and ? as above

S255 16
J19B, . . . , J89B

See explanations below (Spin(9))2

?J1
19B, . . . , ?J

1
89B
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Vector fields on spheres Maximal number and examples

Other spheres with σ(N) > 7

Sphere σ(N) Vector fields Notations Involved structures

S255 16
J19B, . . . , J89B

See explanations below (Spin(9))2

?J1
19B, . . . , ?J

1
89B

For S255 ⊂ R256 the J19, . . . , J89 are defined on the 16-dimensional
components of

R256 = R16 ⊕ · · · ⊕ R16

The J1
19, . . . , J

1
89 are defined by the same 16× 16 real matrices as

J19, . . . , J89, but acting formally on 16-ples of sedenions

B = (s1, . . . , s16) ∈ R256
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Vector fields on spheres Any SN−1 ⊂ RN

1 S15 and Spin(9)
S15 is “more equal” among other spheres
Spin(9) and Hopf fibrations

2 The Spin(9) fundamental form
Quaternionic analogy
Spin(9) and Kähler forms on R16

An explicit formula for ΦSpin(9)

3 Vector fields on spheres
Maximal number and examples
Any SN−1 ⊂ RN

4 Locally conformal parallel Spin(9) manifolds
Definition and examples
Structure Theorem
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Vector fields on spheres Any SN−1 ⊂ RN

Cayley-Dickson process

A ∗-algebra A is a real algebra equipped with a conjugation, namely a
linear map ∗ : A → A such that

a∗∗ = a, (ab)∗ = b∗a∗

A new ∗-algebra structure can be defined on A×A by

(a, b)(c, d) = (ac − d∗b, da + bc∗) and (a, b)∗ = (a∗,−b)

This produces
R→ C→ H→ O→ S→ . . .
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Vector fields on spheres Any SN−1 ⊂ RN

Multiplication table for sedenions

1 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15

e1 −1 e3 −e2 e5 −e4 −e7 e6 e9 −e8 −e11 e10 −e13 e12 e15 −e14

e2 −e3 −1 e1 e6 e7 −e4 −e5 e10 e11 −e8 −e9 −e14 −e15 e12 e13

e3 e2 −e1 −1 e7 −e6 e5 −e4 e11 −e10 e9 −e8 −e15 e14 −e13 e12

e4 −e5 −e6 −e7 −1 e1 e2 e3 e12 e13 e14 e15 −e8 −e9 −e10 −e11

e5 e4 −e7 e6 −e1 −1 −e3 e2 e13 −e12 e15 −e14 e9 −e8 e11 −e10

e6 e7 e4 −e5 −e2 e3 −1 −e1 e14 −e15 −e12 e13 e10 −e11 −e8 e9

e7 −e6 e5 e4 −e3 −e2 e1 −1 e15 e14 −e13 −e12 e11 e10 −e9 −e8

e8 −e9 −e10 −e11 −e12 −e13 −e14 −e15 −1 e1 e2 e3 e4 e5 e6 e7

e9 e8 −e11 e10 −e13 e12 e15 −e14 −e1 −1 −e3 e2 −e5 e4 e7 −e6

e10 e11 e8 −e9 −e14 −e15 e12 e13 −e2 e3 −1 −e1 −e6 −e7 e4 e5

e11 −e10 e9 e8 −e15 e14 −e13 e12 −e3 −e2 e1 −1 −e7 e6 −e5 e4

e12 e13 e14 e15 e8 −e9 −e10 −e11 −e4 e5 e6 e7 −1 −e1 −e2 −e3

e13 −e12 e15 −e14 e9 e8 e11 −e10 −e5 −e4 e7 −e6 e1 −1 e3 −e2

e14 −e15 −e12 e13 e10 −e11 e8 e9 −e6 −e7 −e4 e5 e2 −e3 −1 e1

e15 e14 −e13 −e12 e11 e10 −e9 e8 −e7 e6 −e5 −e4 e3 e2 −e1 −1
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Vector fields on spheres Any SN−1 ⊂ RN

Vector fields in the general case

Theorem [P-Piccinni, arXiv: 1107.0462, 2011]

σ(N) > 7? All the fault of Spin(9)

(k , p, q) Sphere σ(N) Vector fields Involved structures

(k , 0, q) S (2k+1)16q−1 8q

J19B, . . . , J89B

(Spin(9))q
?J1

19B, . . . , ?J
1
89B

. . .

?Jq−1
19 B, . . . , ?Jq−1

89 B

(k , 1, q) S2(2k+1)16q−1 8q + 1

J19B, . . . , J89B

(Spin(9))q + C
?J1

19B, . . . , ?J
1
89B

. . .

?Jq−1
19 B, . . . , ?Jq−1

89 B
?LiB

(k , 2, q) S4(2k+1)16q−1 8q + 3

J19B, . . . , J89B

(Spin(9))q + H
?J1

19B, . . . , ?J
1
89B

. . .

?Jq−1
19 B, . . . , ?Jq−1

89 B
?LiB, ?LjB, ?LkB

(k , 3, q) S8(2k+1)16q−1 8q + 7

J19B, . . . , J89B

(Spin(9))q + O
?J1

19B, . . . , ?J
1
89B

. . .

?Jq−1
19 B, . . . , ?Jq−1

89 B
?LiB · · · ? LhB

S
ketch

o
f

p
ro

o
f
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Locally conformal parallel Spin(9) manifolds Definition and examples

1 S15 and Spin(9)
S15 is “more equal” among other spheres
Spin(9) and Hopf fibrations

2 The Spin(9) fundamental form
Quaternionic analogy
Spin(9) and Kähler forms on R16

An explicit formula for ΦSpin(9)

3 Vector fields on spheres
Maximal number and examples
Any SN−1 ⊂ RN

4 Locally conformal parallel Spin(9) manifolds
Definition and examples
Structure Theorem
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Locally conformal parallel Spin(9) manifolds Definition and examples

Definition

A locally conformal parallel Spin(9) manifold is a 16-dimensional Spin(9)
manifold whose induced metric is locally conformal to metrics with
holonomy contained in Spin(9).

(M, g) with a Spin(9)-structure

Uα g |Uα = efαgα where gα has holonomy contained in Spin(9)
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Locally conformal parallel Spin(9) manifolds Definition and examples

Examples

The product S15 × S1 = O2−0
Z = cone over S15 with the (conformal class)

of the flat metric.

The trivial S1-bundle RP15 × S1, with the metric induced by the flat cone
C (S15).

The non-trivial S1-bundle over RP15, with the metric induced by the flat
cone C (S15).
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Locally conformal parallel Spin(9) manifolds Structure Theorem

1 S15 and Spin(9)
S15 is “more equal” among other spheres
Spin(9) and Hopf fibrations

2 The Spin(9) fundamental form
Quaternionic analogy
Spin(9) and Kähler forms on R16

An explicit formula for ΦSpin(9)

3 Vector fields on spheres
Maximal number and examples
Any SN−1 ⊂ RN

4 Locally conformal parallel Spin(9) manifolds
Definition and examples
Structure Theorem
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Locally conformal parallel Spin(9) manifolds Structure Theorem

Structure of compact locally conformal parallel Spin(9)
manifolds

Theorem [P-Piccinni-Vuletescu]

Let (M, g) be a compact, locally conformal but not globally conformal
parallel Spin(9) manifold. Then

M = C (N)/Z

where C (N) is a flat cone over a compact 15-dimensional manifold N with
finite fundamental group.
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Locally conformal parallel Spin(9) manifolds Structure Theorem

Proof

1 On each Uα it is defined a ∇α-parallel 8-form Φα.

2 There is a 8-form Φ on M locally given by e4fαΦα.

3 There is a closed 1-form ω (the Lee form) on M, locally given by
4dfα, such that dΦ = ω ∧ Φ.

4 The 1-form ω defines a closed Weyl connection D on M by
Dg = ω ⊗ g .

5 Since the local metrics gα are Einstein, D is Einstein-Weyl.
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Locally conformal parallel Spin(9) manifolds Structure Theorem

Proof, on the universal covering

6 Let g be the Gauduchon metric, so that ∇ω = 0. Then the universal
covering (M̃, g̃) is reducible: (M̃, g̃) = (R, ds)× (Ñ, gN), for a
compact simply connected Ñ.

7 On M̃ we have ω̃ = df , and (M̃, e−f g̃) is the metric cone C (Ñ).

8 The local metrics are Ricci-flat, that is, C (Ñ) is Ricci-flat.

9 Ricci-flat + holonomy Spin(9)⇒ flat.

10 Since π1(M) acts by homotheties on C (Ñ), and Ñ is compact, π1(M)
contains a finite normal subgroup I of isometries.

11 We obtain π1(M) = I o Z, and M = C (Ñ/I )/Z.
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Locally conformal parallel Spin(9) manifolds Structure Theorem

Surprise: end of talk!
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Locally conformal parallel Spin(9) manifolds Structure Theorem

Details for ΦSpin(9) =
∫
OP1 p∗l νl dl

νl = volume form on the octonionic lines l = {(x ,mx)} or
l = {(0, y)} in O2.

pl : O2 → l = projection on l .

p∗l νl = 8-form in O2 = R16.

The integral over OP1 can be computed over O with polar
coordinates.

The formula arise from distinguished 8-planes in the
Spin(9)-geometry → (forthcoming) calibrations.

Go back
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Locally conformal parallel Spin(9) manifolds Structure Theorem

The five involutions of Sp(2) · Sp(1) as 8× 8 matrices

I1 =

(
0 Id

Id 0

)
I2 =

(
0 −RH

i

RH
i 0

)

I3 =

(
0 −RH

j

RH
j 0

)
I4 =

(
0 −RH

k

RH
k 0

)

I5 =

(
Id 0

0 − Id

)
Go back
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Locally conformal parallel Spin(9) manifolds Structure Theorem

The nine involutions of Spin(9) as 16× 16 matrices

I1 =

(
0 Id

Id 0

)I2 =

(
0 −Ri

Ri 0

)
I3 =

(
0 −Rj

Rj 0

)

I4 =

(
0 −Rk

Rk 0

)

I5 =

(
0 −Re

Re 0

)

I6 =

(
0 −Rf

Rf 0

)
I7 =

(
0 −Rg

Rg 0

)I8 =

(
0 −Rh

Rh 0

)
I9 =

(
Id 0

0 − Id

)
Go back
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Locally conformal parallel Spin(9) manifolds Structure Theorem

Explicit formula for ΦG2

Denote by x1, . . . , x7 the coordinates in R7. Then G2 = stabilizer in SO(7)
of

ΦG2 = dx1 ∧ dx2 ∧ dx4 + dx2 ∧ dx3 ∧ dx5 + dx3 ∧ dx4 ∧ dx6

+ dx4 ∧ dx5 ∧ dx7 + dx5 ∧ dx6 ∧ dx1 + dx6 ∧ dx7 ∧ dx2

+ dx7 ∧ dx1 ∧ dx3

As a shortcut, we could write

ΦG2 = 124 + 235 + 346 + 457 + 561 + 672 + 713

Go back
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Locally conformal parallel Spin(9) manifolds Structure Theorem

70 terms of ΦSpin(9)

12345678 -14 123456 1′2′ 2 123456 3′4′ -2 123456 5′6′ -2 123456 7′8′ -2
123457 1′3′ 2 123457 2′4′ 2 123457 5′7′ -2 123457 6′8′ 2 123458 1′4′ 2
123458 2′3′ -2 123458 5′8′ -2 123458 6′7′ -2 123467 1′4′ -2 123467 2′3′ 2
123467 5′8′ -2 123467 6′7′ -2 123468 1′3′ 2 123468 2′4′ 2 123468 5′7′ 2
123468 6′8′ -2 123478 1′2′ -2 123478 3′4′ 2 123478 5′6′ -2 123478 7′8′ -2

1234 1′2′3′4′ -2 1234 5′6′7′8′ -2 123567 1′5′ -2 123567 2′6′ -2 123567 3′7′ -2
123567 4′8′ 2 123568 1′6′ -2 123568 2′5′ 2 123568 3′8′ -2 123568 4′7′ -2
123578 1′7′ -2 123578 2′8′ 2 123578 3′5′ 2 123578 4′6′ 2 1235 1′2′3′5′ -1

1235 1′2′4′6′ -1 1235 1′3′4′7′ -1 1235 1′5′6′7′ -1 1235 2′3′4′8′ 1 1235 2′5′6′8′ 1
1235 3′5′7′8′ 1 1235 4′6′7′8′ 1 123678 1′8′ -2 123678 2′7′ -2 123678 3′6′ 2

123678 4′5′ -2 1236 1′2′3′6′ -1 1236 1′2′4′5′ 1 1236 1′3′4′8′ -1 1236 1′5′6′8′ -1
1236 2′3′4′7′ -1 1236 2′5′6′7′ -1 1236 3′6′7′8′ 1 1236 4′5′7′8′ -1 1237 1′2′3′7′ -1
1237 1′2′4′8′ 1 1237 1′3′4′5′ 1 1237 1′5′7′8′ -1 1237 2′3′4′6′ 1 1237 2′6′7′8′ -1
1237 3′5′6′7′ -1 1237 4′5′6′8′ 1 1238 1′2′3′8′ -1 1238 1′2′4′7′ -1 1238 1′3′4′6′ 1

{1,2,3,4,5,6,7,8,1′,2′,3′,4′,5′,6′,7′,8′} are (indexes of) coordinates in R16.

A table entry ||123578 1′7′ − 2|| means that

ΦSpin(9) = · · · − 2dx1 ∧ dx2 ∧ dx3 ∧ dx5 ∧ dx7 ∧ dx8 ∧ dx ′1 ∧ dx ′7 + . . .

Table obtained from Berger’s definition of ΦSpin(9) with the help of
Mathematica.

The coefficients are normalized in such a way that they are all
integers with gcd = 1. Go back
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Locally conformal parallel Spin(9) manifolds Structure Theorem

Pieces of source code for ΦSpin(9) computation

In progress. Go back
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Locally conformal parallel Spin(9) manifolds Structure Theorem

The inductive argument

Reduce to the case S16q−1 ⊂ R16q , and use induction on q.

Assume that there are 8(q − 1) independent vector fields
B1, . . . ,B8(q−1) on S16q−1−1 ⊂ R16q−1

.

Look at R16q as 16 copies of R16q−1
:

R16q = {(s1, . . . , s16)|s1, . . . , s16 ∈ R16q−1}

Define complex structures J ′19, . . . , J
′
89 on R16q by the same matrices

defining J19, . . . , J89 but acting formally on the 16-ples (s1, . . . , s16)
of elements in R16q−1

.

Let B be the radial vector field on S16q−1 ⊂ R16q . Prove that
{B1, . . . ,B8(q−1), J

′
19B, . . . , J

′
89B} is an orthonormal frame on S16q−1.

Lemma needed!

Go back
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Locally conformal parallel Spin(9) manifolds Structure Theorem

Lemma

Lemma

The properties (ab)∗ = b∗a∗, <([a, b, c]) = 0 and < a, b >= <(ab∗) hold
in any Cayley-Dickson algebra.

Go back 2 levels Go back 1 level
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Locally conformal parallel Spin(9) manifolds Structure Theorem

A more explicit ΦSpin(9)

ΦSpin(9)
utc
=

∑
1≤α1<α2<α3<α4≤9

(ψα1α2∧ψα3α4−ψα1α3∧ψα2α4 +ψα1α4∧ψα2α3)2

ψ12 = (−12 + 34 + 56 − 78) − ( )′ ψ13 = (−13 − 24 + 57 + 68) − ( )′ ψ14 = (−14 + 23 + 58 − 67) − ( )′

ψ15 = (−15 − 26 − 37 − 48) − ( )′ ψ16 = (−16 + 25 − 38 + 47) − ( )′ ψ17 = (−17 + 28 + 35 − 46) − ( )′

ψ18 = (−18 − 27 + 36 + 45) − ( )′ ψ23 = (−14 + 23 − 58 + 67) + ( )′ ψ24 = (13 + 24 + 57 + 68) + ( )′

ψ25 = (−16 + 25 + 38 − 47) + ( )′ ψ26 = (15 + 26 − 37 − 48) + ( )′ ψ27 = (18 + 27 + 36 + 45) + ( )′

ψ28 = (−17 + 28 − 35 + 46) + ( )′ ψ34 = (−12 + 34 − 56 + 78) + ( )′ ψ35 = (−17 − 28 + 35 + 46) + ( )′

ψ36 = (−18 + 27 + 36 − 45) + ( )′ ψ37 = (+15 − 26 + 37 − 48) + ( )′ ψ38 = (16 + 25 + 38 + 47) + ( )′

ψ45 = (−18 + 27 − 36 + 45) + ( )′ ψ46 = (17 + 28 + 35 + 46) + ( )′ ψ47 = (−16 − 25 + 38 + 47) + ( )′

ψ48 = (15 − 26 − 37 + 48) + ( )′ ψ56 = (−12 − 34 + 56 + 78) + ( )′ ψ57 = (−13 + 24 + 57 − 68) + ( )′

ψ58 = (−14 − 23 + 58 + 67) + ( )′ ψ67 = (14 + 23 + 58 + 67) + ( )′ ψ68 = (−13 + 24 − 57 + 68) + ( )′

ψ78 = (12 + 34 + 56 + 78) + ( )′

ψ19 = −11′ − 22′ − 33′ − 44′ − 55′ − 66′ − 77′ − 88′ ψ29 = −12′ + 21′ + 34′ − 43′ + 56′ − 65′ − 78′ + 87′

ψ39 = −13′ − 24′ + 31′ + 42′ + 57′ + 68′ − 75′ − 86′ ψ49 = −14′ + 23′ − 32′ + 41′ + 58′ − 67′ + 76′ − 85′

ψ59 = −15′ − 26′ − 37′ − 48′ + 51′ + 62′ + 73′ + 84′ ψ69 = −16′ + 25′ − 38′ + 47′ − 52′ + 61′ − 74′ + 83′

ψ79 = −17′ + 28′ + 35′ − 46′ − 53′ + 64′ + 71′ − 82′ ψ89 = −18′ − 27′ + 36′ + 45′ − 54′ − 63′ + 72′ + 81′

Go back
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