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Abstract

Kowalski and Sergot’s Event Calculus (EC) is a sim-
ple temporal formalism that, given a set of event oc-
currences, allows the derivation of the maximal valid-
ity intervals (MVIs) over which properties initiated or
terminated by those events hold. The limited expressive
power of EC is notably augmented by permitting events
to initiate or terminate a property only if a given set of
preconditions hold at their occurrence time. We define
a semantic formalization of the Event Calculus with
Preconditions. We gain further expressiveness by con-
sidering modal variants of this formalism, and show
how to adapt our semantic characterization to encom-
pass the additional operators. We discuss the complex-
ity of MVI validation and describe examples showing
that modal event calculi with preconditions can be suc-
cessfully exploited to deal with real-world applications.

Keywords: Reasoning about Actions and Events,
Non-monotonic Reasoning,Modal Logic, Logic Pro-
gramming.

1 Introduction

The Event Calculus, abbreviated EC [11], is a simple
temporal formalism designed to model situations char-
acterized by a set of events, whose occurrences have the
effect of starting or terminating the validity of deter-
mined properties. Given a possibly incomplete descrip-
tion of when these events take place and of the proper-
ties they affect, EC is able to determine the maximal
validity intervals, or MVIs, over which a property holds
uninterruptedly. The algorithm EC relies on for the
verification or calculation of MVIs is polynomial [6]. It
can advantageously be implemented as a logic program.
Indeed, the primitive operations of logic programming
languages can be exploited to express boolean com-
binations of MVI computations and limited forms of

quantification.
The range of queries that can be expressed in EC

is too limited for modeling realistic situations, even
when permitting boolean connectives. Expressiveness
can be improved either by extending the representa-
tion capabilities of EC to encompass a wider spectrum
of situations, or by enriching the query language of
this formalism. In this paper, we explore both aspects
relatively to a specific subclass of EC problems con-
sisting of a fixed set of events that are known to have
happened, but with incomplete information about the
relative order of their occurrences [1, 2, 3, 7, 8, 12].

In many common situations, the occurrence of an
event is no guaranty that a property is initiated or ter-
minated. For example, turning the key in the ignition
will start a car only if there is gasoline in the tank.
In these situations, the effect of an event happening is
tied to the validity of a number of properties, or pre-
conditions, at its occurrence time. Computing MVIs
in the presence of preconditions acquires a recursive
flavor since an event initiates or terminates an MVI if
and only if each of its preconditions is satisfied when
it occurs, i.e. if and only if it occurs inside an MVI
for each of its preconditions. Syntactic restrictions can
however be imposed in order to ensure termination. In
this case, the complexity of computing an MVI remains
polynomial, but the exponent is a function of the nest-
ing degree of the preconditions.

Even with the addition of preconditions, the MVIs
derived by EC bear little relevance when only partial
knowledge about event ordering is available. Indeed,
in these situations, the acquisition of additional knowl-
edge about the actual event ordering might both dis-
miss current MVIs and validate new MVIs [5]. It is
instead critical to compute precise variability bounds
for the MVIs of the (currently underspecified) actual
ordering of events. Optimal bounds have been identi-
fied in the set of necessary MVIs, or 2-MVIs, and the
set of possible MVIs, or 3-MVIs. They are the subset



of the current MVIs that are not invalidated by the
acquisition of new ordering information, and the set of
intervals that are MVIs in at least one completion of
the current ordering of events, respectively.

In [2], we defined a Generalized Modal Event Calcu-
lus (without preconditions), GMEC, that reduces the
computation of 2-MVIs and 3-MVIs to the derivation
of basic MVIs, mediated by the resolution of the oper-
ators 2 and 3 from the modal logic K1.1, a refinement
of S4 [15]. The query language of GMEC permits a free
mixing of boolean connectives and modal operators, re-
covering the possibility of expressing a large number of
common situations, but at the price of intractability:
the resolution of a GMEC query is indeed an NP-hard
problem [4, 8].

In this paper, we focus on the integration of modal
operators and preconditions. This combination has
received limited attention in the literature [7, 8], al-
though the resulting calculus benefits from the added
expressiveness of both features. Its computational
complexity is however known to be beyond tractability.

The main contributions of this paper lie in the for-
malization for the first time of an Event Calculus with
Preconditions (PEC ), the extension of the resulting
semantics to cope with modal operators (PMEC and
PGMEC ), and the formal analysis of the complexity of
the calculi. We invite the interested reader to consult
[8] for a more detailed discussion of the topics treated
in this paper, and for the proofs of the statements we
mention.

The paper is organized as follows. Section 2 first
gives a formal account of PEC and of its semantics,
and then extends it to PGMEC with a treatment of
the modal operators and connectives of this formalism.
Case studies drawn from the domains of medicine and
fault diagnosis are described in Section 3. Section 4
proposes a complexity analysis for the calculi consid-
ered in this paper. Finally, Section 5 summarizes the
main points of the paper and outlines directions of fu-
ture work.

2 Modal Event Calculi with Preconditions

In this section, we first give a formalization of the
syntax and semantics of PEC and adapt it to encom-
pass PGMEC ; then we present some relevant prop-
erties of these formalisms. Implementations in the
language of hereditary Harrop formulas [9] have been
given in [8], together with formal proofs of soundness
and completeness with respect to the specifications be-
low. We will analyze the complexity of these calculi in
Section 4.

The Event Calculus with Preconditions (PEC ) and

its modal variants aim at modeling situations that con-
sist of a set of events, whose occurrences over time have
the effect of initiating or terminating the validity of
properties when given preconditions are met. We for-
malize the time-independent aspects of a situation by
means of a PEC-structure, defined as follows.

Definition 2.1 (PEC-structure)
A structure for the Event Calculus with Precondi-

tions (PEC-structure for short) is a quadruple H =
(E, P, [·|·〉, 〈·|·]) such that:

• E = {e1, . . . , en} and P = {p1, . . . , pm} are finite
sets of events and properties, respectively. Ele-
ments of 2P are called contexts and the properties
in them are referred to as preconditions.

• [·|·〉 : P × 2P → 2E and 〈·|·] : P × 2P → 2E are
respectively the initiating and terminating map of
H. For every property p ∈ P , [p|C〉 and 〈p|C] rep-
resent the set of events that initiate and terminate
p, respectively, in case all preconditions in C hold
at their occurrence time.

Traditional formulations of the Event Calculus, EC
[11], also prescribe an exclusivity relation, which speci-
fies which properties are not supposed to be holding at
the same time. The presence of preconditions in PEC
permits an easy emulation of the exclusivity relation
[8]. On the other hand, in the absence of incompatible
properties, an EC problem is modeled by a degener-
ated PEC -structure where all contexts are empty.

Unlike the original presentation of EC [11], we focus
our attention on situations where the occurrence time
of events is unknown. Indeed, we only assume the avail-
ability of incomplete information about the relative or-
der according to which these events have happened.
Therefore, we formalize the time-dependent aspects of
a PEC problem by providing a strict partial order for
the involved event occurrences. We write WH for the
set of all such orders over a PEC -structure H and use
the letter w to denote individual orderings, or knowl-
edge states, in WH. Given w ∈ WH, we will sometimes
call a pair of events (e1, e2) ∈ w an interval. For rea-
sons of efficiency, implementations generally represent
the current situation w as a quasi-order o, from which
w can be recovered as the transitive closure o+ of o.
We denote with OH the set of all quasi-orders over H;
clearly WH ⊆ OH. In the following, we will often work
with extensions of an ordering w, defined as any ele-
ment of WH that contains w as a subset (recall that an
order is a relation, i.e. a set of pairs). We define a com-
pletion of w as any extension of this knowledge state
that is a total order. We denote with ExtH(w) and
CompH(w) the set of all extensions and the set of all
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completions of the ordering w in WH, respectively. We
will drop the subscript H when clear from the context.

Given a structure H and a knowledge state w, PEC
offers means to infer the maximal validity intervals, or
MVIs, over which a property p holds uninterruptedly.
We represent an MVI for p as p(ei, et), where ei and et

are the events that initiate and terminate the interval,
respectively. Consequently, we adopt as the query lan-
guage of PEC the set AH of all such property-labeled
intervals over H. We interpret the elements of AH as
propositional letters and the task performed by PEC
reduces to deciding which of these formulas are MVIs
and which are not, with respect to the current partial
order of events.

In order for p(e1, e2) to be an MVI relatively to the
knowledge state w, (e1, e2) must be an interval in w.
Moreover, e1 and e2 must witness the validity of the
property p at the ends of this interval by initiating
and terminating p, respectively, and by having all of
their preconditions validated. These requirements are
enforced by conditions (i), (ii) and (iii), respectively,
in the definition of valuation given below. The max-
imality requirement is caught by the meta-predicate
nb(p, e1, e2, w) in condition (iv), which expresses the
fact that the validity of an MVI must not be broken by
any interrupting event. Any event e which is known to
have happened between e1 and e2 in w and that initi-
ates or terminates p interrupts the validity of p(e1, e2).
These observations are formalized as follows.

Definition 2.2 (PEC-model)

Let H = (E, P, [·|·〉, 〈·|·]) be a PEC-structure. An
intended PEC-model of H is any propositional valu-
ation υH : WH → 2AH defined in such a way that
p(e1, e2) ∈ υH(w) if and only if

i. (e1, e2) ∈ w;

ii. init(e1, p, w), where init(e1, p, w) iff
∃C ∈ 2P . ∀q ∈ C. ∃e′, e′′ ∈ E.

e1 ∈ [p|C〉 ∧ q(e′, e′′) ∈ υH(w)
∧ (e′, e1) ∈ w ∧ ((e1, e

′′) ∈ w ∨ e1 = e′′)

iii. term(e2, p, w), where term(e2, p, w) iff
∃C ∈ 2P . ∀q ∈ C. ∃e′, e′′ ∈ E.

e2 ∈ 〈p|C] ∧ q(e′, e′′) ∈ υH(w)
∧ (e′, e2) ∈ w ∧ ((e2, e

′′) ∈ w ∨ e2 = e′′);

iv. nb(p, e1, e2, w), where nb(p, e1, e2, w) iff
¬∃e ∈ E. (e1, e) ∈ w ∧ (e, e2) ∈ w

∧ (init(e, p, w) ∨ term(e, p, w)).

Notice that the extremes of an interval are not treated
symmetrically. This anomaly implements the intuition
according to which a property does not hold yet when

an event initiates it, while it must hold at the moment
when a terminating event occurs.

The meta-predicates init, term and nb are mutu-
ally recursive in the above definition. In particular, an
attempt at computing MVIs by simply unfolding their
definition is non-terminating in pathological situations
[8]. In general, a PEC problem can have zero or more
models. However, most PEC problems encountered in
practice satisfy syntactic conditions ensuring the ter-
mination of this procedure and the uniqueness of the
model. This is particularly important since it permits
the transcription of the above specification as a logic
program that is guaranteed to terminate [8]. We need
the following definition.

Definition 2.3 (Dependency Graph)

Let H = (E, P, [·|·〉, 〈·|·]) be a PEC-structure. The
dependency graph of H, denoted by GH, consists of
one node for each property in P , and contains the edge
(q, p) if and only if ∃e ∈ E. ∃C ∈ 2P . q ∈ C ∧ (e ∈
[p|C〉 ∨ e ∈ 〈p|C]).

In the following, we will restrict our attention to
those PEC -structures H such that GH is acyclic. Un-
der such an assumption, for every property p ∈ P ,
the length of the longest path to p in GH is finite.
We denote it by BH(p). Furthermore, we set BH =
maxp∈P BH(p) and denote by CH the cardinality of the
largest context in [·|·〉 or 〈·|·]. It is worth noting that the
above restriction ensures that the computation of any
MVI on the basis of Definition 2.2 can never contain
more than BH embedded MVI calculations; therefore
it always terminate, as formally stated in [8].

The set of MVIs of a PEC problem, defined as a
pair (H, w), is not stable with respect to the acquisi-
tion of new ordering information. Indeed, as we move
to an extension of w, current MVIs might become in-
valid and new MVIs can emerge [3]. The Generalized
Modal Event Calculus with Preconditions, or PGMEC,
extends the language of PEC with the possibility of
enquiring about which MVIs will remain valid in every
extension of the current knowledge state, and about
which intervals might become MVIs in some extension
of it. We call intervals of these two types necessary
MVIs and possible MVIs, respectively. PGMEC inter-
prets a necessary MVI 2p(e1, e2) and a possible MVI
3p(e1, e2) as the application of the operators 2 and 3,
respectively, from an appropriate modal logic to the
MVI p(e1, e2). Boolean connectives are permitted as
well. More formally, the query language of PGMEC is
defined as follows.
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Figure 1. Reasoning with Extensions versus Reasoning with Completions

Definition 2.4 (PGMEC-language)
Let H = (E, P, [·|·〉, 〈·|·]) be a PEC-structure.

Given the PEC-language AH = {p(e1, e2) : p ∈ P
and e1, e2 ∈ E}, the PGMEC-language of H, denoted
by LH, is the modal language with propositional letters
in AH and logical operators in {¬, ∧ , ∨ , 2, 3}.

In order to provide PGMEC with a semantics, we
must shift the focus from the current knowledge state
w to all knowledge states that are reachable from w,
i.e. ExtH(w), and more generally to WH. Now, by def-
inition, w′ is an extension of w if w ⊆ w′. Since ⊆ is
a non-strict order, (WH,⊆) can be naturally viewed as
a finite, reflexive, transitive and antisymmetric modal
frame. If we consider this frame together with the
straightforward modal extension of the valuation υH
to an arbitrary knowledge state, we obtain a modal
model for PGMEC .

Definition 2.5 (PGMEC-model)
Let H = (E, P, [·|·〉, 〈·|·]) be a PEC-structure. The

PGMEC-frame FH of H is the frame (WH,⊆). The
intended PGMEC-model of H is the modal model IH =
(WH,⊆, υH), where the propositional valuation υH :
WH → 2AH is defined as in Definition 2.2. Given w ∈
WH and ϕ ∈ LH, the truth of ϕ at w with respect to
IH, denoted by IH; w |= ϕ, is defined as follows:
IH; w |= p(e1, e2) iff p(e1, e2) ∈ υH(w);
IH; w |= ¬ϕ iff IH; w 6|= ϕ;
IH; w |= ϕ1 ∧ ϕ2 iff IH; w |= ϕ1 and IH; w |= ϕ2;
IH; w |= ϕ1 ∨ ϕ2 iff IH; w |= ϕ1 or IH; w |= ϕ2;
IH; w |= 2ϕ iff ∀w′ ∈ ExtH(w). IH;w′ |= ϕ;
IH; w |= 3ϕ iff ∃w′ ∈ ExtH(w). IH;w′ |= ϕ.

A PGMEC-formula ϕ is valid in IH, written
IH |= ϕ, if IH; w |= ϕ for all w ∈ WH.

We will drop the subscripts H whenever this does not
lead to ambiguities. Moreover, given a knowledge state
w in WH and a PGMEC -formula ϕ over H, we write
w |= ϕ for IH; w |= ϕ. Similarly, we abbreviate
IH |= ϕ as |= ϕ.

In the following, we will also consider a simple lin-
guistic fragment of PGMEC, called PMEC, consisting
of the class of formulas BH = {ϕ, 2ϕ,3ϕ : ϕ ∈ AH},
that we will show to be sufficiently expressive to model
significant application domains.

We conclude this section by showing that reasoning
about the extensions of a given partial order is not the
same as reasoning about its completions. However, it
is possible to show that completions can be modally
defined in terms of extensions [8]. This result will be
exploited in Section 4 to prove the complexity of the
proposed calculi.

Consider the following example (Figure 1, left). Let
e1, e2, e3 and e4 be four events, and p, q, r, s, t be
five properties. Suppose that e1 initiates p and termi-
nates q without preconditions, while it initiates s with
precondition q; e2 initiates q and terminates p, while
it initiates r with precondition p; e3 terminates both
r and s and initiates t if at least one among r and s
holds. Finally, e4 terminates t. Consider a scenario o
according to which e1 precedes e3, e2 precedes e3, the
relative order of e1 and e2 is unknown and e3 precedes
e4. Under these hypotheses, t(e3, e4) holds in every
completion of o, but it does not hold in o itself. Thus
it does not hold in every extension of the current state.

The next example (Figure 1, right) describes a dual
situation using a similar symbology. Here, s(e3, e4)
holds in the current state of knowledge o, but it does
not hold in any of its completion. This means that
there exists one extension (o itself) in which s(e3, e4)
holds, while there exist no completion in which it holds.

3 Modeling Real-World Examples

In this section, we consider two examples, taken
from the domains of hardware and medical diagnosis,
respectively, that show how modal event calculi with
preconditions can be successfully exploited to deal with
real-world applications.
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Figure 2. Expected Register Behavior, Measurements and Resulting Event Ordering

3.1 Diagnosis of a faulty CNCC

We focus our attention on the representation and
processing of information about fault symptoms that
is spread out over periods of time and for which cur-
rent expert system technology is particularly deficient
[14]. Consider the following example, which diagnoses
a fault in a computerized numerical control center
(CNCC) for a production chain.

A possible cause for an undefined position of a
tool magazine is a faulty limit switch S. This
cause can be ruled out if the status registers
IN29 and IN30 of the control system show the
following behavior: at the beginning both reg-
isters contain the value 1. Then IN29 drops
to 0, followed by IN30. Finally, both return
to their original values in the reverse order.

Figure 2 describes a possible sequence of transitions,
for IN29 and IN30, that excludes the eventuality of S
being faulty. In order to verify this behavior, the con-
tents of the status registers must be monitored over
time. Typically, measurements are made at fixed in-
tervals, asynchronously with respect to the update of
status registers. While measurements can be taken fre-
quently enough to guarantee that signal transitions are
not lost, it is generally impossible to exactly locate the
instants at which a register changes its value. Conse-
quently, it is possible that several transitions take place
between two measurements, making it impossible to
recover their relative order. In the case of our exam-
ple, the situation is depicted in Figure 2 (left): dotted
lines indicate measurements. Moreover, we have given
names to the individual transitions of state of the differ-
ent registers. From the values found at measurements
m0 and m1, we can conclude that both IN29 and IN30
were reset during this interval (transitions e1 and e2,
respectively), but we have no information about their
relative ordering. Similarly, measurement m2 informs

us that the registers assumed again the value 1 (tran-
sitions e3 and e4), but we do not know which was set
first. The available ordering information is reported on
the right-hand side of Figure 2.

The situation displayed in Figure 2 can be repre-
sented by the PMEC -structure H = (E, P, [·|·〉, 〈·|·]),
whose components are defined as follows:

• E = {e1, e2, e3, e4};
• P = {one29, zero29, one30, zero30};
• {e1} = [zero29|{}〉, {e2} = [zero30|{zero29}〉,
{e3} = [one30|{}〉, {e4} = [one29|{}〉;

• {e1} = 〈one29|{}], {e2} = 〈one30|{}],
{e3} = 〈zero30|{zero29}], {e4} = 〈zero29|{}].

We have represented transitions as events with the
same name, and used mnemonic names for the proper-
ties corresponding to the two different values of IN29
and IN30. It is easy to check that the dependency
graph for H does not contain any loop.

It is worth noting that, in general, preconditions do
not imply physical sequentiality. As an example, we
state that the event e2 initiates the property zero30
only if the property zero29 holds to express the fact
that we are only interested in those situations where
IN30 is reset while IN29 holds the value 0. In such
a way, we are able to a priori eliminate a number of
incorrect behaviors.

The partial order of transitions, described in Fig-
ure 2 (right), is captured by the following (current)
knowledge state:

o = {(e1, e3), (e1, e4), (e2, e3), (e2, e4)}.
Let us consider the PEC-formula:

ϕ = zero30(e2, e3).
In order to verify that the switch S is not faulty, we
must ensure that the registers IN29 and IN30 display
the expected behavior in all refinements of the current
knowledge state o. With our encoding, this amounts
to proving that the PMEC -formula 2ϕ holds in o. If
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Figure 3. Expected Symptom Evolution for Metatropic Dwarfism

this is the case, the fault is to be excluded. If we want
to determine the existence of at least one extension of
o where the registers behave correctly, we must verify
the satisfiability of the PMEC -formula 3ϕ in o. If this
is not the case, the fault is certain. Since we have that
o+ |= 3ϕ and o+ 6|= 2ϕ, the knowledge available in o
entitles us to assert that the fault is possible, but not
certain. Assume that, unlike in the actual situation of
Figure 2, we extend o with the pair (e2, e1). Let us de-
note the resulting state by o1. It holds that o+

1 6|= 3ϕ,
and thus the switch S is certainly faulty. On the other
hand, if we refine o with the pairs (e1, e2) and (e3, e4),
calling o2 the resulting state, we have that o+

2 |= 2ϕ.
In this case the fault can be excluded.

3.2 Diagnosis of the Metatropic Dwarfism

As a second example, consider the following situa-
tion of illnesses taken from the domain of diagnosis of
skeletal dysplasias [10].

The model of the Metatropic Dwarfism speci-
fies that at birth the thorax is narrow and af-
ter the first year of age a mild kyphoscoliosis
occurs. If the severity of the kyphoscoliosis is
relatively mild then the thorax will continue to
be narrow. If the severity of the kyphoscoliosis
increases then there be a period during which
the thorax is perceived as relatively normal but
when the kyphoscoliosis is progressive the tho-
rax becomes wide. Metatropic Dwarfism can
be excluded if the symptoms do not comply to
this model.

Figure 3 schematizes the evolution of a patient to be
diagnosed with Metatropic Dwarfism. Both kyphosco-
liosis severity and thorax width are continuous at-
tributes, but radiologists are only interested in a finite
set of discrete qualitative values (narrow, normal, and
wide for the thorax; mild, moderate, and progressive for

the scoliosis), and hence only the events which mark
the transitions from one qualitative value to the next
one are significant. In order to verify this model, the
width of the thorax and the severity of the kyphosco-
liosis must be checked over time. However, as in the
case of measurements of status registers, while the ra-
diological examinations can be done frequently enough
to guarantee that qualitative value transitions are not
lost, it is generally impossible to exactly locate the
instants at which these transitions happen. Conse-
quently, it is possible that several transitions take place
between two examinations making it impossible to re-
cover their relative order. In the case of our example,
the situation is depicted in Figure 3. Exams x0 and x1

tell us respectively that at birth the thorax was narrow
and that after the first year a mild kyphoscoliosis had
developed. We denote with e0 and e1 the correspond-
ing events. With exam x2, we observe that the thorax
is now normal and the kyphoscoliosis has become mod-
erate. We write e3 and e2 for the corresponding events.
We know that they have occurred after e1, but we have
no information about their relative ordering. Finally,
exam x3 informs us that the thorax has successively
become wide and the kyphoscoliosis progressive. Let
e5 and e4 be the corresponding causing events. Again,
we know they have happened after e2 and e3, however
we are not able to order them.

The situation displayed in Figure 3 can be repre-
sented by the PGMEC-structure H = (E, P, [·|·〉,
〈·|·]), whose components are defined as follows:

• E = {e0, e1, e2, e3, e4, e5, e6};
• P = {narrow, normal, wide,

mild,moderate, progressive};
• {e0} = [narrow|{}〉, {e1} = [mild|{}〉,
{e2} = [moderate|{}〉,
{e3} = [normal|{moderate}〉,
{e4} = [progressive|{}〉,
{e5} = [wide|{progressive}〉;
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• {e2} = 〈mild|{}], {e3} = 〈narrow|{}],
{e4} = 〈moderate|{}], {e5} = 〈normal|{}],
{e6} = 〈wide|{}] = 〈progressive|{}].

We have added the event e6 in order to terminate the
validity of the properties wide and progressive; it corre-
sponds to the death of the patient. As in the previous
example, our use of preconditions is instrumental to the
inferences we want to achieve. Finally, observe that the
dependency graph for H does not contain loops. The
partial order of transitions, described in Figure 3, is
captured by the following (current) knowledge state:

o = {(e0, e1), (e1, e2), (e1, e3), (e2, e4),
(e2, e5), (e3, e4), (e3, e5), (e4, e6), (e5, e6)}.

Consider the PGMEC -formula:

ϕ = normal(e3, e5) ∧ wide(e5, e6).

In order to verify that the diagnosis of the dysplasia
is certain, we must ensure that the PGMEC -formula
2ϕ is satisfiable in o. If we want to determine if it is
possible to diagnose the dysplasia, we must verify the
satisfiability of the PGMEC -formula 3ϕ in o. Since
we have that o+ |= 3ϕ and o+ 6|= 2ϕ, the knowledge
contained in o entitles us to assert that the diagnosis
of the dysplasia is possible, but not certain. Assume
that, unlike the actual situation of Figure 3, we extend
o with the pair (e3, e2). Let us denote the resulting
state with o1. It is easy to prove that o+

1 6|= 3ϕ, and
thus that the dysplasia can be excluded. On the other
hand, if we refine o with the pairs (e2, e3) and (e4, e5),
calling o2 the resulting state, we have that o+

2 |= 2ϕ.
In this case, the dysplasia is certain.

4 Complexity Analysis

In this section, we study the complexity of the event
calculi presented in Section 2. We model our anal-
ysis around the satisfiability relation given in Defini-
tions 2.2 and 2.5. We measure the complexity of testing
whether IH;w |= ϕ holds in terms of the size of the in-
put structure (e.g. the number n of events it includes).
It is worth noting that, although possible in principle,
it is disadvantageous in practice to implement knowl-
edge states so that the test (e1, e2) ∈ w has constant
cost. We instead maintain a quasi-order o on events
whose transitive closure o+ is w. Verifying whether
(e1, e2) ∈ w holds becomes a reachability problem in o
and it can be solved in quadratic time O(n2) [6].

Given a PEC -structure H, a knowledge state w ∈
WH and a PEC -formula (resp. PGMEC -formula) ϕ,
we want to characterize the complexity of the problem
of establishing whether IH; w |= ϕ is valid, an instance
of the general problem of model checking. We call the

triple (H, w, ϕ) an instance and generally prefix this
term with the name of the calculus we are considering.
In the following, we will show that, given an instance
(H, w, ϕ), the satisfiability test for ϕ is polynomial in
EC and PEC, while it is NP-hard in PGMEC.

Given an EC -instance (H, w, ϕ), the cost of the test
w |= ϕ can be derived to be O(n3) directly from the
relevant parts of Definition 2.2, as proved in [6]. In
particular, we assume that verifying the validity of the
propositions e ∈ [p|C〉 and e ∈ 〈p|C] when the context
C is empty (as it is in basic EC ) has constant cost
O(1), for given event e and property p. This is not true
anymore in PEC . Let (H, w, ϕ) be a PEC -instance
such that the dependency graph of H is acyclic. The
cost of the test w |= ϕ is still polynomial in the number
n of events, but depends on BH (see Definition 2.3).

Theorem 4.1 (Cost of model checking in PEC)
Given a PEC-instance (H, w, ϕ), the test w |= ϕ has

cost O(n3·(BH+1)).

Proof. We proceed by induction on the value of BH.
If BH = 0, then we fall in the case of EC, whose com-
plexity has been shown to be O(n3). When BH > 0,
the evaluation of each of the O(n) meta-predicate init
or term of Definition 2.2 results in the evaluation of
at worst CH preconditions and then the evaluation of
each of these conditions results in O(n2) satisfiability
tests with a BH− 1 nesting level. The relationship be-
tween the complexities Comp(BH) and Comp(BH−1)
is expressed by the following recurrent expression:

Comp(BH) = O(n) ·O(n2) · Comp(BH − 1).
By induction hypothesis, Comp(BH) = O(n3) ·
O(n3·BH), and hence Comp(BH) = O(n3·(BH+1)).

Let us prove now that if we extend PEC with modal
operators and boolean connectives, the resulting cal-
culus PGMEC is NP-hard. To this end, we consider
the simple linguistic fragment of PGMEC we called
PMEC . To determine the complexity of the satisfia-
bility test in PMEC, we can exploit Dean and Boddy’s
results reported in [7]. They consider the problem of
computing which facts must be or may possibly be true
over certain time intervals with respect to the set of
completions of the current partial order in a frame-
work including preconditions but devoid of proposi-
tional connectives. They showed that this computation
is NP-hard in the general case. PMEC tests the satis-
fiability of a PMEC -formula with respect to the set of
extensions of the current partial order. In Section 2, we
showed that the approach that considers all the exten-
sions is more general than the one that restricts itself
to completions. It is easy to show that there exists a
polynomial reduction of Dean and Boddy’s problem to
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the satisfiability problem in PMEC . Hence, the satis-
fiability problem in PMEC is at least as complex as a
problem that Dean and Boddy proved to be NP-hard.
From this result, it immediately follows that the satis-
fiability test in PGMEC is NP-hard.

Corollary 4.2 (Cost of model checking in PGMEC)
Given a PGMEC-instance (H, w, ϕ), the satisfiabil-

ity test w |= ϕ is NP-hard.

5 Conclusions

In this paper we studied the expressiveness and com-
plexity of extensions of EC with preconditions and
modal operators. We also extensively discussed the
application of the resulting modal event calculi with
preconditions to two real-world examples.

Elsewhere [2, 4, 13], we systematically investigated
modal extensions of EC without preconditions. In par-
ticular, we considered the modal event calculi MEC
and GMEC that are obtained from PMEC and PG-
MEC, respectively, by substituting EC for PEC, that
is, by making the effects of event occurrences context-
independent. We proved that model checking in MEC
has cost O(n3), while it is NP-hard for GMEC . More-
over, the attempt of characterizing GMEC within the
rich taxonomy of modal logics reveals Sobocinski logic,
also known as system K1.1 [15], as its closest relative.
This characterization allowed us to establish a number
of interesting logical properties of GMEC that have
been used to improve the efficiency of its implemen-
tations. In [8] we have shown that PGMEC inherits
most of these logical properties.

We are currently investigating the interplay between
preconditions, modal operators, and boolean connec-
tives. We already know that the addition of precondi-
tions to MEC makes the resulting calculus, PMEC,
NP-hard. In this respect, we are looking for both
polynomial approximations to MVI computation and
expressive sublanguages that admit exact polynomial
procedures for this task. Instead, the problem of char-
acterizing the relationships between boolean connec-
tives and preconditions in a modal framework is still
open. More precisely, we do not know if the addi-
tion of boolean connectives to PMEC or of precondi-
tions to GMEC makes the resulting calculus, PGMEC,
(strictly) more expressive than PMEC and GMEC,
respectively. The complexity results we obtained are
compatible with all the alternatives.
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