
New Trends in Differential Geometry

L’Aquila, 7-9 September 2011

Generalized pseudohermitian manifolds

Giulia Dileo
joint work with Antonio Lotta

Università di Bari



1. Generalized pseudohermitian structures.

(M,HM,J) almost CR manifold of type (n, k), n ≥ 1, k ≥ 0:

M is a C∞ manifold of dimension 2n+ k,

HM a vector subbundle of TM of rank 2n,

J : HM → HM a fiber preserving isomorphism such thatJ2 = −Id.

The structure is called partially integrable if

[X,Y ]− [JX, JY ] ∈ ΓHM ∀X,Y ∈ ΓHM.

If in addition

NJ(X,Y ) := [JX, Y ] + [X,JY ]− J([X,Y ]− [JX, JY ]) = 0

for every X,Y ∈ ΓHM , the structure is integrable and
(M,HM,J) is termed a CR manifold.
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Let (M,HM,J) be an almost CR manifold.

A generalized pseudohermitian structure on M is defined as a pair
(h, P ) where:

h is Hermitian fiber metric on HM :

h(JX, JY ) = h(X,Y ) ∀X,Y ∈ ΓHM

P : TM → TM is a smooth projector such that:

Im(P ) = HM.

(M,HM,J, h, P ) is called a generalized pseudohermitian manifold.

If k = 0, then P = Id and (M,h, J) is an almost Hermitian manifold.
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Let
f : (M,HM,J, h, P )→ (M ′, HM ′, J ′, h′, P ′)

be a smooth CR map.

f will be called pseudohermitian map if:

||f∗X||h′ ≤ ||X||h ∀X ∈ HxM, (1)

Im(f∗ ◦ Px − P ′f(x) ◦ f∗) ⊂ f∗(HxM)⊥ ⊂ Hf(x)M
′, (2)

where the orthogonal complement is relative to h′f(x).

If equality holds in (1) f will be called isopseudohermitian.

In this case dimCRM ≤ dimCRM
′.

If f is a diffeomorphism such that both f and f−1 are
pseudohermitian maps, f is called an equivalence or an isomorphism.
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Let (M,HM,J, h, P ) be a generalized pseudohermitian manifold.

We can define an operator

Γ : ΓHM × ΓHM → ΓHM

as follows:
ΓXY := P (∇gXY )

where

- g is an arbitrary Riemannian metric extending h and such that
Ker(P ) = HM⊥

- ∇g is the Levi-Civita connection of g.

Γ does not depend on the choice of g but only on the pair (h, P ).

Γ is invariant under equivalence.

It will be called the Koszul operator of M .



For every X ∈ ΓHM define

ΓX(J) : ΓHM → ΓHM ΓX(J)Y := ΓX(JY )− J(ΓXY ).

ΓX(J) is skew-symmetric w.r. to h and anticommutes with J .

Consider the tensorial map α : ΓHM × ΓHM × ΓHM → C∞(M)

α(X,Y, Z) := h(ΓX(J)Y,Z).

For each point x ∈M , αx : HxM ×HxM ×HxM → R belongs to
the Gray-Hervella space 1

W = {α ∈ V ∗⊗V ∗⊗V ∗|α(X,Y, Z) = −α(X,Z, Y ) = α(X, JY, JZ)}

where V = (HxM,Jx, hx).

1 A. Gray, L. M. Hervella, The sixteen classes of almost Hermitian manifolds and their
linear invariants, Ann. Mat. Pura Appl., 1980.
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Generalized pseudohermitian structures fall into sixteen classes,
according to the decomposition

W = W1 ⊕W2 ⊕W3 ⊕W4

of W into irriducible components w.r. to the natural U(n) action.

In particular, one can consider geneneralized pseudohermitian
manifolds

of Kähler type if α = 0
(ΓX(J)Y = 0)

of nearly Kähler type if for each x ∈M αx ∈W1

(ΓX(J)X = 0)

of almost Kähler type if for each x ∈M αx ∈W2

(SXY Zh(ΓX(J)Y, Z) = 0)

of quasi Kähler type if for each x ∈M αx ∈W1 ⊕W2

( ΓX(J)Y + ΓJX(J)JY = 0)
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Example

Let (M,HM,J) be an almost CR manifold endowed with a
Riemannian metric g whose restriction h to HM is Hermitian.

Let Pg : TM → TM be the orthogonal projection onto HM .

Then (h, Pg) is a generalized pseudohermitian structure.

Example

Let (M̄, J, ḡ) be an almost Hermitian manifold,

M ⊂ M̄ a CR submanifold of M̄ ,

g Riemannian metric induced by ḡ on M .

Then M is endowed with a generalized pseudohermitian structure.

If (M̄, J, ḡ) belongs to some Gray-Hervella class U , then the
generalized pseudohermitian structure belongs to the class of the
same type.
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Example

Let (M,HM,J) be a strongly pseudoconvex CR manifold of CR
codimension k ≥ 1.

Define a generalized pseudohermitian structure as follows:

h = fixed positive definite Levi form Lη, η ∈ ΓH0M ,

P = projection onto HM relative to the decomposition

TM = HM ⊕ V η

where V η is the rank k subbundle of TM whose fiber at x ∈M is

V η
x := {ξ ∈ TxM | dxη(X, ξ) = 0 ∀X ∈ HxM}.

This structure is of Kähler type.



In the above example, if k = 1 then M is of hypersurface type.

V η is the rank 1 vector bundle spanned by the Reeb vector field.

(M,HM,J, η) is a pseudohermitian manifold in the sense of
Webster.2

Webster showed that the equivalence problem for pseudohermitian
manifolds can be canonically reduced to the equivalence of absolute
parallelisms in spaces of dimension (n+ 1)2.

This is gained by attaching to each pseudohermitian manifold a
canonical linear connection, the Tanaka-Webster connection, which
parallelizes J and the Webster metric gη.2,3

2 S. M. Webster, Pseudo-Hermitian structures on a real hypersurface, J. Differential
Geom., 1978.

3 N. Tanaka, On non-degenerate real hypersurfaces, graded Lie algebras and Cartan
connections, Japan. J. Math., 1976.
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Theorem

Let (M,HM,J, P, h) be a generalized pseudohermitian manifold.
Then there exists a unique connection D on HM such that:

1 D is compatible with the metric h and J is D-parallel.

2 For each X ∈ ΓHM , the operator

Λ(X) := DX − ΓX : ΓHM → ΓHM

anticommutes with J .

3 For each ξ ∈ ΓKer(P ) the skew-symmetric part of the tensor

τξ : ΓHM → ΓHM τξ(X) := DξX − P [ξ,X]

anticommutes with J .

D is invariant under equivalence.

D will be called the canonical connection of the generalized
pseudohermitian manifold M .
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We denote by R the curvature tensor of D and the curvature tensor
of type (0, 4) defined by

R(X,Y, Z,W ) := h(R(Z,W )Y,X)

for any X,Y, Z,W ∈ ΓHM .

Let σ ⊂ HxM be a holomorphic 2-plane at x ∈M , that is Jσ = σ,

{X, JX} an orthonormal basis of σ.

The pseudoholomorphic sectional curvature of σ is defined by

K(σ) := Rx(X, JX,X, JX),

also denoted by K(X).

M is flat if K(X) = 0 for any unit holomorphic vector X.



2. Structures of kind 2.

Let M be a smooth manifold and HM a smooth distribution of
constant rank.

For each point x ∈M the Tanaka algebra of M at x is a
fundamental graded Lie algebra m(x) =

⊕
p<0 mp(x) constructed in

a natural manner.4

A kind 2 distribution is characterized by the requirement that

ΓTM = ΓHM + [ΓHM,ΓHM ]

in which case m(x) = m−1(x)⊕m−2(x),

m−1(x) = HxM, m−2(x) = TxM/HxM

and the Lie product is obtained by passing to the quotient from the
Lie bracket of vector fields.

4 N. Tanaka, On non-degenerate real hypersurfaces, graded Lie algebras and Cartan
connections, Japan. J. Math., 1976.
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Let (M,HM,J, h, P ) be a generalized pseudohermitian manifold
such that HM is a kind 2 distribution.

The Tanaka algebra of M at x is

m(x) = m−1(x)⊕m−2(x), m−1(x) = HxM, m−2(x) = Ker(Px)

where the non trivial Lie bracket is the bilinear map:

Lx : HxM ×HxM → Ker(Px)

determined by the Levi-Tanaka form L : ΓHM × ΓHM → ΓKer(P )

L(X,Y ) := Q[X,Y ], Q := Id− P.

The Levi-Tanaka form determines a surjective vector bundle
homomorphism

L : ΓHM ∧ ΓHM → ΓKer(P )

which allows us to extend the sub-Riemannian metric h.
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Proposition

Let (M,HM,J, h, P ) be a generalized pseudohermitian manifold of
type (n, k) such that HM is a kind 2 distribution. Then,

h extends canonically to a Riemannian metric g with respect to
which TM = HM ⊕Ker(P ) is an orthogonal decomposition.

There exists a unique linear connection ∇ extending the
canonical connection D to TM and such that:

a) ∇ is compatible with the Riemannian metric g,

b) the torsion T of ∇ satisfies

QT (ξ, ξ′) = 0

for every ξ, ξ′ ∈ ΓKer(P ), where Q = Id− P ,

c) for each X ∈ ΓHM , the bundle homomorphism

FX : Ker(P )→ Ker(P ), FX(ξ) = QT (ξ,X),

is symmetric with respect to g.



Proposition

Let (M,HM,J, h, P ) be a generalized pseudohermitian manifold of
type (n, k) such that HM is a kind 2 distribution. Then,

h extends canonically to a Riemannian metric g with respect to
which TM = HM ⊕Ker(P ) is an orthogonal decomposition.

There exists a unique linear connection ∇ extending the
canonical connection D to TM and such that:

a) ∇ is compatible with the Riemannian metric g,

b) the torsion T of ∇ satisfies

QT (ξ, ξ′) = 0

for every ξ, ξ′ ∈ ΓKer(P ), where Q = Id− P ,

c) for each X ∈ ΓHM , the bundle homomorphism

FX : Ker(P )→ Ker(P ), FX(ξ) = QT (ξ,X),

is symmetric with respect to g.



Remark

Let (M,HM,J, η) be a pseudohermitian manifold (in the sense of
Webster).

HM is a kind 2 distribution.

g coincides with the Webster metric gη,

∇ coincides with the Tanaka-Webster connection.

Remark

For a generalized pseudohermitian manifold (M,HM,J, h, P ), the
distribution HM is of kind 1 if and only if k = 0, that is M is an
almost Hermitian manifold.

Tanno proved that if the automorphism group of an almost Hermitian
2n-dimensional manifold M has maximum dimension n2 + 2n, then
M is Kähler and has constant holomorphic curvature.5

5 S. Tanno, The automorphism groups of almost Hermitian manifolds, Trans. Amer.
Math. Soc., 1969.
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Theorem

The equivalence problem for generalized pseudohermitian manifolds
of type (n, k) and having kind ≤ 2 reduces in a natural way to the
equivalence of complete parallelisms in spaces of dimension
N = n2 + 2n+ k.

Actually, we have a correspondence

(M,HM,J, h, P ) 7→ (P (M), γ)
where

P (M) is the canonical U(n) reduction of the frame bundle F(HM)

γ = ω + θ : TP (M)→ u(n)⊕ Cn ⊕ Rk is a complete parallelism

ω : TP (M)→ u(n) is the connection form determined by D

θ : TP (M)→ Cn ⊕ Rk is a kind of canonical “solder” form

The correspondence is compatible with the respective isomorphisms.
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Theorem

The automorphism group Psh(M) of a generalized pseudohermitian
manifold of type (n, k) and having kind ≤ 2 is a Lie group having
dimension

dim(Psh(M)) ≤ n2 + 2n+ k.

If equality holds:

Psh(M) is transitive, i.e. M is homogeneous

M is of Kähler type

M has constant pseudoholomorphic curvature.

The Tanaka algebra m(x) at an arbitrary point must be
isomorphic to one of the following models
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m = R2n ⊕W ∗, [X,Y ](A) = tXAY,

where W is one of the following R-linear subspaces of so(2n):

W k

{0} 0
type 〈Jo〉 1
I su(n) n2 − 1

u(n) n2

W k

p n2 − n
type p⊕ 〈Jo〉 n2 − n+ 1
II p⊕ su(n) 2n2 − n− 1

p⊕ u(n) 2n2 − n
so(2n) 2n2 − n

where p =
{(

X1 X2

X2 −X1

)∣∣∣∣X1, X2 ∈ so(n)
}

and Jo =
(

0 −In
In 0

)
.

Moreover, J is integrable if and only if m is of type I.
For each model m, there exists a simply connected, flat generalized
pseudohermitian manifold whose Tanaka algebra at each point is
isomorphic to m, and whose automorphism group Psh(M) has the
maximum dimension.
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Construction of flat models:

m = R2n ⊕W ∗ (3)

Jo standard complex structure on R2n

〈·, ·〉 standard inner product on R2n

p : m→ m linear projection onto R2n relative to decomposition (3)

M(m) the simply connected Lie group with Lie algebra m.

The data (R2n, Jo, 〈 , 〉, p) give rise canonically to a left invariant
generalized pseudohermitian structure (HM(m), J, h, P ) on M(m).

The canonical connection is the unique connection D on HM(m)
such that DZX = 0 for any left invariant vector fields Z ∈ m,
X ∈ R2n.

The pseudoholomorphic sectional curvature vanishes.

Psh(M(m)) has the maximum dimension n2 + 2n+ k.
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Example: 3-Sasakian manifolds.

A 3-Sasakian manifold is a (4n+ 3)-dimensional manifold M
endowed with three Sasakian structures (φα, ξα, ηα, g), with the same
compatible metric g, such that for any even permutation (α, β, γ) of
{1, 2, 3}:

φγ = φαφβ − ηβ ⊗ ξα = −φβφα + ηα ⊗ ξβ,
ξγ = φαξβ = −φβξα, ηγ = ηα ◦ φβ = −ηβ ◦ φα.

M carries three canonical generalized pseudohermitian structures
(HM,Jα, h, P ):

- HM =
⋂3
α=1Ker (ηα) (distribution of kind 2)

- Jα := restriction of φα to HM

- h := restriction of g to HM

- P : TM → TM orthogonal projection onto HM

Each structure is of Kähler type and not partially integrable.
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Theorem

Let (M,ϕδ, ξδ, ηδ, g) be a 3-Sasakian manifold. Suppose that M has
constant pseudoholomorphic sectional curvature c with respect to one
of the three canonical generalized pseudohermitian structures
(HM,Jα, h, P ), α = 1, 2, 3. Then, each generalized pseudohermitian
structure has constant pseudoholomorphic sectional curvature c = 4.
Furthermore, the Riemannian metric g has constant curvature 1.

Theorem

Let (M,ϕα, ξα, ηα, g) be a 3-Sasakian manifold. If Psh(M) has the
maximum dimension, then M has dimension 7, constant
pseudoholomorphic sectional curvature 4 and constant Riemannian
curvature 1. The Tanaka algebra is m = R4 ⊕ p⊕ 〈Jo〉.

The 7-dimensional sphere S7 ⊂ H2 with the standard 3-Sasakian
structure provides a non flat example for which Psh(S7) has actually
the maximum dimension 11.
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3. Isopseudohermitian immersions.

Let
f : (M,HM,J, h, P )→ (M ′, HM ′, J ′, h′, P ′)

be an isopseudohermitian immersion.

Define the real subbundle HM⊥ of the pullback f∗(HM ′)

HxM
⊥ := orthogonal complement to f∗(HxM) in Hf(x)M

′

We shall drop f in the notation for simplicity, assuming M ⊂M ′, so
that we have the orthogonal decomposition

HM ′|M = HM ⊕HM⊥.

D canonical connection on HM

D′ canonical connection on HM ′ and the induced covariant
differentiation on HM ′|M
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Theorem

For each X ∈ X(M), Y ∈ ΓHM , ζ ∈ ΓHM⊥ we have

D′XY = DXY + βP ′QX(Y )︸ ︷︷ ︸
tangent

+α(X,Y )︸ ︷︷ ︸
normal

(Gauss like formula)

D′Xζ = −AζX︸ ︷︷ ︸
tangent

+D′⊥X ζ︸ ︷︷ ︸
normal

(Weingarten like formula)

βζ : HM → HM is the bundle homomorphism defined by:

4h(βζY,Z) = −h′(P ′Q([Y, Z] + [JY, JZ]), ζ).

βζ is skew-symmetric and commutes with J .

Aζ : TM → HM is a bundle homomorphism such that:

h(AζX,Y ) = h′(α(X,Y ), ζ) ∀X ∈ X(M), Y ∈ ΓHM.

In general, Aζ : HM → HM fails to be symmetric.



Let (M,HM,J, h, P ) be a generalized pseudohermitian manifold.

Levi-Tanaka form:

L : ΓHM × ΓHM → ΓKer(P ) L(X,Y ) := Q[X,Y ],

Levi form:

C∞(M)-bilinear map L : ΓHM × ΓHM → ΓKer(P )

2L(X,Y ) := L(X, JY ) + L(Y, JX)

which is Hermitian symmetric.

If (M,HM,J, η) is a pseudohermitian manifold, then L
coincides with the Levi form Lη corresponding to η.

the vector valued quadratic form at each point x ∈M

L : HxM → TxM, L(X) := Q([X̃, JX̃]x)

where X̃ ∈ ΓHM is an arbitrary extension of X ∈ TxM .
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Let f : (M,HM,J, h, P )→ (M ′, HM ′, J ′, h′, P ′) be an
isopseudohermitian immersion.

Proposition

The following are equivalent:

a) βζ = 0 ∀ζ ∈ HM⊥

b) L(X) = L′(X) ∀X ∈ HM .

Isopseudohermitian immersions with β ≡ 0 will be called Levi form
preserving.

The pseudohermitian immersions between strongly pseudoconvex CR
manifolds introduced by Dragomir are Levi-form preserving.6

Proposition

If M ′ is of quasi-Kähler type, then a) and b) are equivalent to

c) α : HM ×HM → HM⊥ is symmetric.

6 S. Dragomir, On pseudo-Hermitian immersions between strictly pseudoconvex CR
manifolds, Amer. J. Math., 1995.



Let f : (M,HM,J, h, P )→ (M ′, HM ′, J ′, h′, P ′) be an
isopseudohermitian immersion.

Proposition

The following are equivalent:

a) βζ = 0 ∀ζ ∈ HM⊥

b) L(X) = L′(X) ∀X ∈ HM .

Isopseudohermitian immersions with β ≡ 0 will be called Levi form
preserving.

The pseudohermitian immersions between strongly pseudoconvex CR
manifolds introduced by Dragomir are Levi-form preserving.6

Proposition

If M ′ is of quasi-Kähler type, then a) and b) are equivalent to

c) α : HM ×HM → HM⊥ is symmetric.

6 S. Dragomir, On pseudo-Hermitian immersions between strictly pseudoconvex CR
manifolds, Amer. J. Math., 1995.



Let f : (M,HM,J, h, P )→ (M ′, HM ′, J ′, h′, P ′) be an
isopseudohermitian immersion.

Proposition

The following are equivalent:

a) βζ = 0 ∀ζ ∈ HM⊥

b) L(X) = L′(X) ∀X ∈ HM .

Isopseudohermitian immersions with β ≡ 0 will be called Levi form
preserving.

The pseudohermitian immersions between strongly pseudoconvex CR
manifolds introduced by Dragomir are Levi-form preserving.6

Proposition

If M ′ is of quasi-Kähler type, then a) and b) are equivalent to

c) α : HM ×HM → HM⊥ is symmetric.

6 S. Dragomir, On pseudo-Hermitian immersions between strictly pseudoconvex CR
manifolds, Amer. J. Math., 1995.



Theorem

Let f : (M,HM,J, h, P )→ (M ′, HM ′, J ′, h′, P ′) be a Levi form
preserving isopseudohermitian immersion between generalized
pseudohermitian manifolds. Assume that M ′ is of quasi-Kähler type.

Then for any holomorphic 2-plane σ of M

K(σ) ≤ K ′(σ).

Remark

As particular cases the above result gives the known results
concerning Kähler submanifolds and pseudohermitian immersions
between pseudohermitian manifolds.7

7 E. Barletta, On the pseudohermitian sectional curvature of a strictly pseudoconvex
CR manifold, Differential Geom. Appl., 2007.
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Let g =
µ⊕

p=−µ
gp be a semisimple Levi-Tanaka algebra

G the simply connected Lie group whose Lie algebra is g

G+ the analytic subgroup corresponding to g+ =
⊕
p≥0

gp

The standard (compact homogeneous) CR manifold 8

S(g) := G/G+

carries a generalized pseudohermitian structure of Kähler type which
is not flat, with non-negative pseudoholomorphic curvature.

Theorem

There is no Levi form preserving isopseudohermitian immersion
f : S(g)→M from a compact standard homogeneous
pseudohermitian manifold into a generalized pseudohermitian
manifold M of quasi Kähler type having non positive
pseudoholomorphic curvature.

8 C. Medori, M. Nacinovich, Levi-Tanaka algebras and homogeneous CR manifolds,
Compos. Math., 1997.
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Standard homogeneous CR manifolds.

A Levi-Tanaka algebra is a Z-graded Lie algebra g =
µ⊕

p=−µ
gp such

that

the subalgebra m := ⊕p<0gp is

- fundamental: g−1 generates m,
- pseudocomplex: there exists a complex structure
J : g−1 → g−1 satisfying

[JX, JY ] = [X,Y ] ∀X,Y ∈ g−1

ad : g0 → gl(m) yields an isomorphism between g0 and the
algebra of 0-degree derivations of m whose restriction to g−1

commutes with J

g is the maximal transitive prolongation of the graded Lie
algebra m⊕ g0:

[X, g−1] 6= 0 for X ∈
⊕
p≥0

gp, X 6= 0.



Let g =
µ⊕

p=−µ
gp be a semisimple Levi-Tanaka algebra

G the simply connected Lie group whose Lie algebra is g

G+ the analytic subgroup corresponding to g+ =
⊕
p≥0

gp

S(g) := G/G+ carries a G-invariant CR structure (HS(g), J).

S(g) is called standard (compact homogeneous) CR manifold 9

Let g = k⊕ p be an adapted Cartan decomposition of g:

k =
µ⊕
j=0

k|j|, p =
µ⊕
j=0

p|j|, k|j| = k∩(gj⊕g−j), p|j| = p∩(gj⊕g−j).

k is a maximal Lie subalgebra of g on which the Killing form is
negative definite

9 C. Medori, M. Nacinovich, Levi-Tanaka algebras and homogeneous CR manifolds,
Compos. Math., 1997.
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The analytic subgroup K ⊂ G corresponding to k acts transitively on
S(g)
S(g) = K/Ko is a reductive homogeneous space in the sense of
Nomizu, with reductive decomposition

k = k|0| ⊕ n n := k|1| ⊕
µ⊕
p=2

k|p|

Canonical identifications:

ToS(g) ∼= n HoS(g) ∼= k|1|

Define

h := K-invariant Hermitian metric on HS(g) determined by the
opposite of the Killing form

P := K-invariant tensor field corresponding to the linear
projection Po : n→ n onto k|1|

(h, P ) is a generalized pseudohermitian structure of Kähler type.
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PS(g) := U(n) reduction of the frame bundle F(HS(g)) of HS(g)

Wang’s theorem:

{K-Invariant connection on PS(g)} ↔ {Equivariant Λ : n→ u(n)}

Theorem

The canonical connection of S(g) is the K-invariant connection on
PS(g) corresponding to the linear map Λ : n→ u(n) defined by

Λ(Z)(X) = [Z,X]|1| X ∈ k|1|.

Moreover, S(g) is not flat and the pseudoholomorphic curvature is
non-negative, namely for each unit vector X ∈ HoS(g) ∼= k|1|,

K(X) = ||[X,JX]||2.
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Λ(Z)(X) = [Z,X]|1| X ∈ k|1|.

Moreover, S(g) is not flat and the pseudoholomorphic curvature is
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Let P (M) be the canonical reduction od F(HM) to U(n).

The connection D reduces to a principal connection on P (M)
Consider the connection form:

ω : TP (M)→ u(n)

kind 1 case (k=0)

Define the 1-form
θ : TP (M)→ Cn

θu(Z) := u−1(π∗Z), Z ∈ TuP (M)

- π : P (M)→M is the bunble projection

- u ∈ P (M) is an R-linear isomorphism u : Cn → TxM .

Then we have a complete parallelism on P (M):

γ := ω + θ : TP (M)→ u(n)⊕ Cn
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kind 2 case

Consider the surjective vector bundle homomorphism determined
by the Levi-Tanaka form:

L : HM ∧HM → Ker(P ).

We define a natural bundle map homomorphism

Ψ : F(HM)→ F(Ker(P )).

{u1, . . . , u2n} basis of HxM .

{w1, . . . , wN} = {ui ∧ uj| i < j} basis of HxM ∧HxM
ordered in a natural manner

{L(wj1), . . . , L(wjk)} basis of Ker(Px) extracted from
{L(w1), . . . , L(wN)} where j1 < j2 < · · · < jk are uniquely
determined according to

j1 =min{j|L(wj) 6= 0}
js=min{j| dimR〈L(wj1), . . . , L(wjs−1), L(wj)〉= s}, s > 1
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Define the 1-form
θ : TP (M)→ Cn ⊕ Rk

such that
θu(Z) := ū−1(π∗Z), Z ∈ TuP (M)

where for each frame u ∈ P (M),

ū := u+ Ψ(u) : Cn ⊕ Rk → TxM, x = π(u),

- u ∈ P (M) is an R-linear isomorphism u : Cn → HxM

- Ψ(u) is the R-linear isomorphism Ψ(u) : Rk → Ker(Px)

Then we have a complete parallelism on P (M):

γ := ω + θ : TP (M)→ u(n)⊕ Cn ⊕ Rk
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ū := u+ Ψ(u) : Cn ⊕ Rk → TxM, x = π(u),

- u ∈ P (M) is an R-linear isomorphism u : Cn → HxM

- Ψ(u) is the R-linear isomorphism Ψ(u) : Rk → Ker(Px)

Then we have a complete parallelism on P (M):

γ := ω + θ : TP (M)→ u(n)⊕ Cn ⊕ Rk



m = R2n ⊕W ∗, [X,Y ](A) = tXAY,

where W is one of the following R-linear subspaces of so(2n):

W k = 3
{0} 0

type 〈Jo〉 1
I su(n) n2 − 1

u(n) n2

W k = 3
p n2 − n

type p⊕ 〈Jo〉 n2 − n+ 1
II p⊕ su(n) 2n2 − n− 1

p⊕ u(n) 2n2 − n
so(2n) 2n2 − n

where p =
{(

X1 X2

X2 −X1

)∣∣∣∣X1, X2 ∈ so(n)
}

and Jo =
(

0 −In
In 0

)
.

Moreover, J is integrable if and only if m is of type I.
For each model m, there exists a simply connected, flat generalized
pseudohermitian manifold whose Tanaka algebra at each point is
isomorphic to m, and whose automorphism group Psh(M) has the
maximum dimension.
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