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Abstract fiable in a tree-like model [6]. The ability to name statesin a
model violates the tree model property. Now, one can view
We investigate expressivity and complexity of hybrid log- the tree model property as a good feature for a logic, since
ics on linear structures. Hybrid logics are an enrichment of it usually implies nice computational behavior, and as a bad
modal logics with certain first-order features which are al- feature, since it indicates a lack in expressivity. Are there
gorithmically well behaved. Therefore, they are well suited natural extensions of modal and temporal logics with the
for the specification of certain properties of computational naming facilities required by various modeling tasks (and
systems. We show that hybrid logics are more expressivehus violating the tree model property) that are still well-
than usual modal and temporal logics on linear structures, behaved from a computational point of view?
and exhibit a hierarchy of hybrid languages. We determine  Hybrid logics provide a positive answer to the previ-
the complexities of the satisfiability problem for these lan- ous question. They allow reference to states in a modal
guages and define an existential fragment of hybrid logic framework, and, hence, mix features from first-order logic
for which satisfiability is still NP-complete. Finally, we ex- with features from modal logic, whence the namgbrid
amine the linear time model checking problem for hybrid logic [7]. On top of ordinary propositional variables, hybrid
logics and its complexity. languages have a type of atomic formulas catiethinals
Syntactically, nominals behave like ordinary propositional
variables, but they are names, true at exactly one state in
any model. Hybrid languages may contain #ieperator
@; which gives ‘random’ access to the state hamed:by
@, ¢ holds iff ¢ holds at the state named by They may
Modal and temporal logics are algorithmically well- also include th@ame binder z. which assigns the variable
behaved and mathematically natural fragments of classicalnamex to the state of evaluation. Referencing statesby
logics [6]. However, from the point of view afeason- combines naturally with naming them Ky The binder]
ing about graphssomething crucial is missing in the usual ‘stores’ the current state, arf@ ‘retrieves’ the information
propositional modal and temporal logics: they lack mech- stored. Theexistential bindedz. binds the variable name
anisms fomamingstates or sets of states, and for dynami- z to some state in the model.
cally creating new names. In this paper we investigate the expressivity and com-
There is a good reason for the lack of such naming mech-plexity of hybrid logics ovetinear frameg(that is, irreflex-
anisms in traditional modal and temporal logics: they are ive, transitive and trichotomous frames), and we compare
only able to express properties that satisfy tle® model our findings with the known results on general frames (that
property, i.e., properties that are satisfiable iff they are satis- is, frames with no restriction). We show that, on linear
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frames, basic hybrid logic (i.e., the logic extending proposi- In formulas, we will omit parenthesis whenever appropri-
tional logic with nominals@ operator, futuré& and pasiP ate. Furthermore, we assume all boolean operators are de-
temporal operators) is no more complex than propositional fined as usuallU andS are the Until and Since operators,
logic: its satisfiability problem is indeed NP-complete. The respectively. As usualizy is short for-F—-p andHe for
same complexity bounds hold ov@¥, <), the linear frame  —P—¢. Moreover, we defin®y as(Py vV ¢ V Fyp) and

of the natural numbers with the usual ordering relation. Ay as—E—¢. On linear framesk andA are the existential
The same logic over general structures is known to beand universal modality, respectively.

EXPTIME-complete [1]. Whenever the name bindeis The notions offree and bound state variable (with re-
added, the resulting hybrid logic is as expressive as first-spect to the binding operatg) are obvious generalizations
order logic on linear structures, a result that fails in the from first-order logic. Other syntactic notions (suctsab-
case of general structures. As a consequence, its satisfiabilstitution, and of a state symbeobeingsubstitutable for: in

ity problem is nonelementarily decidable. The same result p) are defined like the corresponding notions in first-order
holds over(N, <). Moreover, the same logic is undecidable logic. We writey[t/s] for the formula obtained by replacing
on general structures [3]. If we omit tk2and@ operators,  all free instances of the state symhbdly the state symbol
the resulting logic (hence, the hybrid logic with nomindls, s. A sentences a formula without free state variables. A
andF only) has an NP-complete satisfiability problem over formula ispureif it contains no propositional variables, and
linear structures, whence over general structures it is stillnominal-freeif it contains no nominals.

undecidable [3].

We furthermore isolate a large fragment of the nonele- Definition 2.2 A hybrid model M for the full hybrid lan-
mentary hybrid logic with hybrid operatorg and |, and guage is a tripleM = (M, R, V') with M is a non-empty
temporal operatorF' andP (and their dualG andH). It set,R a binary relation onM, andV : ALET — Pow(M)
is characterized by the fact that the name binderay not such that for all nominals € NOM, V(¢) is a singleton.
occur in the scope of universal temporal opera@@sndH. (We use calligraphic letteraA for models, italic roman\/
We show that the satisfiability problem for this fragment is for their domains.) We call the elementsidf states R the
NP-complete; hence it is basically not harder than propo- accessibility relatiomnd V' the valuation
sitional logic. As a corollary, we show NP-membership of  Anassignmeny for M is a mappingg : WVAR — M.

a temporal logic equipped with a limited version of Until, Given an assignment we defingy, (anz-variant ofg) by
Since and Next-time temporal operators, whereas temporak®, (z) = m andg?, (y) = g(y) for z # y.
logic with either Until or Next-time is PSPACE-hard. Let M = (M,R,V) be a modely;n € M, andg an

We finally investigate the linear time model checking assignment. For any atom, let [V, g](a) = {g(a)} if a

problem for hybrid logics and give some examples of prop- is a state variable, and’(a) otherwise. Thesatisfaction

erties in which the use of nominals is crucial. relationis defined as follows (we omit the clauses for the
Booleans and for the past temporal operators):
2 Hybrid logics M,g,ml-a iff me[V,g](a) (a € ATOM)

In this section we introduce hybrid logics and give some M. g,mIF Fo it 3m' (Rmm’ A M, g,m’ I )

examples of hybrid formulas. M, g,m - Uy iff  Im' (Rmm' A M, g,m'IF ¢
AYm" (Rmm” A Rm"'m’ — M, g,m" I ¢))

Definition 2.1 Let _P_ROP = {p1, p2, ...} bg a. count- M, g.ml-Gup iff M, g,m' I, where
able set ofpropositional variablegsNOM = {iy,is,...} V,gl(s) = {m'} (s € WSYM)
a countable set ohominals and WVAR = {zy,xs,...} . '
a countable set oftate variablesWe assume th&ROP, M,g,mlk lz.p it M, gr mlEe
NOM and WVAR are pairwise disjoint. We calVSYM = M,g,mlF 3z iff Im'(M, g%, mlk )
NOM U WVAR the set ofstate symbolsALET = PROP U
NOM the set ofatomic letters and ATOM = PROP U
NOM UWVAR the set ofatoms Thewell-formed formulas
of the hybrid languagdiL(@, |,3,F,P,U,S) (over the
signature(PROP, NOM, WVAR)) are given by the rule

A formulay is satisfiabldf there is a modelM, an assign-
mentg on M, and a staten € M such thatM, g, m |- ¢.
A formulay is valid if —¢ is not satisfiable.

The at operator@, shifts evaluation to the state named by

o= L | a ]| (p—=¢) s. Thename binder|z. (“call it z, and ...”) binds the state
| Fo | Py | (9Uy) | (¢S¢) variabler to thecurrentstate, anql thexistential bin_deEIx.
(“some state is called, and ...”) binds the state variahldo

| Qe | (o) | (zj9) somestate in the model. Bothand3 do not shift evaluation

wherea € ATOM, z; € WVAR ands € WSYM. away from the current state.
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Figure 1. The hybrid hierarchy on general frames (left side) and on linear frames (right side)

A model M = (M, R,V) is calledlinear if the re- aU'B = |z FHPz — a)A
lation R is irreflexive (i.e., Vz(—Rzx)), transitive (i.e., ~aR(a A aUT)A
Vayz(Rxy A Ryz — Rxz)) and trichotomous (i.e., lz.F(~a A BA
Vay(Rxy V x =y V Ryzx)). H(Pz A P(Pz A —a) — f)).

The language of hybrid logic has a great expressive Thig gnerator cannot be expressed in linear temporal logic
power, especially compared to its frugal syntax and perspic-yith 1 ands (see [11]).

uous semantics. We give some examples of its expressive
power. On linear modelsA | . F-PPz defines discrete-

ness,WhichcannotbedeﬁneolinthetemporalIogicoffuture3 Expressivity and complexity on linear

F and pasP. frames
Kamp’s temporal operator Until can be defined in terms
of {@, |, F} as follows: In this section we investigate the expressive power of hy-
brid logics on linear structures. Moreover, we study the
aUf = |z.Fly.Q,(F(y A B) A G(Fy — a)). computational complexity of the satisfiability and model

checking problems for hybrid logics on linear frames.
An alternative definition using paf instead of@ is the ap y g

following: 3.1 Expressivity

aUB = |z.F(3 A HPz — a)).

Figure 1 summarizes how the expressive powers of the
Similar definitions can be given for the temporal operator various hybrid languages are related, both on linear (right
Since. side) and general structures (left side). To increase readabil-

The dual of the Until is called Release and denoted by ity, we omit theHL prefix and write, e.93,@ F instead of

R: aRfB = —(-aU-p3). It expresses the fact thatmust HL(3,@,F). Arrows point from less expressive to more
hold up to and including the first future state wharbolds, expressive languages. We only prove the following expres-
or indefinitely if there is no such state. The dual of Since sivity result:
is called Trigger and denoted . oT3 = —(-aS—0).

Both the Release and Trigger operators can be conciselyrheorem 3.1 The languagesiL(],F,P), HL(3,@,F),
expressed in terms df,, F, P}. For instance, and HL(3,@Q, P) are all as expressive as monadic first-

order logic over linear structures.
oRpB = 2.G(8 V P(Px A «)).
Proof. We proceed as follows. We first show that
Finally, Stavi’'s extended Until and Since operators can HL(|, F,P), HL(3,Q, F), andHL(3, @, P) have all the
also be expressed in hybrid logic. For instance, Stdi's  same expressive power. Then, we show ikt |, F, P) is
is captured as follows: as expressive as first-order logic.



Recall that on linear frame& acts as theexistential
modality, that is,E¢ is true atm iff there exists some world
m’ in the model such that is true atm’.

We prove the following embedding loop:
HL(|,F,P) = HL(3,QF) = HL3,QP) =
HL(],F,P). We showHL(|,F,P) = HL(3,Q,F).

We encode the past temporal opera®r as follows:
Py = 3z(z A Jy.Q,(Fz A ¢)). We encode the hy-
brid binder| as follows: |z.¢p = Jz.(x A ¢). We show
HL(3,Q,F) = HL(3, @, P). We encode the future tempo-
ral operatof as follows:Fy = Jz(z A Jy.Q, (Px A ¢)).
We finally showHL(3, @, P) = HL(],F,P). We encode
the hybrid binded as follows:3z.¢ = |y.E|2x.Q,¢p, and
we remove the @ operator as follow8;p = E(i A ).

We now show thatHL(|,F,P) is as expressive as

in HL(], F, P). An interesting example is the class of tran-
sitive trees. On transitive treeBp = (¢ V Py V PFyp).
However, the above result does not hold on the class of any
frames: on general frameHL(|, @, F, P) is as expressive

as thebounded fragmenof first-order logic, a strict sub-
fragment of first-order logic [3].

3.2 Complexity of the satisfiability problem

In [2], the authors notice that on linear frames, we can
get rid of nominals and @ as soon as we have at disposal
(strict) past and future temporal operators. Indeed, we can
simulate nominals by singleton propositions, that is propo-
sitions true at exactly one stateis a singleton proposition
iff E(¢ A H-i A G—i) holds. Moreover@;y can be ex-

monadic first-order logic. This completes the proof of the pressed aE(i A ) or A(i — ¢). It follows that there is
theorem. To be more precise, the first-order language un-a translation of hybrid formulas iHL(@, F, P) into tem-

der consideration contairequality a binary predicate?,

a unary predicate?; for eachp; € PROP, and whose
constantsare the elements dlOM. We first show that
HL(|,F,P) is a fragment of this first-order logic. To see
this, recall that thestandard translations an embedding of
modal logic into monadic first-order logic [6]; it can eas-

poral formulas inTL(F,P) preserving equi-satisfiability.
Moreover, they show that there igpalynomial translation
with the same features. Hence, the satisfiability problem
for HL(Q, F, P) can be reduced to the same problem for
TL(F, P), which is known to be decidable in nondetermin-
istic polynomial time [14]. NP-hardness fofL(Q, F, P)

ily be extended to hybrid logics. Clearly, a hybrid model holds since it extends Propositional Calculus.
can be regarded as a first-order model for this language and

vice versa. The translatiof7 from the hybrid language
HL(3, |, @, F,P) into first-order correspondence logic is
defined by mutual recursion between two functic#ig,,
and ST, (we only give the clauses fa#7',; the ones for

ST, are completely analogous; the Boolean cases are Ieft[he

out):

STx(pJ) = PJ(.T), pj € PROP
STr(ZJ) == (I’ = ij), ij S NOM

ST (x;) = (z=uz;), r; € WVAR
ST.(Fp) = 3Jy(Rzy A STy(y))
ST.(Pp) = 3y(Ryz A STy(p))
STo(Gp) = (ST.(9)e/1]
STo(lzjp) = Frj(z=mz; A ST(p))
ST,(3z;.0) = Fx;.5T4(p)

Finally we encode our first-order logic intdL.(|, F, P)
as follows. Recall thaEy is defined agPy V ¢ V Fo).

Te=y) = E(@Ay)

T(Rzy) = E(z A Fy)

7(P(z)) = E(z Ap)

T(a—p) = 7(a) = 7(8)

7(L) = 1

7(3z.) = |y.Elz.E(y A 7(a))

_|

The above result is more general: it holds on any class of

frames such that the existential modallfycan be defined

Theorem 3.2 The satisfiability problem foHL(@, F, P)
on linear frames is NP-complete.

The same complexity bounds fdiL(@,F,P) hold
over (N, <), the linear frame of the natural numbers with
usual ordering relation. The proof is the same and
TL(F,P) over natural numbers is NP-complete, a recent
result proved in [13]. HowevedIL(@, F,P) on general
structures has higher complexity: its satisfiability problem
is known to be EXPTIME-complete [1]. In the proof, only
one nominal is used.

If we replace futuré® and pasP temporal operators by
Until U and SinceS, respectively, the satisfiability problem
on natural numbers is harder.

Theorem 3.3 The satisfiability problem foHL(@, U, S)
on natural numbers is PSPACE-complete.

Proof. PSPACE-hardness holds sin@d.(U) on natural
numbers is already PSPACE-hard [16]. Moreover, nomi-
nals and @ operator may be removed fréfh(Q, U, S),

as shown above, by taking advantage of pasand fu-
ture F operators, which can be defined in terms of Until
U and Sinces, respectively. It follows that the linear time
satisfiability problem forHL(@, U,S) can be embedded
into the same problem fof'L(U, S), which is decidable

in PSPACE [16]. -

We do not know whether the same result works on linear
frames. In [15] the author proves that, on linear structures,



the temporal logic of Until is PSPACE-complete, and he scope of universal temporal operatéssandH. The lan-
conjectures the same result for the temporal logic with Until guageEHL(|, @, F, G, P, H) is defined similarly. Notice
and Since. Hence, on linear framéH,(@, U, S) isatleast  that existential hybrid logics are not closed under negation
PSPACE-hard. The situation on general structures is theand hence the satisfiability and validity problems for them
following: bothHL(@, U) andHL(@, U, S) are complete  are not equivalent. We are able to prove the following:
for EXPTIME, and the proof uses only one nominal [1] o

We now consider the addition of the hybrid bindemwe ~ 'heorem 3.6 The  satisfiability problem  for  both
already showed that, on linear framésL.(|, @, F,P) is EHL(3,@,F,G,P,H) and EHL(l,QF,G,P,H)
as expressive as first-order logic in the correspondence lan®n linéar frames is NP-complete.
guage with fre_e monadic predica_ttes. Universal (and_eXiS'Proof. The lower bound is clear. We prove the up-
tgntlal) monadic second orderloglcoyerIlnearframes is d,e'per bound forEHL(3,@,F,G,P,H). Since | can
cidable [12]. Furtherm'ore, full monadlg seco_nd—order logic be defined in terms of, the upper bound holds for
over natural numbers is nonelementarily decidable [8]. The EHL(],@Q, F, G, P, H) too.

following theorem follows. We polynomially reduce the satisfiability problem

Theorem 3.4 The satisfiability problem for for EHL(3,@Q,F,G,P,H) to the same problem for

HL(|,@,F,P) on linear frames and on natural num- HL(@,F,G,P,H), which is in NP by virtue of Theo-

HL(3,Q,F,G,P,H). Since existential binders ip are

The situation on the class of any frame is even worse: al-not in the scope of universal temporal operatGrandH,
readyHL(], F) is undecidable, even without nominals and we can move them in front of the formula and hence rewrite
propositions [3]. The latter neatly contrasts with the situa- , in prenex normal form. Now it is clear that any world
tion on linear framesHL(|, F) is decidable in NP. variablez in ¢ can be replaced by a new nomiraland the
corresponding existential quantifier may be dropped. The
resulting formula is iIML(Q, F, G, P, H) and it is satisfi-
able if and only the original formula is satisfiable.
Proof. We can get rid of, from HL(|, F) as follows: given Let's work out the details. Letp be a formula in
a formula |z.¢, any instance of: appearing inp in the ~ HL(3,@,F,G,P,H) and letzy,...,z, be the existen-
scope of anF operator evaluates to false, since a linear tially quantified variables ip. We assume that,, ..., z,
structure has no loop and there are no past or @ operatorére pairwise different and that free variablescdre not in
that can jump back to it. It hence may be replacedlhy ~ {z1.-..,z,}. We can move the existential bindersqofn
that is, by—T, without changing the meaning of the for- front of the formula by applying the following equivalences,
mula. Moreover, any instance ofappearing inpo notin the which can be proved by using the standard translation of hy-
scope of arF" operator evaluates to true, since it refers to the brid logic into first order logic.

Theorem 3.5 The satisfiability problem foHL(|,F) on
linear structures is NP-complete.

current point of evaluation. It may be replaced byvithout aAdzp = Ja(aAB)
changing the meaning of the formula. Finally théinder aVvIzp = Ja(aVp)
may be removed. The resulting is an equivalent formula Fir.a = J:Fa

in HL(F'), which is decidable in NP by Theorem 3.2. NP- P3z.a = 2+ Pa
hardness holds sind@L(|,F) extends Propositional Cal- @,dra = Ir.G,a
culus. o

Hence ¢ is equivalent to a formulap; of the form
It turns out that, on linear structuresjs a kind ofbully Jxy....dz,.«. For eachs;, leti,, be a nominal not oc-
operator: it shows its strength only in presenc@andP. curring in . Let o be the formula obtained from; by
The reason is clear: since linear structures are acyclic, thereplacing every occurrence of by i,; and by dropping all
only way to access a variable stored pig by using either  the existential binders in front of the formula. Note that
the @ or theP operator. Hence, the power ¢fis tamed is a formula inHL(@, F, G, P, H). We have the following:

without them. ) ) o ) o o
o ) ] ) ] ) Claim 1 ¢, is satisfiable if and only if, is satisfiable.
Our aim in the following is to isolate existential

fragments of HL(3,@,F,P) and HL(|,Q,F,P) with Since satisfiability for formulas ifL(Q, F, G, P, H)
nice computational behaviour. Thexistential hy- can be checked in nondeterministic polynomial time (The-
brid logic EHL(3,Q,F,G,P,H) is obtained from orem 3.2), this claim completes the proof.
HL(3,@,F,G,P,H) by (1) allowing formulas in nega- We finally prove the claim. For the left to right direc-
tion normal form only (which means that negation in ap- tion. Let M = (M, R, V) be a hybrid modelg be an as-
plied over atomic symbols only) (2) disallowingjin the signment, andn be a world inM such thatM, g, m IF



p1. Sincep; has the forndz;....3z,.q, there is a tu- on discrete linear frames, like natural numbers). We define

ple my,...,m, € M"™ such thatM,¢’,m I «a, where the Next-time operatoK ¢ as | Uy and the Previous-time

g = glri/ma,...,x,/my]. It follows that M’ g, m I operatorY¢ as 1. Sp. We are allowed to neX, Y and

p2, Wwhere M’ = (M ,R,V’), and V' differs from V/ all the other temporal operators in the scopeXoandY.

only on the evaluation of the new nominals, for which Moreover,X andY are allowed in the scope of existential

V'(iz;) = {m;}. temporal operator§ andP and in the scope of temporal
For the right to left direction. LetM = (M, R, V) be operatorsU andS as soon as they appear only in the exis-

a hybrid model,g be an assignment, and be a world tential part of them (that is, i¥, whenever the formula is

in M such thatM,g,m I+ ¢,. Hence there is a tu- «aUg or aSp). All the rest is prohibited. For example, we

ple my,...,m, € M", with V(i,,) = {m;}, such that  can write the propertyy'will hold until ¢ will hold contin-
M, g, m I a, whereg’ = glz1/ma, ..., x,/my). It fol- uously for 3 times” as

lows thatM, g, m I+ 3xq....3x,.«, that is, M, g,m I+

1. - pU(qg A Xg N XXgq).

A nice corollary of Theorem 3.6 is the following. We Release and Trigger operators, as well as Stavi’'s Until and
know that temporal logic with future and past operators ad- Since, are also allowed ibiteLTL , as soon as we man-
mits an NP-complete satisfiability problem, and we remain age them with care. These operators can be nested only
in NP if we add nominals and th@ operator. However, as  in the scope of existential unary temporal operators and in
soon as we add either Until or Since temporal operators, wethe scope of the existential part of Kamp’s Since and Until.
jump up into PSPACE. Nevertheless, if we manage thesemMoreover, any binary temporal operator is not allowed in
operators with care, we don’t leave NP. the scope of them.

It is worth remarking that, on linear frames, the tempo-
ral logic with Until is PSPACE-hard [15]. The same re-
sult holds on natural numbers [16]. Moreover, on natu-
ral numbers, the temporal logic with future and Next-time
is PSPACE-hard too [16]. A closer analysis of the latter
2. U andS are not allowed in the scope & andH; two results shows that both the fragmentd®f(F, X) and
TL(U) in which the temporal operators are not nested are in
NP [10]. However, alread¥'L(U)-formulas with temporal
height 2 are enough to encode QBF, and hence the resulting
fragment is PSPACE-hard. Similarly, a bounded temporal
nesting inTL(F, X) is enough to encode QBF [10]. It fol-
lows that the linear temporal logldteLTL lies in NP but

Proof. Recall theU and S can be defined in terms of very close”to PSPACE.

Corollary 3.7 Let LiteLTL be the fragment of
HL(@,F,G,P,H, U,S) such that

1. —is applied over atomic symbols only;

3. formulasa U andaSg are such thaly andS are not
allowed ina.

Then, the satisfiability problem fariteLTL on linear
frames is NP-complete.

{l,@,F,P} as follows: The reader should wonder about the practical usefulness
of decreasing a complexity bound from PSPACE to NP.
aUp = |2F|ly.Q,(F(y A 6) A G(Fy — «)) Computationally, NP is still intractable. However, prob-
aS3 = |z.Ply.a,(P(y A ) A H(Py — a)) lems in NP may be polynomially reduced to SAT, the popu-

lar NP-complete problem, for which many heuristic solvers
Hence inaUB, only « is in the scope of an universal have been implemented. Problems in PSPACE, on the con-
temporal operator. It follows thadtiteLTL is a fragment  trary, cannot be reduced to SAT, unless NP = PSPACE.
of EHL(],@,F, G, P, H), whose satisfiability problem is ~ Techniques for embedding the model checking (and satisfia-
in NP by Theorem 3.6. - bility) problem for linear time logics into SAT are described
and implemented in [5, 9]. These techniques have been re-
In the above fragment you can, for instance, write prop- cently extended to cope with past temporal operators [4].
erties like p will hold (held) exactlyn times in the fu-
ture (past)”, Whi(_:h are beyor_1d the expressive power of 3 3 The linear time model checking problem
HL(Q, F, P). For instance, theiteLTL -formula that fol-

lows claims thap will hold exactly 2 times in the future: . )
Model checking is a generic term for a class of algo-

-pU(p A —pU(p A G-p)) rithms which determine whether a given formula holds in a
given model or class of models. Often a Kripke structure

A limited form of Next-time and Previous-time operator is denotes some computational system, and paths through the
also allowed irLiteLTL (these operators make sense only system denote computations. Hence, in linear time model



checking formulas are evaluated not on the Kripke structure

itself, but on the set of paths through it.

The hybrid Kripke structureVt = (M, R, V) is total
if every state inM has at least on&-successor. In this
section we will consider only total and finite Kripke struc-
tures. Apathfrom sg in M is an infinite state sequence
T = Sg, 81, ... such thatRs;s;1 for everyi > 0. We de-
note byw; the i-th states; of . Any path in M can be
naturally associated to a linear structuv¢, = (N, <, V')
such thalN is the set of natural numbers; is the usual or-
dering relation on the natural numbers and, for every0
andp € ALET, i € V/(p) iff m; € V(p). Notice thatM , is

not necessarily a hybrid structure, since, because of the un
folding process, the same nominal may label different states™!-

of M. The meaning of formulas of the form;a, where

We conclude this section by giving some model checking
examples involving nominals. Let the nomirgthartdesig-
nate theuniqueinitial state in a system modelled by1.
Then the check

M, Start =y FStart

is true iff “each computation of the system starting at the
initial state will eventually return to the initial state”. This
implies that the initial state will be visited infinitely often in
every computation of the system. Singtartis a nominal,

it is true at exactly one state in (the initial state), but

it may be true at several states in the computation paths in
If Startwere a proposition, instead of a nominal, then
the above check would be true iff “each computation of the

i is a nominal, is hence ambiguous. There are several pos:system starting at a state labelled watartwill eventually

sibilities to deal with this situation. Our choice here is to

consider nominals as additional propositions which must be

true at exactly one state of the branching structittebut
may be true at several states of the linear structure ob-
tained by unfolding the path of M. The meaning of the
formula@;« is then ‘o« holds atsomestate labelled with”.
Thatis, M ,m IF Q;« iff M., mIFE(i A «).

We are now ready to define the linear time model check-

ing problem for hybrid logics. We distinguish between the

reach a (possibly different) state labelled w8tart’. The
check
M, Start =y G-Start

is true iff “each computation of the system starting at the
initial state will never return to the initial state”. Finally the
check

M, Start =3 (=Start)U(Start A G-Start)

existential and the universal version of the model checking is true iff “there is a computation of the system starting at

problem. Theexistential linear time model checking prob-
lemfor hybrid logics is to determine whether a given hybrid
formula is true insomepath of the model:M, m =3 ¢ iff
M, 0 I+ ¢ for some pathr starting atn in M. Moreover,
M 3 ¢ iff M;m =3 ¢ for somem € M. Theuniver-
sal linear time model checking probleior hybrid logics is

to determine whether a given hybrid formula is truesin
ery path of the modell:M,m =y ¢ iff M;,0 IF ¢ for
every pathr starting atm in M. Moreover, M =y o iff
M,m v ¢ for everym € M. Notice that the universal

model checking problem is the dual of the existential one:

M, m [y ¢ iffitis not the case that, m 3 —o.
The existential (respectively, universal) linear time
model checking problem fofTL(F,P) has been re-

cently proved to be NP-complete (respectively, coNP-

complete) [13]. The following follows:

Theorem 3.8 The existential (respectively, universal) lin-
ear time model checking problem f8iL(Q, F, P) is NP-
complete (respectively, coNP-complete).

Moreover, it is well-known that both the existential

the initial state that will return to the initial state exactly
once”. These examples show that it can can be of advantage
to use nominals in specifications.

4 Conclusion

In this paper, we have analyzed the expressivity and
complexity of several variants of hybrid logic on linear
structures. There are a number of open questions for fur-
ther work. Firstly, there is the question of second order ex-
tensions of these languages, e.g., by fixpoint operators or
propositional quantifiers. Secondly, it would be interesting
to find a generic format for hybrid specifications, similar as
it is TLA (Lamport's temporal logic of actions) for linear
temporal logic. Thirdly, we want to apply hybrid logic in
the specification of an industrial application (an electronic
funds transfer / point of sale banking system). A challenge
is to find a way to combine the specification of various spa-
tial and temporal properties such that the resulting formulas
are still tractable. An interesting project in this context is to
derive an intuitive high-level specification language which

TL(F,P,U,S) are PSPACE-complete [16]. Hence, we
have the following:

Theorem 3.9 Both the existential and universal linear
time model checking problem fdiL(Q,F,P,U,S) is
PSPACE-complete.

mulate correctness properties without detailled knowledge
of the underlying logic.
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