New Trends in Differential Geometry L'Aquila, 7-9 September 2011

GENERALIZED PSEUDOHERMITIAN MANIFOLDS

Giulia Dileo joint work with Antonio Lotta

Università di Bari

・ロト・4日・4日・4日・4日・900

- 1. Generalized pseudohermitian structures.
 - (M, HM, J) almost CR manifold of type (n, k), $n \ge 1$, $k \ge 0$:
 - M is a \mathcal{C}^{∞} manifold of dimension 2n + k,
 - HM a vector subbundle of TM of rank 2n,
 - $J:HM \to HM$ a fiber preserving isomorphism such that $J^2 = -Id.$

- 1. Generalized pseudohermitian structures.
 - (M, HM, J) almost CR manifold of type (n, k), $n \ge 1$, $k \ge 0$:
 - M is a \mathcal{C}^{∞} manifold of dimension 2n + k,
 - HM a vector subbundle of TM of rank 2n,
 - $J: HM \to HM$ a fiber preserving isomorphism such that $J^2 = -Id$.
 - The structure is called partially integrable if

 $[X,Y] - [JX,JY] \in \Gamma HM \quad \forall X,Y \in \Gamma HM.$

- 1. Generalized pseudohermitian structures.
 - (M, HM, J) almost CR manifold of type (n, k), $n \ge 1$, $k \ge 0$:
 - M is a \mathcal{C}^{∞} manifold of dimension 2n + k,
 - HM a vector subbundle of TM of rank 2n,
 - $J: HM \to HM$ a fiber preserving isomorphism such that $J^2 = -Id$.
 - The structure is called partially integrable if

 $[X,Y] - [JX,JY] \in \Gamma HM \quad \forall X,Y \in \Gamma HM.$

If in addition

 $N_J(X,Y) := [JX,Y] + [X,JY] - J([X,Y] - [JX,JY]) = 0$

for every $X, Y \in \Gamma HM$, the structure is integrable and (M, HM, J) is termed a CR manifold.

Let (M, HM, J) be an almost CR manifold.

A generalized pseudohermitian structure on M is defined as a pair (h,P) where:

• *h* is Hermitian fiber metric on *HM*:

 $h(JX, JY) = h(X, Y) \quad \forall X, Y \in \Gamma HM$

• $P:TM \to TM$ is a smooth projector such that:

Im(P) = HM.

(M, HM, J, h, P) is called a generalized pseudohermitian manifold.

Let (M, HM, J) be an almost CR manifold.

A generalized pseudohermitian structure on M is defined as a pair (h,P) where:

• *h* is Hermitian fiber metric on *HM*:

 $h(JX, JY) = h(X, Y) \quad \forall X, Y \in \Gamma HM$

• $P:TM \to TM$ is a smooth projector such that:

Im(P) = HM.

(M, HM, J, h, P) is called a generalized pseudohermitian manifold.

If k = 0, then P = Id and (M, h, J) is an almost Hermitian manifold.

$f:(M,HM,J,h,P)\to (M',HM',J',h',P')$

be a smooth CR map.

f will be called pseudohermitian map if:

$$f:(M,HM,J,h,P)\to (M',HM',J',h',P')$$

be a smooth CR map.

f will be called pseudohermitian map if:

$$||f_*X||_{h'} \le ||X||_h \quad \forall X \in H_x M,\tag{1}$$

・ロト ・ 日 ・ モ ・ ・ 日 ・ うへつ

$$Im(f_* \circ P_x - P'_{f(x)} \circ f_*) \subset f_*(H_x M)^{\perp} \subset H_{f(x)} M',$$
(2)

where the orthogonal complement is relative to $h'_{f(x)}$.

$$f:(M,HM,J,h,P)\to (M',HM',J',h',P')$$

be a smooth CR map.

f will be called pseudohermitian map if:

$$||f_*X||_{h'} \le ||X||_h \quad \forall X \in H_x M,\tag{1}$$

$$Im(f_* \circ P_x - P'_{f(x)} \circ f_*) \subset f_*(H_x M)^{\perp} \subset H_{f(x)} M',$$
(2)

where the orthogonal complement is relative to $h'_{f(x)}$. If equality holds in (1) f will be called isopseudohermitian. In this case $\dim_{CR} M \leq \dim_{CR} M'$.

$$f:(M,HM,J,h,P)\to (M',HM',J',h',P')$$

be a smooth CR map.

f will be called pseudohermitian map if:

$$||f_*X||_{h'} \le ||X||_h \quad \forall X \in H_x M, \tag{1}$$

$$Im(f_* \circ P_x - P'_{f(x)} \circ f_*) \subset f_*(H_x M)^{\perp} \subset H_{f(x)} M',$$
(2)

where the orthogonal complement is relative to $h'_{f(x)}$.

If equality holds in (1) f will be called isopseudohermitian.

In this case $\dim_{CR} M \leq \dim_{CR} M'$.

If f is a diffeomorphism such that both f and f^{-1} are pseudohermitian maps, f is called an equivalence or an isomorphism.

Let (M,HM,J,h,P) be a generalized pseudohermitian manifold. We can define an operator

 $\Gamma:\Gamma HM\times\Gamma HM\to\Gamma HM$

as follows:

$$\Gamma_X Y := P(\nabla_X^g Y)$$

where

- g is an arbitrary Riemannian metric extending h and such that $Ker(P)=HM^{\perp}$
- ∇^g is the Levi-Civita connection of g.
- Γ does not depend on the choice of g but only on the pair (h,P).
- Γ is invariant under equivalence.

It will be called the Koszul operator of M.

For every $X \in \Gamma HM$ define

 $\Gamma_X(J): \Gamma HM \to \Gamma HM \qquad \Gamma_X(J)Y := \Gamma_X(JY) - J(\Gamma_XY).$

 $\Gamma_X(J)$ is skew-symmetric w.r. to h and anticommutes with J.

For every $X \in \Gamma HM$ define

 $\Gamma_X(J): \Gamma HM \to \Gamma HM \qquad \Gamma_X(J)Y := \Gamma_X(JY) - J(\Gamma_XY).$

 $\Gamma_X(J)$ is skew-symmetric w.r. to h and anticommutes with J.

Consider the tensorial map $\alpha: \Gamma HM \times \Gamma HM \times \Gamma HM \to C^{\infty}(M)$

 $\alpha(X, Y, Z) := h(\Gamma_X(J)Y, Z).$

For every $X \in \Gamma HM$ define

 $\Gamma_X(J): \Gamma HM \to \Gamma HM \qquad \Gamma_X(J)Y := \Gamma_X(JY) - J(\Gamma_XY).$

 $\Gamma_X(J)$ is skew-symmetric w.r. to h and anticommutes with J.

Consider the tensorial map $\alpha: \Gamma HM \times \Gamma HM \times \Gamma HM \to C^{\infty}(M)$

$$\alpha(X, Y, Z) := h(\Gamma_X(J)Y, Z).$$

For each point $x \in M$, $\alpha_x : H_xM \times H_xM \times H_xM \to \mathbb{R}$ belongs to the Gray-Hervella space ¹

 $W = \{ \alpha \in V^* \otimes V^* \otimes V^* | \alpha(X, Y, Z) = -\alpha(X, Z, Y) = \alpha(X, JY, JZ) \}$ where $V = (H_x M, J_x, h_x).$

¹ A. Gray, L. M. Hervella, *The sixteen classes of almost Hermitian manifolds and their linear invariants*, Ann. Mat. Pura Appl., 1980.

Generalized pseudohermitian structures fall into sixteen classes, according to the decomposition

 $W = W_1 \oplus W_2 \oplus W_3 \oplus W_4$

of W into irriducible components w.r. to the natural U(n) action.

Generalized pseudohermitian structures fall into sixteen classes, according to the decomposition

$$W = W_1 \oplus W_2 \oplus W_3 \oplus W_4$$

of W into irriducible components w.r. to the natural U(n) action. In particular, one can consider geneneralized pseudohermitian manifolds

- of Kähler type if $\alpha = 0$ ($\Gamma_X(J)Y = 0$)
- of nearly Kähler type if for each $x \in M$ $\alpha_x \in W_1$ $(\Gamma_X(J)X = 0)$
- of almost Kähler type if for each $x \in M$ $\alpha_x \in W_2$ $(S_{XYZ}h(\Gamma_X(J)Y, Z) = 0)$
- of quasi Kähler type if for each $x \in M$ $\alpha_x \in W_1 \oplus W_2$ ($\Gamma_X(J)Y + \Gamma_{JX}(J)JY = 0$)

Let (M, HM, J) be an almost CR manifold endowed with a Riemannian metric g whose restriction h to HM is Hermitian. Let $P_g: TM \to TM$ be the orthogonal projection onto HM. Then (h, P_g) is a generalized pseudohermitian structure.

Let (M, HM, J) be an almost CR manifold endowed with a Riemannian metric g whose restriction h to HM is Hermitian. Let $P_g: TM \to TM$ be the orthogonal projection onto HM. Then (h, P_g) is a generalized pseudohermitian structure.

Example

Let (\bar{M},J,\bar{g}) be an almost Hermitian manifold, $M\subset \bar{M}$ a CR submanifold of \bar{M} ,

g Riemannian metric induced by \bar{g} on M.

Then ${\boldsymbol{M}}$ is endowed with a generalized pseudohermitian structure.

Let (M, HM, J) be an almost CR manifold endowed with a Riemannian metric g whose restriction h to HM is Hermitian. Let $P_g: TM \to TM$ be the orthogonal projection onto HM. Then (h, P_g) is a generalized pseudohermitian structure.

Example

Let (\bar{M},J,\bar{g}) be an almost Hermitian manifold, $M\subset \bar{M}$ a CR submanifold of \bar{M} ,

g Riemannian metric induced by \bar{g} on M.

Then M is endowed with a generalized pseudohermitian structure. If $(\overline{M}, J, \overline{g})$ belongs to some Gray-Hervella class \mathcal{U} , then the generalized pseudohermitian structure belongs to the class of the same type.

Let (M, HM, J) be a strongly pseudoconvex CR manifold of CR codimension $k \ge 1$.

Define a generalized pseudohermitian structure as follows:

- h = fixed positive definite Levi form \mathcal{L}_{η} , $\eta \in \Gamma H^0 M$,
- P = projection onto HM relative to the decomposition

 $TM = HM \oplus V^{\eta}$

where V^{η} is the rank k subbundle of TM whose fiber at $x \in M$ is

$$V_x^{\eta} := \{ \xi \in T_x M | \, d_x \eta(X, \xi) = 0 \ \forall X \in H_x M \}.$$

This structure is of Kähler type.

In the above example, if k = 1 then M is of hypersurface type. V^{η} is the rank 1 vector bundle spanned by the Reeb vector field. (M, HM, J, η) is a pseudohermitian manifold in the sense of Webster.²

² S. M. Webster, *Pseudo-Hermitian structures on a real hypersurface*, J. Differential Geom., 1978.

In the above example, if k = 1 then M is of hypersurface type. V^{η} is the rank 1 vector bundle spanned by the Reeb vector field. (M, HM, J, η) is a pseudohermitian manifold in the sense of Webster.²

Webster showed that the equivalence problem for pseudohermitian manifolds can be canonically reduced to the equivalence of absolute parallelisms in spaces of dimension $(n + 1)^2$.

 $^{^2}$ S. M. Webster, Pseudo-Hermitian structures on a real hypersurface, J. Differential Geom., 1978.

In the above example, if k = 1 then M is of hypersurface type. V^{η} is the rank 1 vector bundle spanned by the Reeb vector field. (M, HM, J, η) is a pseudohermitian manifold in the sense of Webster.²

Webster showed that the equivalence problem for pseudohermitian manifolds can be canonically reduced to the equivalence of absolute parallelisms in spaces of dimension $(n + 1)^2$.

This is gained by attaching to each pseudohermitian manifold a canonical linear connection, the Tanaka-Webster connection, which parallelizes J and the Webster metric g_{η} .^{2,3}

 $^{^2}$ S. M. Webster, *Pseudo-Hermitian structures on a real hypersurface*, J. Differential Geom., 1978.

³ N. Tanaka, *On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections*, Japan. J. Math., 1976.

Theorem

Let (M, HM, J, P, h) be a generalized pseudohermitian manifold. Then there exists a unique connection D on HM such that:

- **1** D is compatible with the metric h and J is D-parallel.
- **2** For each $X \in \Gamma HM$, the operator

 $\Lambda(X) := D_X - \Gamma_X : \Gamma HM \to \Gamma HM$

anticommutes with J.

For each ξ ∈ ΓKer(P) the skew-symmetric part of the tensor
 τ_ξ : ΓHM → ΓHM τ_ξ(X) := D_ξX − P[ξ, X]
 anticommutes with J.

Theorem

Let (M, HM, J, P, h) be a generalized pseudohermitian manifold. Then there exists a unique connection D on HM such that:

- **1** D is compatible with the metric h and J is D-parallel.
- 2 For each $X \in \Gamma HM$, the operator

 $\Lambda(X) := D_X - \Gamma_X : \Gamma H M \to \Gamma H M$

anticommutes with J.

• For each $\xi \in \Gamma Ker(P)$ the skew-symmetric part of the tensor $\tau_{\xi} : \Gamma HM \to \Gamma HM$ $\tau_{\xi}(X) := D_{\xi}X - P[\xi, X]$

anticommutes with J.

D is invariant under equivalence.

D will be called the canonical connection of the generalized pseudohermitian manifold M.

We denote by R the curvature tensor of D and the curvature tensor of type (0,4) defined by

R(X, Y, Z, W) := h(R(Z, W)Y, X)

for any $X, Y, Z, W \in \Gamma HM$.

Let $\sigma \subset H_x M$ be a holomorphic 2-plane at $x \in M$, that is $J\sigma = \sigma$, $\{X, JX\}$ an orthonormal basis of σ .

The pseudoholomorphic sectional curvature of σ is defined by

$$K(\sigma) := R_x(X, JX, X, JX),$$

also denoted by K(X).

M is flat if K(X) = 0 for any unit holomorphic vector X.

(ロ)、(型)、(E)、(E)、(E)、(O)()

◆□→ ◆□→ ◆三→ ◆三→ 三 → ○へ⊙

Let M be a smooth manifold and HM a smooth distribution of constant rank.

For each point $x\in M$ the Tanaka algebra of M at x is a fundamental graded Lie algebra $\mathfrak{m}(x)=\bigoplus_{p<0}\mathfrak{m}_p(x)$ constructed in a natural manner.⁴

⁴ N. Tanaka, *On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections*, Japan. J. Math., 1976.

Let M be a smooth manifold and HM a smooth distribution of constant rank.

For each point $x\in M$ the Tanaka algebra of M at x is a fundamental graded Lie algebra $\mathfrak{m}(x)=\bigoplus_{p<0}\mathfrak{m}_p(x)$ constructed in a natural manner.⁴

A kind 2 distribution is characterized by the requirement that

 $\Gamma TM = \Gamma HM + [\Gamma HM, \Gamma HM]$

⁴ N. Tanaka, *On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections*, Japan. J. Math., 1976.

Let M be a smooth manifold and HM a smooth distribution of constant rank.

For each point $x\in M$ the Tanaka algebra of M at x is a fundamental graded Lie algebra $\mathfrak{m}(x)=\bigoplus_{p<0}\mathfrak{m}_p(x)$ constructed in a natural manner.⁴

A kind 2 distribution is characterized by the requirement that

 $\Gamma TM = \Gamma HM + [\Gamma HM, \Gamma HM]$

in which case $\mathfrak{m}(x) = \mathfrak{m}_{-1}(x) \oplus \mathfrak{m}_{-2}(x)$,

$$\mathfrak{m}_{-1}(x) = H_x M, \quad \mathfrak{m}_{-2}(x) = T_x M / H_x M$$

and the Lie product is obtained by passing to the quotient from the Lie bracket of vector fields.

⁴ N. Tanaka, *On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections*, Japan. J. Math., 1976.

Let (M, HM, J, h, P) be a generalized pseudohermitian manifold such that HM is a kind 2 distribution.

The Tanaka algebra of M at x is

 $\mathfrak{m}(x) = \mathfrak{m}_{-1}(x) \oplus \mathfrak{m}_{-2}(x), \quad \mathfrak{m}_{-1}(x) = H_x M, \quad \mathfrak{m}_{-2}(x) = Ker(P_x)$

Let (M, HM, J, h, P) be a generalized pseudohermitian manifold such that HM is a kind 2 distribution.

The Tanaka algebra of M at x is

 $\mathfrak{m}(x) = \mathfrak{m}_{-1}(x) \oplus \mathfrak{m}_{-2}(x), \quad \mathfrak{m}_{-1}(x) = H_x M, \quad \mathfrak{m}_{-2}(x) = Ker(P_x)$

where the non trivial Lie bracket is the bilinear map:

$$L_x: H_x M \times H_x M \to Ker(P_x)$$

determined by the Levi-Tanaka form $L: \Gamma HM \times \Gamma HM \rightarrow \Gamma Ker(P)$

$$L(X,Y) := Q[X,Y], \qquad Q := Id - P.$$

・ロト・ 日本・ エート・ エー・ シックション

Let (M,HM,J,h,P) be a generalized pseudohermitian manifold such that HM is a kind 2 distribution.

The Tanaka algebra of M at x is

 $\mathfrak{m}(x) = \mathfrak{m}_{-1}(x) \oplus \mathfrak{m}_{-2}(x), \quad \mathfrak{m}_{-1}(x) = H_x M, \quad \mathfrak{m}_{-2}(x) = Ker(P_x)$

where the non trivial Lie bracket is the bilinear map:

 $L_x: H_x M \times H_x M \to Ker(P_x)$

determined by the Levi-Tanaka form $L: \Gamma HM \times \Gamma HM \to \Gamma Ker(P)$

$$L(X,Y) := Q[X,Y], \qquad Q := Id - P.$$

The Levi-Tanaka form determines a *surjective* vector bundle homomorphism

$$L: \Gamma HM \wedge \Gamma HM \rightarrow \Gamma Ker(P)$$

which allows us to extend the sub-Riemannian metric h.

Proposition

Let (M, HM, J, h, P) be a generalized pseudohermitian manifold of type (n, k) such that HM is a kind 2 distribution. Then,

• h extends canonically to a Riemannian metric g with respect to which $TM = HM \oplus Ker(P)$ is an orthogonal decomposition.

Proposition

Let (M, HM, J, h, P) be a generalized pseudohermitian manifold of type (n, k) such that HM is a kind 2 distribution. Then,

- h extends canonically to a Riemannian metric g with respect to which $TM = HM \oplus Ker(P)$ is an orthogonal decomposition.
- There exists a unique linear connection ∇ extending the canonical connection D to TM and such that:
 - a) ∇ is compatible with the Riemannian metric g,
 - b) the torsion T of ∇ satisfies

 $QT(\xi,\xi')=0$

for every $\xi, \xi' \in \Gamma Ker(P)$, where Q = Id - P,

c) for each $X \in \Gamma HM$, the bundle homomorphism

 $F_X: Ker(P) \to Ker(P), \qquad F_X(\xi) = QT(\xi, X),$

is symmetric with respect to g.

Remark

Let (M,HM,J,η) be a pseudohermitian manifold (in the sense of Webster).

HM is a kind $2\ \mathrm{distribution}.$

- g coincides with the Webster metric g_{η} ,
- $\bullet \ \nabla$ coincides with the Tanaka-Webster connection.
Remark

Let (M,HM,J,η) be a pseudohermitian manifold (in the sense of Webster).

HM is a kind $2\ \mathrm{distribution}.$

- g coincides with the Webster metric g_{η} ,
- $\bullet \ \nabla$ coincides with the Tanaka-Webster connection.

Remark

For a generalized pseudohermitian manifold (M, HM, J, h, P), the distribution HM is of kind 1 if and only if k = 0, that is M is an almost Hermitian manifold.

Remark

Let (M, HM, J, η) be a pseudohermitian manifold (in the sense of Webster).

HM is a kind 2 distribution.

- g coincides with the Webster metric g_{η} ,
- $\bullet~\nabla$ coincides with the Tanaka-Webster connection.

Remark

For a generalized pseudohermitian manifold (M, HM, J, h, P), the distribution HM is of kind 1 if and only if k = 0, that is M is an almost Hermitian manifold.

Tanno proved that if the automorphism group of an almost Hermitian 2n-dimensional manifold M has maximum dimension $n^2 + 2n$, then M is Kähler and has constant holomorphic curvature.⁵

⁵ S. Tanno, *The automorphism groups of almost Hermitian manifolds*, Trans. Amer. Math. Soc., 1969.

The equivalence problem for generalized pseudohermitian manifolds of type (n, k) and having kind ≤ 2 reduces in a natural way to the equivalence of complete parallelisms in spaces of dimension $N = n^2 + 2n + k$.

The equivalence problem for generalized pseudohermitian manifolds of type (n, k) and having kind ≤ 2 reduces in a natural way to the equivalence of complete parallelisms in spaces of dimension $N = n^2 + 2n + k$.

Actually, we have a correspondence

$$(M, HM, J, h, P) \mapsto (P(M), \gamma)$$

where

P(M) is the canonical U(n) reduction of the frame bundle $\mathcal{F}(HM)$

The equivalence problem for generalized pseudohermitian manifolds of type (n, k) and having kind ≤ 2 reduces in a natural way to the equivalence of complete parallelisms in spaces of dimension $N = n^2 + 2n + k$.

Actually, we have a correspondence

$$(M, HM, J, h, P) \mapsto (P(M), \gamma)$$

where

P(M) is the canonical U(n) reduction of the frame bundle $\mathcal{F}(HM)$ $\gamma = \omega + \theta : TP(M) \to \mathfrak{u}(n) \oplus \mathbb{C}^n \oplus \mathbb{R}^k$ is a complete parallelism $\omega : TP(M) \to \mathfrak{u}(n)$ is the connection form determined by D $\theta : TP(M) \to \mathbb{C}^n \oplus \mathbb{R}^k$ is a kind of canonical "solder" form

The equivalence problem for generalized pseudohermitian manifolds of type (n, k) and having kind ≤ 2 reduces in a natural way to the equivalence of complete parallelisms in spaces of dimension $N = n^2 + 2n + k$.

Actually, we have a correspondence

$$(M, HM, J, h, P) \mapsto (P(M), \gamma)$$

where

P(M) is the canonical U(n) reduction of the frame bundle $\mathcal{F}(HM)$ $\gamma = \omega + \theta : TP(M) \to \mathfrak{u}(n) \oplus \mathbb{C}^n \oplus \mathbb{R}^k$ is a complete parallelism $\omega : TP(M) \to \mathfrak{u}(n)$ is the connection form determined by D $\theta : TP(M) \to \mathbb{C}^n \oplus \mathbb{R}^k$ is a kind of canonical "solder" form

The correspondence is compatible with the respective isomorphisms.

The automorphism group Psh(M) of a generalized pseudohermitian manifold of type (n,k) and having kind ≤ 2 is a Lie group having dimension

$$\dim(Psh(M)) \le n^2 + 2n + k.$$

The automorphism group Psh(M) of a generalized pseudohermitian manifold of type (n,k) and having kind ≤ 2 is a Lie group having dimension

$$\dim(Psh(M)) \le n^2 + 2n + k.$$

If equality holds:

- Psh(M) is transitive, i.e. M is homogeneous
- M is of Kähler type
- *M* has constant pseudoholomorphic curvature.
- The Tanaka algebra $\mathfrak{m}(x)$ at an arbitrary point must be isomorphic to one of the following models

$$\mathfrak{m} = \mathbb{R}^{2n} \oplus W^*, \qquad [X, Y](A) = {}^t X A Y,$$

where W is one of the following \mathbb{R} -linear subspaces of $\mathfrak{so}(2n)$:

		-		W	k
	W	k			
	{0}	0		Ψ	n - n
tuno	$\langle T \rangle$	1	type	$\mathfrak{p}\oplus \langle J_o angle$	$n^2 - n + 1$
igpe	$\langle J_o \rangle$		II	$\mathfrak{p} \oplus \mathfrak{su}(n)$	$2n^2 - n - 1$
1	$\mathfrak{su}(n)$	$n^2 - 1$		$\mathbf{r} \oplus \mathbf{u}(\mathbf{r})$	$2m^2$ m
	$\mathfrak{n}(n)$	n^2		$\mathfrak{h} \oplus \mathfrak{n}(n)$	2n - n
	••(10)			$\mathfrak{so}(2n)$	$2n^2 - n$

where
$$\mathfrak{p} = \left\{ \begin{pmatrix} X_1 & X_2 \\ X_2 & -X_1 \end{pmatrix} \middle| X_1, X_2 \in \mathfrak{so}(n) \right\}$$
 and $J_o = \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}$.

$$\mathfrak{m} = \mathbb{R}^{2n} \oplus W^*, \qquad [X, Y](A) = {}^t X A Y,$$

where W is one of the following \mathbb{R} -linear subspaces of $\mathfrak{so}(2n)$:

	TT7	7			W	k
	VV	ĸ			'n	$n^2 - n$
type	$\begin{array}{c} \{0\} \\ \langle J_o \rangle \end{array}$	$\begin{array}{c} 0 \\ 1 \end{array}$	0 1	type	$\mathfrak{p} \oplus \langle J_o \rangle$	$n^2 - n + 1$
Î	$\mathfrak{su}(n)$	$n^2 - 1$		11	$\mathfrak{p} \oplus \mathfrak{su}(n) \ \mathfrak{p} \oplus \mathfrak{u}(n)$	$\frac{2n^2 - n - 1}{2n^2 - n}$
	•(11)	10			$\mathfrak{so}(2n)$	$2n^2 - n$

where
$$\mathfrak{p} = \left\{ \begin{pmatrix} X_1 & X_2 \\ X_2 & -X_1 \end{pmatrix} \middle| X_1, X_2 \in \mathfrak{so}(n) \right\}$$
 and $J_o = \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}$.

<ロト < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Moreover, J is integrable if and only if \mathfrak{m} is of type I.

$$\mathfrak{m} = \mathbb{R}^{2n} \oplus W^*, \qquad [X, Y](A) = {}^t X A Y,$$

where W is one of the following \mathbb{R} -linear subspaces of $\mathfrak{so}(2n)$:

				W	k
	W	k		,, ,	$\frac{n^2}{2}$
	{0}	0	tune	\mathfrak{P} $\mathfrak{n} \oplus \langle I \rangle$	$n^{2} - n + 1$
type	$\langle J_o \rangle$	1	II	$\mathfrak{p} \oplus \langle \mathfrak{o}_0 \rangle$ $\mathfrak{p} \oplus \mathfrak{su}(n)$	$2n^2 - n - 1$
Ι	$\mathfrak{su}(n)$	$n^2 - 1$		$\mathfrak{p} \oplus \mathfrak{u}(n)$	$2n^2 - n$
	$\mathfrak{u}(n)$	n^2		$\mathfrak{so}(2n)$	$2n^2 - n$

where
$$\mathfrak{p} = \left\{ \begin{pmatrix} X_1 & X_2 \\ X_2 & -X_1 \end{pmatrix} \middle| X_1, X_2 \in \mathfrak{so}(n) \right\}$$
 and $J_o = \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}$.

Moreover, J is integrable if and only if \mathfrak{m} is of type I. For each model \mathfrak{m} , there exists a simply connected, flat generalized pseudohermitian manifold whose Tanaka algebra at each point is isomorphic to \mathfrak{m} , and whose automorphism group Psh(M) has the maximum dimension. Construction of flat models:

$$\mathfrak{m} = \mathbb{R}^{2n} \oplus W^* \tag{3}$$

 J_o standard complex structure on \mathbb{R}^{2n}

 $\langle \cdot, \cdot
angle$ standard inner product on \mathbb{R}^{2n}

 $p: \mathfrak{m} \to \mathfrak{m}$ linear projection onto \mathbb{R}^{2n} relative to decomposition (3) $M(\mathfrak{m})$ the simply connected Lie group with Lie algebra \mathfrak{m} .

Construction of flat models:

$$\mathfrak{m} = \mathbb{R}^{2n} \oplus W^* \tag{3}$$

 J_o standard complex structure on \mathbb{R}^{2n}

 $\langle \cdot, \cdot
angle$ standard inner product on \mathbb{R}^{2n}

 $p: \mathfrak{m} \to \mathfrak{m}$ linear projection onto \mathbb{R}^{2n} relative to decomposition (3) $M(\mathfrak{m})$ the simply connected Lie group with Lie algebra \mathfrak{m} .

The data $(\mathbb{R}^{2n}, J_o, \langle , \rangle, p)$ give rise canonically to a left invariant generalized pseudohermitian structure $(HM(\mathfrak{m}), J, h, P)$ on $M(\mathfrak{m})$.

Construction of flat models:

$$\mathfrak{m} = \mathbb{R}^{2n} \oplus W^* \tag{3}$$

 J_o standard complex structure on \mathbb{R}^{2n}

 $\langle \cdot, \cdot
angle$ standard inner product on \mathbb{R}^{2n}

 $p: \mathfrak{m} \to \mathfrak{m}$ linear projection onto \mathbb{R}^{2n} relative to decomposition (3) $M(\mathfrak{m})$ the simply connected Lie group with Lie algebra \mathfrak{m} .

The data $(\mathbb{R}^{2n}, J_o, \langle , \rangle, p)$ give rise canonically to a left invariant generalized pseudohermitian structure $(HM(\mathfrak{m}), J, h, P)$ on $M(\mathfrak{m})$.

The canonical connection is the unique connection D on $HM(\mathfrak{m})$ such that $D_Z X = 0$ for any left invariant vector fields $Z \in \mathfrak{m}$, $X \in \mathbb{R}^{2n}$.

The pseudoholomorphic sectional curvature vanishes.

 $Psh(M(\mathfrak{m}))$ has the maximum dimension $n^2 + 2n + k$.

Example: 3-Sasakian manifolds.

A 3-Sasakian manifold is a (4n + 3)-dimensional manifold Mendowed with three Sasakian structures $(\phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$, with the same compatible metric g, such that for any even permutation (α, β, γ) of $\{1, 2, 3\}$:

$$\phi_{\gamma} = \phi_{\alpha}\phi_{\beta} - \eta_{\beta} \otimes \xi_{\alpha} = -\phi_{\beta}\phi_{\alpha} + \eta_{\alpha} \otimes \xi_{\beta},$$

$$\xi_{\gamma} = \phi_{\alpha}\xi_{\beta} = -\phi_{\beta}\xi_{\alpha}, \qquad \eta_{\gamma} = \eta_{\alpha} \circ \phi_{\beta} = -\eta_{\beta} \circ \phi_{\alpha}.$$

Example: 3-Sasakian manifolds.

A 3-Sasakian manifold is a (4n + 3)-dimensional manifold Mendowed with three Sasakian structures $(\phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$, with the same compatible metric g, such that for any even permutation (α, β, γ) of $\{1, 2, 3\}$:

$$\phi_{\gamma} = \phi_{\alpha}\phi_{\beta} - \eta_{\beta} \otimes \xi_{\alpha} = -\phi_{\beta}\phi_{\alpha} + \eta_{\alpha} \otimes \xi_{\beta},$$

$$\xi_{\gamma} = \phi_{\alpha}\xi_{\beta} = -\phi_{\beta}\xi_{\alpha}, \qquad \eta_{\gamma} = \eta_{\alpha} \circ \phi_{\beta} = -\eta_{\beta} \circ \phi_{\alpha}.$$

M carries three canonical generalized pseudohermitian structures (HM, J_{α}, h, P) :

- $HM = \bigcap_{\alpha=1}^{3} Ker(\eta_{\alpha})$ (distribution of kind 2)
- $J_{\alpha} :=$ restriction of ϕ_{α} to HM
- h := restriction of g to HM
- $P: TM \rightarrow TM$ orthogonal projection onto HM

Each structure is of Kähler type and not partially integrable.

Let $(M, \varphi_{\delta}, \xi_{\delta}, \eta_{\delta}, g)$ be a 3-Sasakian manifold. Suppose that M has constant pseudoholomorphic sectional curvature c with respect to one of the three canonical generalized pseudohermitian structures $(HM, J_{\alpha}, h, P), \alpha = 1, 2, 3$. Then, each generalized pseudohermitian structure has constant pseudoholomorphic sectional curvature c = 4. Furthermore, the Riemannian metric g has constant curvature 1.

Let $(M, \varphi_{\delta}, \xi_{\delta}, \eta_{\delta}, g)$ be a 3-Sasakian manifold. Suppose that M has constant pseudoholomorphic sectional curvature c with respect to one of the three canonical generalized pseudohermitian structures $(HM, J_{\alpha}, h, P), \alpha = 1, 2, 3$. Then, each generalized pseudohermitian structure has constant pseudoholomorphic sectional curvature c = 4. Furthermore, the Riemannian metric g has constant curvature 1.

Theorem

Let $(M, \varphi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ be a 3-Sasakian manifold. If Psh(M) has the maximum dimension, then M has dimension 7, constant pseudoholomorphic sectional curvature 4 and constant Riemannian curvature 1. The Tanaka algebra is $\mathfrak{m} = \mathbb{R}^4 \oplus \mathfrak{p} \oplus \langle J_o \rangle$.

Let $(M, \varphi_{\delta}, \xi_{\delta}, \eta_{\delta}, g)$ be a 3-Sasakian manifold. Suppose that M has constant pseudoholomorphic sectional curvature c with respect to one of the three canonical generalized pseudohermitian structures $(HM, J_{\alpha}, h, P), \alpha = 1, 2, 3$. Then, each generalized pseudohermitian structure has constant pseudoholomorphic sectional curvature c = 4. Furthermore, the Riemannian metric g has constant curvature 1.

Theorem

Let $(M, \varphi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ be a 3-Sasakian manifold. If Psh(M) has the maximum dimension, then M has dimension 7, constant pseudoholomorphic sectional curvature 4 and constant Riemannian curvature 1. The Tanaka algebra is $\mathfrak{m} = \mathbb{R}^4 \oplus \mathfrak{p} \oplus \langle J_o \rangle$.

The 7-dimensional sphere $S^7 \subset \mathbb{H}^2$ with the standard 3-Sasakian structure provides a non flat example for which $Psh(S^7)$ has actually the maximum dimension 11.

Let

$$f:(M,HM,J,h,P)\to (M',HM',J',h',P')$$

・ロト・4日・4日・4日・4日・900

be an isopseudohermitian immersion.

Define the real subbundle HM^{\perp} of the pullback $f^*(HM')$ $H_xM^{\perp} :=$ orthogonal complement to $f_*(H_xM)$ in $H_{f(x)}M'$

Let

$$f:(M,HM,J,h,P)\to (M',HM',J',h',P')$$

be an isopseudohermitian immersion.

Define the real subbundle $\underline{H}\underline{M}^{\perp}$ of the pullback $f^{*}(HM')$

 $H_x M^{\perp} :=$ orthogonal complement to $f_*(H_x M)$ in $H_{f(x)} M'$

We shall drop f in the notation for simplicity, assuming $M\subset M',$ so that we have the orthogonal decomposition

 $HM'|_M = HM \oplus HM^{\perp}.$

Let

$$f:(M,HM,J,h,P)\to (M',HM',J',h',P')$$

be an isopseudohermitian immersion.

Define the real subbundle $\underline{H}\underline{M}^{\perp}$ of the pullback $f^{*}(HM')$

 $H_x M^{\perp} :=$ orthogonal complement to $f_*(H_x M)$ in $H_{f(x)} M'$

We shall drop f in the notation for simplicity, assuming $M\subset M',$ so that we have the orthogonal decomposition

$$HM'|_M = HM \oplus HM^{\perp}.$$

 ${\cal D}$ canonical connection on ${\cal H}{\cal M}$

 D^\prime canonical connection on HM^\prime and the induced covariant differentiation on $HM^\prime|_M$

For each $X \in \mathfrak{X}(M)$, $Y \in \Gamma HM$, $\zeta \in \Gamma HM^{\perp}$ we have

• $\beta_{\zeta}: HM \to HM$ is the bundle homomorphism defined by: $4h(\beta_{\zeta}Y, Z) = -h'(P'Q([Y, Z] + [JY, JZ]), \zeta).$

 β_{ζ} is skew-symmetric and commutes with J.

• $A_{\zeta}: TM \to HM$ is a bundle homomorphism such that: $h(A_{\zeta}X, Y) = h'(\alpha(X, Y), \zeta) \quad \forall X \in \mathfrak{X}(M), Y \in \Gamma HM.$ In general, $A_{\zeta}: HM \to HM$ fails to be symmetric. Let (M, HM, J, h, P) be a generalized pseudohermitian manifold. Levi-Tanaka form:

 $L: \Gamma HM \times \Gamma HM \to \Gamma Ker(P) \qquad L(X,Y):=Q[X,Y],$

Levi form:

• $\mathcal{C}^{\infty}(M)$ -bilinear map $\mathcal{L}: \Gamma HM \times \Gamma HM \to \Gamma Ker(P)$ $2\mathcal{L}(X,Y) := L(X,JY) + L(Y,JX)$

which is Hermitian symmetric.

If (M, HM, J, η) is a pseudohermitian manifold, then \mathcal{L} coincides with the Levi form \mathcal{L}_{η} corresponding to η .

Let (M, HM, J, h, P) be a generalized pseudohermitian manifold. Levi-Tanaka form:

 $L: \Gamma HM \times \Gamma HM \to \Gamma Ker(P) \qquad L(X,Y):=Q[X,Y],$

Levi form:

• $\mathcal{C}^{\infty}(M)$ -bilinear map $\mathcal{L}: \Gamma HM \times \Gamma HM \to \Gamma Ker(P)$ $2\mathcal{L}(X,Y) := L(X,JY) + L(Y,JX)$

which is Hermitian symmetric.

If (M, HM, J, η) is a pseudohermitian manifold, then \mathcal{L} coincides with the Levi form \mathcal{L}_{η} corresponding to η .

 \bullet the vector valued quadratic form at each point $x \in M$

 $\mathcal{L}: H_x M \to T_x M, \qquad \mathcal{L}(X) := Q([\tilde{X}, J\tilde{X}]_x)$

where $\tilde{X} \in \Gamma HM$ is an arbitrary extension of $X \in T_x M$.

Let $f:(M,HM,J,h,P) \to (M',HM',J',h',P')$ be an isopseudohermitian immersion.

Proposition

The following are equivalent:

a)
$$\beta_{\zeta} = 0 \qquad \forall \zeta \in HM^{\perp}$$

b)
$$\mathcal{L}(X) = \mathcal{L}'(X) \quad \forall X \in HM.$$

Isopseudohermitian immersions with $\beta\equiv 0$ will be called Levi form preserving.

Let $f:(M,HM,J,h,P) \to (M',HM',J',h',P')$ be an isopseudohermitian immersion.

Proposition

The following are equivalent:

a)
$$\beta_{\zeta} = 0 \qquad \forall \zeta \in HM^{\perp}$$

b) $\mathcal{L}(X) = \mathcal{L}'(X) \quad \forall X \in HM.$

Isopseudohermitian immersions with $\beta \equiv 0$ will be called Levi form preserving.

The pseudohermitian immersions between strongly pseudoconvex CR manifolds introduced by Dragomir are Levi-form preserving. 6

⁶ S. Dragomir, *On pseudo-Hermitian immersions between strictly pseudoconvex CR manifolds*, Amer. J. Math., 1995.

Let $f:(M,HM,J,h,P) \to (M',HM',J',h',P')$ be an isopseudohermitian immersion.

Proposition

The following are equivalent:

a)
$$\beta_{\zeta} = 0 \quad \forall \zeta \in HM^{\perp}$$

b) $\mathcal{L}(X) = \mathcal{L}'(X) \quad \forall X \in HM.$

Isopseudohermitian immersions with $\beta \equiv 0$ will be called Levi form preserving.

The pseudohermitian immersions between strongly pseudoconvex CR manifolds introduced by Dragomir are Levi-form preserving. 6

Proposition

If M' is of quasi-Kähler type, then a) and b) are equivalent to c) $\alpha : HM \times HM \to HM^{\perp}$ is symmetric.

⁶ S. Dragomir, *On pseudo-Hermitian immersions between strictly pseudoconvex CR manifolds*, Amer. J. Math., 1995.

Let $f: (M, HM, J, h, P) \rightarrow (M', HM', J', h', P')$ be a Levi form preserving isopseudohermitian immersion between generalized pseudohermitian manifolds. Assume that M' is of quasi-Kähler type. Then for any holomorphic 2-plane σ of M

 $K(\sigma) \le K'(\sigma).$

Let $f: (M, HM, J, h, P) \rightarrow (M', HM', J', h', P')$ be a Levi form preserving isopseudohermitian immersion between generalized pseudohermitian manifolds. Assume that M' is of quasi-Kähler type. Then for any holomorphic 2-plane σ of M

 $K(\sigma) \le K'(\sigma).$

Remark

As particular cases the above result gives the known results concerning Kähler submanifolds and pseudohermitian immersions between pseudohermitian manifolds.⁷

⁷ E. Barletta, *On the pseudohermitian sectional curvature of a strictly pseudoconvex CR manifold*, Differential Geom. Appl., 2007.

Let $\mathfrak{g} = \bigoplus_{p=-\mu}^{\mu} \mathfrak{g}_p$ be a semisimple Levi-Tanaka algebra G the simply connected Lie group whose Lie algebra is \mathfrak{g} G_+ the analytic subgroup corresponding to $\mathfrak{g}_+ = \bigoplus_{p\geq 0} \mathfrak{g}_p$

The standard (compact homogeneous) CR manifold ⁸

$$S(\mathfrak{g}) := G/G_+$$

carries a generalized pseudohermitian structure of Kähler type which is not flat, with non-negative pseudoholomorphic curvature.

⁸ C. Medori, M. Nacinovich, *Levi-Tanaka algebras and homogeneous CR manifolds*, Compos. Math., 1997.

Let $\mathfrak{g} = \bigoplus_{p=-\mu}^{\mu} \mathfrak{g}_p$ be a semisimple Levi-Tanaka algebra G the simply connected Lie group whose Lie algebra is \mathfrak{g} G_+ the analytic subgroup corresponding to $\mathfrak{g}_+ = \bigoplus_{p \ge 0} \mathfrak{g}_p$

The standard (compact homogeneous) CR manifold ⁸

$$S(\mathfrak{g}) := G/G_+$$

carries a generalized pseudohermitian structure of Kähler type which is not flat, with non-negative pseudoholomorphic curvature.

Theorem

There is no Levi form preserving isopseudohermitian immersion $f: S(\mathfrak{g}) \to M$ from a compact standard homogeneous pseudohermitian manifold into a generalized pseudohermitian manifold M of quasi Kähler type having non positive pseudoholomorphic curvature.

⁸ C. Medori, M. Nacinovich, *Levi-Tanaka algebras and homogeneous CR manifolds*, Compos. Math., 1997.

G. DILEO AND A. LOTTA Generalized pseudohermitian manifolds Forum Mathematicum DOI: 10.1515/FORM.2011.098

Standard homogeneous CR manifolds.

A Levi-Tanaka algebra is a \mathbb{Z} -graded Lie algebra $\mathfrak{g} = \bigoplus_{p=-\mu}^{\mu} \mathfrak{g}_p$ such that

- ullet the subalgebra $\mathfrak{m}:=\oplus_{p<0}\mathfrak{g}_p$ is
 - fundamental: \mathfrak{g}_{-1} generates \mathfrak{m} ,
 - pseudocomplex: there exists a complex structure $J : \mathfrak{g}_{-1} \rightarrow \mathfrak{g}_{-1}$ satisfying

 $[JX, JY] = [X, Y] \quad \forall X, Y \in \mathfrak{g}_{-1}$

- $ad: \mathfrak{g}_0 \to \mathfrak{gl}(\mathfrak{m})$ yields an isomorphism between \mathfrak{g}_0 and the algebra of 0-degree derivations of \mathfrak{m} whose restriction to \mathfrak{g}_{-1} commutes with J
- \mathfrak{g} is the maximal transitive prolongation of the graded Lie algebra $\mathfrak{m}\oplus\mathfrak{g}_0$:

$$[X, \mathfrak{g}_{-1}] \neq 0$$
 for $X \in \bigoplus_{p \ge 0} \mathfrak{g}_p, X \neq 0$.

Let $\mathfrak{g} = \bigoplus_{p=-\mu}^{\mu} \mathfrak{g}_p$ be a semisimple Levi-Tanaka algebra

G the simply connected Lie group whose Lie algebra is \mathfrak{g} G_+ the analytic subgroup corresponding to $\mathfrak{g}_+ = \bigoplus_{p>0} \mathfrak{g}_p$

 $S(\mathfrak{g}) := G/G_+$ carries a G-invariant CR structure $(HS(\mathfrak{g}), J)$.

 $S(\mathfrak{g})$ is called standard (compact homogeneous) CR manifold ⁹

⁹ C. Medori, M. Nacinovich, *Levi-Tanaka algebras and homogeneous CR manifolds*, Compos. Math., 1997.
Let $\mathfrak{g} = \bigoplus_{p=-\mu}^{\mu} \mathfrak{g}_p$ be a semisimple Levi-Tanaka algebra G the simply connected Lie group whose Lie algebra is \mathfrak{g} G_+ the analytic subgroup corresponding to $\mathfrak{g}_+ = \bigoplus_{p \ge 0} \mathfrak{g}_p$ $S(\mathfrak{g}) := G/G_+$ carries a G-invariant CR structure $(HS(\mathfrak{g}), J)$.

 $S(\mathfrak{g})$ is called standard (compact homogeneous) CR manifold ⁹

Let $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ be an adapted Cartan decomposition of \mathfrak{g} :

$$\mathfrak{k} = \bigoplus_{j=0}^{\mu} \mathfrak{k}_{|j|}, \quad \mathfrak{p} = \bigoplus_{j=0}^{\mu} \mathfrak{p}_{|j|}, \quad \mathfrak{k}_{|j|} = \mathfrak{k} \cap (\mathfrak{g}_{j} \oplus \mathfrak{g}_{-j}), \quad \mathfrak{p}_{|j|} = \mathfrak{p} \cap (\mathfrak{g}_{j} \oplus \mathfrak{g}_{-j}).$$

 $\mathfrak k$ is a maximal Lie subalgebra of $\mathfrak g$ on which the Killing form is negative definite

⁹ C. Medori, M. Nacinovich, *Levi-Tanaka algebras and homogeneous CR manifolds*, Compos. Math., 1997.

The analytic subgroup $K \subset G$ corresponding to $\mathfrak k$ acts transitively on $S(\mathfrak g)$

 $S(\mathfrak{g})=K/K_o$ is a reductive homogeneous space in the sense of Nomizu, with reductive decomposition

$$\mathfrak{k} = \mathfrak{k}_{|0|} \oplus \mathfrak{n} \qquad \mathfrak{n} := \mathfrak{k}_{|1|} \oplus \bigoplus_{p=2}^{r} \mathfrak{k}_{|p|}$$

The analytic subgroup $K \subset G$ corresponding to $\mathfrak k$ acts transitively on $S(\mathfrak g)$

 $S(\mathfrak{g})=K/K_o$ is a reductive homogeneous space in the sense of Nomizu, with reductive decomposition

$$\mathfrak{k} = \mathfrak{k}_{|0|} \oplus \mathfrak{n} \qquad \mathfrak{n} := \mathfrak{k}_{|1|} \oplus igoplus_{p=2}^{r} \mathfrak{k}_{|p|}$$

L

Canonical identifications:

$$T_o S(\mathfrak{g}) \cong \mathfrak{n} \qquad H_o S(\mathfrak{g}) \cong \mathfrak{k}_{|1|}$$

The analytic subgroup $K \subset G$ corresponding to $\mathfrak k$ acts transitively on $S(\mathfrak g)$

 $S(\mathfrak{g})=K/K_o$ is a reductive homogeneous space in the sense of Nomizu, with reductive decomposition

$$\mathfrak{k} = \mathfrak{k}_{|0|} \oplus \mathfrak{n} \qquad \mathfrak{n} := \mathfrak{k}_{|1|} \oplus igoplus_{p=2}^{r} \mathfrak{k}_{|p|}$$

L

Canonical identifications:

$$T_o S(\mathfrak{g}) \cong \mathfrak{n} \qquad H_o S(\mathfrak{g}) \cong \mathfrak{k}_{|1|}$$

Define

- h:=K-invariant Hermitian metric on $HS(\mathfrak{g})$ determined by the opposite of the Killing form
- P := K-invariant tensor field corresponding to the linear projection $P_o : \mathfrak{n} \to \mathfrak{n}$ onto $\mathfrak{k}_{|1|}$

(h, P) is a generalized pseudohermitian structure of Kähler type.

 $PS(\mathfrak{g}):=U(n) \text{ reduction of the frame bundle } \mathcal{F}(HS(\mathfrak{g})) \text{ of } HS(\mathfrak{g})$ Wang's theorem:

 $\{\mathsf{K}\text{-Invariant connection on } PS(\mathfrak{g})\} \leftrightarrow \{\mathsf{Equivariant } \Lambda: \mathfrak{n} \to \mathfrak{u}(n)\}$

 $PS(\mathfrak{g}):=U(n) \text{ reduction of the frame bundle } \mathcal{F}(HS(\mathfrak{g})) \text{ of } HS(\mathfrak{g})$ Wang's theorem:

 $\{\mathsf{K}\text{-Invariant connection on } PS(\mathfrak{g})\} \leftrightarrow \{\mathsf{Equivariant } \Lambda: \mathfrak{n} \to \mathfrak{u}(n)\}$

Theorem

The canonical connection of $S(\mathfrak{g})$ is the K-invariant connection on $PS(\mathfrak{g})$ corresponding to the linear map $\Lambda : \mathfrak{n} \to \mathfrak{u}(n)$ defined by

$$\Lambda(Z)(X) = [Z, X]_{|1|} \qquad X \in \mathfrak{k}_{|1|}.$$

Moreover, $S(\mathfrak{g})$ is not flat and the pseudoholomorphic curvature is non-negative, namely for each unit vector $X \in H_oS(\mathfrak{g}) \cong \mathfrak{k}_{|1|}$,

$$K(X) = ||[X, JX]||^2.$$

Let P(M) be the canonical reduction od $\mathcal{F}(HM)$ to U(n). The connection D reduces to a principal connection on P(M)Consider the connection form:

 $\boldsymbol{\omega}:TP(M)\to \mathfrak{u}(n)$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let P(M) be the canonical reduction od $\mathcal{F}(HM)$ to U(n). The connection D reduces to a principal connection on P(M)Consider the connection form:

 $\boldsymbol{\omega}:TP(M)\to \boldsymbol{\mathfrak{u}}(n)$

kind 1 case (k=0)

Define the 1-form

$$\frac{\boldsymbol{\theta}}{\boldsymbol{\theta}}:TP(M)\to\mathbb{C}^n$$
$$\boldsymbol{\theta}_u(Z):=u^{-1}(\pi_*Z),\quad Z\in T_uP(M)$$

- $\pi: P(M) \to M$ is the bunble projection

- $u \in P(M)$ is an \mathbb{R} -linear isomorphism $u : \mathbb{C}^n \to T_x M$.

Then we have a complete parallelism on P(M):

$$\gamma := \boldsymbol{\omega} + \boldsymbol{\theta} : TP(M) \to \boldsymbol{\mathfrak{u}}(n) \oplus \mathbb{C}^r$$

Consider the surjective vector bundle homomorphism determined by the Levi-Tanaka form:

 $L: HM \wedge HM \rightarrow Ker(P).$

Consider the surjective vector bundle homomorphism determined by the Levi-Tanaka form:

 $L: HM \wedge HM \rightarrow Ker(P).$

We define a natural bundle map homomorphism

 $\Psi: \mathcal{F}(HM) \to \mathcal{F}(Ker(P)).$

・ロト・4日・4日・4日・4日・4日・900

Consider the surjective vector bundle homomorphism determined by the Levi-Tanaka form:

 $L: HM \wedge HM \rightarrow Ker(P).$

We define a natural bundle map homomorphism

 $\Psi: \mathcal{F}(HM) \to \mathcal{F}(Ker(P)).$

・ロト・4日・4日・4日・4日・4日・900

• $\{u_1, \ldots, u_{2n}\}$ basis of $H_x M$.

Consider the surjective vector bundle homomorphism determined by the Levi-Tanaka form:

 $L: HM \wedge HM \rightarrow Ker(P).$

We define a natural bundle map homomorphism

 $\Psi: \mathcal{F}(HM) \to \mathcal{F}(Ker(P)).$

• $\{u_1, \ldots, u_{2n}\}$ basis of $H_x M$.

• $\{w_1, \dots, w_N\} = \{u_i \land u_j | i < j\}$ basis of $H_x M \land H_x M$ ordered in a natural manner

Consider the surjective vector bundle homomorphism determined by the Levi-Tanaka form:

 $L: HM \wedge HM \rightarrow Ker(P).$

We define a natural bundle map homomorphism

 $\Psi: \mathcal{F}(HM) \to \mathcal{F}(Ker(P)).$

• $\{u_1, \ldots, u_{2n}\}$ basis of $H_x M$.

- $\{w_1, \dots, w_N\} = \{u_i \land u_j | i < j\}$ basis of $H_x M \land H_x M$ ordered in a natural manner
- $\{L(w_{j_1}), \ldots, L(w_{j_k})\}$ basis of $Ker(P_x)$ extracted from $\{L(w_1), \ldots, L(w_N)\}$

Consider the surjective vector bundle homomorphism determined by the Levi-Tanaka form:

 $L: HM \wedge HM \rightarrow Ker(P).$

We define a natural bundle map homomorphism

 $\Psi: \mathcal{F}(HM) \to \mathcal{F}(Ker(P)).$

• $\{u_1, \ldots, u_{2n}\}$ basis of $H_x M$.

- $\{w_1, \dots, w_N\} = \{u_i \land u_j | i < j\}$ basis of $H_x M \land H_x M$ ordered in a natural manner
- $\{L(w_{j_1}), \dots, L(w_{j_k})\}$ basis of $Ker(P_x)$ extracted from $\{L(w_1), \dots, L(w_N)\}$ where $j_1 < j_2 < \dots < j_k$ are uniquely determined according to $j_1 = min\{j | L(w_i) \neq 0\}$

 $j_{s} = \min\{j \mid \dim_{\mathbb{R}} \langle L(w_{j_{1}}), \dots, L(w_{j_{s-1}}), L(w_{j}) \rangle = s\}, s > 1$

Define the 1-form

$$\theta: TP(M) \to \mathbb{C}^n \oplus \mathbb{R}^k$$

such that

$$\theta_u(Z) := \bar{u}^{-1}(\pi_*Z), \quad Z \in T_u P(M)$$

Define the 1-form

$$\theta: TP(M) \to \mathbb{C}^n \oplus \mathbb{R}^k$$

such that

$$\theta_u(Z) := \bar{u}^{-1}(\pi_*Z), \quad Z \in T_u P(M)$$

where for each frame $u \in P(M)$,

$$\bar{u} := u + \Psi(u) : \mathbb{C}^n \oplus \mathbb{R}^k \to T_x M, \quad x = \pi(u),$$

- $u \in P(M)$ is an \mathbb{R} -linear isomorphism $u : \mathbb{C}^n \to H_x M$
- $\Psi(u)$ is the \mathbb{R} -linear isomorphism $\Psi(u): \mathbb{R}^k \to Ker(P_x)$

Define the 1-form

$$\theta: TP(M) \to \mathbb{C}^n \oplus \mathbb{R}^k$$

such that

$$\theta_u(Z) := \bar{u}^{-1}(\pi_*Z), \quad Z \in T_u P(M)$$

where for each frame $u \in P(M)$,

$$\bar{u} := u + \Psi(u) : \mathbb{C}^n \oplus \mathbb{R}^k \to T_x M, \quad x = \pi(u),$$

- $u \in P(M)$ is an \mathbb{R} -linear isomorphism $u : \mathbb{C}^n \to H_x M$
- $\Psi(u)$ is the \mathbb{R} -linear isomorphism $\Psi(u): \mathbb{R}^k \to Ker(P_x)$

Then we have a complete parallelism on P(M):

$$\gamma := \omega + \theta : TP(M) \to \mathfrak{u}(n) \oplus \mathbb{C}^n \oplus \mathbb{R}^k$$

$$\mathfrak{m} = \mathbb{R}^{2n} \oplus W^*, \qquad [X, Y](A) = {}^t X A Y,$$

where W is one of the following \mathbb{R} -linear subspaces of $\mathfrak{so}(2n)$:

	TT7	1 0		W	k = 3
	W	k = 3		'n	$n^2 - n$
	$\{0\}$	0	tune	\mathfrak{P} $\mathfrak{n} \oplus \langle I \rangle$	$n^{2} - n + 1$
type	$\langle J_o \rangle$	1	II	$\mathfrak{p} \oplus (\mathfrak{v}_0)$ $\mathfrak{n} \oplus \mathfrak{su}(n)$	$2n^2 - n - 1$
Ι	$\mathfrak{su}(n)$	$n^2 - 1$	11	$\mathfrak{p} \oplus \mathfrak{su}(n)$ $\mathfrak{n} \oplus \mathfrak{u}(n)$	$2n^2 - n$
	$\mathfrak{u}(n)$	n^2		$\mathfrak{so}(2n)$	$2n^2 - n$

where
$$\mathfrak{p} = \left\{ \begin{pmatrix} X_1 & X_2 \\ X_2 & -X_1 \end{pmatrix} \middle| X_1, X_2 \in \mathfrak{so}(n) \right\}$$
 and $J_o = \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}$.

$$\mathfrak{m} = \mathbb{R}^{2n} \oplus W^*, \qquad [X, Y](A) = {}^t X A Y,$$

where W is one of the following \mathbb{R} -linear subspaces of $\mathfrak{so}(2n)$:

	TT7			W	k = 3
	W	k = 3		'n	$n^2 - n$
	$\{0\}$	0	type	$\mathfrak{p} \oplus \langle J_o \rangle$	$n^{2} - n + 1$
type	$\langle J_o \rangle$	$\frac{1}{2}$	II	$\mathfrak{p}\oplus\mathfrak{su}(n)$	$2n^2 - n - 1$
1	$\mathfrak{su}(n)$	$\binom{n-1}{m^2}$		$\mathfrak{p}\oplus\mathfrak{u}(n)$	$2n^2 - n$
	$\mathfrak{u}(n)$	11		$\mathfrak{so}(2n)$	$2n^2 - n$

where
$$\mathfrak{p} = \left\{ \begin{pmatrix} X_1 & X_2 \\ X_2 & -X_1 \end{pmatrix} \middle| X_1, X_2 \in \mathfrak{so}(n) \right\}$$
 and $J_o = \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}$.

Moreover, J is integrable if and only if \mathfrak{m} is of type I.

$$\mathfrak{m} = \mathbb{R}^{2n} \oplus W^*, \qquad [X, Y](A) = {}^t X A Y,$$

where W is one of the following \mathbb{R} -linear subspaces of $\mathfrak{so}(2n)$:

					W	k-3
	W	k=3			**	n = 0
		n - 0		n	$n^2 - n$	
	$\{0\}$	0		tuno	$r \rightarrow I $	$n^2 n + 1$
tune	$\langle J_{a} \rangle$	1		type	$\mathfrak{h} \oplus \langle J^o \rangle$	n - n + 1
T	(0)	2 1			$\mathfrak{p}\oplus\mathfrak{su}(n)$	$2n^2 - n - 1$
1	$\mathfrak{su}(n)$	$n^{-} - 1$			$\mathfrak{n} \oplus \mathfrak{u}(n)$	$2n^2 - n$
	$\mathfrak{u}(n)$	n^2			$p \oplus \mathfrak{a}(n)$	210 10
					$\mathfrak{so}(2n)$	$2n^2 - n$

where
$$\mathfrak{p} = \left\{ \begin{pmatrix} X_1 & X_2 \\ X_2 & -X_1 \end{pmatrix} \middle| X_1, X_2 \in \mathfrak{so}(n) \right\}$$
 and $J_o = \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}$.

Moreover, J is integrable if and only if \mathfrak{m} is of type I. For each model \mathfrak{m} , there exists a simply connected, flat generalized pseudohermitian manifold whose Tanaka algebra at each point is isomorphic to \mathfrak{m} , and whose automorphism group Psh(M) has the maximum dimension.