A survey on biharmonic submanifolds in space forms

Stefano Montaldo

Università degli Studi di Cagliari

L’Aquila 7–9 September 2011

Most of the results presented are in collaboration with:
A. Balmus and C. Oniciuc
Chen definition

Let

\[i : M \hookrightarrow \mathbb{R}^n \]

be the canonical inclusion and \(H = (H_1, \ldots, H_n) \) the mean curvature vector field.

Definition (B-Y. Chen) A submanifold \(M \subset \mathbb{R}^n \) is **biharmonic** iff

\[\Delta H = (\Delta H_1, \ldots, \Delta H_n) = 0 \]

where \(\Delta \) is the Beltrami-Laplace operator on \(M \) w.r.t. the metric induced by \(i \).
Chen definition

Let

\[\textbf{i} : M \hookrightarrow \mathbb{R}^n \]

be the canonical inclusion and \(\textbf{H} = (H_1, \ldots, H_n) \) the mean curvature vector field.

Definition (B-Y. Chen) A submanifold \(M \subset \mathbb{R}^n \) is biharmonic iff

\[
\Delta \textbf{H} = (\Delta H_1, \ldots, \Delta H_n) = 0
\]

where \(\Delta \) is the Beltrami-Laplace operator on \(M \) w.r.t. the metric induced by \(\textbf{i} \).

- Why biharmonic?

\[
m \Delta \textbf{H} = \Delta (-\Delta \textbf{i}) = -\Delta^2 \textbf{i}
\]
Chen definition

Let

\[i : M \leftrightarrow \mathbb{R}^n \]

be the canonical inclusion and \(H = (H_1, \ldots, H_n) \) the mean curvature vector field.

Definition (B-Y. Chen) A submanifold \(M \subset \mathbb{R}^n \) is **biharmonic** iff

\[
\Delta H = (\Delta H_1, \ldots, \Delta H_n) = 0
\]

where \(\Delta \) is the Beltrami-Laplace operator on \(M \) w.r.t. the metric induced by \(i \).

- Why biharmonic?

\[
m \Delta H = \Delta(-\Delta i) = -\Delta^2 i
\]

- CMC submanifolds, \(|H| = \text{constant} \), are not necessarily biharmonic.
Biharmonic submanifolds in $\mathbb{E}^n(c)$

Let

$$ i : M^m \hookrightarrow \mathbb{E}^n(c) $$

be the canonical inclusion of a submanifold M in a constant sectional curvature c manifold.
Biharmonic submanifolds in $\mathbb{E}^n(c)$

Let

$$i : M^m \hookrightarrow \mathbb{E}^n(c)$$

be the canonical inclusion of a submanifold M in a constant sectional curvature c manifold.

Definition M is a **biharmonic** submanifold iff

$$\Delta^i H = m \cdot c \cdot H$$

where

- $H \in C(i^{-1}(T\mathbb{E}^n(c)))$ denotes the mean curvature vector field of M in $\mathbb{E}^n(c)$

- Δ^i is the rough Laplacian on $i^{-1}(T\mathbb{E}^n(c))$
Remark

If $E^n(1) = S^n$, then one can consider $S^n \subset \mathbb{R}^{n+1}$ and the inclusion

$$i : M^m \hookrightarrow S^n \subset \mathbb{R}^{n+1}$$

can be seen as a map into \mathbb{R}^{n+1}.
Remark

If $E^n(1) = S^n$, then one can consider $S^n \subset \mathbb{R}^{n+1}$ and the inclusion

$$i : M^m \hookrightarrow S^n \subset \mathbb{R}^{n+1}$$

can be seen as a map into \mathbb{R}^{n+1}.

Alternative problem (Alias, Barros, Ferrández)

$$\Delta H' = (\Delta H_1, \ldots, \Delta H_{n+1}) = m \mathbf{H}'$$

where \mathbf{H}' is the mean curvature vector field of the inclusion as a map into \mathbb{R}^{n+1}.
Remark

If $E^n(1) = S^n$, then one can consider $S^n \subset \mathbb{R}^{n+1}$ and the inclusion

$$i : M^m \hookrightarrow S^n \subset \mathbb{R}^{n+1}$$

can be seen as a map into \mathbb{R}^{n+1}.

Alternative problem \textcolor{red}{(Alias, Barros, Ferrández)}

$$\Delta H' = (\Delta H_1, \ldots, \Delta H_{n+1}) = m H'$$

where H' is the mean curvature vector field of the inclusion as a map into \mathbb{R}^{n+1}.

Is it true that

$$\Delta H' = m H' \iff \Delta^i H = m H$$
Remark

If $E^n(1) = S^n$, then one can consider $S^n \subset \mathbb{R}^{n+1}$ and the inclusion

$$i : M^m \hookrightarrow S^n \subset \mathbb{R}^{n+1}$$

can be seen as a map into \mathbb{R}^{n+1}.

Alternative problem (Alias, Barros, Ferrández)

$$\Delta H' = (\Delta H_1, \ldots, \Delta H_{n+1}) = m H'$$

where H' is the mean curvature vector field of the inclusion as a map into \mathbb{R}^{n+1}.

Is it true that

$$\Delta H' = m H' \iff \Delta^i H = m H$$
Remark

If $E^n(1) = S^n$, then one can consider $S^n \subset \mathbb{R}^{n+1}$ and the inclusion

$$i : M^m \hookrightarrow S^n \subset \mathbb{R}^{n+1}$$

can be seen as a map into \mathbb{R}^{n+1}.

Alternative problem (Alias, Barros, Ferrández)

$$\Delta H' = (\Delta H_1, \ldots, \Delta H_{n+1}) = m H'$$

where H' is the mean curvature vector field of the inclusion as a map into \mathbb{R}^{n+1}.

Is it true that

$$\Delta H' = m H' \iff \Delta^i H = m H$$

where does this come from?
The bienergy Functional

Biharmonic maps \(\varphi : (M, g) \rightarrow (N, h) \) are critical points of the bienergy functional

\[
E_2(\varphi) = \frac{1}{2} \int_M |\tau(\varphi)|^2 \, v_g
\]

(Eells–Lemaire)

where

\[
\tau(\varphi) = \text{trace}_g \nabla d\varphi
\]

is the tension field \((\tau(\varphi) = 0 \text{ means } \varphi \text{ harmonic})\)
The bienergy Functional

Biharmonic maps $\varphi : (M, g) \rightarrow (N, h)$ are critical points of the bienergy functional

$$E_2(\varphi) = \frac{1}{2} \int_M |\tau(\varphi)|^2 \, v_g$$

(Eells–Lemaire)

where

$$\tau(\varphi) = \text{trace}_g \nabla d\varphi$$

is the tension field

($\tau(\varphi) = 0$ means φ harmonic)

Biharmonic maps are solutions of the Euler-Lagrange equation:

$$\tau_2(\varphi) = -\Delta^\varphi \tau(\varphi) - \text{trace}_g R^N(d\varphi, \tau(\varphi))d\varphi = 0$$

where R^N is the curvature operator on N.

(Jiang)
Remarks: \(\varphi : (M, g) \rightarrow (N, h) \)

- \(M \) compact and \(\text{Sec}^N \leq 0 \) then biharmonic \(\Rightarrow \) harmonic
 (Jiang)
Remarks: \(\varphi : (M, g) \rightarrow (N, h) \)

- \(M \) compact and \(\text{Sec}^N \leq 0 \) then biharmonic \(\Rightarrow \) harmonic (Jiang)

- \(M \) compact + \(\text{Sec}^N \leq 0 \) \(\Rightarrow \) there exists a harmonic map
 \[
 \varphi : M \rightarrow N
 \]

in each homotopy class (Eells–Sampson)
Remarks: \(\varphi : (M, g) \to (N, h) \)

- \(M \) compact and \(\text{Sec}^N \leq 0 \) then biharmonic \(\Rightarrow \) harmonic (Jiang)

- \(M \) compact + \(\text{Sec}^N \leq 0 \) \(\Rightarrow \) there exists a harmonic map
 \[
 \varphi : M \to N
 \]
 in each homotopy class (Eells–Sampson)

- There exists \textbf{NO} harmonic map from
 \[
 \mathbb{T}^2 \to \mathbb{S}^2
 \]
 in the homotopy class of \textbf{Brower} degree \(\pm 1 \) (Eells–Wood)
Remarks: \(\varphi : (M, g) \rightarrow (N, h) \)

- \(M \) compact and \(\text{Sec}^N \leq 0 \) then biharmonic \(\Rightarrow \) harmonic (Jiang)

- \(M \) compact + \(\text{Sec}^N \leq 0 \) \(\Rightarrow \) there exists a harmonic map
 \[\varphi : M \rightarrow N \]
 in each homotopy class (Eells–Sampson)

- There exists NO harmonic map from
 \[\mathbb{T}^2 \rightarrow \mathbb{S}^2 \]
 in the homotopy class of Brower degree \(\pm 1 \) (Eells–Wood)

Problem Find biharmonic maps \(\mathbb{T}^2 \rightarrow \mathbb{S}^2 \) of degree \(\pm 1 \)
Remarks: \(\varphi : (M, g) \to (N, h) \)

- \(M \) compact and \(\text{Sec}^N \leq 0 \) then biharmonic \(\Rightarrow \) harmonic \(\) (Jiang)

- \(M \) compact + \(\text{Sec}^N \leq 0 \) \(\Rightarrow \) there exists a harmonic map

\[\varphi : M \to N \]

in each homotopy class \(\) (Eells–Sampson)

- There exists NO harmonic map from

\[\mathbb{T}^2 \to \mathbb{S}^2 \]

in the homotopy class of Brower degree \(\pm 1 \) \(\) (Eells–Wood)

Problem Find biharmonic maps \(\mathbb{T}^2 \to \mathbb{S}^2 \) of degree \(\pm 1 \)

- So far we only know examples of biharmonic maps \(\mathbb{T}^2 \to \mathbb{S}^2 \) whose image is a curve.
Examples of proper biharmonic maps
Examples of proper biharmonic maps

- Any polynomial map of degree 3 between Euclidean spaces
Examples of proper biharmonic maps

- Any polynomial map of degree 3 between Euclidean spaces

Property (Almansi): \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) be any harmonic function then

\[
g(x) = |x|^2 f(x)
\]

is proper biharmonic.
Examples of proper biharmonic maps

- Any polynomial map of degree 3 between Euclidean spaces

Property (Almansi): Let $f : \mathbb{R}^n \to \mathbb{R}$ be any harmonic function then

$$g(x) = |x|^2 f(x)$$

is proper biharmonic.

- From the **Hopf** map $H : \mathbb{C}^2 \to \mathbb{R} \times \mathbb{C}$ we get the proper biharmonic map

$$\mathbb{C}^2 \to \mathbb{R} \times \mathbb{C}, \ (z, w) \mapsto (|z|^2 + |w|^2)(|z|^2 - |w|^2, 2z\bar{w})$$
Examples of proper biharmonic maps

- Any polynomial map of degree 3 between Euclidean spaces

Property (Almansi): let \(f : \mathbb{R}^n \to \mathbb{R} \) be any harmonic function then

\[
g(x) = |x|^2 f(x)
\]

is proper biharmonic.

- From the Hopf map \(H : \mathbb{C}^2 	o \mathbb{R} \times \mathbb{C} \) we get the proper biharmonic map

\[
\mathbb{C}^2 \to \mathbb{R} \times \mathbb{C}, \ (z, w) \mapsto (|z|^2 + |w|^2)(|z|^2 - |w|^2, 2z\bar{w})
\]

- Let \(f(x_1, \ldots, x_n) = \sum_{i=1}^{n} a_i x_i, \ a_i \in \mathbb{R}, \) then

\[
g(x) = |x|^{2-n} f(x)
\]

is proper biharmonic (M–Impera)
Examples of proper biharmonic maps

- The generalized \textit{Kelvin} transformation

\[\varphi : \mathbb{R}^m \setminus \{0\} \rightarrow \mathbb{R}^m \setminus \{0\}, \quad \varphi(p) = \frac{p}{|p|^\ell} \]

is proper biharmonic iff \(\ell = m - 2 \) \hspace{1cm} \text{(Balmus–M–Oniciuc)}
Examples of proper biharmonic maps

- The generalized Kelvin transformation

\[\varphi : \mathbb{R}^m \setminus \{0\} \to \mathbb{R}^m \setminus \{0\}, \quad \varphi(p) = \frac{p}{|p|^{\ell}} \]

is proper biharmonic iff \(\ell = m - 2 \) \hfill (Balmus–M–Oniciuc)

- The quaternionic multiplication

\[\mathbb{H} \to \mathbb{H}, \quad q \mapsto q^n \]

is biharmonic for any \(n \in \mathbb{N} \) \hfill (Fueter, 1935)
Let's go back to biharmonic submanifolds

If \(\varphi : M \to \mathbb{E}^n(c) \) is an isometric immersion then

\[
\tau(\varphi) = mH, \quad \tau_2(\varphi) = -m\Delta \varphi H + cm^2 H
\]
If \(\varphi : M \to \mathbb{E}^n(c) \) is an isometric immersion then

\[
\tau(\varphi) = mH, \quad \tau_2(\varphi) = -m\Delta^\varphi H + cm^2H
\]

thus \(\varphi \) is biharmonic (\(\tau_2 = 0 \)) iff

\[
\Delta^\varphi H = mcH
\]
Let's go back to biharmonic submanifolds

If \(\varphi : M \rightarrow \mathbb{E}^n(c) \) is an isometric immersion then

\[
\tau(\varphi) = mH, \quad \tau_2(\varphi) = -m\Delta \varphi H + cm^2 H
\]

thus \(\varphi \) is biharmonic \((\tau_2 = 0) \) iff

\[
\Delta \varphi H = m c H
\]

Now, choosing \(\varphi = i : M^m \hookrightarrow \mathbb{E}^n(c) \) to be the inclusion we get the biharmonic condition we have started with.
Geometric conditions for biharmonic submanifolds

Biharmonic ⇔ $\Delta^i H = m c H$

\Updownarrow decomposing

\[
\begin{cases}
-\Delta^\perp H - \text{trace } B(\cdot, A_{H} \cdot) + m c H = 0 \quad \text{(normal)} \\
2 \text{trace } A_{\nabla^\perp (\cdot)} H(\cdot) + \frac{m}{2} \text{grad}(|H|^2) = 0 \quad \text{(tangent)}
\end{cases}
\]
Geometric conditions for biharmonic submanifolds

Biharmonic ⇔ \(\Delta^i H = m c H \)

\[\begin{align*}
-\Delta^\perp H - \text{trace } B(\cdot , A_H \cdot) + m c H &= 0 \quad \text{(normal)} \\
2 \text{trace } A_{\nabla^\perp} H(\cdot) + \frac{m}{2} \text{grad}(|H|^2) &= 0 \quad \text{(tangent)}
\end{align*} \]

For hypersurfaces \(H = f \eta \) \(\eta \) unit normal

\[\begin{align*}
\Delta f - (m c - |A|^2) f &= 0 \\
2A(\text{grad } f) + mf \text{grad } f &= 0
\end{align*} \]
Geometric conditions for biharmonic submanifolds

Biharmonic \iff \Delta^i H = m c H

\uparrow \quad \text{decomposing}

\begin{align*}
-\Delta^\perp H - \text{trace } B(\cdot, A_H \cdot) + m c H &= 0 \quad \text{(normal)} \\
2 \text{trace } A_{\nabla^\perp (\cdot) H}(\cdot) + \frac{m}{2} \text{grad}(|H|^2) &= 0 \quad \text{(tangent)}
\end{align*}

For hypersurfaces \(H = f \eta \) \(\eta \) unit normal

\begin{align*}
\Delta f - (m c - |A|^2) f &= 0 \\
2A(\text{grad } f) + m f \text{grad } f &= 0
\end{align*}

\(f = \text{constant} \neq 0 \implies |A|^2 = m c \implies c > 0 \)
Chen’s Conjecture

Proposition [Chen ($c = 0$), Caddeo–M–Oniciuc ($c \leq 0$)]

If $c \leq 0$, there exists no proper biharmonic surfaces $M^2 \subset \mathbb{E}^3(c)$.
Chen’s Conjecture

Proposition [Chen \((c = 0)\), Caddeo–M–Oniciuc \((c \leq 0)\)]

If \(c \leq 0\), there exists no proper biharmonic surfaces \(M^2 \subset \mathbb{E}^3(c)\).

Conjecture

\textit{Biharmonic submanifolds of } \(\mathbb{E}^n(c)\), \(c \leq 0\), \textit{are minimal}
Chen’s Conjecture

Proposition [Chen \((c = 0)\), Caddeo–M–Oniciuc \((c \leq 0)\)]

If \(c \leq 0\), there exists no proper biharmonic surfaces \(M^2 \subset \mathbb{E}^3(c)\).

Conjecture

Biharmonic submanifolds of \(\mathbb{E}^n(c), c \leq 0\), are minimal

Partial solutions of the conjecture are known for:

- curves of \(\mathbb{R}^n\) (Dimitric)
- submanifolds of finite type in \(\mathbb{R}^n\) (Dimitric)
- hypersurfaces with at most two principal curvatures (B–M–O)
- pseudo-umbilical submanifolds \(M^m \subset \mathbb{E}^n(c), c \leq 0, m \neq 4\), (Caddeo–M–O, Dimitric)
- hypersurfaces of \(\mathbb{E}^4(c), c \leq 0\) (Hasanis–Vlachos, B–M–O)
- spherical submanifolds of \(\mathbb{R}^n\) (Chen)
- submanifolds of bounded geometry (Ichiyama–Inoguchi–Urakawa)
Biharmonic submanifolds of \mathbb{S}^n

All the non existence results described in the previous section do not hold for submanifolds in the sphere.

Problem:

Classify all biharmonic submanifolds of \mathbb{S}^n
Main examples of biharmonic submanifolds in \mathbb{S}^n
Main examples of biharmonic submanifolds in \mathbb{S}^n

B1 The small hypersphere

$$\mathbb{S}^m \left(\frac{1}{\sqrt{2}} \right) \text{ biharmonic } \mathbb{S}^{m+1}$$
Main examples of biharmonic submanifolds in S^n

B1 The small hypersphere

$$S^m\left(\frac{1}{\sqrt{2}}\right) \quad \text{biharmonic} \quad S^{m+1}$$

B2 The standard products of spheres

$$S^{m_1}\left(\frac{1}{\sqrt{2}}\right) \times S^{m_2}\left(\frac{1}{\sqrt{2}}\right) \quad \text{biharmonic} \quad S^{m+1}$$

$m_1 + m_2 = m$ and $m_1 \neq m_2$.
Main examples of biharmonic submanifolds in S^n

B3 Composition property

$$M^m \xrightarrow{\text{minimal}} S^{n-1}\left(\frac{1}{\sqrt{2}}\right) \xrightarrow{\text{biharmonic}} S^n$$

proper biharmonic
Main examples of biharmonic submanifolds in S^n

B3 Composition property

$$M^m \overset{\text{minimal}}{\longrightarrow} S^{n-1}(\frac{1}{\sqrt{2}}) \overset{\text{biharmonic}}{\longrightarrow} S^n$$

proper biharmonic

B4 Product composition property

$$M_1^{m_1} \times M_2^{m_2} \overset{\text{minimal}}{\longrightarrow} S^{n_1}(\frac{1}{\sqrt{2}}) \times S^{n_2}(\frac{1}{\sqrt{2}}) \overset{\text{biharmonic}}{\longrightarrow} S^n$$

proper biharmonic

$$n_1 + n_2 = n - 1, \ m_1 \neq m_2$$
Biharmonic hypersurfaces in \mathbb{S}^n
Biharmonic hypersurfaces in S^n

\[M^m \subset S^{m+1} \text{ biharmonic} \]

$\kappa = \text{number of distinct principal curvature}$
Biharmonic hypersurfaces in S^n

$M^m \subset S^{m+1}$ biharmonic

$\kappa = \text{number of distinct principal curvature}$

$\kappa = 1$
Biharmonic hypersurfaces in \mathbb{S}^n

$M^m \subset \mathbb{S}^{m+1}$ biharmonic

$\kappa = \text{number of distinct principal curvature}$

$\kappa = 1$

$\mathbb{S}^m\left(\frac{1}{\sqrt{2}}\right) \rightarrow \mathbb{S}^{m+1}$

B1
Biharmonic hypersurfaces in S^n

$M^m \subset S^{m+1}$ biharmonic

$\kappa = \text{number of distinct principal curvature}$

$\kappa = 1$

$\kappa \leq 2$

$S^m\left(\frac{1}{\sqrt{2}}\right) \rightarrow S^{m+1}$

B1
Biharmonic hypersurfaces in S^n

$M^m \subset S^{m+1}$ biharmonic

$\kappa = \text{number of distinct principal curvature}$

$\kappa = 1$

$\kappa \leq 2$

$S^m \left(\frac{1}{\sqrt{2}} \right) \rightarrow S^{m+1}$

B1

$S^{m_1} \left(\frac{1}{\sqrt{2}} \right) \times S^{m_2} \left(\frac{1}{\sqrt{2}} \right) \rightarrow S^{m+1}$

B2
Biharmonic hypersurfaces in \mathbb{S}^n

$M^m \subset \mathbb{S}^{m+1}$ biharmonic

$\kappa = \text{number of distinct principal curvature}$

$\kappa = 1$

$\mathbb{S}^m(\frac{1}{\sqrt{2}}) \rightarrow \mathbb{S}^{m+1}$
B1

$\kappa \leq 2$

$\mathbb{S}^{m_1}(\frac{1}{\sqrt{2}}) \times \mathbb{S}^{m_2}(\frac{1}{\sqrt{2}}) \rightarrow \mathbb{S}^{m+1}$
B2

$\kappa = 3$
Biharmonic hypersurfaces in S^n

$M^m \subset S^{m+1}$ biharmonic

$\kappa = \text{number of distinct principal curvature}$

- $\kappa = 1$

 - $S^m(\frac{1}{\sqrt{2}}) \rightarrow S^{m+1}$
 - B1

- $\kappa \leq 2$

- $\kappa = 3$ - Compact + CMC

 - $S^{m_1}(\frac{1}{\sqrt{2}}) \times S^{m_2}(\frac{1}{\sqrt{2}}) \rightarrow S^{m+1}$
 - B2

$S^m(\frac{1}{\sqrt{2}}) = S^m \cap S^m(\frac{1}{\sqrt{2}})$

$S^m(\frac{1}{\sqrt{2}})$ is the unit sphere in \mathbb{R}^m with radius $\frac{1}{\sqrt{2}}$.
Biharmonic hypersurfaces in S^n

$M^m \subset S^{m+1}$ biharmonic

$\kappa = \text{number of distinct principal curvature}$

$\kappa = 1$

$S^m(\frac{1}{\sqrt{2}}) \rightarrow S^{m+1}$

B1

$\kappa \leq 2$

$S^{m_1}(\frac{1}{\sqrt{2}}) \times S^{m_2}(\frac{1}{\sqrt{2}}) \rightarrow S^{m+1}$

B2

$\kappa = 3$ - Compact + CMC

Non Existence
Biharmonic hypersurfaces in S^n

\[M^m \subset S^{m+1} \text{ biharmonic} \quad \text{Isoparametric} \]

$\kappa = \text{number of distinct principal curvature}$

$\kappa = 1$

$\kappa = 3$ - Compact + CMC

Non Existence

$S^m(\frac{1}{\sqrt{2}}) \rightarrow S^{m+1}$

B1

$S^{m_1}(\frac{1}{\sqrt{2}}) \times S^{m_2}(\frac{1}{\sqrt{2}}) \rightarrow S^{m+1}$

B2
Biharmonic hypersurfaces in S^n

$M^m \subset S^{m+1}$ biharmonic

$k = \text{number of distinct principal curvature}$

$k = 1$

$k \leq 2$

$k = 3$

- Compact + CMC

Non Existence

$Ichiyama-Inoguchi-Urakawa$
CMC Biharmonic submanifolds in S^n

$M^m \subset S^n$ biharmonic + CMC
CMC Biharmonic submanifolds in S^n

$M^3 \subset S^4 \rightarrow M^m \subset S^n$ biharmonic + CMC
CMC Biharmonic submanifolds in S^n

$M^3 \subset S^4$ \quad \rightarrow \quad M^m \subset S^n$ biharmonic + CMC

Compact
CMC Biharmonic submanifolds in S^n

$M^3 \subset S^4 \quad \rightarrow \quad M^m \subset S^n \text{ biharmonic } + \text{ CMC}$

Compact
CMC Biharmonic submanifolds in S^n

$M^3 \subset S^4 \quad \rightarrow \quad M^m \subset S^n \text{ biharmonic } + \text{ CMC}$

- Compact
- $|H| = 1$
- $|H| \in (0, 1)$
CMC Biharmonic submanifolds in S^n

$M^3 \subset S^4 \quad \rightarrow \quad M^m \subset S^n$ biharmonic + CMC

Compact

$|H| = 1 \quad \rightarrow \quad |H| \in (0, 1)$

$M^m \subset S^n$ minimal biharmonic $\quad \rightarrow \quad S^{n-1}(\frac{1}{\sqrt{2}}) \quad \rightarrow \quad S^n$

B3
CMC Biharmonic submanifolds in S^n

$M^3 \subset S^4$ \rightarrow $M^m \subset S^n$ biharmonic + CMC

Compact \rightarrow $|H| = 1$ \rightarrow $|H| \in (0, 1)$

M^m minimal $S^{n-1}(\frac{1}{\sqrt{2}})$ biharmonic S^n

B3

Compact
CMC Biharmonic submanifolds in S^n

$M^3 \subset S^4$ \rightarrow $M^m \subset S^n$ biharmonic + CMC

Compact $\rightarrow |H| = 1$ \rightarrow $|H| \in (0, 1)$

Minimal $M^m \rightarrow S^{n-1}(\frac{1}{\sqrt{2}})$ biharmonic S^n

B3 $\rightarrow \rightarrow \rightarrow$

M is of 2-type
CMC Biharmonic submanifolds in S^n

$M^3 \subset S^4 \quad \rightarrow \quad M^m \subset S^n$ biharmonic + CMC

Compact

$|H| = 1$

$|H| \in (0, 1)$

M^m minimal biharmonic $S^{n-1}(\frac{1}{\sqrt{2}}) \quad \rightarrow \quad S^n$

B3

M is of 2-type

M is of 1-type
CMC Biharmonic submanifolds in S^n

$M^3 \subset S^4 \rightarrow M^m \subset S^n$ biharmonic + CMC

- Compact
- $|H| = 1$
- $|H| \in (0, 1)$

M^m minimal $\rightarrow S^{n-1}(\frac{1}{\sqrt{2}})$ biharmonic $\rightarrow S^n$

- B3
- M is of 2-type
- M is of 1-type

Compact \rightarrow $H| = 1$ \rightarrow Compact

$M^m \subset S^n$ biharmonic + CMC \rightarrow $H| \in (0, 1)$ \rightarrow M is of 2-type
Biharmonic submanifolds in \mathbb{S}^n with $\nabla^\perp H = 0$ (PMC)

$M^m \subset \mathbb{S}^n$ biharmonic + PMC
Biharmonic submanifolds in \mathbb{S}^n with $\nabla \perp H = 0$ (PMC)

$M^m \subset \mathbb{S}^n$ biharmonic + PMC

$|H| = 1$ or $|H| \in (0, \frac{m-2}{m}]$
Biharmonic submanifolds in \mathbb{S}^n with $\nabla \perp H = 0$ (PMC)

$M^m \subset \mathbb{S}^n$ biharmonic + PMC

$M^2 \subset \mathbb{S}^n$

$|H| = 1$ or $|H| \in (0, \frac{m-2}{m}]$
Biharmonic submanifolds in S^n with $\nabla^\perp H = 0$ (PMC)

$M^m \subset S^n$ biharmonic + PMC

$M^2 \subset S^n$

$|H| = 1 \text{ or } |H| \in (0, \frac{m-2}{m}]$

$M^2 \xrightarrow{\min} S^{n-1}(\frac{1}{\sqrt{2}}) \xrightarrow{} S^n$

B3
Biharmonic submanifolds in S^n with $\nabla^\perp H = 0$ (PMC)

- $M^m \subset S^n$ biharmonic + PMC
- $M^2 \subset S^n$
- $\nabla A_H = 0$
- $|H| = 1$ or $|H| \in (0, \frac{m-2}{m}]$

$M^2 \xrightarrow{\text{min}} S^{n-1}(\frac{1}{\sqrt{2}}) \xrightarrow{} S^n$

B3
Biharmonic submanifolds in \mathbb{S}^n with $\nabla^\perp H = 0$ (PMC)

$M^m \subset \mathbb{S}^n$ biharmonic + PMC

$M^2 \subset \mathbb{S}^n$

$\nabla A_H = 0$

$|H| = 1$ or $|H| \in (0, \frac{m-2}{m}]$

$M^2 \xrightarrow{\text{min}} \mathbb{S}^{n-1}(\frac{1}{\sqrt{2}}) \xrightarrow{\text{min}} \mathbb{S}^n$

$M_1^{m_1} \times M_2^{m_2} \xrightarrow{\text{min}} \mathbb{S}^{n_1}(\frac{1}{\sqrt{2}}) \times \mathbb{S}^{n_2}(\frac{1}{\sqrt{2}}) \xrightarrow{\text{min}} \mathbb{S}^n$

B3

B4
Pseudo-umbilical biharmonic submanifolds in S^n

CMC proper biharmonic submanifolds with $|H| = 1$ in S^n are B3 and they are pseudo-umbilical:

$$A_H = |H|^2 \text{Id}$$
Pseudo-umbilical biharmonic submanifolds in \mathbb{S}^n

CMC proper biharmonic submanifolds with $|H| = 1$ in \mathbb{S}^n are B3 and they are pseudo-umbilical:

$$A_H = |H|^2 \text{Id}$$

Question When does a proper biharmonic pseudo-umbilical submanifold in \mathbb{S}^n have $|H| = 1$, thus B3?
Pseudo-umbilical biharmonic submanifolds in S^n

CMC proper biharmonic submanifolds with $|H| = 1$ in S^n are B3 and they are pseudo-umbilical:

$$A_H = |H|^2 \text{Id}$$

Question When does a proper biharmonic pseudo-umbilical submanifold in S^n have $|H| = 1$, thus B3?

Theorem Let M^m be a compact pseudo-umbilical submanifold in S^n, $m \neq 4$. Then M is proper biharmonic if and only if M is B3.
Pseudo-umbilical biharmonic submanifolds in S^n

CMC proper biharmonic submanifolds with $|H| = 1$ in S^n are B3 and they are pseudo-umbilical:

$$A_H = |H|^2 \text{Id}$$

Question When does a proper biharmonic pseudo-umbilical submanifold in S^n have $|H| = 1$, thus B3?

Theorem Let M^m be a compact pseudo-umbilical submanifold in S^n, $m \neq 4$. Then M is proper biharmonic if and only if M is B3.

The proof is based on the following

compacts + CMC + pseudo-umbilical \Rightarrow PMC \hspace{1cm} (H. Li)
Pseudo-umbilical biharmonic submanifolds in S^n

CMC proper biharmonic submanifolds with $|H| = 1$ in S^n are B3 and they are pseudo-umbilical:

$$A_H = |H|^2 \text{Id}$$

Question When does a proper biharmonic pseudo-umbilical submanifold in S^n have $|H| = 1$, thus B3?

Theorem Let M^m be a compact pseudo-umbilical submanifold in S^n, $m \neq 4$. Then M is proper biharmonic if and only if M is B3.

The proof is based on the following

biharmonic

compact + CMC + pseudo-umbilical \Rightarrow PMC
The examples of Sasahara et al

Theorem Let $\varphi : M^3 \to S^5$ be a proper biharmonic anti-invariant immersion. Then the position vector field $x_0 = x_0(u, v, w)$ in \mathbb{R}^6 is given by

$$x_0(u, v, w) = e^{iw}(e^{iu}, ie^{-iu} \sin \sqrt{2}v, ie^{-iu} \cos \sqrt{2}v)$$

Moreover, $|H| = 1/3$.

The immersion φ is PMC
The examples of Sasahara et al

Theorem Let $\varphi : M^3 \to S^5$ be a proper biharmonic **anti-invariant** immersion. Then the position vector field $x_0 = x_0(u, v, w)$ in \mathbb{R}^6 is given by

$$x_0(u, v, w) = e^{iw}(e^{iu}, ie^{-iu} \sin \sqrt{2}v, ie^{-iu} \cos \sqrt{2}v)$$

Moreover, $|H| = 1/3$.

The immersion φ is PMC but **NOT** pseudo-umbilical.
The examples of Sasahara et al

Theorem Let $\varphi : M^3 \to S^5$ be a proper biharmonic anti-invariant immersion. Then the position vector field $x_0 = x_0(u, v, w)$ in \mathbb{R}^6 is given by

$$x_0(u, v, w) = e^{iw}(e^{iu}, ie^{-iu} \sin \sqrt{2}v, ie^{-iu} \cos \sqrt{2}v)$$

Moreover, $|H| = 1/3$.

The immersion φ is PMC but NOT pseudo-umbilical.

Theorem Let $\phi : M^2 \to S^5$ be a proper biharmonic Legendre immersion. Then the position vector field $x_0 = x_0(u, v)$ of M in \mathbb{R}^6 is given by:

$$x_0(u, v) = \frac{1}{\sqrt{2}} \left(\cos u, \sin u \sin(\sqrt{2}v), - \sin u \cos(\sqrt{2}v), \sin u, \cos u \sin(\sqrt{2}v), - \cos u \cos(\sqrt{2}v) \right).$$

The immersion ϕ is NOT PMC and NOT pseudo-umbilical.
Open Problems

Conjecture
The only proper biharmonic hypersurfaces in S^n are B_1 or B_2.

Conjecture
Any biharmonic submanifold in S^n has constant mean curvature.
Remark

The \(\mathbf{i} : \mathbb{M}^m \leftrightarrow \mathbb{E}^n(c) \) is biharmonic iff

\[
\begin{array}{l}
-\Delta^\perp \mathbf{H} - \text{trace} \, B(\cdot, A_H \cdot) + mc\mathbf{H} = 0 \quad \text{(normal)} \\
2 \text{trace} \, A_{\nabla^\perp (\cdot)} \mathbf{H}(\cdot) + \frac{m}{2} \text{grad}(|\mathbf{H}|^2) = 0 \quad \text{(tangent)}
\end{array}
\]

Most of the classification results described depend only on the tangent part of \(\tau_2 \).
Remark

The $i: M^m \hookrightarrow \mathbb{E}^n(c)$ is biharmonic iff

$$\begin{cases}
-\Delta^\perp H - \text{trace } B(\cdot, A_H \cdot) + mcH = 0 \quad \text{(normal)} \\
2 \text{trace } A_{\nabla(\cdot)} H(\cdot) + \frac{m}{2} \text{grad}(|H|^2) = 0 \quad \text{(tangent)}
\end{cases}$$

Most of the classification results described depend only on the tangent part of τ_2.

Has the condition

$$\tau_2(\varphi)^\top = 0$$

a variational meaning?
Remark

The \(\mathbf{i} : M^m \hookrightarrow \mathbb{E}^n(c) \) is biharmonic iff

\[
\begin{align*}
-\Delta^\perp \mathbf{H} - \text{trace } B(\cdot, A_{\mathbf{H}} \cdot) + mc\mathbf{H} &= 0 \quad \text{(normal)} \\
2 \text{trace } A_{\nabla^\perp(\cdot)} \mathbf{H}(\cdot) + \frac{m}{2} \text{grad}(|\mathbf{H}|^2) &= 0 \quad \text{(tangent)}
\end{align*}
\]

Most of the classification results described depend only on the tangent part of \(\tau_2 \).

Has the condition

\[
\tau_2(\varphi)^\top = 0
\]

a variational meaning?

YES
The stress-energy tensor

As described by Hilbert, the stress-energy tensor associated to a variational problem is a symmetric 2-covariant tensor field S conservative at critical points, i.e. $\text{div } S = 0$ at these points.
The stress-energy tensor

As described by Hilbert, the stress-energy tensor associated to a variational problem is a symmetric 2-covariant tensor field S conservative at critical points, i.e. $\text{div } S = 0$ at these points.

• In the context of harmonic maps, the stress-energy tensor is

$$S = \frac{1}{2} |d\varphi|^2 g - \varphi^* h,$$
The stress-energy tensor

As described by Hilbert, the stress-energy tensor associated to a variational problem is a symmetric 2-covariant tensor field S conservative at critical points, i.e. $\text{div } S = 0$ at these points.

- In the context of harmonic maps, the stress-energy tensor is

\[
S = \frac{1}{2} |d\varphi|^2 g - \varphi^* h, \quad \text{div } S = -\langle \tau(\varphi), d\varphi \rangle
\]

(Baird–Eells)
The stress-energy tensor

As described by Hilbert, the stress-energy tensor associated to a variational problem is a symmetric 2-covariant tensor field S conservative at critical points, i.e. $\text{div } S = 0$ at these points.

- In the context of harmonic maps, the stress-energy tensor is

$$S = \frac{1}{2} |d\varphi|^2 g - \varphi^* h, \quad \text{div } S = -\langle \tau(\varphi), d\varphi \rangle$$

(Baird–Eells)

- For biharmonic maps the stress-energy tensor is

$$S_2(X, Y) = \frac{1}{2} |\tau(\varphi)|^2 \langle X, Y \rangle + \langle d\varphi, \nabla \tau(\varphi) \rangle \langle X, Y \rangle$$

$$-\langle d\varphi(X), \nabla_Y \tau(\varphi) \rangle - \langle d\varphi(Y), \nabla_X \tau(\varphi) \rangle$$

with

$$\text{div } S_2 = -\langle \tau_2(\varphi), d\varphi \rangle$$

(Jiang, Loubeau–M–Oniciuc)
The meaning of $S_2 = 0$ (Loubeau–M–Oniciuc)
The meaning of $S_2 = 0$ (Loubeau–M–Oniciuc)

A smooth map $\varphi : (M, g) \to (N, h)$ is biharmonic if it is a critical points of the bienergy w.r.t. variations of the map.
The meaning of $S_2 = 0$ (Loubeau–M–Oniciuc)

A smooth map $\varphi : (M, g) \rightarrow (N, h)$ is biharmonic if it is a critical points of the bienergy w.r.t. variations of the map. Opting for a different angle of attack, one can vary the metric instead of the map and consider the functional

$$F : G \rightarrow \mathbb{R}, \quad F(g) = E_2(\varphi),$$

where G is the set of Riemannian metrics on M
The meaning of $S_2 = 0$ (Loubeau–M–Oniciuc)

A smooth map $\varphi : (M, g) \rightarrow (N, h)$ is biharmonic if it is a critical points of the bienergy w.r.t. variations of the map.

Opting for a different angle of attack, one can vary the metric instead of the map and consider the functional

$$F : G \rightarrow \mathbb{R}, \quad F(g) = E_2(\varphi),$$

where G is the set of Riemannian metrics on M.

Theorem

$$\delta(F(g_t)) = -\frac{1}{2} \int_M \langle S_2, \omega \rangle \, \nu_g,$$

The tensor S_2 vanishes precisely at critical points of the energy (bienergy) for variations of the domain metric, rather than for variations of the map.

(The harmonic case is of Sanini)
Isometric immersion

If \(\varphi : (M, g) \rightarrow (N, h) \) is an isometric immersion from

\[
\begin{align*}
\text{div } S_2 &= \langle \tau_2(\varphi), d\varphi \rangle \\
\Downarrow \\
\text{div } S_2 &= -\tau_2(\varphi)^T
\end{align*}
\]
Isometric immersion

If \(\varphi : (M, g) \to (N, h) \) is an isometric immersion from

\[
\text{div } S_2 = -\langle \tau_2(\varphi), d\varphi \rangle
\]

\[
\downarrow
\]

\[
\text{div } S_2 = -\tau_2(\varphi)^\top
\]

Problem

Study isometric immersions in space forms with \(\text{div } S_2 = 0 \)
Biharmonic submanifolds in a Riemannian manifold

An isometric immersion

\[\varphi : (M, g) \to (N, h) \]

is biharmonic iff

\[
\begin{align*}
\Delta H^\perp + \text{trace } B(\cdot, A_H \cdot) + \text{trace } (R^N(\cdot, H) \cdot)^\perp &= 0 \\
\frac{m}{2} \ \text{grad } |H|^2 + 2 \text{trace } A_{\nabla^\perp(\cdot) H}(\cdot) + 2 \text{trace } (R^N(\cdot, H) \cdot)^\top &= 0
\end{align*}
\]
Results for Bih. Sub. in non constant sec. curv. manifolds

- In three-dimensional homogeneous spaces (Thurston’s geometries) (Inoguchi, Ou–Wang, Caddeo–Piu–M–O)

- There exists examples of proper biharmonic hypersurfaces in a space with negative non constant sectional curvature (Ou–Tang)

- It is initiated the study of biharmonic submanifolds in complex space forms (Ichiyama–Inoguchi–Urakawa, Fetcu–Loubeau–M–O, Sasahara)

- There are several works on biharmonic submanifolds in contact manifold and Sasakian space forms (Inoguchi, Fetcu–O, Sasahara)
In a Sasakian manifold

\[(N, \Phi, \xi, \eta, g)\]

a submanifold \(M \subset N \) tangent to \(\xi \) is called \textit{anti-invariant} if \(\Phi \) maps any tangent vector to \(M \), which is normal to \(\xi \), to a vector which is normal to \(M \).
Finite k-type submanifolds

An isometric immersion $\phi : M \rightarrow \mathbb{R}^{n+1}$ (M compact) is called of finite k-type if

$$\phi = \phi_0 + \phi_1 + \cdots + \phi_k$$

where

$$\Delta \phi_i = \lambda_i \phi_i, \quad i = 1, \ldots, k$$

and $\phi_0 \in \mathbb{R}^{n+1}$ is the center of mass

A submanifold $M \subset S^n \subset \mathbb{R}^{n+1}$ is said to be of finite type if it is of finite type as a submanifold of \mathbb{R}^{n+1}.

A non null finite type submanifold in S^n is said to be mass-symmetric if the constant vector ϕ_0 of its spectral decomposition is the center of the hypersphere S^n, i.e. $\phi_0 = 0$.
