
A combined approach to temporal

logics for time granularity

Massimo Franceschet1 and Angelo Montanari2

1Department of Sciences, University of Chieti-Pescara, Italy
E-mail: francesc@sci.unich.it

2Department of Mathematics and Computer Science,
University of Udine, Italy

E-mail: montana@dimi.uniud.it

Abstract

The ability of providing and relating temporal representations at different ‘grain levels’
of the same reality is an important research theme in Computer Science and Artificial In-
telligence and a major requirement for many applications, including formal specifications,
temporal databases, data mining, problem solving, and natural language understanding.
In particular, the addition of a granularity notion to a temporal logic makes it possible to
specify in a concise way reactive systems whose behaviour can be naturally modeled with
respect to a (possibly infinite) set of differently-grained temporal domains. In this paper,
we provide the monadic second-order theory of upward unbounded layered structures [11],
which consist of a finest domain and an infinite number of coarser and coarser domains,
with an expressively complete and elementarily decidable temporal logic counterpart. We
obtain our result in two steps. First, we define a new class of combined automata, called
temporalized automata, which can be proved to be the automata-theoretic counterpart of
temporalized logics, and show that relevant properties, such as closure under Boolean op-
erations, decidability, and expressive equivalence with respect to temporal logics, transfer
from component automata to temporalized ones. Then, we exploit the correspondence
between temporalized logics and automata to reduce the task of finding a temporal logic
counterpart of the monadic second-order theory of upward unbounded layered structures
to the easier one of finding a temporalized automata counterpart of them.

1 Introduction

Any time granularity can be viewed as the partitioning of a temporal domain in groups of
elements, where each group is perceived as an indivisible unit (a granule). The description of
a fact can use these granules to provide it with a temporal qualification, at the appropriate
abstraction level. However, adding the concept of time granularity to a formalism does not
merely mean that one can use different temporal units to represent temporal quantities in
a unique flat model, but it involves semantic issues related to the problem of assigning a
proper meaning to the association of statements with the different temporal domains of a
layered model and of switching from one domain to a coarser/finer one [9]. Montanari et
al. investigated the monadic second-order theory of k-refinable downward unbounded layered
structures (DULSs, for short), which are infinitely refinable structures consisting of a coarsest

1

domain and an infinite number of finer and finer domains, and the monadic second-order
theory of k-refinable upward unbounded layered structures (UULSs), which consists of a finest
domain and an infinite number of coarser and coarser domains [11].

The original motivation of our research was the design of a temporal logic, embedding
a notion of time granularity, suitable for the specification of complex concurrent systems
whose components evolve according to different time units (granular reactive systems). How-
ever, there are significant similarities between the problems we encountered in studying time
granularity, and those addressed by current research on combining logics, theories, and struc-
tures [6]. Furthermore, we recently established interesting connections between temporal
logics for time granularity and automata theory that suggests a complementary point of
view: besides an important feature of a representation language, time granularity can be
viewed as a a formal setting to investigate the definability of meaningful timing properties
that cannot be captured by using flat temporal logics. For instance, temporal logics over
k-refinable UULSs allow one to express conditions like “P holds at all time points ki, for all
natural numbers i, of a given temporal domain”, which cannot be expressed by using either
propositional or quantified temporal logics over a flat temporal domain, while temporal logics
over DULSs allow one to constrain a given property to hold true ‘densely’ over a given time
interval [11]. The relationships between the theories of time granularity and the standard
theories of timed state sequences, underlying real-time logics, have been explored in [12],
where Montanari et al. showed that the latter ones can actually be embedded into the former
ones. Finally, there exists a natural link between structures and theories of time granularity
and those developed for representing and reasoning about time intervals [13]. A complete and
up-to-date illustration of all these connections can be found in [3].

The nonelementary decidability of the theories of DULSs and UULSs was proved by means
of nontrivial encodings into Rabin and systolic tree automata, respectively. In this paper,
we provide the monadic second-order theory of UULSs with an expressively complete and
elementarily decidable temporal logic counterpart. Finding the temporal logic counterpart of
monadic theories is a difficult task, involving a non-elementary blow up in the length of formu-
las. Ehrenfeucht games have been successfully exploited to deal with such a correspondence
problem for first-order monadic theories [8] and well-behaved fragments of second-order ones,
e.g. the path fragment of the monadic second-order theory of infinite binary trees [7]. As
for the theories of time granularity, by means of suitable applications of Ehrenfeucht games,
we obtained an expressively complete and elementarily decidable combined temporal logic
counterpart of the path fragment of the monadic second-order theory of DULSs [4], while
Montanari et al. extended Kamp’s theorem to deal with the first-order fragment of the theory
of UULSs [10]. Unfortunately, these techniques produce rather involved proofs and do not
naturally lift to the full second-order case. In this paper, we follow a different approach.
Instead of trying to establish a direct correspondence between monadic second-order theories
for time granularity and temporal logics, we connect them via automata. Firstly, we define a
new class of combined automata, called temporalized automata, which can be proved to be
the automata-theoretic counterpart of temporalized logics [2], and show that relevant proper-
ties, such as closure under Boolean operations, decidability, and expressive equivalence with
respect to temporal logics, transfer from component automata to temporalized ones. Then,
on the basis of the established correspondence between temporalized logics and automata,
we reduce the task of finding a temporal logic counterpart of the monadic second-order the-
ory of UULSs to the easier one of finding a temporalized automata counterpart of them.
The mapping of monadic formulas into automata (the difficult direction) can indeed greatly

benefit from automata closure properties. In [5], we exploit a similar technique to solve the
(simpler) problem of providing the monadic second-order theory of DULSs with a temporal
logic counterpart.

2 Temporalized logics and automata

In this section we recall the definition of temporalization and we define temporalized au-
tomata. Moreover, we prove the equivalence of temporalized automata and temporalized log-
ics. We will consider temporal logics over a finite set of propositional letters P = {P, Q, . . .}.
Given a temporal logic T, we use LT to denote the language of T and OP(T) to denote the
set of temporal operators of T. Moreover, let KT be the set of structures (models) over which
T is interpreted and, given ϕ ∈ LT, let M(ϕ) ⊆ KT be the set of models of ϕ. Examples
of temporal logics we will consider are Propositional Linear Temporal Logic (PLTL) and Di-
rected Computational Tree Logic (CTL∗k), and their quantified versions QLTL and QCTL∗k [1].
Quantified versions of propositional temporal logics add to the language quantified formulas
of the form ∃Qϕ, where ϕ is a formula and Q is a proposition letter appearing free in ϕ. We
will also consider the existential fragment EQLTL (resp. EQCTL∗k) of QLTL (resp. QCTL∗k)
consisting of formulas of the form ∃Q1 . . .∃Qnϕ, where ϕ is a PLTL-formula (resp. CTL∗k).

Temporalization is a simple mode of combining logics in which one logic is embedded into a
temporal logic [2]. We consider the embedding of a temporal logic T2 into a temporal logic T1.
We partition the set of T2-formulas into Boolean combinations BCT2 and monolithic formulas
MLT2 : ϕ belongs to BCT2 if its outermost operator is a Boolean connective; otherwise, it
belongs to MLT2 . We assume that OP(T1) ∩OP(T2) = ∅.

Definition 2.1 (Temporalization – Syntax)
The combined language LT1(T2) of the temporalization T1(T2) of T2 by means of T1 over
the set of proposition letters P is obtained by replacing the atomic formation rule of LT1,
i.e., the rule stating that every proposition letter is a formula, by the following rule: every
monolithic formula ϕ ∈ MLT2 is an LT1(T2)-formula. 2

A model for T1(T2) is a triple (W,R, g), where (W,R) is a frame for T1 and g : W → KT2

a total function mapping worlds in W into models for T2.

Definition 2.2 (Temporalization – Semantics)
Given a model M = (W,R, g) and a state w ∈ W , the semantics of the temporalized logic
T1(T2) is obtained by replacing the semantic clause for proposition letters of T1 by the
following clause: M, w |=T1(T2) ϕ iff g(w) |=T2 ϕ, for every monolithic formula ϕ ∈ MLT2.
2

In the following, we provide temporalized logics with an operational counterpart in terms
of automata. For the sake of simplicity, we first define automata and prove results over
sequence structures; then, we generalize definitions and results to tree structures (we believe
that our machinery can actually be extended to cope with more general structures, such as
arbitrary graphs). Let Σ = {a, b, . . .} be a finite alphabet. We denote by S(Σ) be the set of
Σ-labeled infinite sequences (N, <, V), with V : N → Σ. We will use the following general
definition of sequence automata.

Definition 2.3 (Sequence automata)
A sequence automaton A over Σ consists of (i) a Labeled Transition System (Q, q0, ∆,M,Ω),
where Q is a finite set of states, q0 ∈ Q is the initial state, ∆ ⊆ Q × Σ × Q is a transition
relation, Ω is a finite alphabet, and M ⊆ Q×Ω is a labeling of states, and (ii) an acceptance
condition AC. Given a Σ-labeled infinite sequence w = (N, <, V), a run of A on w is a
function σ : N → Q such that σ(0) = q0 and (σ(i), V (i), σ(i + 1)) ∈ ∆, for every i ≥ 0. The
automaton A accepts w if there is a run σ of A on w such that AC(σ), i.e., the acceptance
condition holds on σ. The language accepted by A, denoted by L(A), is the set of Σ-labeled
infinite sequences accepted by A. 2

A class of sequence automata A is a set of automata that share the acceptance condition AC.
(We do not explicitly specify the acceptance condition for sequence automata since all the
results do not rest on any particular acceptance condition.) An example of sequence automata
class is the class of Büchi sequence automata.

Example 2.4 (Büchi sequence automata)
A Büchi sequence automaton is a sequence automaton A = (Q, q0, ∆,M,Ω) such that Ω =
{final}. We call final a state q such that (q, final) ∈ M . The acceptance condition for A
states that A accepts a Σ-labelled infinite sequence x iff there is a run σ of A over x such that
some final state occurs infinitely often in σ. 2

We are now ready to introduce temporalized automata. Let us assume that A2 is a class of
sequence automata, over the finite alphabet Σ, accepting subsets of S(Σ); moreover, let Γ(Σ)
be a finite alphabet whose symbols A, B, . . . represent automata inA2; finally, letA1 be a class
of sequence automata, over the finite alphabet Γ(Σ), accepting subsets of S(Γ(Σ)). Given A1

and A2 as above, we define a class of temporalized automata A1(A2) that combines the two
component automata classes in a suitable way. Let S(S(Σ)) be the set of infinite sequences of
Σ-labeled infinite sequences, that is, temporalized models (N, <, g) where g : N → S(Σ) is
a total function mapping elements of N into Σ-labeled infinite sequences in S(Σ). Automata
in the combined class A1(A2) accept in S(S(Σ)).

Definition 2.5 (Temporalized automata)
A temporalized automaton A over Γ(Σ) is a quintuple (Q, q0, ∆,M, Ω) as for sequence au-
tomata (Definition 2.3). The combined acceptance condition for A is the following. Given
α = (N, <, g) ∈ S(S(Σ)), a run of A on α is a function σ : N → Q such that σ(0) = q0

and, for every i ≥ 0, (σ(i), B, σ(i + 1)) ∈ ∆ for some B ∈ Γ(Σ) such that g(i) ∈ L(B). The
automaton A accepts α if there is a run σ of A on α such that AC(σ), where AC is the
acceptance condition of A1-automata. The language accepted by A, denoted by L(A), is the
subset of S(S(Σ)) accepted by A. We denote by A1(A2) the class of temporalized automata.
2

Given a temporalized automaton A ∈ A1(A2), we denote by A↑ the automaton in A1

with the same labeling transition system as A and with the acceptance condition of A1.
Hence, while A accepts in S(S(Σ)), its abstraction A↑ recognizes in S(Γ(Σ)). Moreover, given
an automaton A ∈ A1, we denote by A↓ the automaton in A1(A2) with the same labelling
transition system as A and with the combined acceptance condition of A1(A2). Thus, while A
accepts in S(Γ(Σ)), its concrete counterpart A↓ recognizes in S(S(Σ)). With the aid of these

notations, the combined acceptance condition for temporalized automata can be rewritten as
follows. Let α = (N, <, g) ∈ S(S(Σ)). We say that a temporalized automaton A accepts α
if and only if there is β = (N, <, V) ∈ S(Γ(Σ)) such that β ∈ L(A↑) and, for every i ∈ N,
g(i) ∈ L(V (i)). We will often use this alternative, but equivalent, definition of acceptance
condition for temporalized automata.

We define the transfer problem for temporalized automata as follows: assuming that au-
tomata classes A1 and A2 enjoy some property, does A1(A2) enjoy the same property? In
the following we assume that T1 and T2 are temporal logics interpreted over S(Σ). Hence,
the temporalized logic T1(T2) is interpreted over S(S(Σ)). We say that a class of automata
A is embedable into a temporal logic T, denoted A → T, if there is an effective translation
τ of A-automata into T-formulas such that, for every A-automaton A, L(A) = M(τ(A)).
Similarly, we define T → A. Finally, we say that A is expressively equivalent to T, written
A À T, if both T → A and A → T. We have the following theorem and corollary.

Theorem 2.6 (Transfer theorem)
Let A1 and A2 be sequence automata classes.

1. Closure under Boolean operations (union, intersection, and complementation) transfers
to temporalized automata: if A1 and A2 are (effectively) closed under Boolean opera-
tions, then A1(A2) is (effectively) closed under Boolean operations.

2. Decidability (of the emptiness problem) transfers to temporalized automata: if A1 and
A2 are decidable, then A1(A2) is decidable.

3. Expressive equivalence w.r.t. temporal logic transfers to temporalized automata: given
A2 closed under Boolean operations, if A1 ¿ T1 and A2 ¿ T2, then A1(A2) ¿
T1(T2).

Corollary 2.7 If T1 → A1, T2 → A2, and both A1 and A2 are decidable, then T1(T2) is
decidable.

We conclude this section by introducing a more general notion of automata: tree automata.
Let k ≥ 2 and Tk be the set {0, . . . , k − 1}∗. Given x, y ∈ Tk, we say that x is a prefix of y,
denoted x <P y, if xw = y, for some nonempty w ∈ Tk. Note that the prefix relation <P is a
partial ordering over Tk. A set D ⊆ Tk is an tree domain if:

1. D is prefix closed, that is, x ∈ D and y <P x implies y ∈ D, for every x, y ∈ Tk;

2. for every x ∈ Tk, if xi ∈ D, then xj ∈ D for every 0 ≤ j < i ≤ k − 1.

A tree is a pair (W,<P) where W is a k-ary tree domain. We denote by Tk(Σ) the set of
Σ-labeled k-ary trees (W,<P , V) such that V : W → Σ.

Definition 2.8 (Tree automata)
A tree automaton A over Σ consists of (i) a Labeled Transition System (Q, q0, ∆, M,Ω),
where Q is a finite set of states, q0 ∈ Q is the initial state, ∆ ⊆ Q × Σ × (

⋃k
i=1 Qi) is a

transition relation, Ω is a finite alphabet, and M ⊆ Q× Ω is a labeling of states, and (ii) an
acceptance condition AC. Given a Σ-labeled tree t = (W,<P , V), a run of A on t is function
σ : W → Q such that σ(ε) = q0 and, for every x ∈ W with m ≤ k sons x0, . . . x(m− 1), we

have (σ(x), V (x), σ(x0), . . . , σ(x(m−1))) ∈ ∆. The automaton A accepts t if there is a run σ
of A on t such that AC(σ), i.e., the acceptance condition holds on σ. The language accepted
by A, denoted by L(A), is the set of Σ-labeled k-ary trees accepted by A. 2

An example of tree automata class is the class of finite tree automata.

Example 2.9 (Finite tree automata)
A (top-down) finite tree automaton is a tree automaton A = (Q, q0, ∆,M,Ω) such that Ω =
{final}. We call final a state q such that (q, final) ∈ M . The automaton A accepts finite
trees. The acceptance condition for A states that A accepts a finite tree t iff there is a run σ
of A over t such that all the leaves of σ are labelled with final states. 2

Theorem 2.6 and Corollary 2.7 immediately generalize to tree automata. Corollary 2.7
allows us to prove the decidability of many temporalized logics. For instance, it is known that
QLTL and PLTL over infinite sequences can be embedded into Büchi sequence automata,
and that Büchi sequence automata are decidable. Moreover, QCTL∗k and CTL∗k over finite
trees can be embedded into finite tree automata, and finite tree automata are decidable. It
follows that any temporalized logic T1(T2), with T1,T2 ∈ {PLTL, QLTL, QCTL∗k, CTL∗k},
is decidable. As a matter of fact, the decidability of PLTL(PLTL) was already proved in [2]
following a different approach.

3 Temporalized logics and automata for time granularity

In the following, we use temporalized automata to find a combined temporal logic counterpart
of the monadic second-order theory of UULSs. The result rests on an alternative view of
UULSs as infinite sequences of finite increasing k-ary trees. We define a suitable combination
of Büchi and finite tree automata and use it to obtain a combined temporal logic which is both
elementarily decidable and expressively complete with respect to the monadic second-order
theory of UULSs. In fact, the combined model we use to encode an UULS specializes that
of temporalization since the innermost submodels are not independent from the outermost
model. The monadic second-order language for time granularity MSOΣ[<, (↓i)k−1

i=0] is defined
as follows.

Definition 3.1 (Monadic second-order language)
Let MSOΣ[<, (↓i)k−1

i=0] be the second-order language with equality built up as follows: (i) atomic
formulas are of the forms x = y, x < y, ↓i (x) = y, x ∈ X and x ∈ Pa, where 0 ≤ i ≤ k − 1,
x, y are individual variables, X is a set variable, and a ∈ Σ; (ii) formulas are built up from
atomic formulas by means of the Boolean connectives ¬ and ∧, and the quantifier ∃ ranging
over both individual and set variables. 2

We interpret MSOΣ[<, (↓i)k−1
i=0] over UULSs. For all i ≥ 0, let T i = {ji | j ≥ 0}. A Σ-

labeled k-refinable UULS is a tuple 〈⋃i≥0 T i, (↓i)k−1
i=0 , <, (Pa)a∈Σ〉, that intuitively represents

a k-ary infinite tree generated from the leaves (cf. Figure 1). The sets in {T i}i≥0 represent
the layers of the tree, ↓i is a projection function such that ↓i (a0) = ⊥ and ↓i (ab) = cd if and
only if b > 0, b = d + 1 and c = a · k + i, with i = 0, . . . , k − 1, < is the total ordering of⋃

i≥0 T i given by the inorder (left-root-right) visit of the nodes, and, for all a ∈ Σ, Pa is the

r»»03

. . .

r r02 12©©©©

HHHH

r r r r01 11 21 31¡
¡

¡
¡

@
@

@
@

r r r r r r r r¢
¢

¢
¢

¢
¢

¢
¢

A
A

A
A

A
A

A
A

00 10 20 30 40 50 60 70

rXX »»13

r r22 32©©©©

HHHH

r r r r41 51 61 71

. . .

. . .

. . .

. . .

. . .

¡
¡

¡
¡

@
@

@
@

r r r r r r r r¢
¢

¢
¢

¢
¢

¢
¢

A
A

A
A

A
A

A
A

80 90 100 110 120 130 140 150

Figure 1: A 2-refinable UULS.

r r r r
r r r

¡
¡

¡
¡

@
@

@
@r r r r

¡ ¡@ @r r r r

. . .
00 01 02 03

10 11 12

20 30 21 31

40 50 60 70

Figure 2: Mapping an UULS into an increasing tree sequence.

set of points in
⋃

i≥0 T i labeled with symbol a. Given a formula ϕ ∈ MSOΣ[<, (↓i)k−1
i=0], we

denote by M(ϕ) the set of models of ϕ.
We proceed by giving an alternative characterization of UULSs in terms of tree sequences.

To this end, we need to introduce the notions of hanger tree and of increasing tree sequence.
A k-ary hanger tree is a complete finite tree whose root has exactly k − 1 sons, and each of
them is the root of a finite and complete k-ary tree. A k-ary Increasing Tree Sequence (ITS)
is an infinite sequence of k-ary hanger trees such that the i-th tree of the sequence has height
i (cf. Figure 2). An ITS can be represented as a combined model (N, <, g) such that, for
every i ∈ N, g(i) is a k-ary hanger tree of height i. Notice that the combined model (N, <, g)
for an ITS is not a temporalized model, since the height of the tree g(i) depends on i. Let
ITSk(Σ) be the set of all Σ-labeled k-ary ITSs. We show that a Σ-labeled UULS corresponds
to a Σ-labeled ITS and vice versa. Intuitively, given an UULS t, the tree sequence is obtained
by taking the trees rooted at the points of the leftmost path 00, 01, . . . of t, and deleting from
each tree the subtree rooted at the leftmost son of the root (if any). Formally, let t be a k-ary
UULS. For every node x in t, we define tx to be the finite tree rooted at x. For every i ≥ 0,
let t̂0i be the hanger tree obtained from t0i by deleting, whenever i > 0, the subtree t0i−1

from it. The ITS (N, <, g) that corresponds to the UULS t is obtained by defining, for every
i ≥ 0, g(i) = t̂0i . The embedding of UULSs into ITSs is depicted in Figure 2. Similarly, an
ITS can be easily turned into an UULS.

Let B be the class of Büchi sequence automata (cf. Example 2.4) and Dk be the class
of (top-down) finite tree automata (cf. Example 2.9). We define the class of tree sequence
automata as B(Dk). Automata in B(Dk) accept infinite sequences of finite trees. Since
both the component automata classes are known to be closed under Boolean operations and

decidable, so is the temporalized class B(Dk) (cf. Theorem 2.6). Apparently, our purposes do
not fit in with finite tree automata, since we are interested in sequences of increasing hanger
trees, and not in sequences of finite trees. However, an ITS is just a particular sequence of
finite trees, and thus tree sequence automata in B(Dk) work over ITSs as well. In the following,
we study the expressive power and the decidability of tree sequence automata over increasing
tree sequences. Notice that the class B(Dk) over ITSs is not a temporalized automata class,
because ITSs are not temporalized models. The following theorem proves that tree sequence
automata are as expressive as the monadic second-order theory of UULSs (or, equivalently,
of increasing tree sequences).

Theorem 3.2 (Expressiveness of tree sequence automata over UULSs)
It holds that B(Dk) ¿ MSOΣ[<, (↓i)k−1

i=0] over UULSs, that is,

1. for every automaton A ∈ B(Dk), there is a formula ϕA in MSOΣ[<, (↓i)k−1
i=0] such that

L(A) ∩ ITSk(Σ) = M(ϕA);

2. for every formula ϕ in MSOΣ[<, (↓i)k−1
i=0], there is an automaton Aϕ ∈ B(Dk) such that

M(ϕ) = L(Aϕ) ∩ ITSk(Σ).

Let us now provide MSOΣ[<, (↓i)k−1
i=0] over UULSs with an expressive and elementarily

decidable temporal logic counterpart. First, consider PLTL(CTL∗k) over ITSs, where CTL∗k
is interpreted over finite trees with a strong interpretation of the next operator X. It is
possible to prove that PLTL(CTL∗k) over UULSs is as expressive as the monadic path frag-
ment MPLΣ[<, (↓i)k−1

i=0] (the proof is similar to the one given in [4] for DULSs). Exploit-
ing tree sequence automata, we can extend such a result to the full second-order theory
of UULSs. We have that QLTL ¿ B and QCTL∗k ¿ Dk (the proof of the latter equiva-
lence is similar to the corresponding proof for infinite trees). By Theorem 2.6, we have that
QLTL(QCTL∗k) ¿ B(Dk) over finite tree sequences. Since the set of ITSs is a subset of the
set of finite tree sequences, we have that QLTL(QCTL∗k) ¿ B(Dk) over ITSs as well. By The-
orem 3.2, we have that QLTL(QCTL∗k) ¿ MSOΣ[<, (↓i)k−1

i=0] over ITSs. Similarly, one can
prove that EQLTL(EQCTL∗k) ¿ B(Dk) over ITSs, and thus EQLTL(EQCTL∗k) ¿ MSOΣ[<,
(↓i)k−1

i=0] over ITSs. The decidability of QLTL(QCTL∗k) and EQLTL(EQCTL∗k) immediately
follows from that of MSOΣ[<, (↓i)k−1

i=0]. In the following, we prove that EQLTL(EQCTL∗k) is
elementarily decidable. Unfortunately, MSOΣ[<, (↓i)k−1

i=0] is nonelementarily decidable, and
thus to prove that EQLTL(EQCTL∗k) is elementarily decidable we must follow a different path.
It is easy to show that the encoding of EQLTL(EQCTL∗k)-formulas into B(Dk)-automata is
elementary (recall that the embeddings EQLTL → B and EQCTL∗k → Dk are elementary).
We will prove that the emptiness problem for B(Dk) over ITSs is elementarily decidable. This
result allows us to conclude that EQLTL(EQCTL∗k) over ITSs is elementarily decidable.

We now focus on the decidability and complexity of the emptiness problem for tree se-
quence automata in B(Dk) over ITSs. Such a problem can be formulated as follows: given
an automaton A ∈ B(Dk), is there a k-ary increasing tree sequence accepted by A? Equiva-
lently, does L(A) ∩ ITSk(Σ) 6= ∅? Its (nonelementary) decidability immediately follows from
Theorem 3.2, since, given an automaton A, we can build an equivalent monadic formula ϕA

and check its satisfiability over UULSs. In the following, we give a necessary and sufficient
condition that solves the problem in an elementary way.

Let A = (Q, q0, ∆,M, {final}) be an automaton in B(Dk) over the alphabet Γ(Σ) ⊂ Dk.
Clearly, L(A) 6= ∅ is necessary for L(A) ∩ ITSk(Σ) 6= ∅. However, it is not sufficient. By

definition of combined acceptance condition for A, we have that L(A) 6= ∅ if and only if there
is a finite sequence q0, q1, . . . qm of distinct states in Q, a finite sequence X0, X1, . . . Xm of
Dk-automata and j ∈ {0, . . . m} such that:

1. ∆(qi, Xi, qi+1), for every i = 0, . . . m− 1, and ∆(qm, Xm, qj);

2. qj is a final state;

3. L(Xi) 6= ∅, for every i = 0, . . . m

To obtain a necessary and sufficient condition for L(A) ∩ ITSk(Σ) 6= ∅, we have to
strengthen condition (3) as follows. Let T i

k(Σ) be the set of k-ary hanger trees of height
i:

3’. (3’a) L(Xi) ∩ T i
k(Σ) 6= ∅, for every i = 0, . . . j − 1, and (3’b) L(Xi) ∩ T i+y·l

k (Σ) 6= ∅, for
every i = j, . . . m and y ≥ 0, where l = m− j + 1.

The conjunction of conditions (1,2,3’) is a necessary and sufficient condition for L(A) ∩
ITSk(Σ) 6= ∅. We show that conditions (1,2,3’) are elementarily decidable. Clearly, there are
elementarily many runs in A satisfying conditions (1,2). The following nontrivial Lemma 3.3
shows that condition 3’ is elementarily decidable.

Lemma 3.3 Let X be a finite tree automaton, and a, l ≥ 0. Then, the problem L(X) ∩
T a+y·l

k (Σ) 6= ∅, for every y ≥ 0, is elementarily decidable.

Proof.
Let X = (Q, q0, ∆,M, {final}) over Γ(Σ). If l = 0, then the problem reduces to checking

L(X)∩T a
k (Σ) 6= ∅, for some a ≥ 0. For every a ≥ 0, the set T a

k is finite and hence regular. Since
finite tree automata are elementarily closed under Boolean operations and are elementarily
decidable, we conclude that in this case the condition is elementarily effective.

Suppose now l > 0. For the sake of simplicity, we first give the proof for finite sequence
automata, and then we discuss how to modify it to cope with the case of finite tree automata.
Hence, let X be a finite sequence automaton. We have to give an elementarily effective
procedure that checks whether X recognizes at least one sequence of length a, at least one
of length a + l, at least one of length a + 2l, and so on. Without loss of generality, we may
assume that the set of final states of X is the singleton containing qfin ∈ Q. Hence, the
problem reduces to check, for every y ≥ 0, the existence of a path from qin to qfin of length
a + y · l in the state-transition graph associated with X. We thus need to solve the following
problem of Graph Theory, which we call the Periodic Path Problem (PPP for short):

Let G = (N, E) be a finite directed graph, q1, q2 be two nodes in N , and a, l ≥ 0
be two natural numbers. Is there a path in G from q1 to q2 of length a + y · l, for
every y ≥ 0?

In the following, we further reduce the PPP to a problem of Number Theory. Let Πq1,q2(G)
be the set of paths from q1 to q2 in the graph G. Given π ∈ Πq1,q2(G), we denote by π	

the path obtained from π by removing all its cyclic subpaths. If π is acyclic, then π	 = π;
otherwise, if π = αq′βq′γ, then π	 = α	q′γ	. Let ∼q1,q2 be the relation on Πq1,q2(G) such
that π1 ∼q1,q2 π2 if and only if π	1 = π	2 . Note that ∼q1,q2 is an equivalence relation of finite

index. For every equivalence class [π]∼q1,q2
, we need a formula expressing the length of a

generic path in the class. Note that every path in [π]∼q1,q2
differs from any other path in the

same class only because of some cyclic subpaths. More precisely, let µ be the shortest path in
[π]∼q1,q2

and let C1, . . . , Cn be the the cycles intersecting π of length w1, . . . , wn, respectively.
Obviously, µ does not cycle through any Ci. Every path in [π]∼q1,q2

starts from q1, cycles an
arbitrary number of times (possibly zero) through every Ci, and finally reaches q2. It is easy
to see that the length of an arbitrary path σ ∈ [π]∼q1,q2

is given by the parametric formula:

|σ| = |µ|+
n∑

i=1

xi · wi,

where xi ≥ 0 in the number of times the path σ cycles through Ci.
Let [π1]∼q1,q2

, . . . , [πm]∼q1,q2
be the equivalence classes of ∼q1,q2 . For every j = 1, . . . , m, let

µj be the shortest path in [πj]∼q1,q2
and let Cj

1 , . . . , C
j
n be the the cycles intersecting πj of

length wj
1, . . . , w

j
n , respectively. Moreover, let

Yj = {y ≥ 0 | ∃x1, . . . , xn ≥ 0 (|µj |+
n∑

i=1

xi · wj
i = a + y · l)}.

The PPP reduces to the following problem of Number Theory:

Do the sets Y1, . . . , Ym cover the set of natural numbers, that is, does
⋃m

j=1 Yj = N?

We now solve this latter problem. Let wi ≥ 0, for i = 1, . . . , n. We are interested in the
form of the set S = {∑n

i=1 xi ·wi | xi ≥ 0}. Let W = (w1, . . . wn) and let d = MCD(W) (the
maximum common divisor of {w1, . . . , wn}). We distinguish the cases d = 1 and d 6= 1.

If d = 1, then it is easy to see that:

S = E ∪ {j | j ≥ k},
where E is a finite set of exceptions such that max(E) < k, and k = (wr − 1) · (ws − 1),

with wr = min(W) (the minimum of {w1, . . . wn}) and ws = min(W \ {wr}).
If d 6= 1, then consider the set S′ = {∑n

i=1 xi · wi/d | xi ≥ 0}. Clearly, it holds that
MCD(w1/d, . . . wn/d) = 1 and, thus, as above, S′ = E′ ∪ {j | j ≥ k′} for some finite set E′

and k′ ∈ N. Therefore, in this case, we have that

S = E′ · d ∪ {j | j ≥ k′ · d ∧ d DIV j},

where d DIV j means that d is a divisor of j. Summing up, the set S can be described in
a compact way as follows:

S = E ∪ {k + j · d | j ∈ N},
for some finite (computable) set E, some (computable) k ∈ N, and d = MCD(W), that is,
the set S can be expressed as the union of a finite and computable set of exceptions and an
arithmetic progression.

Now we consider the equation
∑n

i=1 xi · wi = y · l. Our aim is to describe the set Y =
{y ≥ 0 | ∃x1, . . . xn ≥ 0 (

∑n
i=1 xi · wi = y · l)} in a similar way. Let e = MCD(d, l), l = l′ · e,

and d = d′ · e. We have that:

y ∈ Y iff
y · l ∈ S iff
y · l ∈ E ∨ y · l ≥ k ∧ d DIV y · l iff
y · l ∈ E ∨ y ≥ dk/le ∧ d′ · e DIV y · l′ · e iff
y · l ∈ E ∨ y ≥ dk/le ∧ d′ DIV y

Therefore, the set Y is the union of a finite and computable set and an arithmetic pro-
gression, that is,

Y = E′ ∪ {k′ + j · d′ | j ∈ N},
for some finite (computable) set E′, some (computable) k′ ∈ N, and d′ = d/MCD(d, l). The
set Y = {y ≥ 0 | ∃x1, . . . xn ≥ 0 (

∑n
i=1 xi · wi = a + y · l)}, with a ∈ N, can be described in

the same way.
We have shown that, for i = 1, . . . , m, every Yi has the form Ei ∪ {ki + y · di | y ≥ 0} for

some finite set Ei, and some ki, di ∈ N. We now give a solution to the problem of establishing
whether or not

⋃m
i=1 Yi = N. Let kr = min{k1, . . . , km} and D = mcm(d1, . . . , dm) (the

minimum common multiple of {d1, . . . , dm}). The algorithm works as follows: for every
k < kr, we check whether k ∈ Yi for some i = 1, . . . , m. If this is not the case, the problem
has no solution. Otherwise, we verify whether, for every j = 0, . . . , D − 1, kr + j ∈ Yi for
some i = 1, . . . ,m. If this is the case, then we have a solution, otherwise, there is no solution.
Note that a solution can be described in terms of an ultimately periodic word w = uvω, with
u, v ∈ {1, . . . , m}∗, such that, for every i ≥ 0, w(i) = j means that a path from q1 to q2 in
the graph G belongs to the j-th equivalence class [πj]∼q1,q2

.
The above algorithm solves the periodic path problem in doubly exponential time in the

number n of nodes of the graph G. The number of equivalence classes of the relation ∼q1,q2

over the set of paths from q1 to q2 in G may be exponential in n. Thus, we have m sets
Y1, . . . , Ym, each one associated with a relevant equivalence class, and m = O(2n). Every set
Yi can be represented in polynomial time as Ei ∪ {ki + y · di | y ≥ 0}, for some finite Ei and
some ki, di ∈ N. Note that the cardinality of Ei is bounded by ki, ki = O(n2), and di = O(n).
The final step of the procedure makes k0 + D membership tests with respect to some set Yi,
where k0 = min{d1, . . . , dm} and D = mcm(d1, . . . , dm). Each test is performed in O(1).
Moreover, D is bounded by d0

m, where d0 = max{d1, . . . , dm}, and thus D = O(22n
). Hence,

the procedure works in time doubly exponential.
The general case of finite trees is similar. Let X be a finite tree automaton. A path from

q1 to q2 corresponds to a run of X such that the run tree is complete and k-ary, the root of
the run tree is labeled with state q1 and the leaves of the run tree are labeled with state q2.
A cycle is a path from q to q. The problem is to find, for every y ≥ 0, a path from the initial
state qin to the final state qfin of length a + y · l. The rest of the proof proceeds along the
same reasoning path followed for sequence automata.

It follows that, given a B(Dk)-automaton A, we have an algorithm to solve the problem
L(A) ∩ ITSk(Σ) 6= ∅ whose time is doubly exponential in the size of A.

Theorem 3.4 The emptiness problem for finite tree sequence automata over UULSs is in
2EXPTIME.

Since EQLTL(EQCTL∗k)-formulas can be elementarily converted into B(Dk)-automata, we
have the following.

Theorem 3.5 The satisfiability problem for EQLTL(EQCTL∗k) over UULSs is elementarily
decidable.

References

[1] E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, Vol. B, pages 995–1072. Elsevier Science Publishers B.V.,
1990.

[2] M. Finger and D. M. Gabbay. Adding a temporal dimension to a logic system. Journal
of Logic Language and Information, 1:203–233, 1992.

[3] M. Franceschet. Dividing and Conquering Time Granularity. PhD thesis, Department
of Mathematics and Computer Science, Udine, Italy, October 2001.

[4] M. Franceschet and A. Montanari. Branching within time: an expressively complete
and elementarily decidable temporal logic for time granularity. Journal of Language and
Computation, 2001. To appear.

[5] M. Franceschet and A. Montanari. Towards an automata-theoretic counterpart of com-
bined temporal logics. In Proceedings of the International Workshop on Verification and
Computational Logic, pages 55–74, 2001.

[6] M. Franceschet, A. Montanari, and M. de Rijke. Model checking for combined logics. In
Proceedings of the International Conference on Temporal Logic, pages 65–73, 2000.

[7] T. Hafer and W. Thomas. Computation tree logic CTL* and path quantifiers in the
monadic theory of the binary tree. In T. Ottmann, editor, Proceedings of the International
Colloquium Automata, Languages and Programming, volume 267 of Lecture Notes in
Computer Science, pages 269–279, Karlsruhe, Germany, 1987. Springer.

[8] N. Immerman and D. Kozen. Definability with bounded number of bound variables.
Information and Computation, 83(2):121–139, 1989.

[9] A. Montanari. Metric and Layered Temporal Logic for Time Granularity. ILLC Dis-
sertation Series 1996-02, Institute for Logic, Language and Computation, University of
Amsterdam, 1996.

[10] A. Montanari, A. Peron, and A. Policriti. Extending Kamp’s theorem with binary oper-
ators to model time granularity. Journal of Logic and Computation. To appear.

[11] A. Montanari, A. Peron, and A. Policriti. Decidable theories of ω-layered metric temporal
structures. Logic Journal of the IGPL, 7(1):79–102, 1999.

[12] A. Montanari, A. Peron, and A. Policriti. The taming (timing) of the states. Logic
Journal of the IGPL, 8(5):681–699, 2000.

[13] N. Vitacolonna. Granularità e logiche a intervalli: risultati di decidibilità. Master’s
thesis, Department of Mathematics and Computer Science, University of Udine – Italy,
2001. In Italian.

