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Chen definition
Let

i : M →֒ R
n

be the canonical inclusion and H = (H1, . . . ,Hn) the mean cur-
vature vector field.

Definition (B-Y. Chen) A submanifold M ⊂ R
n is biharmonic iff

∆H = (∆H1, . . . ,∆Hn) = 0

where ∆ is the Beltrami-Laplace operator on M w.r.t. the metric
induced by i.
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n

be the canonical inclusion and H = (H1, . . . ,Hn) the mean cur-
vature vector field.

Definition (B-Y. Chen) A submanifold M ⊂ R
n is biharmonic iff

∆H = (∆H1, . . . ,∆Hn) = 0

where ∆ is the Beltrami-Laplace operator on M w.r.t. the metric
induced by i.

• Why biharmonic?

m∆H = ∆(−∆i) = −∆2
i

• CMC submanifolds, |H| = constant, are not necessarily bi-
harmonic.
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Biharmonic submanifolds in E
n(c)

Let
i : Mm →֒ E

n(c)

be the canonical inclusion of a submanifold M in a constant sec-
tional curvature c manifold.
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Biharmonic submanifolds in E
n(c)

Let
i : Mm →֒ E

n(c)

be the canonical inclusion of a submanifold M in a constant sec-
tional curvature c manifold.

Definition M is a biharmonic submanifold iff

∆i
H = mcH

where
• H ∈ C(i−1(TEn(c))) denotes the mean curvature vector field
of M in E

n(c)

• ∆i is the rough Laplacian on i
−1(TEn(c))
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Remark
If En(1) = S

n, then one can consider Sn ⊂ R
n+1 and the inclu-

sion
i : Mm →֒ S

n ⊂ R
n+1

can be seen as a map into R
n+1.
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sion
i : Mm →֒ S

n ⊂ R
n+1

can be seen as a map into R
n+1.

Alternative problem (Alias, Barros, Ferrández)

∆H
′ = (∆H1, . . . ,∆Hn+1) = mH

′

where H
′ is the mean curvature vector field of the inclusion as a

map into R
n+1.

Is it true that

∆H
′ = mH

′
��HH⇔ ∆i

H = mH

where does this come from?

4 / 29



The bienergy Functional
Biharmonic maps ϕ : (M,g) → (N,h) are critical points of the
bienergy functional

E2 (ϕ) =
1

2

∫

M

|τ(ϕ)|2 vg

(Eells–Lemaire)
where

τ(ϕ) = traceg∇dϕ

is the tension field (τ(ϕ) = 0 means ϕ harmonic)

5 / 29



The bienergy Functional
Biharmonic maps ϕ : (M,g) → (N,h) are critical points of the
bienergy functional

E2 (ϕ) =
1

2

∫

M

|τ(ϕ)|2 vg

(Eells–Lemaire)
where

τ(ϕ) = traceg∇dϕ

is the tension field (τ(ϕ) = 0 means ϕ harmonic)

Biharmonic maps are solutions of the Euler-Lagrange equation:

τ2(ϕ) = −∆ϕτ(ϕ) − traceg R
N (dϕ, τ(ϕ))dϕ = 0

where RN is the curvature operator on N . (Jiang)
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Remarks: ϕ : (M, g) → (N, h)

• M compact and SecN ≤ 0 then biharmonic ⇒ harmonic
(Jiang)
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• M compact and SecN ≤ 0 then biharmonic ⇒ harmonic
(Jiang)

• M compact + SecN ≤ 0 ⇒ there exists a harmonic map

ϕ : M → N

in each homotopy class (Eells–Sampson)

• There exists NO harmonic map from

T
2 → S

2

in the homotopy class of Brower degree ±1 (Eells–Wood)

Problem Find biharmonic maps T
2 → S

2 of degree ±1

• So far we only know examples of biharmonic maps T
2 → S

2

whose image is a curve.
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Examples of proper biharmonic maps

• Any polynomial map of degree 3 between Euclidean spaces

Property (Almansi): let f : Rn → R be any harmonic function
then

g(x) = |x|2f(x)
is proper biharmonic.

• From the Hopf map H : C
2 → R × C we get the proper

biharmonic map

C
2 → R× C, (z, w) 7→ (|z|2 + |w|2)(|z|2 − |w|2, 2zw̄)

• Let f(x1, ..., xn) =
∑n

i=1
aixi, ai ∈ R, then

g(x) = |x|2−nf(x)

is proper biharmonic (M–Impera)
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Examples of proper biharmonic maps

• The generalized Kelvin transformation

ϕ : Rm \ {0} → R
m \ {0}, ϕ(p) =

p

|p|ℓ

is proper biharmonic iff ℓ = m− 2 (Balmus–M–Oniciuc)
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Examples of proper biharmonic maps

• The generalized Kelvin transformation

ϕ : Rm \ {0} → R
m \ {0}, ϕ(p) =

p

|p|ℓ

is proper biharmonic iff ℓ = m− 2 (Balmus–M–Oniciuc)

• The quaternionic multiplication

H → H, q 7→ qn

is biharmonic for any n ∈ N (Fueter, 1935)
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Lets go back to biharmonic submanifolds

If ϕ : M → E
n(c) is an isometric immersion then

τ(ϕ) = mH, τ2(ϕ) = −m∆ϕ
H+ cm2

H
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Lets go back to biharmonic submanifolds

If ϕ : M → E
n(c) is an isometric immersion then

τ(ϕ) = mH, τ2(ϕ) = −m∆ϕ
H+ cm2

H

thus ϕ is biharmonic (τ2 = 0) iff

∆ϕ
H = mcH

Now, choosing ϕ = i : Mm →֒ E
n(c) to be the inclusion we get

the biharmonic condition we have started with
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Geometric conditions for biharmonic submanifolds

Biharmonic ⇔ ∆i
H = mcH

m decomposing











−∆⊥
H− traceB(·, AH·) +mcH = 0 (normal)

2 traceA∇⊥

(·)
H
(·) + m

2
grad(|H|2) = 0 (tangent)
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Geometric conditions for biharmonic submanifolds

Biharmonic ⇔ ∆i
H = mcH

m decomposing











−∆⊥
H− traceB(·, AH·) +mcH = 0 (normal)

2 traceA∇⊥

(·)
H
(·) + m

2
grad(|H|2) = 0 (tangent)

For hypersurfaces H = f η η unit normal







∆f − (mc− |A|2)f = 0

2A
(

grad f
)

+mf grad f = 0

f = constant 6= 0 ⇒ |A|2 = mc ⇒ c > 0
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Chen’s Conjecture

Proposition [Chen (c = 0), Caddeo–M–Oniciuc (c ≤ 0)]
If c ≤ 0, there exists no proper biharmonic surfaces M2 ⊂ E

3(c).
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Chen’s Conjecture

Proposition [Chen (c = 0), Caddeo–M–Oniciuc (c ≤ 0)]
If c ≤ 0, there exists no proper biharmonic surfaces M2 ⊂ E

3(c).

Conjecture

Biharmonic submanifolds of E
n(c), c ≤ 0, are minimal

Partial solutions of the conjecture are known for:

• curves of Rn (Dimitric)
• submanifolds of finite type in R

n (Dimitric)
• hypersurfaces with at most two principal curvatures (B–M–O)
• pseudo-umbilical submanifolds Mm ⊂ E

n(c), c ≤ 0, m 6= 4,
(Caddeo–M–O, Dimitric)

• hypersurfaces of E4(c), c ≤ 0 (Hasanis–Vlachos, B–M–O)
• spherical submanifolds of Rn (Chen)
• submanifolds of bounded geometry (Ichiyama–Inoguchi–Urakawa)
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Biharmonic submanifolds of Sn

All the non existence results described in the previous section
do not hold for submanifolds in the sphere.

Problem:
Classify all biharmonic submanifolds of Sn
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Main examples of biharmonic submanifolds in S
n
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Main examples of biharmonic submanifolds in S
n

B1 The small hypersphere

S
m( 1√

2
) S

m+1
biharmonic

B2 The standard products of spheres

S
m1( 1√

2
)× S

m2( 1√
2
) S

m+1
biharmonic

m1 +m2 = m and m1 6= m2.
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Main examples of biharmonic submanifolds in S
n

B3 Composition property

Mm
S
n−1( 1√

2
) S

n
minimal biharmonic

proper biharmonic
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Main examples of biharmonic submanifolds in S
n

B3 Composition property

Mm
S
n−1( 1√

2
) S

n
minimal biharmonic

proper biharmonic

B4 Product composition property

Mm1
1

×Mm2
2

S
n1( 1√

2
)× S

n2( 1√
2
) S

n
minimal

proper biharmonic

n1 + n2 = n− 1, m1 6= m2
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Biharmonic hypersurfaces in S
n
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κ = number of distinct principal curvature

κ = 1

S
m( 1√

2
) S

m+1

B1

κ ≤ 2

S
m1( 1√

2
)× S

m2( 1√
2
) S

m+1

B2

κ = 3 Compact + CMC

Non Existence

Isoparametric

Ichiyama-Inoguchi-Urakawa
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CMC Biharmonic submanifolds in S
n

Mm ⊂ S
n biharmonic + CMC
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Biharmonic submanifolds in S
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Mm ⊂ S
n biharmonic + PMC

17 / 29



Biharmonic submanifolds in S
n with ∇⊥H = 0 (PMC)

Mm ⊂ S
n biharmonic + PMC

|H| = 1 or |H| ∈ (0, m−2

m
]

17 / 29



Biharmonic submanifolds in S
n with ∇⊥H = 0 (PMC)

Mm ⊂ S
n biharmonic + PMC

|H| = 1 or |H| ∈ (0, m−2

m
]

M2 ⊂ S
n

17 / 29



Biharmonic submanifolds in S
n with ∇⊥H = 0 (PMC)

Mm ⊂ S
n biharmonic + PMC

|H| = 1 or |H| ∈ (0, m−2

m
]

M2 ⊂ S
n

M2
S
n−1( 1√

2
) S

n
min

B3

17 / 29



Biharmonic submanifolds in S
n with ∇⊥H = 0 (PMC)

Mm ⊂ S
n biharmonic + PMC

|H| = 1 or |H| ∈ (0, m−2

m
]

M2 ⊂ S
n

M2
S
n−1( 1√

2
) S

n
min

B3

∇AH = 0

17 / 29



Biharmonic submanifolds in S
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Mm ⊂ S
n biharmonic + PMC

|H| = 1 or |H| ∈ (0, m−2

m
]

M2 ⊂ S
n

M2
S
n−1( 1√

2
) S

n
min

B3

∇AH = 0

Mm1
1

×Mm2
2

S
n1( 1√

2
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n2( 1√
2
) S

n
min

B4
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Pseudo-umbilical biharmonic submanifolds in S
n

CMC proper biharmonic submanifolds with |H| = 1 in S
n are B3

and they are pseudo-umbilical:

AH = |H|2Id
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and they are pseudo-umbilical:

AH = |H|2Id

Question When does a proper biharmonic pseudo-umbilical
submanifold in S

n have |H| = 1, thus B3?

Theorem Let Mm be a compact pseudo-umbilical submani-
fold in S

n, m 6= 4. Then M is proper biharmonic if and only if M
is B3.

The proof is based on the following

�����XXXXXcompact + CMC + pseudo-umbilical ⇒ PMC
biharmonic
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The examples of Sasahara et al
Theorem Let ϕ : M3 → S

5 be a proper biharmonic anti-invariant
immersion. Then the position vector field x0 = x0(u, v, w) in R

6

is given by

x0(u, v, w) = eiw(eiu, ie−iu sin
√
2v, ie−iu cos

√
2v)

Moreover, |H| = 1/3.

The immersion ϕ is PMC
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The examples of Sasahara et al
Theorem Let ϕ : M3 → S

5 be a proper biharmonic anti-invariant
immersion. Then the position vector field x0 = x0(u, v, w) in R

6

is given by

x0(u, v, w) = eiw(eiu, ie−iu sin
√
2v, ie−iu cos

√
2v)

Moreover, |H| = 1/3.

The immersion ϕ is PMC but NOT pseudo-umbilical

Theorem Let φ : M2 → S
5 be a proper biharmonic Legendre

immersion. Then the position vector field x0 = x0(u, v) of M in
R
6 is given by:

x0(u, v) =
1√
2

(

cos u, sin u sin(
√
2v),− sin u cos(

√
2v),

sinu, cos u sin(
√
2v),− cos u cos(

√
2v)

)

.

The immersion φ is NOT PMC and NOT pseudo-umbilical
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Open Problems

Conjecture

The only proper biharmonic hypersurfaces in S
n are B1 or B2.

Conjecture

Any biharmonic submanifold in S
n has constant mean curvature.

skip-strees
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Remark

The i : Mm →֒ E
n(c) is biharmonic iff











−∆⊥
H− traceB(·, AH·) +mcH = 0 (normal)

2 traceA∇⊥

(·)
H
(·) + m

2
grad(|H|2) = 0 (tangent)

Most of the classification results described depend only on the
tangent part of τ2.
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−∆⊥
H− traceB(·, AH·) +mcH = 0 (normal)

2 traceA∇⊥

(·)
H
(·) + m

2
grad(|H|2) = 0 (tangent)

Most of the classification results described depend only on the
tangent part of τ2.

Has the condition
τ2(ϕ)

⊤ = 0

a variational meaning?

YES
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The stress-energy tensor
As described by Hilbert, the stress-energy tensor associated to
a variational problem is a symmetric 2-covariant tensor field S
conservative at critical points, i.e. divS = 0 at these points.
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The stress-energy tensor
As described by Hilbert, the stress-energy tensor associated to
a variational problem is a symmetric 2-covariant tensor field S
conservative at critical points, i.e. divS = 0 at these points.

• In the context of harmonic maps, the stress-energy tensor is

S =
1

2
|dϕ|2g − ϕ∗h, divS = −〈τ(ϕ), dϕ〉

(Baird–Eells)

• For biharmonic maps the stress-energy tensor is

S2(X,Y ) =
1

2
|τ(ϕ)|2〈X,Y 〉+ 〈dϕ,∇τ(ϕ)〉〈X,Y 〉

−〈dϕ(X),∇Y τ(ϕ)〉 − 〈dϕ(Y ),∇Xτ(ϕ)〉
with

divS2 = −〈τ2(ϕ), dϕ〉
(Jiang, Loubeau–M–Oniciuc)
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The meaning of S2 = 0 (Loubeau–M–Oniciuc)
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The meaning of S2 = 0 (Loubeau–M–Oniciuc)

A smooth map ϕ : (M,g) → (N,h) is biharmonic if it is a critical
points of the bienergy w.r.t. variations of the map.
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Opting for a different angle of attack, one can vary the metric
instead of the map and consider the functional

F : G → R, F (g) = E2(ϕ),

where G is the set of Riemannian metrics on M
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The meaning of S2 = 0 (Loubeau–M–Oniciuc)

A smooth map ϕ : (M,g) → (N,h) is biharmonic if it is a critical
points of the bienergy w.r.t. variations of the map.
Opting for a different angle of attack, one can vary the metric
instead of the map and consider the functional

F : G → R, F (g) = E2(ϕ),

where G is the set of Riemannian metrics on M

Theorem

δ(F (gt)) = −1

2

∫

M

〈S2, ω〉 vg,

The tensor S2 vanishes precisely at critical points of the energy
(bienergy) for variations of the domain metric, rather than for
variations of the map.

(The harmonic case is of Sanini)
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Isometric immersion

If ϕ : (M,g) → (N,h) is an isometric immersion from

divS2 = −〈τ2(ϕ), dϕ〉
⇓

div S2 = − τ2(ϕ)
⊤
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Isometric immersion

If ϕ : (M,g) → (N,h) is an isometric immersion from

divS2 = −〈τ2(ϕ), dϕ〉
⇓

div S2 = − τ2(ϕ)
⊤

Problem

Study isometric immersions in space forms with divS2 = 0
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Biharmonic submanifolds in a Riemannian manifold

An isometric immersion

ϕ : (M,g) → (N,h)

is biharmonic iff















∆⊥
H+ traceB(·, AH·) + trace(RN (·,H)·)⊥ = 0

m
2
grad |H|2 + 2 traceA∇⊥

(·)
H
(·) + 2 trace(RN (·,H)·)⊤ = 0
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Results for Bih. Sub. in non constant sec. curv.
manifolds

• In three-dimensional homogeneous spaces (Thurston’s ge-
ometries)

(Inoguchi, Ou–Wang, Caddeo–Piu–M–O)

• There exists examples of proper biharmonic hypersurfaces
in a space with negative non constant sectional curvature

(Ou–Tang)

• It is initiated the study of biharmonic submanifolds in complex
space forms

(Ichiyama–Inoguchi–Urakawa, Fetcu–Loubeau–M–O, Sasahara)

• There are several works on biharmonic submanifolds in con-
tact manifold and Sasakian space forms

(Inoguchi, Fetcu–O, Sasahara)
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In a Sasakian manifold

(N,Φ, ξ, η, g)

a submanifold M ⊂ N tangent to ξ is called anti-invariant if Φ
maps any tangent vector to M , which is normal to ξ, to a vector
which is normal to M .
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Finite k-type submanifolds

An isometric immersion φ : M → R
n+1 (M compact) is called of

finite k-type if
φ = φ0 + φ1 + · · ·+ φk

where
∆φi = λiφi, i = 1, . . . , k

and φ0 ∈ R
n+1 is the center of mass

A submanifold M ⊂ S
n ⊂ R

n+1 is said to be of finite type if it is
of finite type as a submanifold of Rn+1.

A non null finite type submanifold in S
n is said to be mass-

symmetric if the constant vector φ0 of its spectral decomposition
is the center of the hypersphere S

n, i.e. φ0 = 0.

29 / 29


