Branching within Time: an Expressively
Complete and Elementarily Decidable Temporal
Logic for Time Granularity

Massimo Franceschet and Angelo Montanari

Department of Mathematics and Computer Science,
University of Udine, Italy
E-mail: {francesc|montana}@dimi.uniud.it

November 10, 2002

Abstract

Suitable extensions of monadic second-order theories of k successors
have been proposed in the literature to specify in a concise way reac-
tive systems whose behaviour can be naturally modeled with respect to
a (possibly infinite) set of differently-grained temporal domains. This
is the case, for instance, of the wide-ranging class of real-time reactive
systems whose components have dynamic behaviours regulated by very
different time constants, e.g., days, hours, and seconds. In this paper, we
focus on the theory of k-refinable downward unbounded layered structures
MSO[<+tot, (li)fg(}], that is, the theory of infinitely refinable structures
consisting of a coarsest domain and an infinite number of finer and finer
domains, whose satisfiability problem is nonelementarily decidable. We
define a propositional temporal logic counterpart of MSO|[<tor, (1:)F=]
with set quantification restricted to infinite paths, called CTSLy, which
features an original mix of linear and branching temporal operators. We
prove the expressive completeness of CTSL; with respect to such a path
fragment of MSO[<yot, (1:)¥21] and show that its satisfiability problem is
2EXPTIME-complete.

1 Introduction

The ability of providing and relating temporal representations at different ‘grain
levels’ of the same reality is widely recognized as an important research theme for
temporal logic and a major requirement for many applications, including formal
specifications, artificial intelligence, temporal databases, and data mining, e.g.
(2, 7, 12].

A systematic framework for time granularity, based on a many-level view
of temporal structures, with matching logics and decidability results, has been
proposed in [23]. The many-level temporal structure replaces the flat temporal
structure of standard temporal logics by a temporal universe consisting of a
(possibly infinite) set of related differently-grained temporal domains. Such a
temporal universe identifies the relevant temporal domains and defines the re-
lations between time points belonging to different domains. Suitable temporal
operators make it possible to specify the temporal domain(s) a given formula
refers to (contextualization), as well as to constrain the relationships between
formulae within any given domain (local displacement) and across temporal do-
mains (projection). The language for time granularity is the second-order lan-
guage MSO[<tot, (ii)f;(ﬂ where <;.; is a total ordering over the temporal
universe and, for every element x of the temporal universe, o (z),..., k-1 (x)
are the k elements of the immediately finer temporal domain (if any) into which
x is refined. Such a language can be interpreted over both n-layered and w-
layered structures. The corresponding theories have been proved to be expres-
sive enough to capture the key features of metric and layered temporal logics,
that is, to define contextualization, displacement, and projection operators [23].

In [28], the decidability of the theory of k-refinable n-layered structures has
been proved by mapping its decidability problem into an equivalent one relative
to the finest layer, and, then, by reducing such a problem to the decidabil-
ity problem for the monadic second-order theory of one successor MSO[<] [4].
The class of k-refinable upward unbounded layered structures, i.e., w-layered
structures consisting of a finest temporal domain and an infinite number of
coarser and coarser domains (cf. Figure 1), and the class of k-refinable down-
ward unbounded layered structures, i.e., infinitely refinable structures consisting
of a coarsest domain and an infinite number of finer and finer domains (cf.
Figure 2), have been investigated in [25]. Both theories have been shown to
be nonelementarily decidable: the first one has been reduced to the monadic
second-order theory of one successor, properly extended with a suitable par-
tition function (the resulting theory has been proved to be the counterpart,
in the style of Biichi Theorem, of the class of w-languages accepted by k-ary
tree systolic automata, which strictly includes the class of w-regular languages);
the second one has been reduced to the monadic second-order theory of k suc-
cessors (with k > 2). An expressively complete temporal logic counterpart of
MFO[< o1, (l,-)f;ol], the first-order fragment of the theory of k-refinable upward
unbounded layered structures, has been proposed in [26]. In this paper, we ad-
dress the problem of finding a temporal logic counterpart to a suitable fragment
of the theory of k-refinable downward unbounded layered structures.

We first provide an alternative view of these structures as infinite sequences
of infinite k-ary trees. Then, we define a temporal logic counterpart of the the-
ory of k-refinable downward unbounded layered structures MSO[<;., (li)f:_ol]
with set quantification restricted to infinite tree paths, MPL[<;., (li)f;(}] for
short, and show that it is expressively complete. The resulting logic, that we
called CTSLy (Computational Tree Sequence Logic with k successors), can be
viewed as a combined logic that embeds a logic for branching within (discrete)

00 lo 2 30 40 50 60 7o 8o 90 100 11y 12 130 149 150

Figure 1: A 2-refinable upward unbounded layered structure.

Figure 2: A 2-refinable downward unbounded layered structure.

time points into a linear time logic. This form of logic combination is called
temporalization in [14]. The nice feature of temporalization is that it transfers
many logical properties, such as soundness and completeness of axiomatisations
and decidability, from the component logics to the combined one.

In order to prove the expressive completeness of CTSL;, we define a transla-
tion of MPL[<0r, (1:)¥=4] formulas into CTSL; ones that is based on a model-
theoretic decomposition lemma for tree sequences, which is proved by exploiting
an application of the Ehrenfeucht game. Compared with MPL[<;ut, (14)"=4],
CTSL; presents two major advantages. First, the satisfiability problem for
CTSL; is elementarily decidable, while that for MPL[</, (1:)¥2;] is nonele-
mentarily decidable (we will prove that the satisfiability problem for CTSLj
admits a decision procedure whose computational time complexity is doubly
exponential in the length of the input formula, and that it is 2EXPTIME-hard).
Furthermore, according to the combining logic perspective [13, 14, 15, 16], an
axiomatisation (resp. model and satisfiability checking procedures) for CTSL;;
can be synthesized from axiomatisations (resp. model and satisfiability checking
procedures) for the component logics.

The paper is organized as follows. In Section 2 we illustrate the rationale
of the work. In Section 3 we introduce the relevant theories of downward un-
bounded layered structures. In Section 4 we define the logic CTSL;. In Section 5
we study its expressiveness and complexity. In Section 6 we show how to tai-

lor the logical framework for downward unbounded layered structures to cope
with n-layered ones. Conclusions provide an assessment of the work done, and
outline future research directions.

2 Rationale

The original motivation of our research was the design of a temporal logic em-
bedding the notion of time granularity, suitable for the specification of complex
(real-time) reactive systems whose components evolve according to different
time units. However, there are significant similarities between the problems
we encountered in pursuing our goal, and those addressed by current research
on combining logics, theories, and structures. Furthermore, we recently estab-
lished interesting connections between multi-level temporal logics and automata
theory that suggests a complementary point of view on time granularity: be-
sides an important feature of a representation language, time granularity can be
viewed as a formal tool to investigate expressiveness and decidability properties
of temporal theories. Finally, as a by-product of our work, we defined a uniform
framework for time and states that reconciles the tense logic and the logic of
programs perspectives.

2.1 The specification of granular real-time reactive sys-
tems

Timing properties play a major role in the specification of reactive and con-
current software systems that operate in real-time, which are among the most
critical software systems. They constrain the interactions between different
components of the system as well as between the system and its environment,
and minor changes in the precise timing of interactions may lead to radically
different behaviors. Temporal logic has been successfully used for modeling and
analyzing the behavior of reactive and concurrent systems, e.g. [22]. It sup-
ports semantic model checking, which can be used to verify the consistency of
specifications, and to check positive and negative examples of system behavior
against specifications; it also supports pure syntactic deduction, which may be
used to prove properties of systems. Unfortunately, most common specification
languages are inadequate for real-time applications, because they lack an ex-
plicit and quantitative representation of time. A few remarkable exceptions do
exist. They are extensions of Petri Nets or metric variants of temporal logic,
which support direct and quantitative specifications of temporal properties and
relevant validation activities.

There are, however, systems whose temporal specification is far from being
simple even with timed Petri Nets or metric temporal logic. Consider the wide-
ranging class of real-time systems whose components have dynamic behaviours
regulated by very different—even by orders of magnitude—time constants (here-
after granular real-time reactive systems). As an example, consider a pondage
power station consisting of a reservoir, with filling and emptying times of days or

weeks, generator units, possibly changing state in a few seconds, and electronic
control devices, evolving in milliseconds or even less. A complete specification
of the power station must include the description of these components and of
their interactions. A natural description of the temporal evolution of the reser-
voir state will probably use days: “During rainy weeks, the level of the reservoir
increases 1 meter a day”, while the description of the control devices behaviour
may use microseconds: “When an alarm comes from the level sensors, send an
acknowledge signal in 50 microseconds”. We say that systems of such a type have
different time granularities. It is somewhat unnatural, and sometimes impossi-
ble, to compel the specifier to use a unique time granularity, microseconds in the
previous example, to describe the behaviour of all the components. A good lan-
guage must allow the specifier to easily describe all simple and intuitively clear
facts (naturalness of the notation). Hence, a specification language for granular
real-time reactive systems must support different time granularities to allow one
(i) to maintain the specifications of the dynamics of differently-grained compo-
nents as separate as possible (modular specifications), (ii) to differentiate the
refinement degree of the specifications of different system components (flexible
specifications), and (iii) to write complex specifications in an incremental way
by refining higher-level predicates associated with a given time granularity in
terms of more detailed ones at a finer granularity (incremental specifications).

2.2 The combining logic perspective

Even though the original motivation of our work on time granularity was the
design of a temporal logic suitable for the specification of granular real-time reac-
tive systems, there are significant similarities between the problems it addresses
and those dealt with by the current research on logics that model changing
contexts and perspectives. Indeed, even if it has been developed in a tempo-
ral framework, our proposal actually outlines the basic features of a general
logic of granularity. In this respect, it can be seen as a generalization of the
well-known Rescher and Garson’s topological logic to layered structures [30].
Moreover, it presents interesting connections with the logics of contexts devel-
oped in the area of knowledge representation, where modalities are used to shift
variables, domains, and interpretation functions from one context to another
[5]. More generally, the design of these types of logics is emerging as a relevant
research topic in the broader area of combination of logics, theories, and struc-
tures, at the intersection of logic with artificial intelligence, computer science,
and computational linguistics [3]. In our work, we devised suitable combination
techniques both to define temporal logics for time granularity and to prove their
logical properties, such as axiomatic completeness and decidability [24, 28]. Fur-
thermore, we followed the combining logic approach to build a model checking
framework for granular reactive systems and logics [16].

2.3 A complementary point of view on time granularity

A complementary point of view on time granularity arises from interesting con-
nections that link multi-level temporal logics and automata theory: time gran-
ularity can be viewed not only as an important feature of a representation
language, but also as a formal tool to investigate the definability of meaningful
timing properties, such as density and exponential grow/decay, as well as the
expressiveness and decidability of temporal theories [25, 27]. In this respect,
the number of layers (single vs. multiple, finite vs. infinite) of the underlying
temporal structure, as well as the nature of their interconnections, play a major
role: certain timing properties can be expressed using a single layer; others us-
ing a finite number of layers; others only exploiting an infinite number of layers.
Timing properties of granular reactive systems composed by a finite number
of differently-grained temporal components can be specified by using n-layered
metric temporal logics. Furthermore, if provided with a rich enough layered
structure, n-layered metric temporal logics suffice to deal with conditions like
“p holds at all even times of a given temporal domain” that cannot be expressed
using flat propositional temporal logics. w-layered metric temporal logics allow
one to express relevant properties of infinite sequences of states over a single
temporal domain that cannot be captured by using flat or n-layered temporal
logics. For instance, k-refinable upward unbounded layered logics allow one to
express conditions like “p holds at all time points %, for all natural numbers
1, of a given temporal domain”, while downward unbounded ones allow one to
constrain a given property to hold true ‘densely’ over a given time interval [27].
More precisely, we can state that if a property p holds at two distinct points x
and y of a given domain T%, with o < y, then it holds at two distinct points z
and w, with < z < w < y, of the immediately finer domain 7°*!. As another
example, we can constrain two predicates p and ¢ to be temporally indistin-
guishable. We say that p and ¢ are temporally indistingishable if for all time
points at which both p and ¢ hold, there exists an infinite path, starting at such
a point, such that both p and ¢ hold at each point belonging to the path.

2.4 Reconciling tense logics and logics of programs

As pointed out in [27], logic and computer science communities have tradition-
ally followed a different approach to the problem of representing and reasoning
about time and states. Research in philosophy, linguistics, and mathematical
logic resulted in a family of (metric) tense logics that take time as a primitive
notion and define (timed) states as sets of atomic propositions which are true at
given time points. Recently, a few papers demonstrated the possibility of suc-
cessfully exploiting metric (possibly layered) tense logics in computer science,
e.g. [23, 24]. On the other hand, most research in computer science concentrated
on the so—called temporal logics of programs, which have been successfully used
to specify and verify reactive and concurrent systems, e.g. [11]. In order to
deal with real-time systems, such logics have been equipped with a metric of
time, e.g. [1]. The resulting temporal logics, called real-time logics, take state

as a primitive notion, and define time as an attribute of states. More precisely,
given an ordered set of states S and an ordered set of time points 7, real-time
logics are characterized by a weakly monotonic function p : S — 7 that as-
sociates a time instant with each state. Real-time logics allow one to model
pairs of states s;,s; € S such that s; < s; and p(s;) = p(s;) (temporally in-
distinguishable states) or p(s;;1) > p(s;) + 1 (temporal gaps between states).
Providing metric temporal logics with an infinite number of layers (w-layered),
where each time point belonging to a given layer can be decomposed into k
time points of the immediately finer one (k-refinable), makes it possible to rec-
oncile metric tense logics and real-time logics of programs. The basic idea is
that any pair of distinct states, belonging to the same course of events, can
always be temporally ordered, provided that we can refer to a sufficiently fine
temporal domain. Furthermore, the ordering between pairs of states, which are
temporally indistinguishable with respect to the considered domain, is actually
induced by their temporal ordering with respect to a finer domain, with respect
to which their are temporally distinguishable. Notice that a finite number of
layers is not sufficient to capture timed state sequences: it is not possible to fix
a priori any bound on the granularity that a domain must have to allow one
to temporally order a given set of states, and thus we need to have an infinite
number of temporal domains at our disposal. In [27], Montanari et al. show how
to embed the theory of timed state sequences, underlying real-time logics, into
the theories of upward and downward unbounded metric and layered temporal
structures. Such an embedding allows one to deal with temporal indistinguisha-
bility of states and temporal gaps between states. In the granularity setting,
temporal indistinguishability and temporal gaps can indeed be interpreted as
phenomena due to the fact that real-time logics lack the ability to express prop-
erties at the right (finer) level of granularity: distinct states, having the same
associated time, can always be ordered at the right level of granularity; similarly,
time gaps represent intervals in which a state cannot be specified at a finer level
of granularity.

3 Structures and theories of time granularity

In this section, we formally define k-refinable downward unbounded layered
structures and the corresponding monadic second-order theories.

3.1 Infinite sequences of infinite k-ary trees

According to the original definition given by Montanari et al. in [25], k-refinable
downward unbounded layered structures are triplets ((J;~o 7", |, <tot), where

e {T"};>0 are pairwise disjoint copies of N;

o [:{0,...,k=1}xU;5 T" = U;», T" is a bijection such that, for all i > 0,
Lri {0,...,k — 1} x T — T is a bijection;

Figure 3: A 2-refinable downward unbounded layered structure (revisited).

e <;, is such that

1. (T <tot|70%70) is isomorphic to N with the usual ordering;
2.t <gor | (4, t), for 0<j <k —1;

3.1 (Got) <eor L G+ 1,8), for 0<j <k —2

4. if t <por t' and t' € J,5q | (), then | (k—1,t) <1 t';

5. if t <gor t' and ¥/ <yoy t_”, then t <;o t”.

where |" (¢) C U, T? is the set such that |° (¢) = {t} and, for every
n>1, 1" @#)={l(G,t):t' el ({t),0<j<k-1}.

It is worth noting that the domain J;~, T" is structured by | in such a way
that each time point of T is the root of a leafless, perfectly balanced k-ary
tree. The total ordering <;o; over | J;~, T" is induced by the linear ordering of
the trees, for pairs of nodes belonging to different trees, and by the preorder
visit of the tree, for pairs of nodes belonging to the same tree (cf. Figure 3).
In the following, we make this remark more precise by providing an equivalent
characterization of k-refinable downward unbounded layered structures as in-
finite sequences of infinite k-ary trees. Later, we will exploit this alternative
formulation to obtain a temporal logic counterpart of the theory of k-refinable
downward unbounded layered structures.

We start by defining the notion of ¥-labeled k-ary tree. Let T, = {0,..., k—
1}* be the set of finite strings over {0,...k — 1} and, for « € T}, let |z| be the
length of x. We denote by e the empty string (|e] = 0). Let ¥ be a fixed finite
alphabet. An infinite X-labeled k-ary tree, with k > 1, isamap t : T — X.
For k > 2, Ty (X) defines the set of infinite Y-labeled k-ary trees, while, for k = 1,
it defines the set of infinite sequences (or infinite words). A finite sequence (or
finite word) is a map from an initial segment of T} to X. For any 0 <i < k—1
and x € Ty, let |; () = xi be the i-th son of x. Furthermore, we denote by
< the (partial) ordering induced by the proper prefiz relation over Ty: = < y
iff there exists z # e such that zz = y. The lexicographical (total) ordering
on Ty, denoted by <jes, is defined as follows: x <jep, vy iff x < y or x = zav
and y = zbu, with a,b € {0...k — 1} and a < b (over N). Any given tree

t € Tj,(X) can be represented as a structure ¢ = (Tk, <, (1:)*27, (Pa)aex), where
P, ={z €Ty | t(x) = a}, for every a € X. Given x € T}, a chain in t, starting
at x, is a subset of Tk, linearly ordered by <, such that z is the minimum of
the chain. A path X in t, starting at z, is a chain, starting at x, such that there
exists no chain Y, starting at x, which properly includes X. A full path in t is
a path starting at the root € of ¢, that is, a maximal, linearly ordered subset
of t. The i-th layer of t is the finite set {xo,...,24i_1} C T such that, for
r=0,....k' =1, |z.| = .

An infinite sequence of infinite 3-labeled k-ary treesisamapts : TS, — X,
where T'Sy, = N x Tj,. The i-th tree of the sequence is the set {(i,x2) € TSk | z €
Tr}. Let T'Sk(X) be the set of infinite sequences of 3-labeled infinite k-ary
trees. Given 0 < ¢ < k —1 and (j,2) € TSk, |; ((J,z)) = (j,zi) is the i-th
projection of (j,x). A total ordering relation <;o,; over T'Sg, which corresponds
to the ordering relation <o over |J,~, T*, can be defined as follows:

L. (ive) <tot (]7 €)a] > Z Oa
2. (i,z) <gor | (4,2),for 0 < j <k —1andi>0;
3. 1 (4,2) <gor Lj+1 (4,@), for 0 < j <k—2andi>0;

4. if (i,2) <tot (J,y) and either ¢ < j or it is not the case that z < y (over
Tk)a then lk—l (Z,CC) <tot (Jay)v for all 17] > 07

5. if (4, 7) <tor (1, 2) and (n, 2) <ior (J,y), then (i,2) <¢or (4,y)-

Furthermore, the domain TSy, is partially ordered by two ordering relations <;
and <y defined as follows: for every (i,x), (j,y) € TSk, (i,2) <1 (J,y) if and
only if i« < j (over N) and (i,z) <2 (j,y) if and only if i = j and < y (over
Tk). Any given tree sequence ts € T'Si(X) can be represented as a structure
ts = (T'Sk, <tot> (1i)F=)s (Pa)aex), where P, = {(j,x) € T'Sy, | ts((j,x)) = a},
for every a € X. Given ts € TS(X), (j,z) € TSk, and 0 < i < k — 1, we denote
by ts(j) and ts(;) the tree rooted at (j,7) and the tree rooted at the i-th
son of (j,x), respectively. Accordingly, the i-th tree of ts is denoted by ts(; (). A
chain (vesp. path, full path) in ts is a chain (resp. path, full path) in ts; (), for
some i > 0. We denote by TI(¢s) the set of full paths of ts. The i-th layer L; of
ts is the set ;50{(j,20), - -, (J; xxi_1)} C TSy such that, for r =0,..., k-1,
|x.] = i. A path P (resp. layer L) in ts can be ordered with respect to <io
obtaining a sequence (j1,x1)(jo, x2) .. .; we denote by P(i) (resp. L(7)) the i-th
element (j;, z;) of such a sequence. It is worth noting that the restriction of <4
to the elements belonging to the 0-layer is a total ordering, while this is not the
case for all the other finer layers. We will take advantage of this fact when we
will define a combined temporal logic for time granularity.

It is not difficult to show that any given ¥-labeled k-refinable downward un-
bounded layered structure ((J,~o 1", |, <tot) corresponds to an infinite sequence

of infinite ¥-labeled k-ary trees ts = (T'Sk, <tot, (li)f;()l, (Pa)acs), and vice
versa.

3.2 Theories of downward unbounded layered structures

In this section, we define the relevant theories of k-refinable downward un-
bounded layered structures.

Definition 3.1 Given a finite alphabet 3, let MSOxcy, ..., Cryt1, ... Us, D1, .o, b

(abbreviated MSOx[7]) be the second-order language with equality over a set
C={c1,...,c} of constant symbols, a set U = {uy,...,us} of unary relational
symbols, and a set B = {by,...,b} of binary relational symbols, which is defined
as follows:

(i) atomic formulas are of the forms x =y, x = ¢;, with 1 <1 < r, u;(x), with
1<i<s, bi(x,y), withl1 <i<t, ze€ X, and x € P,, where z, y are
indiwidual variables, X is a set variable, and P,, with a € 3, is a monadic
predicate;

(i) formulas are built up from atomic formulas by means of the Boolean con-
nectives =, A, V, and —, and the quantifiers ¥V and 3, ranging over both
individual and set variables.

MSOx|[7]-formulas are interpreted over relational structures consisting of a do-
main D and an interpretation function Z for the symbols in the vocabulary 7 and
the monadic predicates (P,)qexn. Semantics structures for MSOgx[r] give the
same interpretation to symbols in 7; they may only differ in the interpretation
of the predicates (P,)qcs-

For any given vocabulary 7, let MFOx[7]| be the first-order fragment of
MSOx 7] and, whenever MSOx[7] is interpreted over trees or tree sequences, let
MPLy[7] be the restriction of MSOx[7] obtained by constraining set variables
to be interpreted over paths (formulas in MPLg[7] are called path formulas).

Let o(z1,...,%n, X1,..., X:m) be a formula whose free individual variables
are ry,...,x, and free set variables are X1,..., X,,. A sentence ¢ is a formula
devoid of free variables. A model for a sentence ¢ is a structure in which ¢
is true. Let S be the set of structures over which MFOx([7] (resp. MPLg|[7],
MSOgx[7]) is interpreted. We say that T C S is definable in MFOgx[7] (resp.
MPLy[7], MSOx(7]) if there exists a sentence ¢ in MFOgx[7] (resp. MPLg[7],
MSOx|7]) such that, for every M € §, M is a model of ¢ if and only if M € T.
Whenever no confusion can arise, we will omit the subscript 5. In the rest of
the paper, we will focus our attention on the following languages and theories:

e MFOI<], interpreted over finite and infinite sequences;
e MPLI[<, (Li)fz_ol], interpreted over infinite k-ary trees;

e MFO/MPL/MSO|[< 0, (1:)¥-4] and MFO/MPL/MSO[<1, <2, (1:)F=4], in-
terpreted over infinite sequences of infinite k-ary trees.

It is possible to show that MPL[<y, <2, (1:)¥=}] (resp. MSO[<1, <2, (1:)F=)])
is as expressive as MPL[<yot, (1:)¥23] (vesp. MSO[<or, (1:)¥251]).

10

Proposition 3.2 MPL[<, <a, (li)f;(}], interpreted over infinite sequences of
Icfl]

infinite k-ary trees, is as expressive as MPL[<tot, (1i);—g
Proof.

We first show that (4, 2) <t (4,y) if and only if either i = j and © <jez ¥
or ¢ < j. Consider the direction from left to right. For the sake of conciseness,
we use (i,)<tot(J,y) as a shorthand for either i = j and @ <je, y or i < j. In
order to prove the implication, it suffices to show that axioms (1,2,3) and rules
(4,5) of the definition of <, (over T'Sy) are sound, that is, they preserve the
relation <.

1. (4,€)<tot(j,€), with 0 <14 < j: it immediately follows from i < j.

2. (4,2)<tot 15 (4,2), for 0 < j <k —1: it follows from |; (¢,2z) = (4, [(x)),
lj (@) =2y, and © <jep xj.

3. 15 (4,2)<tot lj41 (i,2), for 0 < j < k—2and ¢ > 0: it is analogous to the
previous case.

4. if (4, 2)<tot(j,y) and either i < j or it is not the case that x < y (over
Tx), then |x—1 (4, 2)<t0t(4,y), for all ¢, > 0. In the case in which i < j,
then |r—1 (i,2) = (4, lk—1 (2))<tot(J,y), and thus the thesis. Suppose
that i = j and x <je; y. Since x < y does not hold, by definition of <j.,,
there exist a,b, z,u, and v, with |a| = |b] = 1 and |z|, |u|,|v| > 0, such
that @ = zau, y = zbv, and 0 < a < b. Therefore |1 (z) = z(k—1) =
zau(k — 1) = zaw', with v/ = u(k — 1). This allows us to conclude that
Le—1 () <iex y, and thus |1 (4, 2)<tot (4, y)-

5. 14f (i, 2)<tot(n, 2) and (n, 2)<tot(4,y), then (i,z)<i0t(j,y): a simple case
analysis suffices, taking into account that both <., and <; are transitive
relations.

Let us prove now the opposite direction, that is, for any given 4, j,z, and v,
if either ¢ = j and @ <jop y or i < j, then (i,2) <tor (J,y). Let i < j.
For all z € Ty, it holds that (i,2z) <t (j,€). The proof is by induction on
the length of z. If |z| = 0, that is, z = ¢, the thesis follows from axiom (1).
Let |z|] = n + 1. By definition, there exist w, with |w| = n and m, with
0 <m < k—1, such that z =|,, ({,w). From axiom (3) and rule (5), it
holds that |, (i,w) <tet lk—1 (¢, w). Furthermore, by the inductive hypothesis,
it holds that (i,w) <tot (j,€), and thus, by using rule (4), we obtain that
le—1 (i,w) <tor (j4,€). An application of rule (5) allows us to conclude that
(i, 2) <tot (j,€). If y = € we have the thesis. Otherwise, we need to show that
(4, €) <tot (J,y), for all y, with |y| > 0. This can be proved by a simple induction
on the length of y. Given (i,2) <o (4,€) and (4, €) <wot (4,y), rule (5) allows
us to conclude that (i,2) <tot (4,y). The case in which ¢ = j and & <je, y can
be dealt with in a similar way.

To complete the proof, it suffices to show that the relation <;,; can be

expressed in MPL[<1, <2, (Li)fz_ol] and that both relations <; and <o can be

11

expressed in MPL[<tot, (11)=)]. As for the first statement, we just showed that
(i,2) <tot (J,y) if and only if either i = j and @ <jez y or 4 < j. On the ground
of this equivalence, it is not difficult to see that x <;,; vy if and only if

<oy Vv I\ (Li(z) <ewn] (2)<ey) Va<iy
0<i<j<k

By exploiting the same correspondence, we can also prove the second statement.
For all pairs z,y, x <; y if and only if

T <ior y A IXIY I Tro(ry # 1 A TO(r1) A
) AzeXArmeX AyeY ArpeY),

where T0(x) =acr =3y iy Li (v) = =.
Furthermore, for all pairs z,y, x <o y if and only if

<ty AN IX(xzeX ANyeX). []

The above proposition can be easily generalized to the full second-order
case. One direction of the proof remains the same (<t can be defined in
MSOI<;, <2, (li)fz_ol] in exactly the same way). To prove the opposite direction,
it suffices to show that paths can be defined in MSO[<¢, (li)f:_ol]:

Path(X) =45 Fz(T°2) Az € X AVY(T(y) Az #y) —y & X))A
Yy(y € X = ViTo(ly (1) € X A Ay Li (9) & X))

Voly ¢ X — N2 L () 2 X)),

3.3 Contextualization, displacement, and projection op-
erators

In [25], Montanari et al. propose MSO[<;or, (1:)¥74] as the language for time
granularity and define its interpretations over both upward and downward un-
bounded layered structures. In this section, we show that MPL[<;., (Li)fz_ol],
interpreted over downward unbounded layered structures, is expressive enough
to capture the basic temporal operators of contextualization, local displace-
ment, and projection (an informal account of these operators can be found in
Section 1).

The case of projection is trivial, since the projection symbols |;, for 0 < i <
k — 1, belong to the language. As an example, the condition “p holds at the
i-th projection of 2” can be written as Jy(|; () = y Ap(y)). We can also define
the converse relation of abstraction as follows. We say that x can be abstracted
in y, notationally 7 (z) = y, if and only if it holds that \/f:_o1 L (y) = =
Accordingly, the condition “p holds at the abstraction of 2”7 can be written as
(1 (x) =y Ap(y)). _

As for contextualization, let T* be a monadic predicate that holds at all time
points of the i-th layer, for every ¢ > 0 (this form of contextualization has been
called horizontal contextualization in [25]). T* can be inductively defined as
follows:

12

T(2) =ar —3yVis li (y) =1
T (2) =aey Fy(THy) A V‘?;é lj (y) =).

Finally, local displacement is captured as follows. For every ¢ > 0, let 431
be a binary predicate such that, for all pairs x,y € T*, +;1(x,y) if and only if
y is the within T%-successor of x. It can be defined as follows:

+i1(xay) =def Tl(x) A Tl(y) N & <got y/\
V2(TH2) A @ <tor 2 = Y <tot 2)-

In the following, we will use a functional notation for +;1, that is, we will
write +;1(z) = y for +;1(z,y). Moreover, we will adopt +;j(x) as an abbrevi-
ation for (+;1)7(z).

In [25], Montanari et al. also introduce an alternative form of contextual-
ization, called vertical contextualization, which is defined as follows: for every
i > 0, let D' be a monadic predicate that holds at all time points at distance i
from the origin of the layer they belong to. We show that the combined use of
projection, local displacement and horizontal contextualization makes it possible
to define vertical contextualization. Given w € {0,...,k — 1}*, we inductively
define |4, () as follows. Whenever |w| =0, |, (z) = z. Otherwise, let w = av,
with a € {0,...,k — 1}. We define |, () =|4 (1, (z)). D°(x) can be defined
as follows:

D°(z) =gy IX(x€X AN0pEX AVylye X —]o(y) € X)),

where 0p is the first-order definable origin of coarsest layer (we have that y = 0
if and only if Vz(y <ior 2))!.

For all i > 0, let a,k™ + ...agk® be the k-ary representation of 3. D* can be
defined as follows:

Di(@) =aer Vb 32(D0(2) A TI(2) A 4yiz) =)V
Fy@°(Y) A lag,....an (¥) = 2).

Since second-order quantification (over paths) only occurs in the definition
D°, it immediately follows that horizontal contextualization, local displacement,
and projection are also definable in MFO[<yo¢, (1),

Remark 3.3 In MSO[<tot, (li)fz_ol}, there is no way to define a binary predicate
EqualT (resp. EqualD) such that, for all x,y, EqualT(z,y) (resp. EqualD(x,y))
holds true if and only if there ewists i such that both T*(x) (resp. D'(x)) and
T (y) (resp. D'(y)) hold. Indeed, the addition of EqualT (resp. EqualD) makes
MSO[<tot, (1:)¥2)] undecidable, a result which is closely related to the undecid-
ability of the extension of S2S with a predicate Elevel such that Elevel(x,y)
holds true if and only if |x| = |y|, with x,y € {0,1}* [21]. Notice that, from
the fact that EqualT and EqualD cannot be expressed in MSO[<io, (li)fz_ol],

n order to define D° in MSO[<¢ot, (lz)f;ol}, it suffices to add the conjunct Path(X) to the
above definition, that is:

D°(z) =g4ey IX(Path(X)Az € X AO0g€X AVylyeX —lo(y) € X)).

13

it obviously follows that they cannot be expressed in MPL[<;u, (14)%2] and
MFO[<tot, (li)i:ol], but it does not follow that the addition of these predicates to
such theories, or to weaker variants of them devoid of the uninterpreted monadic
predicates P,, with a € X, would make them undecidable. We are currently ex-
ploring these decidability problems in a systematic way.

In the following, we will refer to MPL[<1, <2, (1;)¥Z}], which has been proved

to be as expressive as MPL[<tot, (11)7=)] (cf. Proposition 3.2). The reason is
that, according to the combining logic perspective, MPL[<1, <2, (li)f:_)l] allows
us to specify the behaviour of a (granular) reactive system as a suitable combina-
tion of temporal evolutions, modeled by <1, and temporal refinements, modeled
by <2 (cf. Figure 3).

We conclude by pointing out that the expressive power of MPL[<1, <2, (|
)f;ol] does not change if we further constrain set variables to only range over
full paths (instead of paths): a full path is just a particular path starting from
a point belonging to the first temporal domain; moreover, a path can always be
embedded into a unique full path. For instance, the sentence “there is a path
whose time points are labeled with symbol a”, which is expressed in MPL[<;
, <2, (1)1 by the formula:

IXVa(zr € X — P,(z)),
can be captured using full paths by the formula:

AXFy(y € X AVz(z € X Ay <ox — P,(x))).

3.4 On the relationships with interval structures and the-
ories

There exists a natural link between structures and theories of time granular-
ity and those developed for representing and reasoning about time intervals.
Differently-grained temporal domains can indeed be interpreted as different
ways of partitioning a given discrete/dense time axis into consecutive disjoint
intervals. According to this interpretation, every time point can be viewed
as a suitable interval over the time axis and projection implements an inter-
vals/subintervals mapping. More precisely, let us define direct constituents of a
time point z, belonging to a given domain, the time points of the immediately
finer domain into which = can be refined (if any) and indirect constituents the
time points into which the direct constituents of x can be directly or indirectly
refined (if any). The mapping of a given time point into its direct or indirect
constituents can be viewed as a mapping of a given time interval into (a spe-
cific subset of) its subintervals. The existence of such a natural correspondence
between interval and granularity structures hints at the possibility of defining a
similar connection at the level of the corresponding theories. We are currently
working on the problem of establishing such a connection in order to transfer
decidability results from the granularity setting to the interval one. Most in-
terval temporal logics, such as, for instance, Moszkowski’s Interval Temporal

14

Logic (ITL) [29], Halpern and Shoham’s Modal Logic of Time Intervals (HS)
[19], and Chaochen and Hansen’s Neighbourhood Logic (NL) [6], have indeed
been shown to be undecidable. Decidable fragments of these logics have been
obtained by imposing severe restrictions on their expressive power. As an ex-
ample, Moszkowski [29] proves the decidability of the fragment of Propositional
ITL with Quantification (over propositional variables) which results from the
introduction of a locality constrain. An ITL interval is a finite or infinite se-
quence of states. The locality property states that each propositional variable
is true over an interval if and only if it is true at its first state. This prop-
erty allows one to collapse all the intervals starting at the same state into a
single interval of length zero, that is, the interval consisting of the first state
only. By exploiting such a constraint, decidability of Local ITL can be easily
proved by embedding it into Quantified Propositional Linear Temporal Logic
(QPTL). We expect that more expressive decidable fragments of interval logics
can be obtained as counterparts of decidable theories of time granularity over
finitely-layered and w-layered structures.

4 Temporal logics for time granularity

In this section, we first give the definition of basic linear and branching time
logics as well as that of their past and/or directed variants; then, we introduce
temporal logics for time granularity.

Let Px (P when no confusion can arise) be the finite set of atomic proposi-
tional letters {P, | a € L}.

Definition 4.1 ((Past) Directed CTL* and (Past) Directed PTL)

We inductively define a set of state formulas and a set of path formulas:
e state formulas

(S1) any atomic proposition P, € Px. is a state formula;
(S2) if p,q are state formulas, then p A q and —p are state formulas;
(S3) if p is a path formula, then Ap and Ep are state formulas;

e path formulas

(P0) any atomic proposition P, € Py, is a path formula;

(P1) any state formula is a path formula;

(P2) if p,q are path formulas, then p A q¢ and —p are path formulas;
(P3) if p,q are path formulas, then Xp, and pUq are path formulas;
(P4) if p is a path formula, then Xop,...,Xk_1p are path formulas;
(P5) if p,q are path formulas, then X~ 1p and pSq are path formulas.

15

As for branching time logics, the language of Past (k-ary) Directed CTL* (PCTL;,
for short) is the smallest set of state formulas generated by the above rules. The

language of (k-ary) Directed CTL* (CTLy) is obtained by eliminating rule (P5),

that of Past CTL* (PCTL") by removing rule (P4), and that of CTL" by delet-

ing both (P4) and (P5).

As for linear time logics, the language of Past (k-ary) Directed PTL (PPTLy) is

the smallest set of path formulas generated by the rules (P0), (P2), (P3), (P4),

and (P5). The language of (k-ary) Directed PTL (PTLy) is obtained by deleting
rule (P5), that of Past PTL (PPTL) by eliminating rule (P4), and that of PTL

by deleting both (P4) and (P5). Formulas Fp and Gp are respectively defined
as trueUp and =F-p as usual, where true = P, V —P,, for some P, € Ps.

We interpret (P)PTL over sequences (or unary trees), (P)PTLy over paths
of k-ary trees (with k > 2), and (PD)CTLy over k-ary trees (with k& > 2).
The semantic interpretation for non-directed logics is given as usual [11]. The
semantic interpretation for (P)CTL; coincides with that for (P)CTL*, except
for path formulas of the form X;p, whose interpretation is defined as follows.
Given t € Ty(X), a path X in ¢, and a position j in X,

t,X,7 EXspifand only if X(j+1) =]; (X(j)) and ¢, X,j+1 E p.

In the following, we will make use of operators Njp defined as EX;p, for all
i=0,... k-1

In a similar way, the semantic interpretation for (P)PTLy coincides with
that for (P)PTL, except for formulas of the form X;p, whose interpretation is
defined as follows. Given a (full) path X in a k-ary tree and a position j in X,

X,j EXspifand only if X(j4+1)=; (X(j)) and X,j+ 1 p.

Let us now define the Computational Tree Sequence Logic with k successors
(CTSLy), together with its past variant PCTSL;. Let p be a (P)CTLj-formula.
We call p monolithic if its outermost operator is not a Boolean connective.
For example, AG(P V Q) is monolithic, while AGP V @ is not. Formulas
of (P)CTSLy;, are obtained by embedding monolithic formulas of (P)CTLj, into
(P)PTL. To avoid confusion, we rename the linear temporal operators X, U,
X1 and S of (P)PTL by O, A, O !, and A ~1, respectively.

Definition 4.2 (CTSL; and PCTSLy)
We inductively define a set of layered formulas:

(L0) any monolithic formula in CTLy, is a layered formula;

(L1) any monolithic formula in PCTL; is a layered formula;

(L2) if p,q are layered formulas, then p A q and —p are layered formulas;
(L3) if p,q are layered formulas, then Op and p A q are layered formulas;

(L4) if p, q are layered formulas, then O ~'p and p A ~1q are layered formulas.

16

The language of PCTSLy, is the smallest set of formulas generated by rules (L1),
(L2), (L3), and (L4), while that of CTSLy is obtained by applying rules (L0),
(L2), and (L3). Formulas $p and Op are respectively defined as true Ap and
=Op as usual.

For every k > 2, we interpret (P)CTSL;j formulas over k-ary tree sequences
as follows. Given a tree sequence ts € T'S;(X), linear temporal operators O,
A, O~ and A ! are interpreted over the first layer L of ts, while branching
temporal operators E and A are interpreted over trees rooted at time points
in Ly. Given a tree sequence ts € T'Sg(X), a position 7 > 0 in Lo, and a
(P)CTSLy-formula p, we define the satisfiability relation ts, Lo, j = p in terms
of the satisfiability relation of (P)CTLy (here denoted, to avoid confusion, by
EcrL) as follows:

ts,Lo,j E D iff tsr,¢j), Lo(j) FcorL p, p monolithic in (P)CTLy
ts,Lo,jEDP N q ifft ts,Lo,j Epandts,Lo,jE ¢

ts,Lo,j = —p iff it is not the case that ts, Lo, j = p;

ts,Lo,j = Op iff ts,Lo,j+1[Fp;

ts,Lo,j EpQq ifft t¢s,Lo,r =q for some r > j, and

ts,Lo,s = p for every j <s<r;
ts,Lo,j = O 'p iff j>0andts,Lo,j—1Fp;
ts,Lo,jEpA~tq iff ts,Lo,7 = q for some r <j, and

ts,Log,s = p for every r < s <j.

Given a tree sequence ts € T'S,(X) and a (P)CTSLy-formula p, we say that ts
is a model of p if and only if ts, Ly,0 E p. A set T C T'Si(X) is definable in
(P)CTSLy, if there exists a formula p in (P)CTSLy such that, for every ¢s €
TSk(X), ts is a model of p if and only if ts € T

5 Expressiveness and Complexity of CTSL;

In this section, we show that CTSL; is as expressive as MPL[<y, <2, (4)"=4],
when interpreted over k-ary downward unbounded layered structures or, equiv-
alently, over infinite sequences of infinite k-ary trees (Theorems 5.7 and 5.15).
Furthermore, we prove that its satisfiability problem is 2EXPTIME-complete
(Theorem 5.16).

5.1 Preliminaries

We start by recalling some basic definitions and properties of linear and branch-
ing time logics, and by stating some auxiliary results about branching time logics
with explicit successors. Given two languages £; and Lo, interpreted over the
same class S of structures, we say that £, is as expressive as Lo if, for every set
T C S, T is Li-definable if and only if T is Lo-definable.

As for linear time logic, it is well-known that, when interpreted over the class
of finite sequences as well as over the class of infinite ones, PTL and PPTL are
as expressive as MFO[<] [17, 20].

17

Theorem 5.1 (Ezpressive completeness of PTL and PPTL)

PTL and PPTL are as expressive as MFO[<], when interpreted over infinite
(resp. finite) sequences.

In [32], Sistla and Clarke show that the satisfiability problem for PTL is
PSPACE-complete.

As for branching time logic, the expressive power of CTL* and PCTL" is
equivalent to the one of monadic second-order logic on infinite binary trees with
second-order quantifiers over infinite paths [18].

Theorem 5.2 (Ezpressive completeness of CTL* and PCTL")

CTL* and PCTL" are as expressive as MPL[<], when interpreted over infi-
nite binary trees.

In [8], Emerson and Jutla prove that the problem of testing satisfiability for
CTL" is 2EXPTIME-complete.

As pointed out by Hafer and Thomas [18], Theorem 5.2 can be generalized to
CTL; and PCTL; with respect to MPL[<, (|;)¥=}] by incorporating successors
into both temporal and monadic path logics [18].

Theorem 5.3 (Ezxpressive completeness of CTL;y and PCTL;)

CTL; and PCTL; are as ewpressive as MPL[<, (1;,)"=}], when interpreted
over infinite k-ary trees.

Furthermore, a decision procedure for CTLj; can be obtained by means of the
following non trivial adaptation of the decision procedure for CTL* originally
developed by Emerson and Sistla [10] and later refined by Emerson and Jutla [8].

Let us assume k = 2 (the generalization to an arbitrary k is straightforward).
As a preliminary step, we provide an embedding of PTLy into PTL. To this
end, we define a translation 7 of formulas and models of PTLs, over an alphabet
¥, to formulas and models of PTL, over an extended alphabet ¥ x {0,1}. The
mapping of PTLsy-formulas into PTL-formulas is defined as follows:

T(P,) = Vieqo,1} Playy fora e X

T(a AN B) = 7(a) AT(06)

T(—a) = —7(a)

T(X;) = vxEE P(x,i) A X7(a) for i € {0,1}

T(@Up) = 7()U7(f)

Temporal structures for PTLy over ¥ can be viewed as infinite labeled (full)
paths, whose nodes are labeled with symbols in ¥ and whose transitions are
labeled with symbols in {0,1}, while temporal structures for PTL over ¥ X
{0, 1} can be viewed as infinite labeled sequences, whose nodes are labeled with
symbols in ¥ x {0,1}. We define a bijection T from temporal structures M for
PTLs over ¥ to temporal structures M’ for PTL over ¥ x {0, 1} that maps each
a-labeled node of M, with an outgoing transition labeled with i, to an (a,)-
labeled node of M’. As an example, the (full) path ...a =g b —1 a —1 ... is

18

mapped into the sequence ... (a,0)(b,1)(a,1).... The following lemma can be
easily proved.

Lemma 5.4 For every formula ¢ of PTLy and temporal structure M, M is a
model for ¢ if and only if (M) is a model for T(p).

As a second preliminary step, we transform CTL;-formulas in a normal form
suitable for subsequent manipulation. Such a normal form is a straightforward
generalization of the normal form for CTL*-formulas proposed by Emerson and
Sistla [10]. This result is formally stated by the following lemma, whose proof
is similar to the one for CTL* and thus omitted.

Lemma 5.5 For any given CTLy-formula o, there exists a corresponding for-
mula @1 in a normal form composed of conjunctions and disjunctions of subfor-
mulas of the form Ap, Ep, and AGEp, where p is a pure linear time formula
of PTLy, such that (i) @1 is satisfiable if and only if @o is satisfiable, and (ii)
lo1] = O(|wol). Moreover, any model of w1 can be used to define a model of ¢
and vice versa.

Theorem 5.6 (CTLy is elementarily decidable)
The satisfiability problem for CTL;. is 2EXPTIME-complete.

Proof.

Hardness follows from 2EXPTIME-hardness of CTL* [35]. To show that
it belongs to 2EXPTIME, we outline an algorithm for checking satisfiability
for CTL;; of deterministic doubly exponential time complexity. Given a CTL;-
formula g, such an algorithm can be obtained as follows:

1. by exploiting Lemma 5.5, construct an equivalent formula ¢; composed
of conjunctions and disjunctions of subformulas of the form Ap, Ep, and
AGEp, where p is a PTLo-formula;

2. by exploiting Lemma 5.4, replace every maximal PTLy-formula p (over X)
in ¢1 by the PTL-formula 7(p) (over ¥ x {0, 1}); then, construct a Biichi
string automaton A,) (over ¥ x {0,1}) recognizing the models of 7(p),
by using the technique described in [10];

3. for every subformula of the form Ap of ¢, determinize the Biichi string
automaton A, for 7(p), using Safra’s construction [31], to obtain an
equivalent deterministic Rabin string automaton A’;(,) (over ¥ x {0,1})

for 7(p);

4. program a Rabin tree automaton A,, (over X), accepting the models of
(1, which incorporates the string automata built in steps 2 and 3 in a
suitable way (see below);

5. test whether A, recognizes the empty language using the algorithm pro-
posed by Emerson and Jutla [8].

19

Step 4 is as follows. For every subformula Ep of ¢1, let A, = (@, g0, A, F)
be the Biichi string automaton for p. We construct the Biichi tree automaton
Agp = (QU{g.}, g0, A, F U{g.}) for Ep, where A’ is defined as follows:

A'(q,a,q',q.) if and only if A(q, (a,0),¢');
A'(q,a,qx,q') ifand only if A(q, (a,1),¢');
A'(q,a,q4,q«) ifand only if a€X.

For every subformula Ap of 1, let A, = (Q, go, A,T') be the deterministic Rabin
string automaton for p. We construct the deterministic Rabin tree automaton
Aap = (Q,q0,A',T) for Ap, where A’ is defined as follows:

A'(q,a,q',q") if and only if A(g, (a,0),q") and A(q, (a,1),q").

For every subformula AGEp of o1, let A, = (Q, g0, A, F') be the Biichi string
automaton for p. We construct the Biichi tree automaton Aagg, = (Q U
{¢* | 1€ Q},q0, A, FU{q" | ¢ € Q}) for AGEp, where A’ is defined as follows:

Al(qa a, q/v qT) if and Only if (q () q/) and A(q()v (a’ 1))
A(q,a,q5,q") if and only if A(q, (a,1),q’) and A(qo, (a,),q);
Ag,a,q,q}) if and only if A(q, (a,0),¢’) and A(qo7 (a, 0),4q");

) /((a,1), (0, (a,1),4");

Ag,a,q5,¢ if and only if q, q") and A(qo, (a,
A'(q",a,¢',¢") ifandonlyif A (q7a, q,q").

))

A tree automaton Ay, for ¢, is obtained by taking the intersection and/or
the union of the tree automata constructed for the subformulas of ;. Notice
that if ¢ does not contain subformulas of the form X;p, then A, is symmetric.

By exploiting classical complexity results on string and tree automata [11,
33, 34], an easy complexity analysis of the proposed algorithm allows us to
conclude that its complexity is (deterministic) 2EXPTIME. [

5.2 Expressive completeness of CTSL;

We prove that CTSL;, is as expressive as MPL[<1, <2, (Li)f;(}], when interpreted
over infinite sequences of infinite k-ary trees.

For technical reasons, we constrain path variables X to be interpreted over
full paths. As shown in Section 3, such a restriction leaves the expressive power
of monadic path formulas unchanged. For the same reason, we reformulate
the considered monadic languages as follows (Without altering their expressive
power). Given the vocabularies 71 = {€, <1, <2, (1:)*=0}, 72 = {e, <, (Li)F=)
3 ={e,<, |} and 7y = {¢,9, <, | }, we will use:

e MPL[r], interpreted over infinite sequences of infinite k-ary trees, where
€ is a (first-order definable) constant denoting the root of the first tree of
the sequence;

e MPL[r], interpreted over infinite k-ary trees, where € is a (first-order
definable) constant denoting the root of the tree;

20

e MFO[ry4] (resp. MFO|[r3]), interpreted over finite (resp. infinite) sequences,
where € and § are constants that respectively denote the first and the last
element of the sequence, and | is the successor function. It is easy to show
that € and d, as well as |, are (first-order) definable in terms of <.

One direction of the proof (as usual) is easy: there exists a straightforward
embedding of CTSL; into MPL[<1, <a, (1:)¥Z4].

Theorem 5.7 (CTSL; is a fragment of MPL[<1, <a, (1:)¥24])

For every set T C TSk(X) of infinite sequences of X-labeled infinite trees, if
T is definable in CTSLy, then T is definable in MPL[<1, <a, (Ll)f:_ol]

Proof.

We prove that every CTSL;-formula can be mapped into an equivalent sen-
tence of MPL[r], and, thus, that it is equivalent to a MPL[<1, <a, (1:)¥24]-
sentence. To this end, for any ts € T'Si(X), w € ts, and p € CTSLy, we define
a translation 7, of p into an MPL[r]-formula, with free variable w. For any
CTL;-formula p, let 7,(p) be the MPL[rz]-formula obtained from p by exploit-
ing Theorem 5.3, with the symbol < replaced by <,. The translation 7, can be
defined as follows:

Tw (D) = 7u(p), whenever p is monolithic in CTLy;
Tw(P AN @) = TwP) A Tw(9);

Tw (D) = 7w(p);

w(Op) = F'(w =+ (w) A 7w (p));

Tw(pNqg) = T (T°(w') A w <y w' A Tw(q) A

V" (TO(w"”) A w <3 w” A w” <y w') — 7y (p))).

For any CTSLj-formula p, we have that p is equivalent to the MPL[r]-
sentence ¢, = 7.(p). []

In order to prove the opposite direction, that is, to show that CTSL;, is expres-
sively complete with respect to MPL[<1, <2, (Li)f;(ﬂ we follow a ‘decomposi-
tion method’ similar to that exploited by Hafer and Thomas in [18] to prove
the expressive completeness of CTL" with respect to MPL[<]. We first decom-
pose the model checking problem for an MPL[<y, <9, (|;)F=)]-formula and a
tree sequence in T'Si(X) into a finite number of model checking subproblems
for formulas and structures that do not refer to the whole tree sequence any-
more, but only to certain disjoint components of it. Then, taking advantage of
such a decomposition step, we map every MPL[<y, <a, (li)f:_ol]—formula into an
equivalent (but sometimes much longer) CTSL;-formula.

As a preliminary step, we show that the addition of past operators to CTSL;;

does not increase its expressive power.
Lemma 5.8 PCTSL;, is as expressive as CTSLy.

Proof.
By exploiting Theorem 5.3, any PCTSL;-formula p can be replaced by an
equivalent PCTSLj-formula ¢, whose past operators (if any) are of the forms

21

O tand A1 only. Let qi,...q, be the monolithic CTL;-subformulas of q.
Regarding q1, . .. ¢, as additional atomic propositions within ¢, we may consider
q as a PPTL-formula. By exploiting Kamp’s Theorem, g can be replaced by an
equivalent PTL-formula r that contains ¢, ...q, as subformulas. []

Let =, be a relation on T'S(X) such that ts =, ts’ if and only if ¢s and
ts’ satisfy the same sentences of MPL[1;] of quantifier depth n. It is possible to
show that =, is an equivalence relation of finite index. Its equivalence classes
are called n-types and are described by path formulas called n-types descriptors.

Definition 5.9 (n-types descriptors)

Given ts € TSE(X), a sequence of r elements @ in ts, a sequence of s full

paths P in ts, and n > 0, an n-type descriptor w;‘S ~pisa path formula defined
as follows:
Ss,a,ﬁ = Ao . .;mr,Xl ... Xs) | ¢ atomic or negated atomic,
» ts = ola, Pl}
n
Vioar = Naets Fr1¥y 505 N Vaers VEr1¥y, 5, 5/

Npcus) 3Xri19y, 2 pp A Vecns YXr197, 2 5p

The relation =,, can be characterized by an Ehrenfeucht game G, (ts,ts’) as
follows (basics on Ehrenfeucht games can be found, for instance, in [9]). A
play of this game is played by two players Spoiler and Duplicator on structures
ts,ts’ € TSi(X) and consists of n rounds. At each round, Spoiler chooses an
element or a full path either from ¢s or from t¢s’; Duplicator reacts by choosing
an object of the same kind in the other structure. After n rounds, elements

ai,...a, (@ for short) and full paths Py,... Ps (P) in ts (with n = r + s), and
the corresponding elements by,...b, (b) and full paths Q1,...Q, (Q) in ts',
have been chosen. Duplicator wins if the map @ — b is a partial isomorphism
from (ts, P) to (ts’,Q), i.e., it is injective and respects €, <9, <1, and |;, with
i=0,...k—1, as well as membership in P,, for every a € . The game can be
naturally extended to G, ((ts, P),a, (ts',Q),b), where @ and P (resp. b and Q)
are a finite sequence of elements and a finite sequence of full paths in ts (resp.
in ts'), respectively.

Let ~, be a relation such that, for any pair of structures (ts,a, P) and
(ts',b,Q), (ts,a, P) ~, (ts',b,Q) if and only if Duplicator wins G, ((ts, P), @, (ts', Q), b).
The following result easily follows from the well-known Ehrenfeucht-Fraissé The-
orem.

Theorem 5.10 Given structures ts andjs’, element sequences @ in ts and b
in ts', full path sequences P in ts and Q in ts’, the following are equivalent
conditions:

1. (ts,a@, P) ~p (ts',0,Q);

2.ts' = ur 50.Ql;

22

3. @, P satisfy in ts the same formulas of MPL[m] of quantifier depth less
than or equal to n as b,Q in ts'.

Corollary 5.11 Given n > 0 and an MPL[r]-formula o(%,X) of quantifier
depth less than or equal to n, ¢ is equivalent to a finite disjunction of formulas

-~ such that ts = ¢la, P).
Similar definitions and results hold for k-ary tree structures and infinite (as
well as finite) word structures. In the former case, n-type descriptors are path
formulas in the language of k-ary trees MPL[75]. In the latter case, the rules of
the game are that Spoiler and Duplicator can only pick elements from the given
pair of words; hence, n-type descriptors are formulas in the first-order language
of linear orders MFO[73] (resp. MFO[74]).

Let ts € TSE(X), ko be an element belonging to the i-th tree of ts, n be an
integer greater than or equal to 0, and m be the index of =,,. We enlarge the
alphabet 3 to X1 = ¥ x {1,...,m}, where all j € {1...m} serve as indices for
all possible n-types. Let m; (resp. m3) be the finite (resp. infinite) sequence of
roots (€)g, ... (€)i—1 (resp. (€)it1,...). We denote by vy (ts, ko) (resp. vs(ts, ko))
the finite (resp. infinite) word over ¥; whose I-th letter is (a,j) if m1(l) (resp.
m3(l)) carries letter a € 3 and the tree rooted in it has n-type j. Similarly, we
enlarge the alphabet ¥ to X9 = ¥ x ({0,...,k — 1} x {1,...,m})*71, and we
denote by 7o the finite path from (€¢); up to (and excluding) ky. We denote by
va(ts, ko) the finite word over X5 whose I-th letter is (a, (I1,j1), - -+, (lk—1, jr—1))
if wo(l) carries letter a € ¥ and, for r = 1,...,k — 1, the tree rooted in the [,-th
son of it has n-type j,.

We need to prove the following auxiliary lemma, which states that combining
local winning strategies on disjoint parts of two tree sequences it is possible to
obtain a global winning strategy on the two tree sequences.

Lemma 5.12 For arbitrary (ts, ko) and (ts',kj), if vi(ts, ko) ~n vi(ts',k(),
with i =1,2,3, t8y,,i ~n 8}, ;, withi=0,..., k=1, and ts(ko) = ts'(kp), then
(ts, ko) ~n (s, kp).

Proof.

Suppose that Spoiler picks an element k (different from ky) in ts. If k
belongs to some path v;(ts, ko) or to some tsg, ;, then Duplicator chooses &’ in
ts’ according to the corresponding local winning strategies. If k& belongs to the
tree kg belongs to, and neither £ <5 k¢ nor kg <o k, then Duplicator looks for
the last node k; belonging to the path va(ts, ko) such that ky <o k. Let ko be
the son of kp such that there is a path from k5 to k. Suppose that ko is the i-th
son of k1. Duplicator chooses k] in the path va(ts’, k{)) according to his winning
strategy on wva(ts, ko), va(ts’, kj)). Let k) be the i-th son of kj. Hence, k1 and
k{ have the same label from 35 and thus the subtrees rooted in their successors
ko and kj have the same n-type. Hence, by Theorem 5.10 (its variant for k-ary
trees), Duplicator has a winning strategy on these subtrees and can use this
strategy to choose an element k' corresponding to k in the subtree rooted in

23

K. Finally, if & <1 ko (resp. kg <1 k) and k is not a root, then Duplicator
chooses k' in ts’ exploiting his winning strategy on vy (ts, ko), v1(ts’, k) (resp.
v3(ts, ko), v3(ts’, kj)).

Suppose now that Spoiler picks a full path Py in ts. Let A (resp. A’) be
the finite path from the root of the tree ko (resp. k{) belongs to up to (and
excluding) ko (vesp. kg). If ko € Py, then Py has the form A, ko, B, where B
is a path on tsg, ;, for some i. Hence, Duplicator chooses a path B’ in ts;c(,pi
according to his local strategy on tsy, ;, ts;%’l., and he responds to Spoiler with
the full path A’ k}, B’. If kg ¢ Py and Py belongs to the tree ko belongs to,
then Py = A1k;C, where ky is the last node of Py which belongs to A and
C is a path on ts, ;, for some i. Duplicator first chooses ki according to his
local strategy on va(ts, ko), va(ts’, k(). Let A} be the finite path from the root
of the tree k{ belongs to up to (and excluding) ki. Then, Duplicator picks a
path C’ on ts%i)i exploiting his winning strategy on tsy, ;, ts;vi’i7 and, finally,
he responds to Spoiler with the full path A, k], C’ . The case in which Py does
not belong to the tree kg belongs to is similar to the previous one, and thus its
analysis is omitted. []

The following lemma states that checking a path formula ¢(z) at a node kg
belonging to the tree sequence ts corresponds to verifying a number of sentences
that do not refer to properties of x relative to the whole tree sequence anymore,
but only relative to certain disjoint components of it. In particular, these disjoint
substructures are the (above defined) sequences 1 and 73, with the trees rooted
at them, the path w5, with the trees rooted at successor nodes that are not on
o, the node kg, and the k trees rooted at the k successors of kg.

Lemma 5.13 (First Decomposition Lemma)

For every MPLx[m]- formula o(x) of quantifier depth n, there exists a fi-
nite set ® of elements of the form (Yn1,v2,a,Bo, ..., Pr—1,13), where 1;, with
i = 1,2, are n-type descriptors in MFOs,[14], ¥5 is an n-type descriptor in
MFOgs,[13], @ € 3, and B;, with i = 0,...,k — 1, are n-type descriptors in
MPLy 2], such that, for any ts € T'Sp(X) and any element ko in ts, it holds
that:

(ts, ko) E w(x) if and only if there exists (Y1, 2, a,Bo, - .., Bk—1,13)
in ® such that vi(ts, ko) = i, for i = 1,2,3, ts(ko) = a, and
tSky,i = Bi, fori=0,...,k—1.

Proof.

By Corollary 5.11, ¢(z) is equivalent to a finite disjunction \/{+y, ;. | ts =
wlko]}. Hence, (ts, ko) E ¢(z) if and only if there exist ts’,k{ such that
(ts' k) = p(z) and (ts,ko) = w?s’,ké (z). By Theorem 5.10, this holds true
if and only if there exist ts',k{ such that (ts',k) = ¢(x) and (¢s,ko) ~n
(ts', k(). This is equivalent to the existence of ts”, k(| such that (ts”, k() | ¢(x),
v (ts, ko) ~n vi(ts”, ky), with i = 1,2,3, ts(ko) = ts” (ki) and tsg,; ~n tsgg’i,
with¢=0,...,k—1. The implication from right to left follows from Lemma 5.12

24

by setting ts' = ts” and k{ = k(. To prove the opposite implication, take
ts” = ts and k{ = ko. We must show that (¢s,kg) = @(z). Observe that, by
hypothesis, (ts, ko) ~n (ts',k})) and (ts', k{)) = ¢(z). Since ¢(z) is of quantifier
depth n, by applying Theorem 5.10, we have that (ts, ko) E o(z).

Now, we proceed by invoking the analogous of Theorem 5.10 for words and k-
ary trees, to obtain, respectively, appropriate n-type descriptors ¢; = w:}i(ts”, k)
with¢z=1,2,3, and 3; = wll;;,, L, withi=0,...,k—1, such that v;(ts, ko) = v,

i

for i = 1,2,3, and tsk,,; = B;, for i = 0...k — 1. By collecting all such n-
type descriptors, we obtain a set ® as required. Since, for every n > 0, the
equivalence relation =,, has finite index, by virtue of Theorem 5.10, there is a
finite number of non equivalent n-type descriptors. From this, it follows that
the set @ is finite. [|

It is possible to prove a similar decomposition lemma for the second-order case.
To state it, we need the following definition. Let ts € T'Sk(X) and Py be a full
path in ts. We denote by v(ts, Py) the infinite word over ¥4 whose i-th letter is
(a,(i1,71), .- (ig—1,Jk—1)) if Po(i) carries letter a € ¥ and, for r =1,..., k—1,
the tree rooted in the i,-th son of it has n-type j,. The proof of Lemma 5.14 is
similar to that of Lemma 5.13, and thus omitted.

Lemma 5.14 (Second Decomposition Lemma)

For every MPLyx[11]-formula o(X) of quantifier depth n, there exists a finite
set ® of elements of the form (Yn1,19,13), where 11 is an n-type descriptor
in MFOx, [14], 2 is an n-type descriptor in MFOs,[13], and 3 is an n-type
descriptor in MFOgx, [13], such that, for any ts € TSL(X) and any full path Py
in ts, it holds that:

(ts, Py) = ¢(X) if and only if there exists (11,12, 13) in @ such that
vi(ts, ko) E i, withi = 1,3, and v(ts, Py) | ¥s.

We are now ready to prove the main theorem.

Theorem 5.15 (Expressive completeness of CTSLy)

For every set T C TSk(X) of infinite sequences of X-labeled infinite trees, if
T is definable in MPL[<y, <3, (1:)F=}], then T is definable in CTSL;.

Proof.

We prove that every MPL[<y, <2, (Li)§;&]—sentence corresponds to an equiv-
alent CTSLy-formula. Without loss of generality, we consider MPL[r |-sentences
with set quantification restricted to full paths only. Let ¢ be an MPL[r]-
sentence. We focus on the two relevant cases: ¢ = Jz¢(z) and p = IXp(X).

Let ¢ = Jz¢(x). By Lemma 5.13, checking ¢(z) in (¢s, ko) is equivalent
to checking certain sentences 11, 12, Oo, ..., Ok—1, and 13, and a label a € X,
taken from a finite set ®, in particular substructures of ts. It suffices to consider
the case in which |®| = 1.

25

The first-order sentence 1, can be mapped into an equivalent PTL-formula
hy (cf. [17, 20]). Given the formula hy, we construct the dual formula hy* €
PPTL, that is, a formula such that, for every finite word w of length I, (w,0) |=
hy if and only if (w,1—1) = hy*. The formula h]* contains atomic propositions
P, for (a, j) € 1, which must be replaced by suitable CTLy-formulas q(, ;).
Each formula q(, ;) states that a given node satisfies P, and the tree rooted at
it has n-type j, i.e., it satisfies the j-th n-type descriptor. Hereinafter, we will
denote by p; the CTLy-formula equivalent to the j-th n-type descriptor, whose
existence is guaranteed by Theorem 5.3. Let q, ;) = Pa A p; and let (hy Ly
be the PCTSL;-formula obtained from hfl by replacing propositions P4 j) by
formulas q(, ;) (and using the symbols O, A, O ', and A ! for the linear
time operators that occur in hyh).

In a similar way, the first-order sentence 13 can be mapped into a PTL-
formula h3. The formula hs can be turned into a CTSLj-formula (h3)" by
replacing propositions P, ;) by CTLy-formulas g, ;) as in the previous case
(notice that, in this case, linear past operators are not needed).

Finally, the first-order sentence 5 can be mapped into an equivalent PTL-
formula hg, whose dual version hg 1'is obtained as already explained in the
case of hy. The PCTL;-formula (hy ')’ is obtained by replacing propositions
Pla(iv i)y (in—1,je_1)) by formulas qea iy ji),....(ix—1,ju_1)) Which states that a
given node satisfies P, and the tree rooted at its i,-th son has n-type j,, that
is, it satisfies the j,-th n-type descriptor p;,, for r = 1,...k — 1. Formally,

k—1

r=1

As for the MPL[m]-sentences 3;, with ¢ = 0,...,k — 1, let b; be the index
of the n-type descriptor ;. By exploiting once more Theorem 5.3, we obtain a
CTL;-formula py,, for each i =0,...,k — 1.

Merging together the above results, we have that the given MPL[r]-formula
 is equivalent to the PCTSL;-formula:

Py = O(O _l(h;1>/ NEFp A O (h3)/)7

where
k—1

p=X"1(hy') AP, A /\ Nipy, .
i=0

Theorem 5.8 guarantees that there exists a CTSLy-formula p{, (that is, a
formula devoid of past operators) which is equivalent to p,, and, thus, equivalent
to .

Let ¢ = 3X¢(X), with quantifier depth of ¢ equal ton > 1. By Lemma 5.14,
checking ¢(X) in (ts, Py) is equivalent to checking certain sentences)y, s,
and 3 in particular substructures of ts. In analogy to the case of first-order
quantification, 11, 19, and 13 can be replaced by a PCTSL; formula (k')

26

a CTL; formula (hs)’, and a CTSL; formula (hs)’, respectively. It is easy to
check that the MPL[r]-formula ¢ is equivalent to the PCTSL;-formula:

Po = (O M) A E(h2) A O(hs)).

Again, by Theorem 5.8, there exists a CTSLy-formula p{, which is equivalent
to p,, and, thus, equivalent to (. []

Putting together Theorems 5.7 and 5.15, we have that CTSL;, is as expressive
as MPL[<1, <2, (li)fgg], when interpreted over infinite sequences of infinite k-
ary trees. In particular, it holds that every MPL[<y, <a, (li)i-:ol]-sentence can
be encoded into a (sometimes much longer) CTSL;-formula.

It is worth noticing that the proposed (combined) temporal logic for time
granularity can be tailored to deal with infinite sequences of finite (unbounded)
trees, preserving expressiveness and complexity results. In Section 6, we show
how to deal with infinite sequences of trees of a given depth n, with n > 0
(n-layered structures).

5.3 Temporal operators for time granularity

In this section, we show how the basic temporal operators of (horizontal) contex-
tualization, local displacement, and projection, as well as the derived operators
of abstraction and vertical contextualization, can be encoded in CTSLy.

We proceed as follows: first, we provide a natural language specification of
a property based on one of these temporal operators; then, we encode it in the
language MPL[<1, <2, (14)FZ,]; finally, we express it in CTSL;.

e Projection: “whenever p holds at a given time point, then ¢ holds at its
ith projection (if any)”:
= Va@y(T (y) = 2) A ple) — Fy(li (@) =y A qv)));
— DAG(XT A p — Nyig).
Notice that the formula Jy(] (y) = x) is always true in downward un-

bounded layered structures; however, it can be false in n-layered ones (cf.
Section 6).

e Abstraction: “whenever p holds at a given time point, then g holds at
its abstraction (if any)”:

= Ve(@y(1 (z) =) A p(x) — (T (2) =y A q(v)));
— ODAG(Xp — q).

e (Horizontal) contextualization: “p holds at all time points of the i-th
layer”:

= Va(T'(z) — p(x));
— OAX'p,

27

where X’ is the concatenation of i next operators X, for every i > 0.

e Local successor: “if p holds at a given time point of the i-th layer, then
q holds at its successor”:

— Va(T(z) A p(z) — Jyly = +il(z) A q(y)));
—fori=0,0(p — Og)
for i > 0, O(AL_*(Nip — Niyyq) A (NL,_p — ONig)),

where, for 7,7 > 0, N = N;, ... Nj,_,, with ZZ;B k%j;_1_s = r, that is,
Jo-..ji—1 is the k-ary representation of .

e Local until: “if h holds at a given time point of the i-th layer, then there
exists a time point in its future (belonging to the same layer) at which ¢
holds and p holds until then”:

— Vz(Ti(2) A h(2) — Jy(Ti(y) A qly) A V(T (z) A 2 <2 <y —
p(2))));
= DA (N = Vi (N A A2 Np)) v
Nz (Nh = (A= Nip) A O (AXp A Vg (NG A N2 Nip))-
e (Vertical) contextualization: “p holds at all time points at distance 4
from the origin of the layer they belong to”:

— Vz(D'(x) — p(x));
— for i =0, E(p A GXgp);

— for ¢ > 0, /\}E%’“(m X Li/k I aiP N E(G(Xotrue A Nluogkij+1p)).

mo

5.4 Complexity of CTSL;

We prove now that the satisfiability problem for CTSL;, is 2EXPTIME-complete,
and thus elementarily decidable.

Theorem 5.16 (CTSLy is elementary decidable)
The satisfiability problem for CTSLy is 2EXPTIME-complete.

Proof.

Hardness follows from 2EXPTIME-hardness of the satisfiability problem for
CTL* [35]. To show that the satisfiability problem for CTSLy, is in 2EXPTIME,
we reduce it to the satisfiability problem for CTL;, which has been shown to be
2EXPTIME-complete in Section 5.1 (Theorem 5.6).

To this end, let ¥ be a finite alphabet and ¥’ = ¥ U {x}, where * is a new
symbol not belonging to . We define a translation 7 that maps CTSLj-formulas
over Py into equisatisfiable CTLy-formulas over Py .

28

For any CTSL;-formula «, let
T(a) = RightPath(Py) A 7(a),

where

RightPath(P.) = P, A AG(P. — (Nx_ 1P, A NIZ2Ni=P) A
-~P, — AX-P,)

and 7(«) is recursively defined as follows:

7() = Npa, whenever @ monolithic in CTL;;
7(Oa) = Nyg_17();
FaAB) = E(GP A 7(a)UT(B)).

It is not difficult to show that, for every formula o of CTSL;, « is satisfiable
over T'Si(X) if and only if 7(«) is satisfiable over Tj(X').

As for the left to right direction, let a be a formula of CTSL} and ts =
to,t1,... € TSE(X) be a tree sequence that validates . Consider a tree ¢t €
Tk (X) built as follows: we label the subtree of ¢ rooted at 0 in the same way in
which ¢ is labeled, the subtree rooted at (k — 1)0 as t1, the subtree rooted at
(k—1)(k—1)0 as t2, and so on. Moreover, we label the set of nodes {(k—1)" | n >
0} with x € ¥'. Tt is easy to prove, by induction on the structure of «, that ¢
validates 7(a).

As for the opposite direction, let a be a formula of CTSL; and ¢t € Ty (X')
be a tree that validates 7(«). Let ts = to,t1,... be a tree sequence in T'S;(X)
built as follows: tg is labeled as the subtree of ¢ rooted at 0, t; is labeled as
the subtree of ¢t rooted at (k — 1)0, 3 is labeled as the subtree of ¢ rooted at
(k—1)(k —1)0, and so on. It is easy to prove, by induction on the structure of
a, that ts validates a. []

6 Coping with n-layered structures

We conclude the paper by showing how to tailor temporal logics for time gran-
ularity over downward unbounded layered structures to deal with n-layered
structures. n-layered structures are layered structures endowed with a finite
and bounded number of temporal domains. Formally, we define a k-refinable
n-layered structure as a triplet ({J,., T, |, <tot), with n > 0, such that:

o {T"},<, are pairwise disjoint copies of N;

o |: {0,...,k =1} x U;c,, T" — U<, T" is a bijection such that, for all
i<mn, pi:{0,...,k—1} x T* — T+ is a bijection;

e <;, is such that

1. (T, <tot|70x70) is isomorphic to N with the standard ordering;
2.t <porl (G, 1), for 0 < j <k —1;

29

3' l(]?t) <totl« (]+17t)7f0r0§j§k_2a
4. if t <gop t' and ¢’ € |JI 1" (), then | (k —1,t) <ior t;
5. if t <gor t" and t/ <tot t”, then t <;o¢ t”.

where, |* (t) C Ui<n T? is the set such that | (t) = {t} and, for every
iz LN ={LG) el (1),0<j<k—1}

For every n > 0, n-layered structures can be viewed as infinite sequences of k-
ary trees of height n, and vice versa. Moreover, the monadic first-order theory
MFO[<tot, (li)fz_ol] can be adopted as the language for time granularity over
n-layered structures or, equivalently, over infinite sequences of finite trees of
height n. MFO[<;0t, (li)fgol] is indeed expressive enough to capture the granular
primitives of (horizontal) contextualization, local displacement, and projection
as well as the derived operators of abstraction and vertical contextualization.
Projection, abstraction, (horizontal) contextualization, and local displacement
can be expressed as in the case of downward unbounded layered structures. As
for vertical contextualization, its definition can be simplified as follows:

p°(x) = \/ Lo (00) =z,
i=0

where 0p is the (first-order definable) origin of layer zero.
For all # > 0, D*(z) can be defined as follows:

n

D(z) = \/ Jy(TI(y) A D°(y) A +5i(y) =).

Remark 6.1 Unlike the case of downward unbounded structures (cf. Remark
3.8), by exploiting the finiteness of the layered structure, we can capture the
predicate EqualT as follows:

n

EqualT(z,y) = \/(T*(x) A TH(y)).
=0

On the contrary, there is no way to define the predicate EqualD. Indeed, it
is possible to show that the addition of such a predicate to MFO[<ot, (li)f;(}]
would make the theory undecidable.

Let CTSL}, be the temporal logic for time granularity over infinite sequences
of finite trees of height n (n-layered structures). From a syntactical point of view,
it coincides with CTSLy; however, it is interpreted over infinite sequences of
finite k-ary trees of height n (with a strong interpretation for the next operator).

In the following, we show how to reduce the satisfiability problem for CTSLy,
to that for CTSLy. Let ¢ > 0 and 6; = O(A)_, AXIP, N AXITLAG-P,),
where * ¢ 3. The translation 7 from CTSLj-formulas to CTSLy-formulas can
be defined as follows:

30

T(P,) = P,forael;

@A p) = 7(a) AT(B);

7(~a) = ()

T(Qa) = Or7(a);

rarB) = r(a) AT(0)

T(Aa) = Ar7(«) whenever the outermost operator of a (if any) belongs
to {A,,AE};

T(AXa) = AX(P. — 7());

T(AX) = AX;(P. — 7(a));

7(A(QUp)) = P. — A(r(a)U(P A 7(B)));

T7(Ex) = E7(«a) whenever the outermost operator of « (if any) belongs
to {A,,A,E};

T(EXa) = EX(P: A 7(a));

T(EX;) = EX;(P. A 7(@));

T(E(@Up)) = P AE((a)U(P: A 7(0))).

For every CTSLy-formula « and ¢ > 0, let n;(a) = 0; A 7(c). It is not difficult
to show that, for every n > 0, the satisfiability of « over infinite sequences of
finite k-ary trees of height n can be reduced to the satisfiability of n,(a) over
infinite sequences of infinite k-ary trees. This is formally stated by the following
theorem.

Theorem 6.2 For every CTSLy-formula o and n > 0, there exists an n-layered
structure satisfying o if and only if there exists a downward unbounded layered
structure satisfying ().

As an immediate corollary of Theorem 6.2, we have that the satisfiabil-
ity problem for CTSL; is elementarly decidable. As for the expressiveness of
CTSLy, the proof given for CTSLy; also works for CTSLy. Hence, CTSLy, is as
expressive as MPL[<1, <3, (Li)fz_ol] over infinite sequences of finite k-ary trees
of height n. However, since second-order quantification in MPL[<1, <2, (li)f;(}]
over sequences of finite trees is restricted to finite paths (of bounded length), it
is not difficult to see that MPL[<1, <s, (1;)¥=)] and MFO[<1, <s, (1:)FZ}] have
the same expressive power over infinite sequences of finite k-ary trees of height

n. Therefore, CTSLY is as expressive as MFO[<1, <a, (1:)¥74].

7 Conclusions and Future Work

In this paper we proposed a temporal logic for time granularity, that we called
CTSL;, which is based on a simple combination of the branching time logic
CTLy (the extension of CTL" with k directed successors) and the linear time
logic PTL. We proved that CTSLy, is an expressively complete and elementarily
decidable fragment of the theory of k-refinable downward unbounded layered
structures with set quantification restricted to infinite paths. Furthermore, ac-
cording to the adopted combining logic perspective, we have that an axiomati-
sation, as well as model and satisfiability checking procedures, for CTSL; can

31

be synthesized from the same tools for the component logics. Finally, we showed
that (a minor variant of) CTSL;, is expressively complete with respect to the first
order-theory of k-refinable n-layered structures, and that it is still elementarily
decidable. We are currently working at an extension of CTSL; able to capture
the full power of the second-order theory of downward unbounded layered (resp.
n-layered) structures, preserving its elementary decidability.

References

1]

2]

R. Alur and T.A. Henzinger. Real-time logics: complexity and expressive-
ness. Information and Computation, 104:35-77, 1993.

C. Bettini, S. Jajodia, and X. Wang. Time Granularities in Databases,
Data Mining, and Temporal Reasoning. Springer, 2000.

P. Blackburn and M. de Rijke. Special issue on combining structures, logics,
and theories. Notre Dame Journal of Formal Logic, 37, 1996.

J.R. Biichi. On a decision method in restricted second-order arithmetic. In
Proc. 1st International Congress on Logic, Methodology, and Philosophy of
Science, pages 1-11. Stanford Univ. Press, 1962.

S. Buvac and I.A. Mason. Propositional logic of context. In Proceedings of
AAAI Washington, 1993. MIT Press.

Z. Chouchen and M. R. Hansen. An adequate first order interval logic.
Lecture Notes in Computer Science, 1536:584-608, 1998.

C.E. Dyreson and R.T. Snodgrass. Temporal granularity. In R. T.
Snodgrass, editor, The TSQL2 Temporal Query Language, pages 347-385.
Kluwer Academic Press, 1995.

E.A. Emerson and C.S. Jutla. The complexity of tree automata and logics
of programs. In Proceedings of the 29th Annual Symposium on Foundations
of Computer Science, pages 328-337. IEEE, 1988.

H.D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 1995.

E. A. Emerson and A. P. Sistla. Deciding full branching time logic. Infor-
mation and Control, 61(3):175-201, 1984.

E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Vol. B, pages 995-1072. Else-
vier Science Publishers B.V., 1990.

J. Fiadeiro and T. Maibaum. Sometimes “tomorrow” is “sometimes” -
action refinement in a temporal logic of objects. In Proc. of the 1st Inter-
national Conference on Temporal Logic (ICTL), LNAI 827, pages 48-66.
Springer, 1994.

32

[13]

[14]

[15]

[16]

[17]

M. Finger and D. Gabbay. Adding a temporal dimension to a logic system.
Journal of Logic, Language and Information, 1:203-233, 1992.

M. Finger and D. Gabbay. Combining temporal logic systems. Notre Dame
Journal of Formal Logic, 37:204-232, 1996.

M. Finger and M. A. Weiss. The unrestricted addition of a temporal dimen-
sion to a logic system. In Proceedings of the 3rd International Conference
on Temporal Logic (ICTL), pages 53-63, 2000.

M. Franceschet, A. Montanari, and M. de Rijke. Model checking for com-
bined logics. In Proceedings of the 3rd International Conference on Tem-
poral Logic (ICTL), pages 65-73, 2000.

D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis
of fairness. In Proc. 7th ACM Symposium on Principles of Programming
Languages, pages 163-173, 1980.

T. Hafer and W. Thomas. Computation tree logic CTL* and path quan-
tifiers in the monadic theory of the binary tree. In T. Ottmann, editor,
Automata, Languages and Programming, 14th International Colloguium,
volume 267 of Lecture Notes in Computer Science, pages 269-279, Karl-
sruhe, Germany, 13-17 July 1987. Springer.

J.Y. Halpern and Y. Shoham. A propositional modal logic of time intervals.
Journal of the ACM, 38(4):935-962, October 1991.

H. Kamp. Tense Logic and the Theory of Linear Order. PhD Dissertation,
University of California, Los Angeles, 1968.

H. Lauchli and C. Savoiz. Monadic second-order definable relations on the
binary tree. Journal of Symbolic Logic, 52:219-226, 1987.

Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems
(Safety). Springer, 1995.

A. Montanari. Metric and Layered Temporal Logic for Time Granular-
ity. ILLC Dissertation Series 1996-02, Institute for Logic, Language and
Computation, University of Amsterdam, 1996.

A. Montanari and M. de Rijke. Two-sorted metric temporal logic. Theo-
retical Computer Science, 183:187-214, 1997.

A. Montanari, A. Peron, and A. Policriti. Decidable theories of w-layered
metric temporal structures. Logic Journal of the IGPL, 7(1):79-102, 1999.

A. Montanari, A. Peron, and A. Policriti. Extending Kamp theorem with
binary operators to model time granularity. In Proceedings of the 3rd In-
ternational Conference on Temporal Logic (ICTL), pages 135-144, 2000.

33

[27]

[28]

[29]

[30]

[31]

A. Montanari, A. Peron, and A. Policriti. The taming (timing) of the states.
Logic Journal of the IGPL, 8(5):681-699, 2000.

A. Montanari and A. Policriti. Decidability results for metric and layered
temporal logics. Notre Dame Journal of Formal Logic, 37:260-282, 1996.

B. Moszkowski. Reasoning about digital circuits. PhD Dissertation, De-
partment of Computer Science, University of Stanford, 1983.

N. Rescher and J. Garson. Topological logic. Journal of Symbolic Logic,
33:537-548, 1968.

S. Safra. On the complexity of w-automata. In Proceedings of the 29th
Annual Symposium on Foundations of Computer Science, pages 319-327,
White Plains, New York, 24-26 October 1988. IEEE.

A. P. Sistla and E. M. Clarke. The complexity of propositional linear
temporal logics. Journal of the ACM, 32(3):733-749, 1985.

W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Vol. B, pages 133-191. Elsevier
Science Publishers, 1990.

W. Thomas. Languages, automata and logic. In G. Rozenberg and Sa-
lomaa A., editors, Handbook of formal languages, Vol. III, pages 389-455.
Springer, 1997.

M. Y. Vardi and L. Stockmeyer. Improved upper and lower bounds for
modal logics of programs. In ACM Symposium on Theory of Computing
(STOC), pages 240-251, Baltimore, USA, May 1985. ACM Press.

34

