
A graph-theoretic approach to efficiently reason about
partially ordered events in the Event Calculus

Massimo Franceschet Angelo Montanari
Dipartimento di Matematica e Informatica, Università di Udine

Via delle Scienze, 206 – 33100 Udine, Italy
{francesc|montana}@dimi.uniud.it

Abstract

In this paper, we exploit graph-theoretic techniques to ef-
ficiently reason about partially ordered events in the Event
Calculus. We replace the traditional generate-and-test rea-
soning strategy by a more efficient generate-only one that
operates on the underlying directed acyclic graph of events
representing ordering information by pairing breadth-first
and depth-first visits in a suitable way. We prove the sound-
ness and completeness of the proposed strategy, and thor-
oughly analyze its computational complexity. Furthermore,
we show how it can be generalized to deal with the Modal
Event Calculus, that provides a uniform modal framework
for the basic Event Calculus and its skeptical and credulous
variants.

1. Introduction

In this paper, we propose a graph-theoretic approach
to the problem of efficiently reasoning about partially or-
dered events in Kowalski and Sergot’s Event Calculus (EC
for short) [5, 11] and in its skeptical and credulous modal
variants [4]. Reasoning about the evolution of the world
as the result of the occurrence of a set of events is crucial
in a variety of applications, including diagnosis, robotics,
agent modelling, qualitative physics, monitoring, planning
and plan validation, and natural language understanding. In
many of these applications, a reasoner is forced to deal with
incomplete knowledge about the events it is concerned with
and/or their temporal order [9]. We consider the problem of
efficiently inferring what is true over certain event-bounded
time intervals when only incomplete knowledge is avail-
able. Even though we develop our solution in the (Modal)
Event Calculus framework, we expect it to be applicable to
any formalism for reasoning about partially ordered events.

Partial ordering information about event occurrences can
be naturally represented by means of a directed acyclic

graphG = 〈E, o〉, where the set of nodesE is the set of
events and, for everyei, ej ∈ E, there exists(ei, ej) ∈ o
if and only if it is known thatei occurs beforeej . EC
updates are of additive nature only and they just consist
in the addition of new events (G nodes) and/or of further
(consistent) ordering information about the given events (G
edges). Given a directed acyclic graphG = 〈E, o〉, repre-
senting a set of partially ordered events,EC allows one to
compute the set of event-bounded maximal validity inter-
vals (MVIs for short) over which the properties initiated and
terminated by such events hold uninterruptedly. To com-
pute the set ofMVIs for any given propertyp, it exploits a
simplegenerate-and-teststrategy [5]: first, it blindly picks
up all pairs(ei, et) of initiating and terminating events forp;
then, it checks whether or not they occur in the proper order-
ing, that is, if the initiating eventei precedes the terminating
eventet; finally, it looks for possible interrupting eventse
occurring in between. Checking whetherei precedeset or
not reduces to establish if the edge(ei, et) belong to the
transitive closureo+ of o as well as checking if there exists
an interrupting evente for p in (ei, et) requires to verify if
both(ei, e) and(e, et) belong too+. In [6], Chittaro et alii
have shown that the complexity of query processing based
on this simple generate-and-test strategy isO(n5), provided
that suitable graph marking techniques are used.

In this paper, we propose a more efficientgenerate-only
strategy which reduces the computation of the set ofMVIs
for any given propertyp to a non-standard visit of the graph
G. The idea of exploiting graph-theoretic techniques to
speed up temporal reasoning about partially ordered events
in EC was originally proposed by Chittaro et alii in [6].
They provide a precise characterization of whatEC actu-
ally does to computeMVIs and show that, whenever all
recorded events are concerned with the same unique prop-
erty p, shifting the perspective from the transitive closure
o+ of the given partial ordero to its transitive reduction
o− allows one to do it more efficiently using a generate-
only strategy. Their solution can be easily generalized to
the case of multiple incompatible properties, that is, prop-

erties whose validity intervals cannot overlap. In this paper,
we will first show that such a solution cannot be further ex-
tended to deal with the general multiple-property case, be-
cause it does not properly work whenever there exist two
or more non-transitive paths of different length between an
ordered pair of events that respectively initiate and termi-
nate a given property. Then, we will describe an alternative
generate-onlystrategy forMVIs computation in the general
multiple-property case, which pairs breadth-first and depth-
first visits ofo in a suitable way, and thoroughly analyze its
complexity.

As pointed out in [5], however, when only partial infor-
mation about the occurred events and their exact order is
available, the sets ofMVIs derived byEC bear little rele-
vance, since the acquisition of additional knowledge about
the set of events and/or their occurrence times might both
dismiss currentMVIs and validate newMVIs. To over-
come these limitations, two variants of the basicEC, respec-
tively called theSkeptical EC(SKEC) and theCredulous EC
(CREC), have been proposed in [7]. For any given property
p, SKECcomputes the set of necessarily trueMVIs, that
is, the set ofMVIs which are derivable in all refinements
of the given partial order, whileCRECcomputes the set of
possibly trueMVIs, that is, the set ofMVIs which are deriv-
able in at least one refinement of the given partial order. In
[2], Cervesato et alii defined a uniform modal interpretation
for EC, SKEC, andCREC, called theModal Event Calcu-
lus (MEC), and extended the generate-and-test strategy for
MVIs computation inEC to MEC, without any rise in com-
putational complexity [3]. In the last part of the paper, we
will show that the proposed generate-only strategy forMVIs
computation inECcan be easily tailored toMEC.

The paper is organized as follows. In Section 2, we recall
some background knowledge on ordering relations, tran-
sitive reduction, and transitive closure. In Section 3, we
present the basic features and properties ofEC andMEC,
and point out the limitations of the existing algorithms for
MVIs computation when only partial ordering information
is available. In Section 4, we describe a new generate-only
algorithm for MVIs computation and prove its soundness
and completeness. The increase in efficiency of the pro-
posed solution is demonstrated by the complexity analy-
sis reported in Section 5. In Section 6, we show how to
adapt the proposed algorithm toMEC. In the conclusions,
we briefly discuss the achieved results and outline possible
directions for future research.

2. On ordering relations, transitive reduction,
and transitive closure

Let us first remind some basic notions about ordering
relations and ordered sets, transitive closure, and transitive
reduction upon which we will rely in the following [12].

EC usually representsordering information as a binary
acyclic relation on the set of events, that is, as an ordering
relation possibly missing some transitive links, but ituses
ordering information as a (strict) partial order that can be re-
covered as the transitive closure of the given binary acyclic
relation.

Definition 2.1 (DAGs, strictly ordered sets, non-strictly or-
dered sets, generated DAGs, induced DAGs)

Let E be a set ando a binary relation onE. o is called
a (strict) partial orderif it is irreflexive and transitive (and,
thus, asymmetric), while it is called areflexive partial or-
der if it is reflexive, antisymmetric, and transitive. The pair
(E, o) is called adirected acyclic graph(DAG) if o is a bi-
nary acyclic relation; astrictly ordered setif o is a partial
order; anon-strictly ordered setif o is a reflexive partial or-
der. Moreover, given a DAGG = 〈E, o〉 and a nodee ∈ E,
the subgraphG(e) of G consisting of all and only the nodes
which are accessible frome and of the edges that connect
them is called the graphgenerated bye. Finally, given a
DAG G = 〈E, o〉 and a setT ⊆ E, the subgraph ofG
induced byT consists of the nodes inT and the subset of
edges ino that connect them.

We will denote the sets of all binary acyclic relations and
of all partial orders onE asOE andWE , respectively. It is
easy to show that, for any setE, WE ⊆ OE . Moreover, we
will use the letterso andw, possibly subscripted, to denote
binary acyclic relations and partial orders, respectively.

When one is mainly interested in representing the path
information of aDAG, two extreme approaches can be fol-
lowed: (i) transitive reduction(or minimum storage rep-
resentation), and (ii)transitive closure(or minimum query
time representation). Transitive reduction and closure of a
DAGcan be formally defined as follows.

Definition 2.2 (Transitive reduction and closure of DAGs)

Let G = 〈E, o〉 be a directed acyclic graph. Thetran-
sitive reductionof G is the (unique) graphG− = 〈E, o−〉
with the smallest number of edges, with the property that,
for any pair of nodesi, j ∈ E, there is a directed path from
i to j in G if and only if there is a directed path fromi to
j in G−. Thetransitive closureof G is the (unique) graph
G+ = 〈E, o+〉 with the property that, for any pair of nodes
i, j ∈ E there is a directed pathi to j in G if and only if
there is an edge(i, j) ∈ o+ in G+.

In [1], Aho et alii show that every (directed) graph has a
transitive reduction, which can be computed in polynomial
time. They also show that such a reduction is unique in the
case of directed acyclic graphs. Furthermore, they prove
that the time needed to compute the transitive reduction of a

graph differs from the time needed to compute its transitive
closure by at most a constant factor.

MVIs computation requires the derivation of the transi-
tive closure of the given partial order. Clearly, if(E, o) is
a DAG, then(E, o+) is a strictly ordered set. We say that
two binary acyclic relationso1, o2 ∈ OE areequally infor-
mativeif o+

1 = o+
2 . This induces an equivalence relation

∼ on OE . It is easy to prove that, for any setE, the quo-
tient setOE/ ∼ andWE are isomorphic. In the following,
we will often identify a binary acyclic relationo with the
corresponding elemento+ of WE .

3. Basic and Modal Event Calculi

In this section, we first recall the syntax and semantics
of ECandMEC; then, we discuss the effects of the addition
of new events and/or pieces of ordering information on the
sets ofMVIs computed byEC andMEC; finally, we briefly
review the existing algorithms forMVIs computation.

3.1. Syntax and semantics of EC and MEC

Kowalski and Sergot’sEvent Calculus(EC) [11] aims at
modeling situations that consist of a set of events, whose
occurrences over time have the effect of initiating or ter-
minating the validity of properties, some of which may be
mutually exclusive. We formalize the time-independent as-
pects of a situation by means of anEC-structure, which is
defined as follows [4].

Definition 3.1 (EC-structure)

A structure for the Event Calculus(abbreviatedEC-
structure) is a quintupleH = (E,P, [·〉, 〈·],]·,·[) such that:

• E = {e1, . . . , en} and P = {p1, . . . , pm} are finite
sets ofeventsandproperties, respectively;

• [·〉 : P → 2E and 〈·] : P → 2E are respectively the
initiating and terminating mapof H. For every prop-
erty p ∈ P , [p〉 and〈p] represent the set of events that
initiate and terminatep, respectively;

•]·,·[⊆ P × P is an irreflexive and symmetric relation,
called theexclusivity relation, that models exclusivity
among properties.

Unlike the original presentation ofEC [11], we focus
our attention on situations where the occurrence time of
events is unknown. Indeed, we assume that incomplete in-
formation about the relative order in which events occur is
available. We however require temporal data to be consis-
tent so that an event cannot both precede and follow any
other event. We formalize the time-dependent aspects of an
ECproblem by specifying a partial order, calledknowledge
state, on the set of eventsE [4].

Given a structureH, we adopt as thequery languageof
EC the set:

L(EC) = {p(e1, e2) : p ∈ P ande1, e2 ∈ E}
of all property-labeled intervals overH.

Given a knowledge statew, a maximal validity interval
(MVI) for a propertyp with respect tow is an interval ofw
over which the propertyp holds uninterruptedly. We rep-
resent anMVI for p as p(ei, et), whereei and et are the
events that initiate and terminate the interval over whichp
maximally holds, respectively. The task performed byEC
reduces to deciding which of the elements ofL(EC) are
MVIs and which are not, with respect to the current partial
order of events.

We interpret the elements ofL(EC) relative to the set
WE (denotedWH in this context) of partial orders among
events inE. In order forp(e1, e2) to be anMVI relative
to the knowledge statew, (e1, e2) must be an interval in
w, i.e. e1 <w e2. Moreover,e1 ande2 must witness the
validity of the propertyp at the ends of this interval by ini-
tiating and terminatingp, respectively. These requirements
are enforced by conditionsi., ii. and iii. , respectively, in
the definition of valuation given below. The maximality re-
quirement is caught by the negation of the meta-predicate
br(p, e1, e2, w) in condition iv., which expresses the fact
that the truth of anMVI must not bebrokenby any interrupt-
ing event. Any evente which is known to have happened
betweene1 and e2 in w and that initiates or terminates a
property that is eitherp itself or a property exclusive with
p interrupts the truth ofp(e1, e2). These observations are
formalized as follows [4].

Definition 3.2 (Intended model of EC)

LetH = (E, P, [·〉, 〈·],]·,·[) be a EC-structure. The
intended EC-modelofH is the propositional valuationυH :
WH → 2L(EC), whereυH is defined in such a way that
p(e1, e2) ∈ υH(w) if and only if

i. e1 <w e2;

ii. e1 ∈ [p〉;
iii. e2 ∈ 〈p];

iv. br(p, e1, e2, w) does not hold, wherebr(p, e1, e2, w)
abbreviates

there exists an evente ∈ E such thate1 <w

e, e <w e2, and there exists a propertyq ∈
P such thate ∈ [q〉 or e ∈ 〈q], and either
]p, q[or p = q.

As a general rule, an evente interrupts the validity of
a propertyp if it initiates or terminatesp itself or a prop-
erty q which is incompatible withp. This rule adopts the

so-calledstrong interpretationof the initiate and terminate
relations: given a pair of eventsei andet, with ei occurring
beforeet, that respectively initiate and terminate a prop-
erty p, we conclude thatp does not hold over(ei, et) if an
evente which initiates or terminatesp, or a property incom-
patible withp, occurs during this interval, that is,(ei, et)
is a candidateMVI for p, but e forces us to reject it. The
strong interpretation is needed when dealing with incom-
plete sequences of events or incomplete information about
their ordering. An alternative interpretation of the initiate
and terminate relations, calledweak interpretation, is also
possible. According to such an interpretation, a propertyp
is initiated by an initiating event unless it has been already
initiated and not yet terminated (and dually for terminating
events). Further details about the strong/weak distinction
can be found in [4].

In the case of partially ordered events, the set ofMVIs
derived byEC is not stable with respect to the acquisi-
tion of new ordering information. Indeed, if we extend
the current partial order with new pairs of events, current
MVIs might become invalid and newMVIs can emerge. The
Modal Event Calculus(MEC) allows one to identify the set
of MVIs that cannot be invalidated no matter how the order-
ing information is updated, as far as it remains consistent,
and the set of event pairs that will possibly become MVIs
depending on which ordering data are acquired. These two
sets are callednecessary MVIsandpossible MVIs, respec-
tively, using2-MVIsand3-MVIsas abbreviations.

The query languageL(MEC) of MEC consists of for-
mulas of the formp(e1, e2), 2p(e1, e2) and3p(e1, e2), for
every propertyp and eventse1 ande2 defined inH.

The intended model ofMEC is given by shifting the fo-
cus from the current knowledge state to all knowledge states
that are accessible from it. Since⊆ is a reflexive partial or-
der,(WH,⊆) can be naturally viewed as a finite, reflexive,
transitive and antisymmetric modal frame. This frame, to-
gether with the straightforward modal extension of the valu-
ationυH to the transitive closure of an arbitrary knowledge
state, provides a modal model forMEC.

Definition 3.3 (Intended model of MEC)

LetH, WH, andυH be defined as in Definition 3.2. The
MEC-frameFH ofH is the frame(WH,⊆). Theintended
MEC-modelofH is the modal modelIH = (WH,⊆, υH).
Givenw ∈ WH andϕ ∈ L(MEC), the truth ofϕ at w with
respect toIH, denoted byIH; w |= ϕ, is defined as follows:

IH; w |= p(e1, e2) iff p(e1, e2) ∈ υH(w);
IH; w |= 2p(e1, e2) iff ∀w′ . w′ ∈ WH ∧ w ⊆ w′,

⇒ IH; w′ |= p(e1, e2);
IH; w |= 3p(e1, e2) iff ∃w′ . w′ ∈ WH ∧ w ⊆ w′

∧ IH;w′ |= p(e1, e2).

Given an EC-structureH and a partial orderw, the sets
of MVIs that are necessarily and possibly true inw corre-
spond respectively to the2- and3-moded atomic formu-
las which are valid inH with respect tow. We define the
setsMV I(H, w), 2MV I(H, w) and3MV I(H, w) of re-
spectivelyMVIs, necessaryMVIs and possibleMVIs which
a true inH with respect tow as follows:

MV I(H, w) = {p(e1, e2) : IH;w |= p(e1, e2)};
2MV I(H, w) = {p(e1, e2) : IH;w |= 2p(e1, e2)};
3MV I(H, w) = {p(e1, e2) : IH;w |= 3p(e1, e2)}.

In [2], it has been shown that the sets of2- and3-MVIs
can be computed by exploiting necessary and sufficientlo-
cal conditionsover w, thus avoiding a complete (and ex-
pensive) search of all the consistent refinements ofw. More
precisely, a propertyp necessarily holds between two events
e1 ande2 if and only if the interval(e1, e2) belongs to the
current order,e1 initiatesp, e2 terminatesp, and no event
that either initiates or terminatesp (or a property incom-
patible withp) will ever be consistently located betweene1

ande2. Similarly, a propertyp may possibly hold between
e1 and e2 if and only if the interval(e1, e2) is consistent
with the current ordering,e1 initiatesp, e2 terminatesp, and
there are no already known interrupting events betweene1

ande2. This is precisely expressed by the following propo-
sition.

Proposition 3.4 (Local conditions)

LetH = (E,P, [·〉, 〈·],]·,·[) be a EC-structure. For any
atomic formulap(e1, e2) onH and anyw ∈ WH,

• IH; w |= 2p(e1, e2) if and only if

i. (e1, e2) ∈ w;

ii. e1 ∈ [p〉;
iii. e2 ∈ 〈p];
iv. sbr(p, e1, e2, w) does not hold, where

sbr(p, e1, e2, w) abbreviates

there exists an evente ∈ E such that
(e, e1) 6∈ w, e 6= e1, (e2, e) 6∈ w, e 6=
e2, and there exists a propertyq ∈ P
such thate ∈ [q〉 or e ∈ 〈q], and either
]p, q[or p = q.

• IH; w |= 3p(e1, e2) if and only if

i. (e2, e1) 6∈ w;

ii. e1 ∈ [p〉;
iii. e2 ∈ 〈p];
iv. br(p, e1, e2, w) does not hold.

Proposition 3.4 allows us to give an alternative defini-
tion of the sets2MV I(H, w) and3MV I(H, w). Given

w ∈ WH and p ∈ P , let S(H, w) be the set of atomic
formulasp(e1, e2) such that all other events inE that ini-
tiate or terminatep, or a property incompatible withp, are
ordered with respect toe1 and e2 in w, and letC(H, w)
be the set of atomic formulasp(e1, e2) such thate1 initi-
atesp, e2 terminatesp, ande1 ande2 are unordered inw.
The set2MV I(H, w) (resp.3MV I(H, w)) can be alter-
natively defined as the intersection (resp. union) of the set
MV I(H, w) with S(H, w) (resp. C(H, w)), as stated by
the following corollary.

Corollary 3.5 Let H = (E, P, [·〉, 〈·],]·,·[) be an EC-
structure andw ∈ WH be a partial order. It holds that:

2MV I(H, w) = MV I(H, w) ∩ S(H, w);
3MV I(H, w) = MV I(H, w) ∪ C(H, w).

In Section 6, we will exploit Corollary 3.5 to devise an al-
gorithm forMVIs computation inMEC. Furthermore, from
Corollary 3.5 it is immediate to conclude that the sets of
necessaryMVIs, MVIs, and possibleMVIs with respect to
the current state of knowledge form an inclusion chain as
formally stated by the following proposition.

Proposition 3.6 (NecessaryMVI s and possibleMVI s en-
closeMVI s)

LetH = (E, P, [·〉, 〈·],]·,·[) be anEC-structure andw ∈
WH be a partial order. It holds that

2MV I(H, w) ⊆ MV I(H, w) ⊆ 3MV I(H, w).

Notice that if w is a total order, thenS(H, w) =
L(EC) and C(H, w) = ∅, and thus2MV I(H, w) =
3MV I(H, w) = MV I(H, w).

3.2. MVIs computation and updates

In this section we discuss the problem of determining
how the acquisition of further information about the set of
event occurrences and/or their occurrence times may affect
the behaviour ofEC andMEC. We first discuss updates of
ordering information; then, we change the perspective and
analyze the effects of acquiring new event occurrences.

Given an EC-structureH, we want to study the be-
haviour of the sets of true, necessarily true and possibly true
MVIs with respect to the acquisition of new ordering infor-
mation [4]. When the arrival of a new piece of ordering
information causes a transition into a more refined state of
knowledge, the current set ofMVIs may vary in two differ-
ent ways. On the one hand, the update may create a new
MVI by connecting an evente1, initiating a propertyp, to
an evente2 terminatingp. On the other hand, a new link
can transform a previously innocuous evente into an inter-
rupting event for a current MVIp(e1, e2). This allows us

to conclude that the functionMV I(H, ·) is nonmonotonic
with respect to the evolution of the ordering information.
On the contrary,S(H, ·) andC(H, ·) possess a monotonic
behavior: the setS(H, ·) grows monotonically as the cur-
rent ordering information is refined, while the setC(H, ·)
shrinks monotonically.

However, even thoughMV I(H, ·) has a nonmonotonic
behaviour, it is possible to show that its intersection (resp.
union) with S(H, ·) (resp.C(H, ·)) does not shrink (resp.
grow) when the current partial order is updated with new
consistent pairs of events. We first prove that for any pair
w, w′ ∈ W , with w ⊆ w′, MV I(H, w) ∩ S(H, w) ⊆
MV I(H, w′) ∩ S(H, w′). To this end, it suffices to prove
that if p(e1, e2) ∈ MV I(H, w) \ MV I(H, w′), then
p(e1, e2) 6∈ S(H, w). Fromp(e1, e2) ∈ MV I(H, w) and
p(e1, e2) 6∈ MV I(H, w′), it follows that moving fromw
to w′ transforms a previously innocuous evente into an in-
terrupting event forp(e1, e2). This means that the evente
affects eitherp or a property incompatible withp ande is
located betweene1 ande2 in w′, while it is unordered with
respect toe1 or e2 in w. By the definition ofS(H, ·), this
allows us to conclude thatp(e1, e2) 6∈ S(H, w). In a sim-
ilar way, we can prove thatMV I(H, w′) ∪ C(H, w′) ⊆
MV I(H, w) ∪ C(H, w). To this end, it suffices to prove
that if p(e1, e2) ∈ MV I(H, w′) \ MV I(H, w), then
p(e1, e2) ∈ C(H, w). Fromp(e1, e2) ∈ MV I(H, w′) and
p(e1, e2) 6∈ MV I(H, w), it follows that moving fromw to
w′ creates a newMVI p(e1, e2) by connecting an evente1,
that initiatesp, to an evente2, that terminatesp. This means
that the eventse1 ande2, that respectively initiate and ter-
minatep, are ordered inw′ and unordered inw, and thus, by
the definition ofC(H, ·), p(e1, e2) ∈ C(H, w). Exploiting
Corollary 3.5, this allows us to prove the following propo-
sition.

Proposition 3.7 (Monotonicity of necessary and possible
MVI s w.r.t. the addition of further ordering information)

Let H = (E, P, [·〉, 〈·],]·,·[) be an EC-structure and
w, w′ ∈ WH be two partial orders. It holds that:

a. if w ⊆ w′, then2MV I(H, w) ⊆ 2MV I(H, w′);

b. if w ⊆ w′, then3MV I(H, w′) ⊆ 3MV I(H, w).

By combining Propositions 3.6 and 3.7, we have that
2MV I(H, ·) and 3MV I(H, ·) constrain the variabil-
ity of the set of MVIs derivable usingEC. The state
of minimum information corresponds to the absence of
any ordering data: 2MV I(H, ·) and MV I(H, ·) de-
rive no formula, while3MV I(H, ·) derives all consis-
tent property-labeled intervals. As new ordering infor-
mation arrives,2MV I(H, ·) increases,3MV I(H, ·) de-
creases, butMV I(H, ·) always sits somewhere between
them. When enough ordering information has been entered

(at the limit, when the set of events has been completely or-
dered)2MV I(H, ·) and3MV I(H, ·) meet at a common
value, constrainingMV I(H, ·) to assume that same value.

We now consider the evolution of the sets ofMVIs, nec-
essarily trueMVIs, and possibly trueMVIs in the case in
which the knowledge statew remains unchanged and the
EC-structureH is refined thanks to the acquisition of new
event occurrences. Even though the addition of a new
event occurrence always causes a transition into a richer
EC-structure, the set of trueMVIs remains stable, since no
ordering information about the entered event occurrence is
added. On the contrary, the setS(·, w) can only shrink as
new events arrive, while the setC(·, w) grows monotoni-
cally. Taking advantage of Corollary 3.5, we can immedi-
ately prove the following proposition.

Proposition 3.8 (Monotonicity of2- and3-MVI s w.r.t. the
addition of new event occurrences)

Let H = (E, P, [·〉, 〈·],]·,·[) and H′ =
(E′, P, [·〉′, 〈·]′,]·,·[) be two EC-structures, such that
E ⊆ E′ and [·〉′ and 〈·]′ respectively extend[·〉 and 〈·] to
model the effects of the events inE′ \E on the properties in
P , and letw be a partial order. It holds that:

a. 2Φ(H′, w) ⊆ 2Φ(H, w);

b. 3Φ(H, w) ⊆ 3Φ(H′, w).

It is worth noting that, whenever we allow the addition
of both ordering information and new event occurrences, it
is impossible to identify any general rule constraining the
behaviour ofMV I(·, ·), 3MV I(·, ·), and2MV I(·, ·).

Example 3.9 (Beverage dispenser)

We illustrate the relationships betweenMVIs computa-
tion in EC and MEC and updates by means of a simple
example. We want to model the operations of a simple
beverage dispenser [4]. It can output either apple juice or
orange juice (but not both simultaneously). The choice is
made by means of a selector with three positions (apple, or-
angeandstop): by setting the selector to theapple or to
theorangeposition, apple juice or orange juice is obtained,
respectively; choosing thestopposition terminates the pro-
duction of juice. In our example, we distinguish three types
of events corresponding to the various settings of the selec-
tor and two relevant properties,supplyAppleandsupplyOr-
ange, indicating that apple juice or orange juice is being dis-
pensed, respectively. The event of setting the selector to the
apple(orange) position initiates the propertysupplyApple
(supplyOrange), while setting it to thestoppositiontermi-
natesboth properties. The propertiessupplyAppleandsup-
plyOrangeareexclusivesince apple juice and orange juice
cannot be output simultaneously.

Update EC SKEC CREC

a(e1, e4) a(e1, e4) a(e1, e4)

e3 a(e1, e4) Ø
a(e1, e4),

o(e3, e4)

e2 a(e1, e4) Ø

a(e1, e2),

a(e1, e4),

o(e3, e2),

o(e3, e4)

(e1, e2) a(e1, e4) Ø

a(e1, e2),

a(e1, e4),

o(e3, e2),

o(e3, e4)

(e2, e4) a(e1, e2) Ø

a(e1, e2),

o(e3, e2)

o(e3, e4)

(e2, e3) a(e1, e2) a(e1, e2)
a(e1, e2),

o(e3, e4)

(e3, e4)
a(e1, e2),

o(e3, e4)

a(e1, e2),

o(e3, e4)

a(e1, e2),

o(e3, e4)

Figure 3.1. The Beverage Dispenser Example.

We consider a scenario consisting of an evente1, that
initiates the propertysupplyApple, and astopevente4, that
terminates bothsupplyAppleandsupplyOrange. Further-
more, we assume thate1 precedese4. This scenario can be
formalized as follows.

E = {e1, e4};
P = {supplyApple, supplyOrange};
[supplyApple〉 = {e1};
〈supplyApple] = 〈supplyOrange] = {e4};
]supplyApple, supplyOrange[.

We describe the evolution of the sets of trueMVIs, nec-
essarily trueMVIs, and possibly trueMVIs when the fol-
lowing sequence of database updates is performed: (i) an
evente3, that initiates the propertysupplyOrange, is added;
(ii) an evente2, that terminates both properties, is inserted;
(iii) the following sequence of ordered pairs of events is en-
tered:(e1, e2), (e2, e4), (e2, e3), and(e3, e4). In Figure 3.1,
we describe the effects of each update on these three sets.
The first row of the table reports their initial values; each
subsequent row is associated with an update to the database
and filled in with the corresponding values of the three sets.
The first column shows the performed update; the second
column contains theMVIs derived byEC, wherea(ei, et)
(resp. o(ei, et)) is a shorthand for the statement that prop-
erty supplyApple(resp. supplyOrange) holds betweenei

andet; the third and fourth columns contain the sets of nec-

essary and possibleMVIs, respectively.
The fact that, when the pair(e2, e4) is entered, the

MVI a(e1, e4) disappears, while a newMVI a(e1, e2) is
added, provides an example of the nonmonotonic behavior
of MV I(·, ·) with respect to the addition of ordering infor-
mation. As for the monotonic behavior of2MV I(·, ·) and
3MV I(·, ·), we can observe that the set of necessaryMVIs
grows (resp. shrinks) when new ordered pairs of events
(resp. event occurrences) are acquired, while the set of pos-
sibly MVIs shrinks (resp. grows) as new ordering informa-
tion (resp. information about event occurrences) is added.
Finally, observe that the set ofMVIs always lies somewhere
between2MV I(·, ·) and3MV I(·, ·), and, when the or-
dering information is complete, the three sets meet at a com-
mon value.

3.3. Existing algorithms for MVIs computation

Given an EC-structureH and a knowledge statew, the
set ofMVIs for a given propertyp, with respect toH and
w, can be computed according to two alternative tempo-
ral reasoning strategies: a generate-and-test strategy and a
generate-only one. Thegenerate-and-teststrategy first gen-
erates all ordered pairs of initiating and terminating events
for p, and then, for every pair, it verifies whether there
are known interrupting events in between or not. On the
contrary, thegenerate-onlystrategy identifies possible in-
terrupting events during the search of candidateMVIs forp,
i.e. pairs(e1, e2) such thate1 initiatesp ande2 terminatesp.
Generate-only strategies generally leads to the development
of algorithms forMVIs computation with a lower worst-case
complexity.

Traditional algorithms forMVIs computations adopt the
simplergenerate-and-teststrategy, which can be easily de-
rived from the specification ofEC semantics given in Def-
inition 3.2 [5, 11] (this strategy can be easily adapted to
MEC by exploiting the local conditions given in Proposi-
tion 3.4 [2, 11]). In order to compute allMVIs p(e1, e2),
with respect tow, such algorithms first generate all consis-
tent intervals(e1, e2) such thate1 initiatesp, e2 terminates
p, ande1 <w e2; then, they check whether or not the va-
lidity of p is broken during the interval(e1, e2). Such algo-
rithms can be easily proved to be sound and complete with
respect to the semantics ofEC, but they are quite expen-
sive: they operate inO(n5) time, wheren is the number of
events [3, 6].

A generate-only algorithm forMVIs computation can be
found in [6]. Such an algorithm operates on the transitive
reduction of the given partial ordering, which needs to be
updated (paying a non-constant cost) whenever further or-
dering information is entered in the database. The behavior
of this algorithm can be described as follows: for any given
propertyp and any evente1 initiating p, the algorithm ex-

amines all events accessible frome1, searching for events
terminatingp. The search starts from the successors ofe1,
and proceeds breadth-first. The nodes which are directly ac-
cessible frome1 (nodes that belong to the first layer) can be
partitioned into two categories: interrupting events, that is,
events that affect eitherp or a property incompatible with
p, and independent events, that is, events that affect nei-
therp nor properties incompatible withp. Events belonging
to the first category, which terminatep, contribute to the
set of MVIs for p initiated by e1, and are returned to the
user; moreover, nodes which are reachable from them are
marked, since there is no need to keep them into consider-
ation during further processing. The remaining nodes be-
longing to the first category are marked, together with their
direct and indirect successors, because they cannot belong
to a successful path for the user query. Nodes belonging
to the second category are used to determine the next layer
to explore, which consists of the collection of all their un-
marked successors. The procedure repeats recursively these
steps until the last layer is reached.

It is possible to show that this strategy is sound and com-
plete whenever every property is incompatible with all the
other ones. In particular, it is sound and complete when-
ever the set of propertiesP is a singleton set (the single-
property case studied in [6]). In such a restricted context,
MVIs computation can actually be simplified. Whenever all
event occurrences affect the same propertyp, any interval
(e1, e2) is anMVI for p if and only if e1 initiatesp, e2 ter-
minatesp, ande1 is an immediate predecessor ofe2, that
is, there are no recorded events in between, with respect to
the transitive reduction of the given partial ordering. Un-
fortunately, in the general case, in spite of the conjecture
formulated in [6], such an algorithm is complete, but not
sound. A simple counterexample will be provided in Sec-
tion 4. In the next section, we propose an efficient, sound
and complete generate-only algorithm for theMVIs compu-
tation problem, which successfully pairs breadth-first and
depth-first visits of the graph representing the given partial
order of events.

4. A sound and complete generate-only algo-
rithm for MVI s computation

In this section, we describe a new generate-only algo-
rithm that computes the set ofMVIs which are true with
respect to a partial orderw and anEC-structureH. We pro-
vide a high-level description of the algorithm and prove its
soundness and completeness with respect to the semantics
of EC.

Let H = (E, P, [·〉, 〈·],]·,·[) be an EC-structure and
o ∈ OE (denoted byOH hereinafter) be an acyclic binary
relation. We define an algorithm forMVIs computation that
combines a breadth-first and a depth-first visit of the graph

(E, o), which is directed and acyclic, but not necessarily
connected (background knowledge on elementary graph al-
gorithms can be found in [8]). In the following, whenever it
does not lead to ambiguities, we denote the graph(E, o) by
G and the subgraph of(E, o) generated bye by G(e).

The algorithm behaves as follows: for every propertyp ∈
P and every evente1 ∈ E initiating p, it searches the graph
G(e1) for all eventse2 such that the interval(e1, e2) is an
MVI for p. Given a propertyp and an evente1, the algorithm
associates the following labels with the nodes ofG(e1):

• unmarked : it denotes nodes (events) to be visited;

• visited : it denotes nodes (events) already visited;

• marked : it denotes nodes (events) that initiate or ter-
minate eitherp or a property incompatible withp;

• cutoff : it denotes nodes (events) which are cut off
from the search space, because they cannot terminate
anyMVI for p initiated bye1.

The set of eventse2 such thatp(e1, e2) is anMVI is com-
puted as follows. Initially, all nodes inG(e1) are labeled
with unmarked ; then, the graphG(e1) is visited breadth-
first. The breadth-first visit ofG(e1) starts from the succes-
sors ofe1 (first layer) and proceeds, layer by layer, until the
last layer is reached. The last layer is a layer followed by an
empty layer; sinceG(e1) is acyclic, such a layer always ex-
ists and it is unique. At each layer, onlyunmarked events
are processed. Lete be anunmarked event belonging to
the current layer. The algorithm labelse asvisited and
checks whether or not it initiates or terminates eitherp or a
property incompatible withp. If the outcome of the test is
positive, then the following operations are executed before
processing the next event of the layer:

1. e is labeled asmarked ;

2. the labelcutoff is assigned to all nodes ofG(e) dif-
ferent frome;

3. if e terminatesp, then the nodee is saved.

Once the whole graphG(e1) has been visited, all the saved
nodes, which are still labeled asmarked , are returned; they
are all and only the events that terminate anMVI for p initi-
ated bye1.

A pseudo-code description of such an algorithm for
MVIs computation can be given as follows.

MV I ← ∅
for eachp ∈ P do

for eache1 ∈ [p〉 do
S ← ∅
for eache ∈ G(e1) do

set(e, unmarked)

L ← nextlayer({e1})
while L 6= ∅ do

for eache ∈ L do
if is relevant to(e, p) then

set(e, marked)
cutoff(e)
if e ∈ 〈p] then

S ← S ∪ {e}
L ← nextlayer(L)

for eache2 ∈ S do
if label(e2, marked)then

MV I ← MV I ∪ {p(e1, e2)}
return MV I

The procedureset(e,l) assigns the labell to the event
e, the boolean functionlabel(e,l) checks whether the
labell is associated with the evente or not, and the boolean
function is relevant to(e,p) tests whether or note
initiates or terminates eitherp or a property incompatible
with p. The procedurenextlayer(L) computes the next
layer in the breadth-first visit of the graphG(e1):

nextlayer(L)
L′ ← ∅
for eache ∈ L do

if label(e, unmarked)or label(e, visited)then
for eachsuccessore′ of e do

if label(e′, unmarked)then
set(e′, visited)
L′ ← L′ ∪ {e′}

return L’

Finally, the procedurecutoff(l) visits depth-first the
subgraph generated by the evente and labels ascutoff
all its nodes:

cutoff(e)
for eachsuccessore′ of e do

if not label(e′, cutoff) then
set(e′, cutoff)
cutoff(e′)

Before proving that such an algorithm in sound and com-
plete with respect to the semantics ofEC, we illustrate its
behaviour by means of two simple examples. Lete1, e2,
ande3 be three event occurrences,p andq be two incom-
patible properties, ando = {(e1, e2), (e1, e3), (e2, e3)} be
the current knowledge state (cf. Figure 4.2, left side). Sup-
pose thate1 initiatesp, e2 initiatesq, ande3 terminatesp.
The set ofMVIs for p, which are initiated bye1, is com-
puted as follows. The algorithm first labels asunmarked
all nodes ofG(e1), and then it visits breadth-firstG(e1).
The first layer contains bothe2 ande3. Suppose that the
algorithm first processese3 and thene2. The nodee3 is la-
beled asmarked and saved, because it terminatesp. The

e1

e2

e3
e1

e3

e2

e4 e5

e6

Figure 4.2. Two graphs representing ordering
relations

propagation of the labelcutoff has no effect, sincee3

has no successors. Hence, the nodee2 is processed and la-
beled asmarked , because it initiates a propertyq which
is incompatible withp. The effect of propagating the la-
bel cutoff is that of replacing the labelmarked of e3

by the labelcutoff . Then, the visit ofG(e1) terminates
(all nodes have already been visited) and the algorithm re-
turns noMVIs for p initiated bye1, because the label as-
sociated withe2 (the only saved event) iscutoff and not
marked . This example should clarify the role of the label
cutoff : some events may be labelled asmarked along
a “short” path (e1 → e3 in the example) and saved as can-
didate ending points of anMVI for the considered property.
However, an interval is anMVI for a property if and only
if all paths leading from the initiating event to the termi-
nating one do not contain interrupting events, that is, events
that initiate or terminate either the considered property or a
property incompatible with it. If there exists a longer path
(e1 → e2 → e3 in the example) which contains an inter-
rupting event, then the candidate node is cut off during the
propagation of the labelcutoff .

It is worth noticing that the event graph of the exam-
ple contains a transitive edge (e1 → e3). The next exam-
ple shows thatcutoff labels are needed also for reason-
ing about event graphs devoid of transitive edges (their use
can be avoided only if we restricted ourselves to multiple
incompatible properties). Consider a scenario consisting
of six event occurrencese1, e2, e3, e4, e5, ande6, two in-
compatible propertiesp andq, and the knowledge stateo
depicted in Figure 4.2, right side, which has no transitive
edges. Suppose thate1 initiatesp, e5 initiatesq, e6 termi-
natesp, ande2, e3, ande4 affect neitherp nor a property
incompatible withp. The interval(e1, e6) is not anMVI
for p, because there exists an interrupting event, namelye5,
which occurs betweene1 ande6. The algorithm removes
the nodee6 from the set of candidate terminating events as-
sociated with initiating evente1 when it propagates the label
cutoff during the processing ofe5.

The following theorem proves that the proposed algo-
rithm computes exactly the set ofMVIs as defined in Defi-
nition 3.2.

Theorem 4.1 The proposed generate-only algorithm is
sound and complete.

Proof.
We first prove that the algorithm is sound, that is, if

p(e1, e2) is generated by the algorithm, thenp(e1, e2) is
anMVI. Given a propertyp and an evente1, the algorithm
searches the acyclic graphG(e1) for terminating eventse2.
Since the visit is breadth-first, each node is reached along
the shortest path onG(e1) starting frome1. Given a nodee,
we denote byD(e) the length of the shortest path onG(e1)
connectinge1 to e. We show thatp(e1, e2) is anMVI if and
only if e1 initiatesp, e2 terminatesp, e2 belongs toG(e1),
and every pathe1 ; e2 from e1 to e2 in G(e1) does not
contain interrupting events forp, that is, events that affect
eitherp or a property incompatible withp and differ from
bothe1 ande2.

We proceed by contradiction. Suppose thatp(e1, e2) is
returned by the algorithm, but it is not anMVI. If e1 does not
initiate p or e2 does not terminatep, thenp(e1, e2) cannot
be retrieved. Moreover, ife2 does not belong toG(e1), then
the visit ofG(e1) does not retrievee2, and hencep(e1, e2)
cannot be generated. Finally, suppose that there exists at
least one pathe1 ; e2 in G(e1) that contains at least one
nodez which affects eitherp or a property incompatible
with p and is different frome1 ande2. If D(z) < D(e2),
then the nodez is visited beforee1, it is labeled asmarked ,
and the labelcutoff is propagated to the nodes ofG(z)
different from z. In particular,e2 is labeled ascutoff
during such a propagation and thus it cannot be chosen
as the terminating event of anMVI for p initiated by e1.
Hence,p(e1, e2) cannot be generated by the algorithm. If
D(z) > D(e2) (notice thatD(z) 6= D(e2), sincez 6= e2

and there are not simultaneous events), then the nodee2

is visited beforez, it is labeled asmarked , and the label
cutoff is propagated to the nodes ofG(e2) different from
e2. Since the graphG(e1) is acyclic and there exists a path
from z to e2, there are no paths frome2 to z; hence the
propagation of the labelcutoff does not reach the node
z. The nodez is processed at some later stage, it is la-
beled asmarked , and the labelcutoff is propagated to
the nodes ofG(z) different from z. In particular, the la-
bel of e2 is changed frommarked to cutoff , and thus
p(e1, e2) cannot be generated by the algorithm.

We now prove that the algorithm is complete, that is, if
p(e1, e2) in anMVI, thenp(e1, e2) is generated by the algo-
rithm. Since(e1, e2) is an interval,e2 is reachable frome1

in the graphG(e1). Sincep(e1, e2) is anMVI, every path
e1 ; e2 from e1 to e2 in G(e1) does not contain interrupt-
ing events forp different frome1 ande2. Hence, the node
e2 is not cut off and, since it terminatesp, it is labeled as
marked and retrieved as the terminating event of anMVI
for p initiated by e1. Thus,p(e1, e2) is generated by the
algorithm.

The proposed strategy is aforward strategy: given a
propertyp and an initiating evente1, it visits the graph
G(e1), looking for a terminating evente2 such thatp(e1, e2)
is anMVI. Nothing prevents us to define an equivalent back-
ward strategy as follows. Given a directed graphG, let us
denote byĜ the graph in which each edge(ei, ej) has been
replaced by the edge(ej , ei). Given a propertyp and a ter-
minating evente2, we visit the grapĥG(e2) as before, look-
ing for initiating eventse1 such thatp(e1, e2) is anMVI.

5 Complexity analysis

In this section, we analyze the worst-case computational
complexity of the proposed algorithm forMVIs derivation.

Given an EC-structureH and an acyclic binary relation
o ∈ OH, we determine the complexity of computing the
set ofMVIs with respect too andH, i.e. the set of formu-
las p(e1, e2) such thato+ |= p(e1, e2), by means of the
proposed generate-only algorithm. We measure the com-
plexity in terms of the sizen of the structureH (wheren
is the number of recorded events) and the sizem of the re-
lation o. Given an EC-structureH, the setE of events can
be arbitrarily large, while the setP of properties is fixed
once and for all, since it is an invariant characteristic of
the considered domain. Since the cardinality ofP does not
change from one problem instance to another one (unless
we change the application domain), while the cardinality of
E may grow arbitrarily, we choose the cardinality ofE, that
is, the numbern of events, as the size ofH and consider the
number of properties as a constant. Furthermore, we as-
sume that verifying the truth of the propositions “e initiates
p” and “e terminates p” costsO(1). Since the number of
properties is constant, the tests “e affects either p or a prop-
erty incompatible with p” and “p is incompatible with q”
costO(1) too.

The parametersn and m are equal to the number of
nodes and the number of edges of the graph(E, o) which
is visited during the computation, respectively. Moreover,
we have thatm = O(n2) when the event graph is dense,
m = O(n) for sparse event graphs, andm = O(1) when
only a constant number of events is ordered ino.

The following theorem proves that, under the above as-
sumptions, the complexity of the proposed algorithm is
quadratic for sparse event graphs and cubic for dense ones.

Theorem 5.1 The complexity of the generate-only algo-
rithm isO(n ·m).

Proof.
For every propertyp and every evente1 initiating p, the

algorithm visits the graphG(e1) and retrieve all the events
e2 such thatp(e1, e2) is anMVI. Since the number of prop-
erties is constant, the complexity isO(n · f(n,m)), where

f(n,m) is the complexity of the procedure that visits the
graphG(e1) and retrieves the nodes that terminate theMVI
for p initiated bye1. It holds thatf(n,m) is the sum of the
costs of the visit ofG(e1) and of the processing of the nodes
of G(e1).

The graphG(e1) is visited breadth-first to construct the
layers and to retrieve the terminating events, while it is vis-
ited depth-first to propagate the labelscutoff . Each edge
of the graphG(e1) is visited at least once (depth-first or
breadth-first) and at most twice (first breadth-first, and then
depth-first). Indeed, if an edge(e1, e2) is depth-first visited,
thene1 is labeled asmarked or cutoff . Hence, neither a
breadth-first visit nor a depth-first one will later reconsider
it. However, edges which have been already breadth-first
visited can also be visited depth-first in order to propagate
the labelcutoff . It follows that the cost of visitingG(e1)
isO(m).

Similarly, each node of the graphG(e1) is processed at
least once (depth-first or breadth-first) and at most twice
(first breadth-first, and then depth-first). Indeed, if the
depth-first visit cuts off a node, then it will not be pro-
cessed anymore. However, nodes labeled asmarked or
visited , which have been already processed during the
breadth-first visit, can also be processed during a depth-first
visit and labeled ascutoff . The processing of a node con-
sists of the operations of labeling and testing for interrupt-
ing or terminating events. Both these operations costO(1).
Therefore, processing all nodes ofG(e1) costsO(n).

Putting together the results of our analysis, we can con-
clude thatf(n,m) = O(m) + O(n) = O(m + n). If
m = O(1), then only a constant number of nodes is pro-
cessed, and hencef(n,m) = O(1); otherwise,n = O(m),
and thusf(n,m) = O(m). This allows us to conclude that
the cost of the algorithm isO(n · f(n,m)) = O(n ·m). In
particular, if the event graph is dense, that is,m = O(n2),
then the complexity isO(n3), while if it is sparse, that is,
m = O(n), then the cost isO(n2).

6. The generalization to MEC

Given an EC-structureH = (E, P, [·〉, 〈·],]·,·[) and a
partial orderw, two efficient algorithms, that respectively
compute necessary and possibleMVIs with respect toH and
w, can be obtained from Corollary 3.5 taking advantage of
the algorithm forMVIs computation inEC. In order to com-
pute the setsC(H, w) andS(H, w) (cf. Section 3), we pro-
ceed as follows. The elements ofC(H, w) are obtained by
selecting all property-labeled pairs of eventsp(e′, e′′) such
that e′ initiatesp, e′′ terminatesp, ande′ and e′′ are un-
ordered inw:

C ← ∅
for eachp ∈ P do

for each (e1, e2) ∈ E × E do
if e1 ∈ [p〉 and e2 ∈ 〈p] and

(e1, e2) 6∈ w and (e2, e1) 6∈ w then
C ← C ∪ {p(e1, e2)}

return C

The computation ofS(H, w) is more involved. First,
we compute the setU(H, w), containing all pairs(e, p) ∈
E ×P such that there exists another evente′, which affects
eitherp or a property incompatible withp and is unordered
with respect toe in w. It is easy to see that if(e, p) ∈
U(H, w), thene neither initiates nor terminates a2-MVI
for p. The setS(H, w) is obtained by selecting those atomic
formulasp(e1, e2) such thate1 initiatesp, e2 terminatesp,
and neither(e1, p) nor (e2, p) belong toU(H, w):

// computeU(H, w)
U ← ∅
S ← ∅
for eachp ∈ P do

for eache ∈ E do
Found← False
V ← E
while not Foundand V 6= ∅ do

let e′ ∈ V
if (e, e′) 6∈ w and

(e′, e) 6∈ w and
e′ is relevant to(e′, p) then
Found← True
U ← U ∪ {(e, p)}

else
V ← V \ {e′}

// computeS(H, w) taking advantage ofU(H, w)
for eachp ∈ P do

for each (e1, e2) ∈ E × E do
if (e1, p) 6∈ U and

(e2, p) 6∈ U then
S ← S ∪ {p(e1, e2)}

return S

In order to determine the set of necessarily trueMVIs,
it suffices to compute the setsMV I(H, w) (as proposed
in Section 4) andS(H, w) (as explained above); the set
2MVI(w) can be obtained by intersecting them. Simi-
larly, possibly trueMVIs are obtained taking the union of
MV I(H, w) and C(H, w). The proof of soundness and
completeness easily follows from Corollary 3.5 and Theo-
rem 4.1.

Theorem 6.1 The proposed algorithms for necessary and
possibleMVI s computation are sound and complete.

The following theorem states that the complexity of the
algorithms for necessary and possibleMVIs computation is
(slightly) higher than that of the algorithm for basicMVIs
only in the case of sparse event graphs.

Theorem 6.2 The complexity of the algorithms for neces-
sary and possibleMVI s computation isO(n·m+n2 ·log n).

Proof.
Given a knowledge statew, the algorithm for the com-

putation ofMV I(H, w) has complexityO(n · m) (The-
orem 5). Moreover, it is immediate to see that determin-
ing the setsC(H, w) andS(H, w) costsO(n2). Finally,
taking the intersection (resp. union) of two sets of cardi-
nality r costsO(r · log r). SinceMV I(H, w), C(H, w),
and S(H, w) have cardinalityO(n2), the overall cost is
O(n ·m + n2 · log n).

7. Conclusions and further developments

In this paper, we outlined a graph-theoretic approach
to the problem of efficiently reasoning about partially or-
dered events in Kowalski and Sergot’s Event Calculus [11].
The proposed algorithm exploits a generate-only strategy
based on a graph representation of ordering information
that reduces the computation of theMVIs to a visit of the
event graph that pairs traditional breadth-first and depth-
first searches. Furthermore, we showed how the proposed
strategy can be extended to deal with the Modal Event Cal-
culus [4].

In [6], Chittaro et alii propose a generate-only algorithm
for MVIs computation that operates on the transitive re-
duction of the given partial ordering. Such an algorithm
is sound and complete whenever every property is incom-
patible with all the other ones. In particular, it is sound
and complete whenever there is only one property (single-
property case). We are currently working at the develop-
ment of a sound and complete algorithm that generalizes to
the multi-property case the strategy discussed in [6]. The
basic steps of this generalized strategy are the following
ones: first, it computes (and maintains) the transitive clo-
sureG+ = 〈E, o+〉 of the graphG representing the avail-
able ordering information; then, for every propertyp, it ex-
tracts fromG+ the subgraph induced by the set of events
that initiate or terminatep, or a property incompatible with
p; finally, it derives the set ofMVIs for any propertyp by ap-
plying the strategy for the single-property case to the tran-
sitive reduction of the subgraph forp. We expect to achieve
complexity results comparable with the ones we reported in
the present work.

Acknowledgements

We would like to thank the anonymous reviewers for
their useful comments. Thanks also to Roberto Fracas
whoseTesi di Laureacontributed to the achievement of the
results reported in this paper [10].

References

[1] A. V. Aho, M. R. Garey, and J. Ullman. The transitive re-
duction of a directed graph.SIAM Journal of Computing,
1(2):131–137, 1972.

[2] I. Cervesato, L. Chittaro, and A. Montanari. A modal
calculus of partially ordered events in a logic program-
ming framework. In L. Sterling, editor,Proceedings of the
Twelfth International Conference on Logic Programming —
ICLP’95, pages 299–313, Kanagawa, Japan, 13–16 June
1995. MIT Press.

[3] I. Cervesato, M. Franceschet, and A. Montanari. A hierar-
chy of modal event calculi: Expressiveness and complexity.
In H. Barringer, M. Fisher, D. Gabbay, , and G. Gough, edi-
tors,Proceedings of the Second International Conference on
Temporal Logic — ICTL’97, pages 1–17, Manchester, Eng-
land, 14–18 July 1997. Kluwer Applied Logic Series. To
appear.

[4] I. Cervesato and A. Montanari. A general modal framework
for the event calculus and its skeptical and credulous vari-
ants.Journal of Logic Programming, 38(2):111–164, 1999.

[5] I. Cervesato, A. Montanari, and A. Provetti. On the non-
monotonic behavior of the event calculus for deriving max-
imal time intervals.International Journal on Interval Com-
putations, 2:83–119, 1993.

[6] L. Chittaro, A. Montanari, and I. Cervesato. Speeding up
temporal reasoning by exploiting the notion of kernel of an
ordering relation. In S. Goodwin and H. Hamilton, editors,
Proceedings of the Second International Workshop on Tem-
poral Representation and Reasoning — TIME’95, pages 73–
80, Melbourne Beach, FL, 26 April 1995.

[7] L. Chittaro, A. Montanari, and A. Provetti. Skeptical and
credulous event calculi for supporting modal queries. In
A. Cohn, editor,Proceedings of the Eleventh European Con-
ference on Artificial Intelligence — ECAI’94, pages 361–
365. John Wiley & Sons, 1994.

[8] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduc-
tion to algorithms. The MIT Press, 1990.

[9] T. Dean and M. Boddy. Reasoning about partially ordered
events.Artificial Intelligence, 36:375–399, 1988.

[10] R. Fracas. Uso di algoritmi su grafi per ragionare in modo
efficiente su insiemi di eventi parzialmente ordinati (in Ital-
ian). Tesi di Laurea in Scienze dell’Informazione, Università
di Udine, Italy, 1997.

[11] R. Kowalski and M. Sergot. A logic-based calculus of
events.New Generation Computing, 4:67–95, 1986.

[12] J. van Leeuwen. Graph algorithms. In J. van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science. Volume A:
Algorithms and Complexity, pages 525–632. Elsevier, 1990.

