
The Complexity of Model Checking
in Modal Event Calculi with Quantifiers

Iliano Cervesato
Department of Computer Science

Stanford University
Stanford, CA 94305-9045
iliano@cs.stanford.edu

Massimo Franceschet Angelo Montanari
Dipartimento di Matematica e Informatica

Università di Udine
Via delle Scienze, 206 – 33100 Udine, Italy

{francesc|montana}@dimi.uniud.it

Abstract

Kowalski and Sergot’s Event Calculus (EC)
is a simple temporal formalism that, given
a set of event occurrences, derives the max-
imal validity intervals (MVIs) over which
properties initiated or terminated by these
events hold. It does so in polynomial time
with respect to the number of events. Ex-
tensions of its query language with Boolean
connectives and operators from modal logic
have been shown to improve substantially its
scarce expressiveness, although at the cost
of an increase in computational complex-
ity. However, significant sublanguages are
still tractable. In this paper, we further ex-
tend EC queries by admitting arbitrary event
quantification. We demonstrate the added
expressive power by encoding a hardware di-
agnosis problem in the resulting calculus. We
conduct a detailed complexity analysis of this
formalism and several sublanguages that re-
strict the way modalities, connectives, and
quantifiers can be interleaved. We also de-
scribe an implementation in the higher-order
logic programming language λProlog.

1 Introduction

The Event Calculus, abbreviated EC [9], is a sim-
ple temporal formalism designed to model and reason
about scenarios characterized by a set of events, whose
occurrences have the effect of starting or terminating
the validity of determined properties. Given a possibly
incomplete description of when these events take place
and of the properties they affect, EC is able to de-
termine the maximal validity intervals, or MVIs, over
which a property holds uninterruptedly. In practice,
since this formalism is usually implemented as a logic

program, EC can also be used to check the truth of
MVIs and process boolean combinations of MVI veri-
fication or computation requests. The range of queries
that can be expressed in this way is however too lim-
ited for modeling realistic situations.

A systematic analysis of EC has recently been under-
taken in order to gain a better understanding of this
calculus and determine ways of augmenting its expres-
sive power. The keystone of this endeavor has been
the definition of an extendible formal specification of
the functionalities of this formalism [3]. This has had
the effects of establishing a semantic reference against
which to verify the correctness of implementations [6],
of casting EC as a model checking problem [4], and of
setting the ground for studying the complexity of this
problem, which was proved polynomial [2]. Extensions
of this model have been designed to accommodate con-
structs intended to enhance the expressiveness of EC .
In particular, modal versions of EC [1], the interaction
between modalities and connectives [4], and precondi-
tions [5] have all been investigated in this context.

In this paper, we continue this endeavor to enhance the
expressive power of EC by considering the possibility
of quantifying over events in queries, in conjunction
with boolean connectives and modal operators. We
also admit requests to check the relative order of two
events. We thoroughly analyze the representational
and computational features of the resulting formalism,
that we call QCMEC . We also consider two proper
sublanguages of it, EQCMEC, in which modalities are
applied to atomic formulas only, and CMEC, which
is quantifier-free. We show that QCMEC and its re-
strictions can effectively be used to encode diagnosis
problems. Moreover, we provide an elegant implemen-
tation in the higher-order logic programming language
λProlog [10] and prove its soundness and completeness.
As far as computational complexity is concerned, we
prove that model checking in CMEC, EQCMEC, and
QCMEC is PSPACE-complete. However, while solv-

ing an EQCMEC problem is exponential in the size of
the query, it has only polynomial cost in the number n
of events, thus making EQCMEC a viable formalism
for MVI verification or computation. Since in most re-
alistic applications the size of databases (n) dominates
by several orders of magnitude the size of the query, n
is asymptotically the parameter of interest.

The main contributions of this work are: (1) the exten-
sion of a family of modal event calculi with quantifiers;
(2) permitting queries to mention ordering informa-
tion; (3) the use of the higher-order features of modern
logic programming languages in temporal reasoning;
and (4) analyzing the complexity of model checking in
these extensions of EC .

This paper is organized as follows. In Section 2, we for-
malize QCMEC and significant subcalculi. Section 3
exemplifies how this calculus can adequately model
certain hardware diagnosis problems. In Section 4,
we briefly introduce the logic programming language
λProlog, give an implementation of QCMEC in it and
prove the soundness and completeness of the resulting
program. We study the complexity of QCMEC and
its sublanguages in Section 5. We outline directions of
future work in Section 6.

2 Modal Event Calculi with Quantifiers

In this section, we first briefly recall the syntax and
semantics of a number of modal event calculi. We
invite the interested reader to consult [1, 3, 4, 8, 9]
for motivations, examples, properties, and technical
details. We then extend these basic definitions to give
a semantic foundation to refinements of these calculi
with quantifiers.

2.1 Event Calculus

The Event Calculus (EC) [9] and the extensions we
propose aim at modeling scenarios that consist of a
set of events, whose occurrences over time have the
effect of initiating or terminating the validity of prop-
erties, some of which may be mutually exclusive. We
formalize the time-independent aspects of a situation
by means of an EC-structure [1], defined as follows:

Definition 2.1 (EC-structure)

A structure for the Event Calculus (or EC-structure)
is a quintuple H = (E, P, [·〉, 〈·],]·,·[) such that:

• E = {e1, . . . , en} and P = {p1, . . . , pm} are finite
sets of events and properties, respectively.

• [·〉 : P → 2E and 〈·] : P → 2E are respectively the
initiating and terminating map of H. For every

property p ∈ P , [p〉 and 〈p] represent the set of
events that initiate and terminate p, respectively.

•]·,·[⊆ P × P is an irreflexive and symmetric re-
lation, called the exclusivity relation, that models
exclusivity among properties. 2

As in the original EC paper [9], we define the initi-
ating and terminating maps in terms of event occur-
rences rather than event types. The latter approach
can however easily be accomodate in our setting.

The temporal aspect of EC is given by the order in
which events happen. Unlike the original presenta-
tion [9], we focus our attention on situations where the
occurrence time of events is unknown and only assume
the availability of incomplete information about the
relative order in which they have happened. We how-
ever require the temporal data to be consistent so that
an event cannot both precede and follow some other
event. Therefore, we formalize the time-dependent
aspect of a scenario modeled by EC by means of a
(strict) partial order, i.e. an irreflexive and transitive
relation, over the involved set of event occurrences.
We write WH for the set of all partial orders over the
set of events E in an EC -structure H, use the letter
w to denote individual orderings, or knowledge states,
and write e1 <w e2 to indicate that e1 precedes e2 in
w. The set WH of all knowledge states naturally be-
comes a reflexive ordered set when considered together
with the usual subset relation ⊆, which is indeed re-
flexive, transitive and antisymmetric. An extension of
a knowledge state w is any element of WH that con-
tains w as a subset. We write ExtH(w) for the set of
all extensions of the ordering w in WH.

Given a structure H = (E, P, [·〉, 〈·],]·,·[) and a
knowledge state w, EC permits inferring the maximal
validity intervals, or MVIs, over which a property p
holds uninterruptedly. We represent an MVI for p as
p(ei, et), where ei and et are the events that respec-
tively initiate and terminate the interval over which p
holds maximally. Consequently, we adopt as the query
language of EC the set LH(EC) = {p(e1, e2) : p ∈
P and e1, e2 ∈ E} of all such property-labeled inter-
vals over H. We interpret the elements of LH(EC)
as propositional letters and the task performed by EC
reduces to deciding which of these formulas are MVIs
in the current knowledge state w and which are not.
This is a model checking problem.

In order for p(e1, e2) to be an MVI relative to the event
ordering w, it must be the case that e1 <w e2. More-
over, e1 and e2 must witness the validity of the prop-
erty p at the ends of this interval by initiating and
terminating p, respectively. The maximality require-

ment is caught by the negation of the meta-predicate
br(p, e1, e2, w) below, which expresses the fact that the
validity of an MVI must not be broken by any inter-
rupting event. Any event e which is known to have
happened between e1 and e2 in w and that initiates or
terminates a property that is either p itself or a prop-
erty exclusive with p interrupts the validity of p(e1, e2).

Definition 2.2 (Intended model of EC)

Let H = (E, P, [·〉, 〈·],]·,·[) be a EC-structure. The
intended EC -model of H is the propositional valua-
tion υH : WH → 2LH(EC), where p(e1, e2) ∈ υH(w) if
and only if (i) e1 <w e2, (ii) e1 ∈ [p〉, (iii) e2 ∈ 〈p],
(iv) br(p, e1, e2, w) does not hold, where br(p, e1, e2, w)
abbreviates

there exists an event e ∈ E such that e1 <w e,
e <w e2 and there exists a property q ∈ P such
that e ∈ [q〉 or e ∈ 〈q], and either]p, q[or p = q. 2

Definition 2.2 states that an event e interrupts the va-
lidity of a property if it initiates or terminates p it-
self or a property q which is incompatible with p. As
pointed out in [6], this rule adopts the so-called strong
interpretation of the initiate and terminate relations:
a given property p ceases to hold over a time inter-
val if an event e which initiates or terminates p, or a
property incompatible with p, occurs during this inter-
val. The strong interpretation is needed when dealing
with incomplete sequences of events or, as in our case,
incomplete information about their ordering. For ex-
ample, consider a switch that can take two different
positions: on and off. Its behavior can be described
by means of two types of event: one that changes the
position from off to on (turn-on), the other from on to
off (turn-off). While two turn-on events cannot occur
consecutively in the real world, it may happen that
an incomplete sequence consisting of two consecutive
turn-on events, followed by a turn-off event, is recorded
in the database. The strong interpretation of the initi-
ate relation allows EC to recognize that a missing turn-
off event must have occurred between the two turn-on
events. However, since it is not possible to tempo-
rally locate such an event, EC only concludes that the
switch is on between the second turn-on event and the
turn-off event, and it considers the first turn-on event
as a pending initiating event. It is worth mentioning
that an alternative interpretation of the initiate and
terminate relations, called weak interpretation, is also
possible. According to this interpretation, a property p
is triggered by an initiating event unless it has already
been started and not yet terminated. The weak inter-
pretation is needed to aggregate homogeneous states.
Further details about the strong/weak distinction, in-

cluding its formalizations and other examples, can be
found in [6].

2.2 Modal EC with Connectives

The query language of the basic EC we just formalized
suffers from a remarkably low expressive power that
prevents its use for modelling any but the most trivial
applications. The expressiveness of this formalism is
drammatically augmented by admitting boolean con-
nectives in queries. This allows inquiring about logical
combinations of basic MVI verification problems.

In our specific setting, where the ordering of event oc-
currences is only partially specified, the set of MVIs
computed by EC is not stable with respect to the ac-
quisition of new ordering information. Indeed, as we
move to an extension of the current knowledge state,
some MVIs might become invalid and new MVIs can
emerge [7]. Extending the query language of EC with
the modal logic operators 2 and 3 leads to the possi-
bility of enquiring about which MVIs will remain valid
in every extension of the current knowledge state, and
about which intervals might become MVIs in some ex-
tension of it [1, 8]. Several ways of combining boolean
connectives and modalities, with different cost and ex-
pressiveness, have been proposed [3, 4].

In this paper, we also include a precedence test opera-
tor, written <, which allows checking the relative order
of two events in the current knowledge state. In previ-
ous work, this was awkwardly achieved either by aug-
menting EC -structures with dedicated properties [4],
or by using preconditions [5]. A native precedence test
makes inquiring about the relative order of two events
independent from the underlying EC -structure.

Given an EC -structure H, the query language that
freely includes these three extensions is formally de-
fined by the following grammar:

ϕ ::= p(e1, e2) | e1 < e2 | ¬ϕ | ϕ1 ∧ ϕ2

| ϕ1 ∨ ϕ2 | 2ϕ | 3ϕ.

We call this language LH(CMEC) and CMEC the
relative extension of EC . In addition to the above op-
erators, we admit implication as a derived connective,
where ϕ1 ⊃ ϕ2 is classically defined as ¬ϕ1 ∨ ϕ2.

In order to formalize the semantics of the modalities
in CMEC, we must shift the focus from the current
knowledge state w to all knowledge states that are
reachable from w, i.e. ExtH(w). Since ⊆ is a reflexive
partial order, (WH,⊆) can be naturally viewed as a
finite, reflexive, transitive and antisymmetric modal
frame. If we consider this frame together with the
straightforward modal extension of the valuation υH

to an arbitrary knowledge state, we obtain a modal
model for CMEC . Connectives are handled as usual
and incorporating the precedence test is trivial.

Definition 2.3 (Intended model of CMEC)

Let H = (E, P, [·〉, 〈·],]·,·[) be an EC-structure. The
intended CMEC -model of H is the modal model IH =
(WH,⊆, υH), where the propositional valuation υH :
WH → 2LH(EC) is defined as in Definition 2.2. Given
w ∈ WH and ϕ ∈ LH(CMEC), the truth of ϕ at w
with respect to IH, denoted by IH;w |= ϕ, is defined
as follows:

IH; w |= p(e1, e2) iff p(e1, e2) ∈ υH(w);
IH; w |= e1 < e2 iff e1 <w e2;
IH; w |= ¬ϕ iff IH; w 6|= ϕ;
IH; w |= ϕ1 ∧ ϕ2 iff IH; w |= ϕ1 and IH; w |= ϕ2;
IH; w |= ϕ1 ∨ ϕ2 iff IH; w |= ϕ1 or IH; w |= ϕ2;
IH; w |= 2ϕ iff for all w′ ∈ ExtH(w),

IH; w′ |= ϕ;
IH; w |= 3ϕ iff there is w′ ∈ ExtH(w) such

that IH; w′ |= ϕ. 2

Notice that deciding the truth of a modal formula re-
quires the exploration of all the extensions of the cur-
rent knowledge state. Since there are exponentially
many, this raises the complexity of CMEC beyond
tractability [4]. This distressing fact is overcome in
the calculus ECMEC [6, 4], that restricts CMEC by
allowing 2 and 3 to enclose only atomic formulas of
the form e1 < e2 and p(e1, e2). To determine the truth
of atomic formulas prefixed by one modal operator, it
is possible to exploit necessary and sufficient local con-
ditions over the given partial order, thus avoiding a
complete (and expensive) search of all the consistent
extensions of the given order [4]. Therefore, solving
modal queries in ECMEC has polynomial cost [4].

This is particularly appealing since numerous CMEC -
formulas are logically equivalent to ECMEC -formulas.
The transformation proceeds by pushing the modali-
ties inside the scope of the connectives. An ECMEC
formula cannot always be produced since 2 does not
distribute over ∨ , and dually 3 cannot be pushed in-
side a conjunction. We will now consider conditions
that permit overcoming this difficulty in situations of
interest.

Specifically, we consider EC-structures H = (E, P,
[·〉, 〈·],]·,·[) where every property is initiated and ter-
minated by at most one event and there are no ex-
clusive properties. We call this condition the singleton
condition. An atomic formula p(e1, e2) onH is an MVI
relative to the knowledge state w ∈ WH if and only if
e1 initiates p, e2 terminate p and (e1, e2) belongs to
w. Indeed, the singleton condition ensures us that

there are no interrupting events for p in (e1, e2) and
thus we do not need to check whether br(e1, p, e2, w)
holds since this meta-predicate will be trivially false.
The singleton condition offers further opportunities to
push modalities inside the scope of connectives. We
omit the proof of the following simple proposition.

Proposition 2.4 (Consequences of the singleton con-
dition)

Let H = (E, P, [·〉, 〈·],]·,·[) be an EC-structure that
satisfies the singleton condition. Let ϕ be a CMEC-
formula. For p ∈ P and e1, e2 ∈ E, let νp(e1, e2) be
either p(e1, e2) or (e1 < e2). Then, for any w ∈ WH
such that e1 <w e2, we have that:

i. w |= 2(νp(e1, e2) ∨ ϕ) iff w |= νp(e1, e2) ∨ 2ϕ;
ii. w |= 3(νp(e1, e2) ∧ ϕ) iff w |= νp(e1, e2) ∧ 3ϕ.

In particular, for ϕ = false (resp. true), we have
that w |= 2νp(e1, e2) (resp. w |= 3νp(e1, e2)) iff
w |= νp(e1, e2).

2.3 Modal EC with Connectives and Quantifiers

We will now enrich CMEC with explicit universal and
existential event quantifiers that can be used freely in
a query. We call the resulting formalism QCMEC . A
logic programming implementation of CMEC can em-
ulate only restricted forms of existential quantification
by means of unification, while universally quantified
queries are out of reach.

In order to accommodate quantifiers, we extend
the query language of an EC -structure H =
(E, P, [·〉, 〈·],]·,·[) in several respects. We first as-
sume the existence of infinitely many event variables
that we denote x, possibly subscripted. We write ē
for a syntactic entity that is either an event in E or
an event variable. The query language of QCMEC,
denoted LH(QCMEC), is the set of closed formulas
generated by the following grammar:

ϕ ::= p(ē1, ē2) | ē1 < ē2 | ¬ϕ | ϕ1 ∧ ϕ2

| ϕ1 ∨ ϕ2 | 2ϕ | 3ϕ | ∀x. ϕ | ∃x. ϕ.

The notions of free and bound variables are defined
as usual and we identify formulas that differ only by
the name of their bound variables. We write [e/x]ϕ
for the substitution of an event e ∈ E for every free
occurrence of the event variable x in the formula ϕ.
Notice that this limited form of substitution cannot
lead to variable capture.

We now extend the notion of intended model to ac-
commodate quantifiers.

Definition 2.5 (Intended model of QCMEC)

Let H = (E, P, [·〉, 〈·],]·,·[) be an EC-structure.
The intended QCMEC -model of H is the modal model
IH = (WH,⊆, υH) defined as in Definition 2.3. Given
w ∈ WH and a (closed) formula ϕ ∈ LH(QCMEC),
the truth of ϕ at w with respect to IH, denoted as
IH; w |= ϕ, is defined as in Definition 2.3 with the
addition of the following two cases:

IH; w |= ∀x. ϕ iff for all e ∈ E, IH; w |= [e/x]ϕ;
IH; w |= ∃x. ϕ iff there exists e ∈ E such that

IH; w |= [e/x]ϕ. 2

The well-foundedness of this definition derives from
the observation that if ∀x. ϕ and ∃x. ϕ are closed for-
mula, so is [e/x]ϕ for every event e ∈ E.

A universal quantification over a finite domain can al-
ways be expanded into a finite sequence of conjunc-
tions. Similarly an existentially quantified formula is
equivalent to the disjunction of all its instances. The
following lemma, whose simple proof we omit, applies
these principles to QCMEC .

Lemma 2.6 (Unfolding quantifiers)

Let H = (E, P, [·〉, 〈·],]·,·[) be an EC -structure, with
E = {e1, . . . , en}. Then, for every w ∈ WH,

i. IH;w |= ∀x. ϕ iff IH; w |= ∧n
i=1[ei/x]ϕ;

ii. IH;w |= ∃x. ϕ iff IH; w |= ∨n
i=1[ei/x]ϕ.

This property hints at the possibility of compiling
a QCMEC query to a quantifier-free formula. Ob-
serve however that this is possible only after an EC -
structure has been specified. We will rely on the above
lemma in order to analyze the explicit complexity of
the formalism in Section 5. It is also possible to take
advantage of it in order to structure an implementation
of QCMEC into a preprocessor that expands quanti-
fiers into exhaustive sets of conjunctions or disjunc-
tions, and a CMEC checker that verifies the resulting
formula. We will however follow a more direct ap-
proach in Section 4.

We conclude this section by defining a quantified vari-
ant of the previously introduced formalism ECMEC .
The calculus EQCMEC differs from QCMEC by im-
posing that propositional connectives and quantifiers
be external to the scope of the modal operators.

3 Example

In this section, we consider a case study taken from
the domain of hardware fault diagnosis that shows
how an extension of EC with quantifiers, connectives

and modalities can be conveniently used to model real-
world applications.

We focus our attention on the representation and infor-
mation processing of fault symptoms that are spread
over periods of time and for which current expert sys-
tem technology is particularly deficient [11]. Consider
the following example, which diagnoses a fault in a
computerized numerical control center for a produc-
tion chain.

A possible cause for an undefined position of
the tool magazine is a faulty limit switch S.
This cause can however be ruled out if the
status registers R1 and R2 show the following
behavior in every session: from a situation in
which both registers contain the value 0, they
assume the value 1 in successive and disjoint
time intervals (first R1 and then R2), and
then return to 0. A session is a time interval
initiated when a special register C is set to 1
and terminated when C is reset to 0.

Figure 1 describes a possible sequence of transitions
for R1 and R2 within an individual session i. If every
recorded session has a similar pattern, the eventuality
of S being faulty can be excluded. In order to ver-
ify this behavior, the contents of the registers must be
monitored over time. Typically, each value (0 or 1) of
a register persists for at least t time units. Measure-
ments are made at fixed intervals (sampling periods),
asynchronously with the change of value of the regis-
ters. In order to avoid losing register transitions, mea-
surements must be made frequently enough, that is,
the sampling period must be less than t. However, it
may happen that transitions of different registers take
place between two consecutive measurements, making
it impossible to recover their relative order.

This situation is depicted in Figure 1, where dotted
lines indicate measurements. Moreover, we have given
names to the individual transitions of state of the dif-
ferent registers. In this specific situation, the values
found at measurements mi

0, mi
1 and mi

2 allow us to
determine that C has acquired the value 1 and R1 has
successively been set during this interval (transitions
ei
0 and ei

1, respectively). The contents of the registers
at measurement mi

3 let us infer that R1 has been reset
(transition ei

2) and that the value of R2 has changed to
1 (transition ei

3). We know that both ei
2 and ei

3 have
taken place after ei

1, but we have no information about
the relative order of these transitions. Finally, mi

4 and
mi

5 acknowledge that R2 has successively been reset to
0 (ei

4), and the same has then happened to C (ei
5).

We will now give a formalization of this example and
use various modal event calculi to draw conclusions

-
time

R1 0
1

ei
1 ei

2

R2 0
1

ei
3 ei

4

C
0
1

ei
0 ei

5

..

..

..

..

..

..

..

..

..

..

..

mi
0

..

..

..

..

..

..

..

..

..

..

..

mi
1

..

..

..

..

..

..

..

..

..

..

..

mi
2

..

..

..

..

..

..

..

..

..

..

..

mi
3

..

..

..

..

..

..

..

..

..

..

..

mi
4

..

..

..

..

..

..

..

..

..

..

..

mi
5

Figure 1: Expected Register Behavior and Measurements during Session i.

about it. The situation relative to session i depicted
in Figure 1 can be represented by the EC -structure
Hi = (Ei, P, [·〉i, 〈·]i,]·,·[), whose components are
defined as follows:

• Ei = {ei
0, e

i
1, e

i
2, e

i
3, e

i
4, e

i
5};

• P = {C, R1, R2};
• [C〉i = {ei

0}, [R1〉i = {ei
1}, [R2〉i = {ei

3};
• 〈C]i = {ei

5}, 〈R1]i = {ei
2}, 〈R2]i = {ei

4};
•]·,·[= ∅.

We have encoded transitions as events with the same
name and denoted with Rj (j = 1, 2) the property that
register Rj has value 1, and similarly for C.

The ordering w of the transitions inferred from the
measurements corresponds to the transitive closure of
the following graph.

ei
0 ei

1

ei
2

ei
3

ei
4 ei

5
- ©©*

HHj

HHj

©©*
-

Consider the formulas ϕi = R1(ei
1, e

i
2) ∧ (ei

2 < ei
3)

∧ R2(ei
3, e

i
4). In order to verify that the switch S is

not faulty in session i, we must ensure that the reg-
isters R1 and R2 display the expected behavior in all
refinements of the current knowledge state w. This
amounts to proving that the CMEC -formula 2ϕi is
true in w. If this is the case, there is no fault in ses-
sion i, although other sessions might indicate that S is
dysfunctional. If we want to determine the existence
of at least one extension of w where the registers be-
have as displayed in Figure 1, we must verify the truth
of 3ϕi in w. If this CMEC -formula is true, we cannot
be sure whether S is faulty or not.

Since IHi ;w |= 3ϕi and IHi ; w 6|= 2ϕi, a faulty be-
havior of S in session i is possible but not certain.
Assume now that, unlike the actual situation depicted
in Figure 1, we extend w so that ei

3 precedes ei
2, call w1

the resulting state. Then, IHi ;w1 6|= 3ϕi, that is, the

evolution of the values in the registers hints at a fault.
Conversely, let us refine w so that ei

2 precedes ei
3, and

call w2 the resulting knowledge state. Then, we can
infer IHi ; w2 |= 2ϕi, and hence we can conclude that
the switch S is certainly not faulty.

The formulas we have used so far belong to the lan-
guage of CMEC . This is unfortunate since model
checking is intractable in it. However, there exist
equivalent formulas in the language of ECMEC, that
can be checked in polynomial time. By the distribu-
tivity 2 over ∧ , 2ϕi is equivalent to the ECMEC -
formula:

ψi = 2R1(ei
1, e

i
2) ∧ 2(ei

2 < ei
3) ∧ 2R2(ei

3, e
i
4)

Therefore, we can use ECMEC and ψi to establish if
the switch S is fault-free or is possibly defective.

Consider the following approximation of 3ϕi:

χi = 3R1(ei
1, e

i
2) ∧ 3(ei

2 < ei
3) ∧ 3R2(ei

3, e
i
4)

which, in general, is not equivalent to, but only im-
plied by, 3ϕi. It easy to see that the structure H
satisfies the singleton condition (Section 2). More-
over, (ei

1, e
i
2) and (ei

3, e
i
4) belong to w, and thus, from

Proposition 2.4, it follows that IHi ; w |= χi if and only
if IHi ;w |= 3ϕi. Therefore, we can use ECMEC and
χi to establish whether the switch S is certainly faulty
or is possibly correct.

Quantifiers allow extending this line of reasoning from
session i to all recorded sessions, enabling us to give a
faithful representation of the given rule for detecting
faults in register S. We achieve this by using quanti-
fiers to abstract from the specific events appearing in
ϕi above. Consider the following QCMEC -formulas

ϕ1 and ϕ2:

α(~x) = x0 < x1 ∧ R1(x1, x2) ∧
x2 < x3 ∧ R2(x3, x4) ∧ x4 < x5

ϕ1 = ∀x0. ∀x5. C(x0, x5) ⊃ ∃x1.∃x2.∃x3.∃x4.2α(~x)
ϕ2 = ∀x0. ∀x5. C(x0, x5) ⊃ ∃x1.∃x2.∃x3.∃x4.3α(~x)

where ~x stands for the list of variables (x0, x1, x2, x3,
x4, x5). Given a global EC -structure H, we can be
certain that the switch S is not faulty no matter how
the order of actual transitions differs from what was
inferred from the measurements if IH;w |= ϕ1 holds.
On the other hand, the possibility that S behaves cor-
rectly is left open if IH;w |= ϕ2 is valid. Both ϕ1 and
ϕ2 are in LH(QCMEC). However, if we distribute
the modal operator over the boolean connectives in
ϕ1 and ϕ2, we obtain two formulas, say ϕ′1 and ϕ′2,
that are in the language of EQCMEC and thus can be
solved in a time that is polynomial in the number of
events (Section 5). It is possible to show that, for any
w′ ∈ Ext(w), IH;w′ |= ϕ1 if and only if IH; w′ |= ϕ′1
and IH; w′ |= ϕ2 if and only if IH;w′ |= ϕ′2.

4 Implementation

The Event Calculus [9] has traditionally been im-
plemented in the logic programming language Pro-
log [13]. Recent extensions to EC have instead
adopted λProlog [10] in order to achieve a declarative
yet simple encoding, necessary to formally establish
correctness issues [6]. In this section, we will rely again
on λProlog to obtain an elegant encoding of QCMEC
and to prove its correctness. Space reasons forbid dis-
cussing the implementation of its subcalculi.

4.1 λProlog in a nutshell

Due to space limitations, we shall assume the reader to
be familiar with the logic programming language Pro-
log [13]. We will instead illustrate some of the charac-
teristic constructs of λProlog at an intuitive level. We
invite the interested reader to consult [10] for a more
complete discussion, and [6] for a presentation in the
context of the Event Calculus.

Differently from Prolog which is first-order, λProlog is
a higher-order language, which means that the terms
in this programming language are drawn from a simply
typed λ-calculus. More precisely, the syntax of terms
is given by the following grammar:

M ::= c | x | F | M1 M2 | x \M

where c ranges over constants, x stands for a bound
variable and F denotes a logical variable (akin to

Prolog ’s variables). Identifiers beginning with a low-
ercase and an uppercase letter stand for constants
and logical variables, respectively. Terms that differ
only by the name of their bound variables are con-
sidered indistinguishable. “x \M” is λProlog ’s syn-
tax for λ-abstraction, traditionally written λx.M . In
this language, terms and atomic formulas are writ-
ten in curried form (e.g. “before E1 E2” rather than
“before(E1, E2)”).

Every constant, bound variable and logical variable is
given a unique type A. Types are either user-defined
base types, or functional types of the form A1 ->A2. By
convention, the predefined base type o classifies formu-
las. A base type a is declared as “kind a.”, and a con-
stant c of type A is entered in λProlog as “type c A.”.
Syntax is provided for declaring infix symbols. Appli-
cation and λ-abstraction can be typed if their subex-
pression satisfy certain constraints. λProlog will reject
every term that is not typable.

While first-order terms are equal solely to themselves,
the equational theory of higher-order languages identi-
fies terms that can be rewritten to each other by means
of the β-reduction rule: (x \M) N = [N/x]M , where
the latter expression denotes the capture-avoiding sub-
stitution of the term N for the bound variable x in
M . A consequence of this fact is that unification in
λProlog must perform β-reduction on the fly in order
to equate terms or instantiate logical variables. A fur-
ther difference from Prolog is that logical variables in
λProlog can stand for functions (i.e. expressions of the
form x \M) and this must be taken into account when
unification is performed.

For our purposes, the language of formulas of λProlog
differs from Prolog for the availability of implication
and of an explicit existential quantifier in the body
of clauses. The goal D ⊃ G, written “D =>G” in
the concrete syntax of this language, is solved by re-
solving the goal G after having assumed D as an ad-
ditional program clause. The goal ∃x.G is entered
as “sigma x \G”. We will also take advantage of
negation-as-failure, denoted not. We will not rely di-
rectly on the other powerful constructs offered by this
language. Other connectives are denoted as in Pro-
log : “,” for conjunction, “;” for disjunction, “:-” for
implication with the arguments reversed. The only
predefined predicate we will use is the infix “=” that
unifies its arguments. Given a well-typed λProlog pro-
gram P and a goal G, the fact that there is a derivation
of G from P, i.e. that G is solvable in P, is denoted
P ` G. See [6, 10] for details.

λProlog offers also the possibility of organizing pro-
grams into modules. A module m is declared as

“module m.” followed by the declarations and clauses
that define it. Modules can access other modules by
means of the accumulate declaration.

Finally, % starts a comment that extends to the end of
the line.

4.2 Implementation of QCMEC in λProlog

We will now give an implementation of QCMEC
in λProlog. The resulting module, called qcmec,
is displayed in Appendix A. The rule to diag-
nose hardware faults and an example from Sec-
tion 3 are included in Appendices B and C. This
code has been tested using the Terzo implementa-
tion of λProlog, version 1.0b, which is available from
http://www.cse.psu.edu/~dale/lProlog/.

We define a family of representation functions p·q that
relate the mathematical entities we have been using in
Section 2 to terms in λProlog. Specifically, we will need
to encode EC -structures, the associated orderings, and
the language of QCMEC . In the remainder of this
section, we will refer to a generic EC -structure H =
(E, P, [·〉, 〈·],]·,·[).
We represent H by giving an encoding of the enti-
ties that constitute it. We introduce the types event
and property so that every event in E (property
in P) is represented by a distinct constant of type
event (of type property). Event variables are rep-
resented as λProlog variables of the relative type.
The initiation, termination and exclusivity relations,
and event occurrences (traditionally represented in
EC) are mapped to the predicate symbol initiates,
terminates, exclusive, and happens, respectively,
applied to the appropriate arguments. Declarations
for these constants can be found in Appendix A.

For implementation purposes, it is more convenient
to compute the relative ordering of two events on the
basis of fragmented data (a binary acyclic relation)
than to maintain this information as a strict order.
We rely on the binary predicate symbol beforeFact
to represent the edges of the binary acyclic relation.
We encapsule the clauses for the predicate before,
which implements its transitive closure, in the module
transClo. We do not show details for space reasons,
but a quadratic implementation can be found in [2].

In order to encode the syntax of QCMEC, we define
the type mvi, intended to represent the formulas of
this language (as opposed to the formulas of λProlog,
that have type o). The representation of formulas is
then relatively standard [6], except for quantifiers:

pp̄(ē1, ē2)q = period pē1q pp̄q pē2q
pē1 < ē2q = pē1q precedes pē2q

p¬ϕq = neg pϕq
pϕ1 ∧ ϕ2q = pϕ1q and pϕ2q
pϕ1 ∨ ϕ2q = pϕ1q or pϕ2q
pϕ1 ⊃ ϕ2q = pϕ1q implies pϕ2q

p2ϕq = must pϕq
p3ϕq = may pϕq

p∀x. ϕq = forAllEvent (x \ pϕq)
p∃x. ϕq = forSomeEvent (x \ pϕq)

Quantifiers differ from the other syntactic entities of
a language such as QCMEC by the fact that they
bind a variable in their argument (e.g. x in ∃x. ϕ).
Bound variables are then subject to implicit renam-
ing to avoid conflicts and to substitution. Encod-
ing binding constructs in traditional programming lan-
guages such as Prolog is painful since these operations
must be explicitly programmed. λProlog and other
higher-order languages permit a much leaner emula-
tion since λ-abstraction (x \ M) is itself a binder and
their implementations come equipped with (efficient)
ways of handling it. The idea, known as higher-order
abstract syntax [10], is then to use λProlog ’s abstrac-
tion mechanism as a universal binder. Binding con-
structs in the object language are then expressed as
constants that take a λ-abstracted term as their argu-
ment (for example forSomeEvent is declared of type
(event -> mvi) -> mvi). Variable renaming hap-
pens behind the scene, and substitution is delegated
to the meta-language as β-reduction.

An example will shed some light on this technique.
Consider the formula ϕ = ∃x. p(x, e2), which repre-
sentation is forSomeEvent (x \ (period x p e2)),
where we have assumed that p and e2 are encoded
as the constants p and e2 of the appropriate type.
It is easy to convince oneself that this expression is
well-typed. In order to ascertain the truth of ϕ, we
need to check whether p(e, e2) holds for successive
e ∈ E until such an event is found. Automating
this implies that, given a candidate event e1 (rep-
resented as e1), we need to substitute e1 for x in
period x p e2. This can however be achieved by
simply applying the argument of forSomeEvent to
e1. Indeed, (x \ (period x p e2)) e1 is equal to
period e1 p e2, modulo β-reduction. This technique
is used in clauses 12–13 in our implementation.

We represent the truth of a formula in QCMEC by
means of the predicate holds. Clauses 1 to 13 in Ap-
pendix A implement the specification of this language
given in Section 2. More precisely, clauses 1 and 2 pro-
vide a direct encoding of Definition 2.1, where clause
2 faithfully emulates the meta-predicate br. Clause
3 captures the meaning of the precedence construct,

while clauses 4 to 7 reduce the truth check for the
connectives of QCMEC to the derivability of the corre-
sponding λProlog constructs. Notice that implication
is translated back to a combination of negation and
disjunction in clause 7. Clauses 8 to 11 implement
the semantics of the modalities as the recursive visit
of all the extensions of the current knowledge state;
further details can be found in [6]. Existential quanti-
fiers are handled similarly to connectives in clause 12.
Although λProlog offers a form of universal quantifi-
cation, we are forced to take a detour and express our
universal quantifiers as negations and existentials in
clause 13. A lengthy discussion of the logical reasons
behind this step can be found in [6].

4.3 Soundness and Completeness

The encoding we have chosen as an implementation of
QCMEC permits an easy proof of its faithfulness with
respect to the formal specification of this formalism.
Key factors in the feasibility of this endeavor are the
precise semantic definition of QCMEC given in Sec-
tion 2, and the exploitation of the declarative features
of λProlog.

We only show the statement of our soundness and com-
pleteness result since a fully worked out proof would
require a very detailed account of the semantics of
λProlog, and is rather long, although simple. Space
constraints prevent us from doing so. The interested
reader can find the full development of a proof that
relies on the same techniques in [6].

Theorem 4.1 (Soundness and completeness of qcmec)

Let H = (E, P, [·〉, 〈·],]·,·[) be an EC-structure, o a
binary acyclic relation over E and ϕ and formula in
LH(QCMEC), then

qcmec, pHq, poq ` holds ϕ iff IH; o+ |= ϕ.

5 Complexity Analysis

This section is dedicated to studying the complexity
of the various modal event calculi presented in Sec-
tion 2. We assume the reader familiar with computa-
tional complexity theory [12]. Given an EC -structure
H, a knowledge state w ∈ WH and a formula ϕ rel-
ative to any of the modal event calculi presented in
Section 2, we want to characterize the complexity of
the problem of establishing whether IH; w |= ϕ is true,
which is an instance of the general problem of model
checking.

We model our analysis around the truth relations given
in Definitions 2.2, 2.3 and 2.5. We measure the com-

plexity of testing whether IH; w |= ϕ holds in terms
of the size n of the input structure (where n is the
number of recorded events) and the size k of the input
formula (without loss of generality, we sometimes in-
terpret k as the number of atomic formulas occurring
in ϕ).

The notion of cost we adopt is as follows: we assume
that verifying the truth of the propositions e ∈ [p〉 and
e ∈ 〈p] costs O(1). Although possible in principle, it is
disadvantageous to maintain knowledge states as tran-
sitive relations. We instead record an acyclic binary
relation o on events whose transitive closure o+ is w.
Verifying whether e1 <w e2 holds becomes a reacha-
bility problem in o and it can be solved in quadratic
time O(n2) in the number n of events [2]. The cost of
solving the query e1 < e2 is therefore quadratic.

We begin our analysis from the plain Event Calculus.
Model checking in EC (Definition 2.2) is a polynomial
task and costs O(n3) [2, 4].

Theorem 5.1 (Cost of model checking in EC)

Model checking in EC has complexity O(n3).

We obtain the same bound if we allow property-labeled
intervals p(e1, e2), possibly prefixed with at most one
modal operator [4]. This bound does not change if we
consider precedence queries.

An ECMEC -formula is the boolean combination of a
number of atomic formulas, i.e. property-labeled in-
tervals p(e1, e2) or precedence tests e1 < e2, possibly
prefixed with a modal operator.

Given an ECMEC -formula that contains k atomic for-
mulas, checking it reduces to testing k atomic formu-
las, possibly prefixed with a modal operator, each of
them is solved in O(n3). Thus, model checking in
ECMEC has polynomial complexity.

Theorem 5.2 (Cost of model checking in ECMEC)

Model checking in ECMEC has complexity O(kn3).

Model checking in CMEC (Definition 2.3) involves an
exhaustive exploration of the extensions of the current
knowledge state, whose number is, in general, expo-
nential in the number of events. This raises complexity
beyond tractability.

Theorem 5.3 (Cost of model checking in CMEC)

Model checking in CMEC is PSPACE-complete.

Proof. In order to prove that model checking in
CMEC is in PSPACE, we show that this problem

belongs to AP, that is, we define an alternating poly-
nomial time algorithm that solves it.

Let ϕ be a CMEC -formula and w a knowledge state.
If ϕ = α ∧ β (resp. ϕ = α ∨ β), the algorithm enters
in an AND (resp. OR) state. It nondeterministically
chooses one among α and β and evaluates it in w. If
ϕ = ¬(α ∧ β) (resp. ϕ = ¬(α ∨ β)), the algorithm
evaluates ¬α ∨ ¬β (resp. ¬α ∧ ¬β). If ϕ = ¬¬α,
the algorithm verifies α. If ϕ = 2α (resp. ϕ = 3α),
the algorithm enters in an AND (resp. OR) state. It
nondeterministically chooses one extension w′ of w and
evaluates α in w′. If ϕ = ¬2α (resp. ϕ = ¬3α), the
algorithm evaluates 3¬α (resp. 2¬α). If ϕ = p(e1, e2)
(resp. ϕ = ¬p(e1, e2)), the algorithm accepts it if and
only if all points (resp. at least one point) from i to iv
of Definition 2.2 hold (resp. does not hold). Finally,
if ϕ = e1 < e2 (resp. ϕ = ¬(e1 < e2)), the algorithm
accepts if and only if e1 <w e2 (resp. e1 6<w e2).

It follows, from the definition of acceptance of alter-
nating machines [12], that a CMEC -instance (H, ϕ, w)
is accepted if and only if IH; w |= ϕ. Moreover, the
time needed is polynomial in the size of H and ϕ.
Thus, model checking in CMEC in AP. Since AP
= PSPACE [12], it is in PSPACE.

In order to prove that the considered problem is
PSPACE-hard, we define a (polynomial) reduction
of QSAT [12] into CMEC .

Let G = ∃x1. ∀x2. ∃x3. ∀x4. . . . Qxn. F (x1, x2, . . . xn),
with n ≥ 1, be a quantified Boolean formula where
the quantifiers alternate, so that Q is ∃ (∀) if n is odd
(even).

We now define the EC -structure H = (E, P, [·〉, 〈·],
]·, ·[) such that:

• E = {exi , e¬xi : 1 ≤ i ≤ n};
• P = {pxi : 1 ≤ i ≤ n};
• [pxi〉 = {exi}, 〈pxi] = {e¬xi}, for 1 ≤ i ≤ n;
•]·, ·[= ∅.

Moreover, let w = ∅, and F̂ be the formula obtained re-
placing in F (x1, x2, . . . xn) every occurrence of a vari-
able xi with pxi(exi , e¬xi).

Let V = {x1, x2, ...xn} be the set of variables of G. A
knowledge state w in WH naturally induces an assign-
ment tw for the variables in V such that, for every x in
V , tw(x) is true if and only if w |= px(ex, e¬x). Since
only the relative order of the events ex and e¬x, for
every variable x in V , is relevant, different knowledge
states may induce the same assignment. This many-
to-one correspondence between knowledge states and
assignments establishes an equivalence relation on the
set of all knowledge states for H such that the truth of

a propositional CMEC-formula on H (i.e. , a CMEC-
formula on H without modalities) is invariant within
each equivalence class.

Further, consider the following recursive definition of
the CMEC -formula Fk:

Fk =





3F̂ k = n

3(ψk+1 ∧ 2F̂) k = n− 1
3(ψk+1 ∧ 2(ψk+2 ⊃ Fk+2)) otherwise

where

ψk =
∧

k≤i≤n ¬(exi < e¬xi) ∧ ¬(e¬xi < exi).

Observe that, if w |= ψk, then, for every i from k to n,
the events exi

and e¬xi
are unordered.

It is possible to prove that, for ϕ = F1, w |= ϕ if
and only if G is true. The basic step of the proof is
the mapping of the propositional quantifiers of G into
the modal operators of F1. However, the scope of a
quantifier is limited to the variable that it quantifies,
whereas the scope of a modal operator in the formula
2F or 3F extends to the whole formula F . To cope
with this problem, we take advantage of the formu-
las ψk in order to restore the correct context for the
evaluation of F .

In the following, we analyze the complexity of the
quantified calculi defined in Section 2. We begin
our analysis with the complexity of EQCMEC, i.e.
the quantified version of ECMEC . We have proved
that model checking in ECMEC is polynomial time-
bounded (Theorem 5.2). However, the extension of
ECMEC with quantifiers arises complexity beyond
P. In particular, model checking in EQCMEC is
PSPACE-complete, as proved by the following the-
orem.

Theorem 5.4 (Cost of model checking in EQCMEC)

Model checking in EQCMEC is PSPACE-complete.

Proof. In order to prove that model checking in
EQCMEC is in PSPACE, we show that it belongs
to AP. In order to do so, we extend the alternating
polynomial time algorithm used in the proof of The-
orem 5.3. If ϕ = ∀x. α (resp. ϕ = ∃x. α), the algo-
rithm enters in an AND (resp. OR) state. It nonde-
terministically chooses one event, say e, and evaluates
the formula obtained by replacing all occurrences of x
in α that are in the scope of the quantifier by e. If
ϕ = ¬∀x. α (resp. ϕ = ¬∃x. α), the algorithm evalu-
ates ∃x.¬α (resp. ∀x.¬α).

From the definition of acceptance of alternating ma-
chines [12], it follows that an EQCMEC -instance

(H, ϕ, w) is accepted if and only if IH; w |= ϕ. More-
over, the time needed is polynomial in the size of H
and ϕ. Thus, model checking in EQCMEC is in AP.
Since AP = PSPACE [12], it is in PSPACE.

In order to prove that the considered problem is
PSPACE-hard, we define a (polynomial) reduction
of QSAT [12] into EQCMEC .

Let G = ∃x1. ∀x2. ∃x3. ∀x4. . . . Qxn. F (x1, x2, . . . xn),
with n ≥ 1, be a quantified boolean formula where
the quantifiers alternate (so that Q is ∃ (∀) if n is odd
(even)).

We then define an EC -structure H = (E, P, [·〉, 〈·],
]·, ·[) such that:

• E = {e1, e2, . . . en, e};
• P = {p1, p2, . . . pn};
• [pi〉 = {ei} and 〈pi] = {e}, for 1 ≤ i ≤ n;
•]·, ·[= ∅.

Moreover, let w = {(ei, e) : 1 ≤ i ≤ n}}, and

ϕ = ∃x1. ∀x2. ∃x3. ∀x4. . . . Qnxn. F̂ (x1, x2, . . . xn)

where F̂ (x1, x2, . . . xn) is obtained replacing ev-
ery occurrence of a variable xi in the formula
F (x1, x2, . . . xn) with pi(xi, e). Notice that ϕ is an
EQCMEC -formula. In particular, it has no modal op-
erator. It is not difficult to see that w |= ϕ if and only
if G is true.

In the following, we characterize the explicit time com-
plexity of model checking in EQCMEC . Since model
checking in EQCMEC is PSPACE-complete, we ex-
pect an exponential bound.

We will exploit the unfolding lemma (2.6). This result
affirms that every formula involving one event quanti-
fier at its top-level can be replaced with the conjunc-
tion or disjunction of n instances of it, where n is the
number of events. If we have a nesting of q such quan-
tifiers, we are led to solve nq instances. In general,
if we eliminate in this manner all event quantifiers in
a formula ϕ of size k, we will produce a formula ϕ′

without quantifiers, i.e. an ECMEC formula, of size
at most knk. Taking advantage of Theorem 5.2, we
get the following upper bound.

Theorem 5.5 (Upper bound for time complexity of
model checking in EQCMEC)

Model checking in EQCMEC has complexity
O(knk+3).

Practical applications using modal event calculi with
quantifiers are expected to model situations involving

a large number of events, while the size of the queries
will in general be limited. The hardware fault diagno-
sis example in Section 3 falls into this category. In such
contexts, the fact that EQCMEC is polynomial in the
number of events is essential. At worst, the depen-
dence of the exponent on k may lead to polynomials
of high degree.

Finally, we consider the calculus QCMEC . Since
EQCMEC is a linguistic fragment of QCMEC, model
checking in QCMEC is PSPACE-hard. Nevertheless,
it is possible to show that model checking in QCMEC
is polynomial space-bounded.

Theorem 5.6 (Cost of model checking in QCMEC)

Model checking in QCMEC is PSPACE-complete.

Proof. To see that the considered problem is in
PSPACE, we exploit the polynomial alternating al-
gorithm defined in the proof of Theorem 5.4 for
EQCMEC . It works correctly for QCMEC as well.

Since EQCMEC is a linguistic fragment of QCMEC
and EQCMEC is PSPACE-hard (Theorem 5.4),
model checking in QCMEC is PSPACE-hard.

In Section 4 we have transliterated the definition of
QCMEC and its subcalculi in the higher-order logic
programming language λProlog [10].

6 Conclusions and Future Work

In this paper, we have extended a number of modal
event calculi [1, 4, 9] with the possibility of using quan-
tifiers and precedence tests in queries. The net effect of
these combined additions has been a substantial gain
in expressiveness. The extra computational cost was
shown acceptable for queries of a reasonable size in
those subcalculi that are tractable without quantifiers.
We have implemented the resulting formalisms in the
higher-order logic programming language λProlog [10],
which we used to encode case studies from the area of
hardware and medical diagnosis.

We restricted our attention to complete actual courses
of events, whose temporal ordering, specified by means
of a set of ordered pairs of events, is only partially
known. The considered scenarios are thus character-
ized by a set of occurred events, which is fixed once
and for all and does not include concurrent or divisible
events, and by incomplete (but consistent) information
about an actual total order, given in terms of the rela-
tive order of pairs of event occurrences. However, most
of these restrictions can actually be relaxed:

• completeness of the set of event occurrences (we
can have incomplete knowledge about both the
event occurrences and their temporal ordering);

• occurred events only (the events can be either ac-
tual events or hypothetical ones).

All the proved results, indeed, do not rely on such
restrictions.

Finally, we intend gaining a better understanding of
the interactions among the various operators of our
calculi, in particular between quantifiers and modali-
ties, in order to devise simplifications of costly queries
and thus better implementations. We also intend
studying the integration of preconditions [5].

Acknowledgments

We would like to thank Paolo Liberatore, Peter Jons-
son and Rob Miller for their useful comments.

The first author was supported by ONR grant N00014-
97-1-0505, Multidisciplinary University Research Ini-
tiative Semantic Consistency in Information Ex-
change. The work of the third author was partially
supported by the CNR project Programmazione logica:
strumenti per analisi e trasformazione di programmi;
tecniche di ingegneria del software; estensioni con vin-
coli, concorrenza ed oggetti (STE).

References

[1] Iliano Cervesato, Luca Chittaro, and Angelo
Montanari. A modal calculus of partially ordered
events in a logic programming framework. In
L. Sterling, editor, Proceedings of the Twelfth In-
ternational Conference on Logic Programming —
ICLP’95, pages 299–313, Kanagawa, Japan, 13–
16 June 1995. MIT Press.

[2] Iliano Cervesato, Luca Chittaro, and Angelo
Montanari. Speeding up temporal reasoning by
exploiting the notion of kernel of an ordering rela-
tion. In S.D. Goodwin and H.J. Hamilton, editors,
Proceedings of the Second International Workshop
on Temporal Representation and Reasoning —
TIME’95, pages 73–80, Melbourne Beach, FL, 26
April 1995.

[3] Iliano Cervesato, Luca Chittaro, and Angelo
Montanari. A general modal framework for the
event calculus and its skeptical and credulous
variants. In W. Wahlster, editor, Proceedings of

the Twelfth European Conference on Artificial In-
telligence — ECAI’96, pages 33–37, Budapest,
Hungary, 12–16 August 1996. John Wiley & Sons.

[4] Iliano Cervesato, Massimo Franceschet, and An-
gelo Montanari. A hierarchy of modal event cal-
culi: Expressiveness and complexity. In H. Bar-
ringer, M. Fisher, D. Gabbay, , and G. Gough,
editors, Proceedings of the Second International
Conference on Temporal Logic — ICTL’97, pages
1–17, Manchester, England, 14–18 July 1997.
Kluwer, Applied Logic Series. To appear.

[5] Iliano Cervesato, Massimo Franceschet, and An-
gelo Montanari. Modal event calculi with pre-
conditions. In R. Morris and L. Khatib, edi-
tors, Fourth International Workshop on Tempo-
ral Representation and Reasoning — TIME’97,
pages 38–45, Daytona Beach, FL, 10–11 May
1997. IEEE Computer Society Press.

[6] Iliano Cervesato and Angelo Montanari. A gen-
eral modal framework for the event calculus and
its skeptical and credulous variants. In Journal of
Logic Programming, 1998. To appear.

[7] Iliano Cervesato, Angelo Montanari, and Alessan-
dro Provetti. On the non-monotonic behavior of
the event calculus for deriving maximal time in-
tervals. International Journal on Interval Com-
putations, 2:83–119, 1993.

[8] Luca Chittaro, Angelo Montanari, and Alessan-
dro Provetti. Skeptical and credulous event calculi
for supporting modal queries. In A. Cohn, editor,
Proceedings of the Eleventh European Conference
on Artificial Intelligence — ECAI’94, pages 361–
365. John Wiley & Sons, 1994.

[9] Robert Kowalski and Marek Sergot. A logic-based
calculus of events. New Generation Computing,
4:67–95, 1986.

[10] Dale Miller. Lambda Prolog: An introduction to
the language and its logic. Current draft available
from http://cse.psu.edu/~dale/lProlog, 1996.

[11] K. Nökel. Temporarily Distributed Symptoms in
Technical Diagnosis. Springer-Verlag, 1991.

[12] Christos Papadimitriou. Computational Complex-
ity. Addison-Wesley, 1994.

[13] Leon Sterling and Ehud Shapiro. The Art of Pro-
log: Advanced Programming Techniques. MIT
Press, 1994.

A Implementation of QCMEC

module qcmec.
accumulate transClo.

kind event type.
kind property type.
kind mvi type.

type initiates event -> property -> o.
type terminates event -> property -> o.
type exclusive property -> property -> o.
type happens event -> o.

% ------- MVIs
type period event -> property -> event -> mvi.
type holds mvi -> o.
type broken event -> property -> event -> o.

holds (period Ei P Et) :- % 1 %
happens Ei, initiates Ei P,
happens Et, terminates Et P,
before Ei Et, not (broken Ei P Et).

broken Ei P Et :- % 2 %
happens E,
before Ei E, before E Et,
(initiates E Q; terminates E Q),
(exclusive P Q; P = Q).

% ------- Ordering
type precedes event -> event -> mvi. infixr precedes 6.

holds (E1 precedes E2) :- before E1 E2. % 3 %

% ------- Connectives
type neg mvi -> mvi.
type and mvi -> mvi -> mvi. infixr and 5.
type or mvi -> mvi -> mvi. infixr or 5.
type implies mvi -> mvi -> mvi. infixl implies 4.

holds (neg X) :- not (holds X). % 4 %
holds (X and Y) :- holds X, holds Y. % 5 %
holds (X or Y) :- holds X; holds Y. % 6 %
holds (X implies Y) :- holds ((neg X) or Y). % 7 %

% ------- Modalities
type must mvi -> mvi.
type may mvi -> mvi.
type fails_must mvi -> o.

holds (must X) :- holds X, not (fails_must X). % 8 %

fails_must X :- % 9 %
happens E1, happens E2, not (E1 = E2),
not (before E1 E2), not (before E2 E1),
beforefact E1 E2 => not (holds (must X)).

holds (may X) :- holds X. % 10 %
holds (may X) :- % 11 %

happens E1, happens E2, not (E1 = E2),
not (before E1 E2), not (before E2 E1),
beforefact E1 E2 => holds (may X).

% ------- Quantifiers
type forAllEvent (event -> mvi) -> mvi.
type forSomeEvent (event -> mvi) -> mvi.

holds (forAllEvent X) :- % 12 %
not (sigma E \ (happens E, not (holds (X E)))).

holds (forSomeEvent X) :- sigma E \ holds (X E). % 13 %

B Diagnosing Hardware Faults

module cncc.
accumulate qcmec.

type c property.

type r1 property.
type r2 property.
type phi1 o.
type phi2 o.

phi1 :- holds (forAllEvent E0 \
forAllEvent E5 \

((period E0 c E5) implies
(forSomeEvent E1 \
forSomeEvent E2 \
forSomeEvent E3 \
forSomeEvent E4 \

(must ((E0 precedes E1) and
(period E1 r1 E2) and
(E2 precedes E3) and
(period E3 r2 E4) and
(E4 precedes E5)))))).

phi2 :- holds (forAllEvent E0 \
forAllEvent E5 \

((period E0 c E5) implies
(forSomeEvent E1 \
forSomeEvent E2 \
forSomeEvent E3 \
forSomeEvent E4 \

(may ((E0 precedes E1) and
(period E1 r1 E2) and
(E2 precedes E3) and
(period E3 r2 E4) and
(E4 precedes E5)))))).

C A Specific Situation

module example.
accumulate cncc.

type e0 event. happens e0. initiates e0 c.
type e1 event. happens e1. initiates e1 r1.
type e2 event. happens e2. terminates e2 r1.
type e3 event. happens e3. initiates e3 r2.
type e4 event. happens e4. terminates e4 r2.
type e5 event. happens e5. terminates e5 c.

beforefact e0 e1. beforefact e1 e2. beforefact e1 e3.
beforefact e2 e4. beforefact e3 e4. beforefact e4 e5.

