A survey on biharmonic submanifolds in space forms

Stefano Montaldo

Università degli Studi di Cagliari

L'Aquila 7–9 September 2011

Most of the results presented are in collaboration with: A. Balmus and C. Oniciuc

Chen definition

$$\mathbf{i}: M \hookrightarrow \mathbb{R}^n$$

be the canonical inclusion and $\mathbf{H} = (H_1, \dots, H_n)$ the mean curvature vector field.

<u>Definition</u> (B-Y. Chen) A submanifold $M \subset \mathbb{R}^n$ is *biharmonic* iff

$$\Delta \mathbf{H} = (\Delta H_1, \dots, \Delta H_n) = 0$$

where Δ is the Beltrami-Laplace operator on M w.r.t. the metric induced by **i**.

Chen definition

$$\mathbf{i}: M \hookrightarrow \mathbb{R}^n$$

be the canonical inclusion and $\mathbf{H} = (H_1, \ldots, H_n)$ the mean curvature vector field.

<u>Definition</u> (B-Y. Chen) A submanifold $M \subset \mathbb{R}^n$ is *biharmonic* iff

$$\Delta \mathbf{H} = (\Delta H_1, \dots, \Delta H_n) = 0$$

where Δ is the Beltrami-Laplace operator on M w.r.t. the metric induced by **i**.

• Why biharmonic?

$$m \Delta \mathbf{H} = \Delta(-\Delta \mathbf{i}) = -\Delta^2 \mathbf{i}$$

Chen definition

$$\mathbf{i}: M \hookrightarrow \mathbb{R}^n$$

be the canonical inclusion and $\mathbf{H} = (H_1, \ldots, H_n)$ the mean curvature vector field.

<u>Definition</u> (B-Y. Chen) A submanifold $M \subset \mathbb{R}^n$ is *biharmonic* iff

$$\Delta \mathbf{H} = (\Delta H_1, \dots, \Delta H_n) = 0$$

where Δ is the Beltrami-Laplace operator on M w.r.t. the metric induced by **i**.

• Why biharmonic?

$$m \Delta \mathbf{H} = \Delta(-\Delta \mathbf{i}) = -\Delta^2 \mathbf{i}$$

- CMC submanifolds, $|\mathbf{H}|=\mathrm{constant},$ are not necessarily biharmonic.

Biharmonic submanifolds in $\mathbb{E}^n(c)$

Let

 $\mathbf{i}: M^m \hookrightarrow \mathbb{E}^n(c)$

be the canonical inclusion of a submanifold ${\cal M}$ in a constant sectional curvature c manifold.

Biharmonic submanifolds in $\mathbb{E}^n(c)$

Let

 $\mathbf{i}: M^m \hookrightarrow \mathbb{E}^n(c)$

be the canonical inclusion of a submanifold M in a constant sectional curvature c manifold.

Definition *M* is a biharmonic submanifold iff

$$\Delta^{\!\mathbf{i}}\,\mathbf{H}=m\,c\,\mathbf{H}$$

where

• $\mathbf{H} \in C(\mathbf{i}^{-1}(T\mathbb{E}^n(c)))$ denotes the mean curvature vector field of M in $\mathbb{E}^n(c)$

• $\Delta^{\mathbf{i}}$ is the rough Laplacian on $\mathbf{i}^{-1}(T\mathbb{E}^n(c))$

If $\mathbb{E}^n(1)=\mathbb{S}^n,$ then one can consider $\mathbb{S}^n\subset\mathbb{R}^{n+1}$ and the inclusion

$$\mathbf{i}: M^m \hookrightarrow \mathbb{S}^n \subset \mathbb{R}^{n+1}$$

can be seen as a map into \mathbb{R}^{n+1} .

If $\mathbb{E}^n(1)=\mathbb{S}^n,$ then one can consider $\mathbb{S}^n\subset\mathbb{R}^{n+1}$ and the inclusion

$$\mathbf{i}: M^m \hookrightarrow \mathbb{S}^n \subset \mathbb{R}^{n+1}$$

can be seen as a map into \mathbb{R}^{n+1} .

Alternative problem (Alias, Barros, Ferrández)

$$\Delta \mathbf{H}' = (\Delta H_1, \dots, \Delta H_{n+1}) = m \, \mathbf{H}'$$

where \mathbf{H}' is the mean curvature vector field of the inclusion as a map into \mathbb{R}^{n+1} .

If $\mathbb{E}^n(1)=\mathbb{S}^n,$ then one can consider $\mathbb{S}^n\subset\mathbb{R}^{n+1}$ and the inclusion

$$\mathbf{i}: M^m \hookrightarrow \mathbb{S}^n \subset \mathbb{R}^{n+1}$$

can be seen as a map into \mathbb{R}^{n+1} .

Alternative problem (Alias, Barros, Ferrández)

$$\Delta \mathbf{H}' = (\Delta H_1, \dots, \Delta H_{n+1}) = m \, \mathbf{H}'$$

where \mathbf{H}' is the mean curvature vector field of the inclusion as a map into \mathbb{R}^{n+1} .

Is it true that

$$\Delta \mathbf{H}' = m \, \mathbf{H}' \quad \Leftrightarrow \quad \Delta^{\mathbf{i}} \, \mathbf{H} = m \, \mathbf{H}$$

If $\mathbb{E}^n(1)=\mathbb{S}^n,$ then one can consider $\mathbb{S}^n\subset\mathbb{R}^{n+1}$ and the inclusion

$$\mathbf{i}: M^m \hookrightarrow \mathbb{S}^n \subset \mathbb{R}^{n+1}$$

can be seen as a map into \mathbb{R}^{n+1} .

Alternative problem (Alias, Barros, Ferrández)

$$\Delta \mathbf{H}' = (\Delta H_1, \dots, \Delta H_{n+1}) = m \, \mathbf{H}'$$

where \mathbf{H}' is the mean curvature vector field of the inclusion as a map into \mathbb{R}^{n+1} .

Is it true that

$$\Delta \mathbf{H}' = m \, \mathbf{H}' \quad \bigstar \quad \Delta^{\mathbf{i}} \, \mathbf{H} = m \, \mathbf{H}$$

If $\mathbb{E}^n(1)=\mathbb{S}^n,$ then one can consider $\mathbb{S}^n\subset\mathbb{R}^{n+1}$ and the inclusion

$$\mathbf{i}: M^m \hookrightarrow \mathbb{S}^n \subset \mathbb{R}^{n+1}$$

can be seen as a map into \mathbb{R}^{n+1} .

Alternative problem (Alias, Barros, Ferrández)

$$\Delta \mathbf{H}' = (\Delta H_1, \dots, \Delta H_{n+1}) = m \mathbf{H}'$$

where \mathbf{H}' is the mean curvature vector field of the inclusion as a map into \mathbb{R}^{n+1} .

Is it true that

$$\Delta \mathbf{H}' = m \, \mathbf{H}' \iff \Delta^{\mathbf{i}} \mathbf{H} \stackrel{\bullet}{=} m \, \mathbf{H}$$

where does this come from?

The bienergy Functional

Biharmonic maps $\varphi : (M,g) \to (N,h)$ are critical points of the bienergy functional

$$E_2(\varphi) = \frac{1}{2} \int_M |\tau(\varphi)|^2 v_g$$

(Eells-Lemaire)

where

$$\tau(\varphi) = \operatorname{trace}_g \nabla d\varphi$$

is the tension field

($\tau(\varphi) = 0$ means φ harmonic)

The bienergy Functional

Biharmonic maps $\varphi : (M,g) \to (N,h)$ are critical points of the bienergy functional

$$E_2(\varphi) = \frac{1}{2} \int_M |\tau(\varphi)|^2 v_g$$

(Eells-Lemaire)

where

$$\tau(\varphi) = \text{trace}_g \nabla d\varphi$$

is the tension field

 $(\tau(\varphi) = 0 \text{ means } \varphi \text{ harmonic})$

Biharmonic maps are solutions of the Euler-Lagrange equation:

$$\tau_2(\varphi) = -\Delta^{\varphi} \tau(\varphi) - \operatorname{trace}_g R^N(d\varphi, \tau(\varphi)) d\varphi = 0$$

where R^N is the curvature operator on N. (Jiang)

Remarks:
$$\varphi: (M,g) \to (N,h)$$

• M compact and $Sec^N \leq 0$ then biharmonic \Rightarrow harmonic (Jiang)

6/29

- M compact and $\operatorname{Sec}^N \leq 0$ then biharmonic \Rightarrow harmonic (Jiang)
- $M \operatorname{compact} + \operatorname{Sec}^N \leq \mathbf{0} \Rightarrow$ there exists a harmonic map $\varphi: M \to N$

in each homotopy class

(Eells-Sampson)

- M compact and $\operatorname{Sec}^N \leq 0$ then biharmonic \Rightarrow harmonic (Jiang)
- $M \operatorname{compact} + \operatorname{Sec}^N \leq \mathbf{0} \Rightarrow$ there exists a harmonic map $\varphi: M \to N$

in each homotopy class

(Eells-Sampson)

There exists NO harmonic map from

 $\mathbb{T}^2 \to \mathbb{S}^2$

in the homotopy class of Brower degree ± 1 (Eells–Wood)

- M compact and $\operatorname{Sec}^N \leq 0$ then biharmonic \Rightarrow harmonic (Jiang)
- $M \operatorname{compact} + \operatorname{Sec}^N \leq \mathbf{0} \Rightarrow$ there exists a harmonic map $\varphi: M \to N$

in each homotopy class

(Eells-Sampson)

There exists NO harmonic map from

 $\mathbb{T}^2 \to \mathbb{S}^2$

in the homotopy class of Brower degree ± 1 (Eells–Wood)

<u>**Problem</u>** Find biharmonic maps $\mathbb{T}^2 \to \mathbb{S}^2$ of degree ± 1 </u>

- $M \text{ compact and } \operatorname{Sec}^N \leq 0$ then biharmonic \Rightarrow harmonic (Jiang)
- $M \operatorname{compact} + \operatorname{Sec}^N \leq \mathbf{0} \Rightarrow$ there exists a harmonic map $\varphi: M \to N$

in each homotopy class

(Eells-Sampson)

There exists NO harmonic map from

 $\mathbb{T}^2 \to \mathbb{S}^2$

in the homotopy class of Brower degree ± 1 (Eells–Wood)

Problem Find biharmonic maps $\mathbb{T}^2 o \mathbb{S}^2$ of degree ± 1

• So far we only know examples of biharmonic maps $\mathbb{T}^2\to\mathbb{S}^2$ whose image is a curve.

• Any polynomial map of degree 3 between Euclidean spaces

• Any polynomial map of degree 3 between Euclidean spaces

<u>Property</u> (Almansi): let $f : \mathbb{R}^n \to \mathbb{R}$ be any harmonic function then

$$g(x) = |x|^2 f(x)$$

is proper biharmonic.

• Any polynomial map of degree 3 between Euclidean spaces

<u>Property</u> (Almansi): let $f : \mathbb{R}^n \to \mathbb{R}$ be any harmonic function then

$$g(x) = |x|^2 f(x)$$

is proper biharmonic.

• From the Hopf map $H: \mathbb{C}^2 \to \mathbb{R} \times \mathbb{C}$ we get the proper biharmonic map

 $\mathbb{C}^2 \to \mathbb{R} \times \mathbb{C}, \ (z, w) \mapsto (|z|^2 + |w|^2)(|z|^2 - |w|^2, 2z\bar{w})$

• Any polynomial map of degree 3 between Euclidean spaces

<u>Property</u> (Almansi): let $f : \mathbb{R}^n \to \mathbb{R}$ be any harmonic function then

$$g(x) = |x|^2 f(x)$$

is proper biharmonic.

• From the Hopf map $H: \mathbb{C}^2 \to \mathbb{R} \times \mathbb{C}$ we get the proper biharmonic map

 $\mathbb{C}^2 \to \mathbb{R} \times \mathbb{C}, \ (z, w) \mapsto (|z|^2 + |w|^2)(|z|^2 - |w|^2, 2z\bar{w})$

• Let
$$f(x_1,...,x_n) = \sum_{i=1}^n a_i x_i$$
, $a_i \in \mathbb{R}$, then $g(x) = |x|^{2-n} f(x)$

is proper biharmonic

(M–Impera)

• The generalized Kelvin transformation

$$\varphi: \mathbb{R}^m \setminus \{0\} \to \mathbb{R}^m \setminus \{0\}, \quad \varphi(p) = \frac{p}{|p|^{\ell}}$$

is proper biharmonic iff $\ell = m - 2$

(Balmus-M-Oniciuc)

• The generalized Kelvin transformation

$$\varphi: \mathbb{R}^m \setminus \{0\} \to \mathbb{R}^m \setminus \{0\}, \quad \varphi(p) = \frac{p}{|p|^{\ell}}$$

proper biharmonic iff $\ell = m - 2$ (Balmus–M–Oniciuc)

• The quaternionic multiplication

$$\mathbb{H} \to \mathbb{H}, \quad q \mapsto q^n$$

is biharmonic for any $n \in \mathbb{N}$

is

(Fueter, 1935)

Lets go back to biharmonic submanifolds

If $\varphi: M \to \mathbb{E}^n(c)$ is an isometric immersion then

$$au(\varphi) = m\mathbf{H}, \qquad au_2(\varphi) = -m\Delta^{\varphi}\mathbf{H} + c\,m^2\,\mathbf{H}$$

 (\mathbf{F})

Lets go back to biharmonic submanifolds

If $\varphi: M \to \mathbb{E}^n(c)$ is an isometric immersion then

$$au(\varphi) = m\mathbf{H}, \qquad au_2(\varphi) = -m\Delta^{\varphi}\mathbf{H} + c\,m^2\,\mathbf{H}$$

thus φ is biharmonic ($\tau_2 = 0$) iff

$$\Delta^{\!\varphi}\,\mathbf{H}=m\,c\,\mathbf{H}$$

Lets go back to biharmonic submanifolds

If $\varphi: M \to \mathbb{E}^n(c)$ is an isometric immersion then

$$au(\varphi) = m\mathbf{H}, \qquad au_2(\varphi) = -m\Delta^{\varphi}\mathbf{H} + c\,m^2\,\mathbf{H}$$

thus φ is biharmonic ($\tau_2 = 0$) iff

$$\Delta^{\!\varphi}\, {\bf H} = m\, c\, {\bf H}$$

Now, choosing $\varphi = \mathbf{i} : M^m \hookrightarrow \mathbb{E}^n(c)$ to be the inclusion we get the biharmonic condition we have started with

Geometric conditions for biharmonic submanifolds

Geometric conditions for biharmonic submanifolds

Biharmonic $\Leftrightarrow \Delta^{i}\mathbf{H} = m c \mathbf{H}$ $\begin{cases} -\Delta^{\perp} \mathbf{H} - \operatorname{trace} B(\cdot, A_{\mathbf{H}} \cdot) + m \, c \, \mathbf{H} = 0 \quad (\operatorname{normal}) \\ 2 \operatorname{trace} A_{\nabla_{(\cdot)}^{\perp} \mathbf{H}}(\cdot) + \frac{m}{2} \operatorname{grad}(|\mathbf{H}|^2) = 0 \quad (\operatorname{tangent}) \end{cases}$

For hypersurface

As
$$[\mathbf{H} = f \eta]$$
 η unit norma $\Delta f - (m c - |A|^2)f = 0$
 $2A(\operatorname{grad} f) + m f \operatorname{grad} f = 0$

Geometric conditions for biharmonic submanifolds

Biharmonic $\Leftrightarrow \Delta^{\mathbf{i}}\mathbf{H} = m c \mathbf{H}$

 $\begin{cases} -\Delta^{\perp} \mathbf{H} - \operatorname{trace} B(\cdot, A_{\mathbf{H}} \cdot) + m \, c \, \mathbf{H} = 0 \quad (\operatorname{normal}) \\ 2 \operatorname{trace} A_{\nabla_{(\cdot)}^{\perp} \mathbf{H}}(\cdot) + \frac{m}{2} \operatorname{grad}(|\mathbf{H}|^2) = 0 \quad (\operatorname{tangent}), \end{cases}$

For hypersurface

$$\Delta f - (m c - |A|^2)f = 0$$
$$2A(\operatorname{grad} f) + m f \operatorname{grad} f = 0$$

 $f = \text{constant} \neq 0 \implies |A|^2 = mc \implies c > 0$

Chen's Conjecture

Proposition [Chen (c = 0), Caddeo–M–Oniciuc ($c \le 0$)]

If $c \leq 0$, there exists no proper biharmonic surfaces $M^2 \subset \mathbb{E}^3(c)$.

Chen's Conjecture

Proposition [Chen (c = 0), Caddeo–M–Oniciuc ($c \le 0$)]

If $c \leq 0$, there exists no proper biharmonic surfaces $M^2 \subset \mathbb{E}^3(c)$.

Conjecture

Biharmonic submanifolds of $\mathbb{E}^n(c), c \leq 0$, are minimal

Chen's Conjecture

Proposition [Chen (c = 0), Caddeo–M–Oniciuc ($c \le 0$)] If $c \le 0$, there exists no proper biharmonic surfaces $M^2 \subset \mathbb{E}^3(c)$. Conjecture

Biharmonic submanifolds of $\mathbb{E}^n(c), c \leq 0$, are minimal

Partial solutions of the conjecture are known for:

- curves of \mathbb{R}^n (Dimitric)
- submanifolds of finite type in \mathbb{R}^n (Dimitric)
- hypersurfaces with at most two principal curvatures (B–M–O)
- pseudo-umbilical submanifolds M^m ⊂ Eⁿ(c), c ≤ 0, m ≠ 4, (Caddeo-M-O, Dimitric)
- hypersurfaces of $\mathbb{E}^4(c), c \leq 0$ (Hasanis–Vlachos, B–M–O)
- spherical submanifolds of \mathbb{R}^n (Chen)
- submanifolds of bounded geometry (Ichiyama–Inoguchi–Urakawa)

All the non existence results described in the previous section do not hold for submanifolds in the sphere.

Problem:

Classify all biharmonic submanifolds of \mathbb{S}^n

Main examples of biharmonic submanifolds in \mathbb{S}^n

Main examples of biharmonic submanifolds in \mathbb{S}^n

B1 The small hypersphere

Main examples of biharmonic submanifolds in \mathbb{S}^n

B1 The small hypersphere

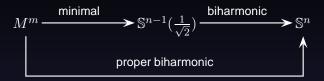
$$\mathbb{S}^m(\frac{1}{\sqrt{2}}) \longrightarrow \mathbb{S}^{m+1}$$

B2 The standard products of spheres

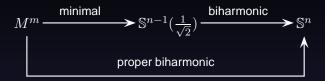
$$\mathbb{S}^{m_1}(\frac{1}{\sqrt{2}}) \times \mathbb{S}^{m_2}(\frac{1}{\sqrt{2}}) \xrightarrow{\text{biharmonic}} \mathbb{S}^{m+1}$$

 $m_1 + m_2 = m \text{ and } m_1 \neq m_2.$

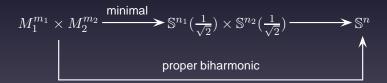
Main examples of biharmonic submanifolds in \mathbb{S}^n B3 Composition property



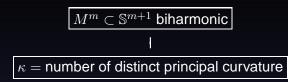
Main examples of biharmonic submanifolds in \mathbb{S}^n B3 Composition property

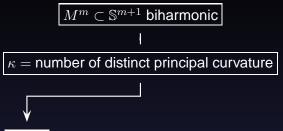


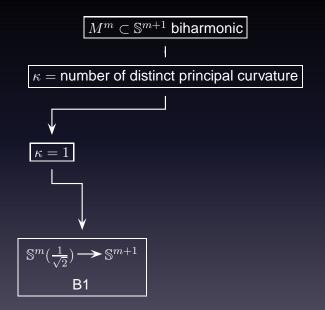
B4 Product composition property

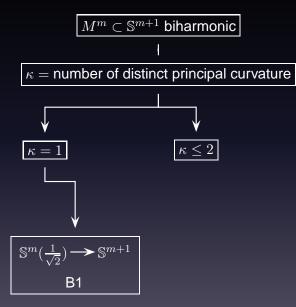


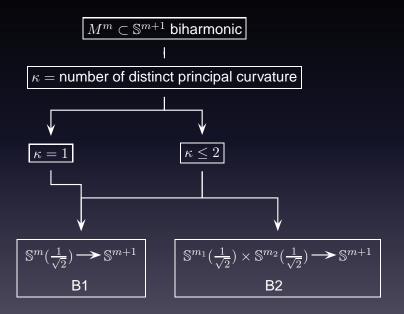
 $n_1 + n_2 = n - 1, m_1 \neq m_2$

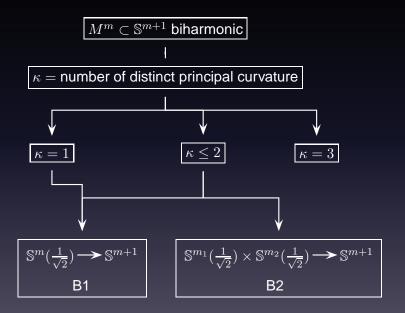


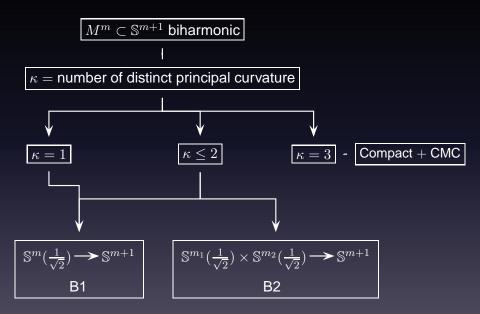


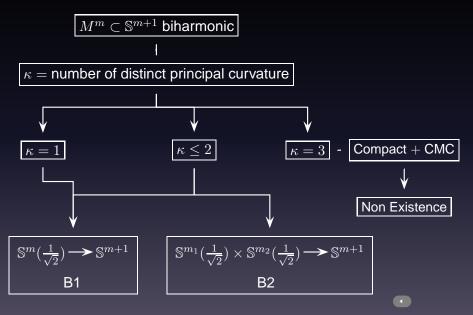


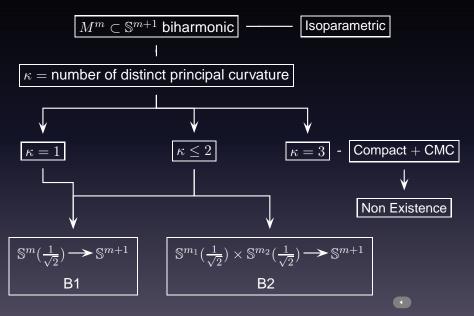


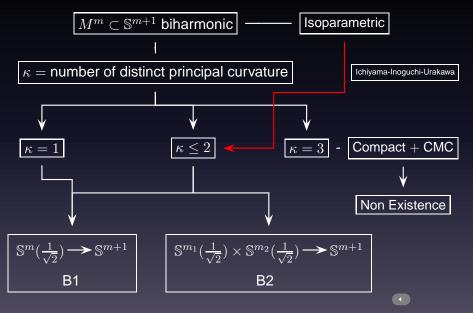






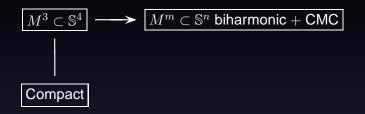


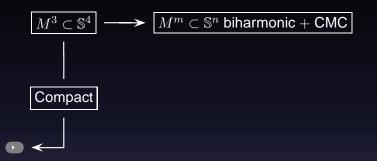


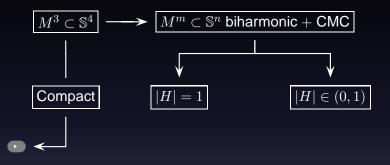


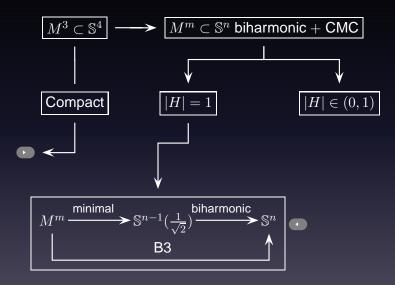
 $M^m \subset \mathbb{S}^n$ biharmonic + CMC

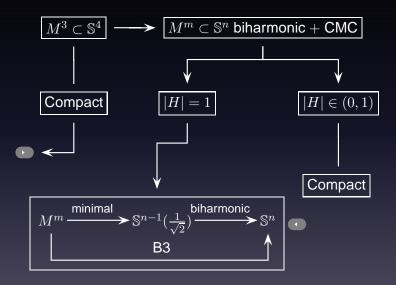
$$M^3 \subset \mathbb{S}^4$$
 \longrightarrow $M^m \subset \mathbb{S}^n$ biharmonic + CMC

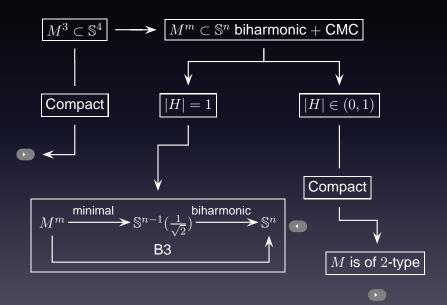


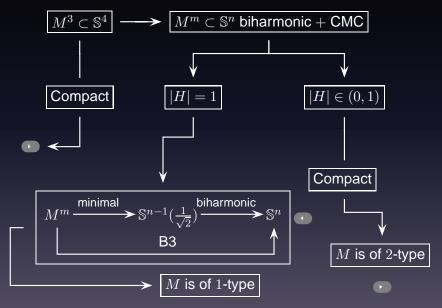


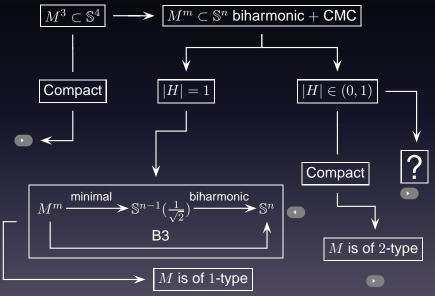




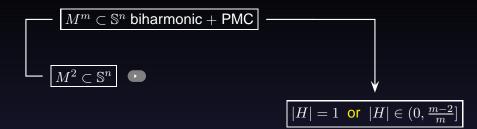


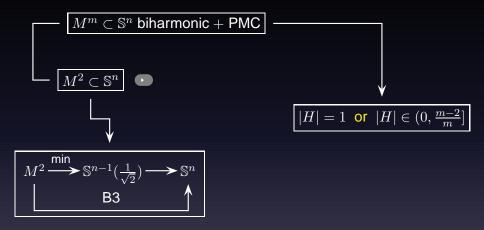


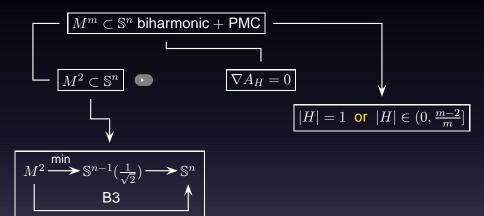


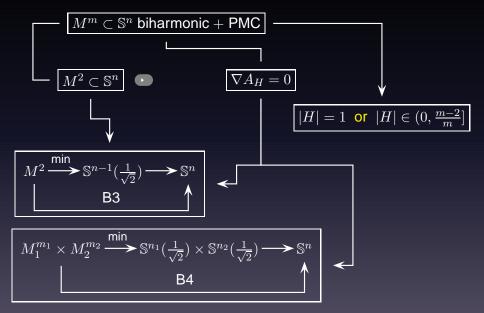


$$M^m \subset \mathbb{S}^n$$
 biharmonic + PMC









CMC proper biharmonic submanifolds with |H| = 1 in \mathbb{S}^n are B3 and they are pseudo-umbilical:

 $\overline{A_H} = |H|^2 \mathrm{Id}$

CMC proper biharmonic submanifolds with |H| = 1 in \mathbb{S}^n are B3 and they are pseudo-umbilical:

 $A_H = |H|^2 \mathrm{Id}$

<u>Question</u> When does a proper biharmonic pseudo-umbilical submanifold in \mathbb{S}^n have |H| = 1, thus B3?

CMC proper biharmonic submanifolds with |H| = 1 in \mathbb{S}^n are B3 and they are pseudo-umbilical:

 $A_H = |H|^2 \mathrm{Id}$

<u>Question</u> When does a proper biharmonic pseudo-umbilical submanifold in \mathbb{S}^n have |H| = 1, thus B3?

<u>Theorem</u> Let M^m be a compact pseudo-umbilical submanifold in \mathbb{S}^n , $m \neq 4$. Then M is proper biharmonic if and only if M is B3.

CMC proper biharmonic submanifolds with |H| = 1 in \mathbb{S}^n are B3 and they are pseudo-umbilical:

 $A_H = |H|^2 \mathrm{Id}$

<u>Question</u> When does a proper biharmonic pseudo-umbilical submanifold in \mathbb{S}^n have |H| = 1, thus B3?

<u>Theorem</u> Let M^m be a compact pseudo-umbilical submanifold in \mathbb{S}^n , $m \neq 4$. Then M is proper biharmonic if and only if M is B3.

The proof is based on the following

 $compact + CMC + pseudo-umbilical \Rightarrow PMC$ (H. Li)

CMC proper biharmonic submanifolds with |H| = 1 in \mathbb{S}^n are B3 and they are pseudo-umbilical:

 $A_H = |H|^2 \mathrm{Id}$

<u>Question</u> When does a proper biharmonic pseudo-umbilical submanifold in \mathbb{S}^n have |H| = 1, thus B3?

<u>Theorem</u> Let M^m be a compact pseudo-umbilical submanifold in \mathbb{S}^n , $m \neq 4$. Then M is proper biharmonic if and only if M is B3.

The proof is based on the following biharmonic compact + CMC + pseudo-umbilical \Rightarrow PMC

The examples of Sasahara et al

<u>Theorem</u> Let $\varphi: M^3 \to \mathbb{S}^5$ be a proper biharmonic anti-invariant immersion. Then the position vector field $x_0 = x_0(u, v, w)$ in \mathbb{R}^6 is given by

$$x_0(u, v, w) = e^{iw}(e^{iu}, ie^{-iu} \sin \sqrt{2}v, ie^{-iu} \cos \sqrt{2}v)$$

Moreover, |H| = 1/3.

The immersion φ is PMC

The examples of Sasahara et al

<u>Theorem</u> Let $\varphi: M^3 \to \mathbb{S}^5$ be a proper biharmonic anti-invariant immersion. Then the position vector field $x_0 = x_0(u, v, w)$ in \mathbb{R}^6 is given by

$$x_0(u, v, w) = e^{iw}(e^{iu}, ie^{-iu} \sin \sqrt{2}v, ie^{-iu} \cos \sqrt{2}v)$$

Moreover, |H| = 1/3.

The immersion φ is PMC but NOT pseudo-umbilical

The examples of Sasahara et al

<u>Theorem</u> Let $\varphi: M^3 \to \mathbb{S}^5$ be a proper biharmonic anti-invariant immersion. Then the position vector field $x_0 = x_0(u, v, w)$ in \mathbb{R}^6 is given by

$$x_0(u, v, w) = e^{iw}(e^{iu}, ie^{-iu} \sin \sqrt{2}v, ie^{-iu} \cos \sqrt{2}v)$$

Moreover, |H| = 1/3.

The immersion φ is PMC but NOT pseudo-umbilical

<u>Theorem</u> Let $\phi : M^2 \to \mathbb{S}^5$ be a proper biharmonic Legendre immersion. Then the position vector field $x_0 = x_0(u, v)$ of M in \mathbb{R}^6 is given by:

$$x_0(u,v) = \frac{1}{\sqrt{2}} \Big(\cos u, \sin u \sin(\sqrt{2}v), -\sin u \cos(\sqrt{2}v), \\ \sin u, \cos u \sin(\sqrt{2}v), -\cos u \cos(\sqrt{2}v) \Big).$$

The immersion ϕ is NOT PMC and NOT pseudo-umbilical

Open Problems

Conjecture

The only proper biharmonic hypersurfaces in \mathbb{S}^n are B1 or B2.

Conjecture

Any biharmonic submanifold in \mathbb{S}^n has constant mean curvature.

skip-strees

Remark

The $\mathbf{i}: M^m \hookrightarrow \mathbb{E}^n(c)$ is biharmonic iff $\begin{cases}
-\Delta^{\perp} \mathbf{H} - \operatorname{trace} B(\cdot, A_{\mathbf{H}} \cdot) + mc \mathbf{H} = 0 \quad (\operatorname{normal}) \\
2\operatorname{trace} A_{\nabla_{(\cdot)}^{\perp} \mathbf{H}}(\cdot) + \frac{m}{2}\operatorname{grad}(|\mathbf{H}|^2) = 0 \quad (\operatorname{tangent})
\end{cases}$

Most of the classification results described depend only on the tangent part of τ_2 .

Remark

The $\mathbf{i}: M^m \hookrightarrow \mathbb{E}^n(c)$ is biharmonic iff $\begin{cases}
-\Delta^{\perp} \mathbf{H} - \operatorname{trace} B(\cdot, A_{\mathbf{H}} \cdot) + mc \mathbf{H} = 0 \quad (\operatorname{normal}) \\
2\operatorname{trace} A_{\nabla_{(\cdot)}^{\perp} \mathbf{H}}(\cdot) + \frac{m}{2}\operatorname{grad}(|\mathbf{H}|^2) = 0 \quad (\operatorname{tangent})
\end{cases}$

Most of the classification results described depend only on the tangent part of τ_2 .

Has the condition

$$\tau_2(\varphi)^{\top} = 0$$

a variational meaning?

Remark

The $\mathbf{i}: M^m \hookrightarrow \mathbb{E}^n(c)$ is biharmonic iff $\begin{cases}
-\Delta^{\perp} \mathbf{H} - \operatorname{trace} B(\cdot, A_{\mathbf{H}} \cdot) + mc \mathbf{H} = 0 \quad (\operatorname{normal}) \\
2\operatorname{trace} A_{\nabla_{(\cdot)}^{\perp} \mathbf{H}}(\cdot) + \frac{m}{2}\operatorname{grad}(|\mathbf{H}|^2) = 0 \quad (\operatorname{tangent}).
\end{cases}$

Most of the classification results described depend only on the tangent part of τ_2 .

Has the condition

$$\tau_2(\varphi)^{\top} = 0$$

a variational meaning?

As described by Hilbert, the stress-energy tensor associated to a variational problem is a symmetric 2-covariant tensor field Sconservative at critical points, i.e. div S = 0 at these points.

As described by Hilbert, the stress-energy tensor associated to a variational problem is a symmetric 2-covariant tensor field Sconservative at critical points, i.e. div S = 0 at these points.

• In the context of harmonic maps, the stress-energy tensor is

$$S = \frac{1}{2} |d\varphi|^2 g - \varphi^* h,$$

As described by Hilbert, the stress-energy tensor associated to a variational problem is a symmetric 2-covariant tensor field Sconservative at critical points, i.e. div S = 0 at these points.

• In the context of harmonic maps, the stress-energy tensor is

$$S = \frac{1}{2} |d\varphi|^2 g - \varphi^* h, \qquad \operatorname{div} S = -\langle \tau(\varphi), d\varphi \rangle$$

(Baird-Eells)

As described by Hilbert, the stress-energy tensor associated to a variational problem is a symmetric 2-covariant tensor field Sconservative at critical points, i.e. div S = 0 at these points.

In the context of harmonic maps, the stress-energy tensor is

$$S = \frac{1}{2} |d\varphi|^2 g - \varphi^* h, \qquad \operatorname{div} S = -\langle \tau(\varphi), d\varphi \rangle$$
(Baird–Eells)

For biharmonic maps the stress-energy tensor is

$$S_{2}(X,Y) = \frac{1}{2} |\tau(\varphi)|^{2} \langle X,Y \rangle + \langle d\varphi, \nabla \tau(\varphi) \rangle \langle X,Y \rangle - \langle d\varphi(X), \nabla_{Y}\tau(\varphi) \rangle - \langle d\varphi(Y), \nabla_{X}\tau(\varphi) \rangle$$

with

$$\operatorname{div} S_2 = -\langle \tau_2(\varphi), d\varphi \rangle$$

(Jiang, Loubeau–M–Oniciuc)

The meaning of $S_2 = 0$

(Loubeau-M-Oniciuc)

The meaning of $S_2 = 0$ (Loubeau–M–Oniciuc)

A smooth map $\varphi : (M, g) \to (N, h)$ is biharmonic if it is a critical points of the bienergy w.r.t. variations of the map.

The meaning of $S_2 = 0$ (Loubeau–M–Oniciuc)

A smooth map $\varphi : (M,g) \to (N,h)$ is biharmonic if it is a critical points of the bienergy w.r.t. variations of the map. Opting for a different angle of attack, one can vary the metric instead of the map and consider the functional

 $F: G \to \mathbb{R}, \quad F(g) = E_2(\varphi),$

where G is the set of Riemannian metrics on M

The meaning of $S_2 = 0$ (Loubeau–M–Oniciuc)

A smooth map $\varphi : (M,g) \to (N,h)$ is biharmonic if it is a critical points of the bienergy w.r.t. variations of the map. Opting for a different angle of attack, one can vary the metric instead of the map and consider the functional

$$F: G \to \mathbb{R}, \quad F(g) = E_2(\varphi),$$

where G is the set of Riemannian metrics on M

<u>Theorem</u>

$$\delta(F(g_t)) = -\frac{1}{2} \int_M \langle S_2, \omega \rangle \; v_g,$$

The tensor S_2 vanishes precisely at critical points of the energy (bienergy) for variations of the domain metric, rather than for variations of the map.

(The harmonic case is of Sanini)

Isometric immersion

If $\varphi: (M,g) \to (N,h)$ is an isometric immersion from

div
$$S_2 = -\langle \tau_2(\varphi), d\varphi \rangle$$

 \downarrow
div $S_2 = -\tau_2(\varphi)^\top$

Isometric immersion

If $\varphi: (M,g) \to (N,h)$ is an isometric immersion from

div
$$S_2 = -\langle \tau_2(\varphi), d\varphi \rangle$$

 \downarrow
div $S_2 = -\tau_2(\varphi)^\top$

Problem

Study isometric immersions in space forms with $\operatorname{div} S_2 = 0$

Biharmonic submanifolds in a Riemannian manifold

An isometric immersion

$$\varphi:(M,g)\to (N,h)$$

is biharmonic iff

$$\begin{cases} \Delta^{\perp} \mathbf{H} + \operatorname{trace} B(\cdot, A_{\mathbf{H}} \cdot) + \operatorname{trace} (R^{N}(\cdot, \mathbf{H}) \cdot)^{\perp} = 0\\ \\ \frac{m}{2} \operatorname{grad} |\mathbf{H}|^{2} + 2 \operatorname{trace} A_{\nabla_{(\cdot)}^{\perp} \mathbf{H}}(\cdot) + 2 \operatorname{trace} (R^{N}(\cdot, \mathbf{H}) \cdot)^{\top} = 0 \end{cases}$$

Results for Bih. Sub. in non constant sec. curv. manifolds

• In three-dimensional homogeneous spaces (Thurston's geometries)

```
(Inoguchi, Ou–Wang, Caddeo–Piu–M–O)
```

 There exists examples of proper biharmonic hypersurfaces in a space with negative non constant sectional curvature (Ou–Tang)

 It is initiated the study of biharmonic submanifolds in complex space forms (Ichiyama–Inoguchi–Urakawa, Fetcu–Loubeau–M–O, Sasahara)

• There are several works on biharmonic submanifolds in contact manifold and Sasakian space forms (Inoguchi, Fetcu–O, Sasahara) In a Sasakian manifold

 (N, Φ, ξ, η, g)

a submanifold $M \subset N$ tangent to ξ is called *anti-invariant* if Φ maps any tangent vector to M, which is normal to ξ , to a vector which is normal to M.

Finite *k*-type submanifolds

An isometric immersion $\phi : M \to \mathbb{R}^{n+1}$ (*M* compact) is called of finite *k*-type if

$$\phi = \phi_0 + \phi_1 + \dots + \phi_k$$

where

$$\Delta \phi_i = \lambda_i \phi_i, \quad i = 1, \dots, k$$

and $\phi_0 \in \mathbb{R}^{n+1}$ is the center of mass

A submanifold $M \subset \mathbb{S}^n \subset \mathbb{R}^{n+1}$ is said to be of finite type if it is of finite type as a submanifold of \mathbb{R}^{n+1} .

A non null finite type submanifold in \mathbb{S}^n is said to be masssymmetric if the constant vector ϕ_0 of its spectral decomposition is the center of the hypersphere \mathbb{S}^n , i.e. $\phi_0 = 0$.