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Abstract

We performed a thorough comparison of four main indicators of journal influence, namely 2-
year impact factor, 5-year impact factor, eigenfactor and article influence. These indicators
have been recently added by Thomson Reuters to the Journal Citation Reports, in both
science and social science editions, and are thus available for study and comparison over
a sample of significative size. We find that the distribution associated with the eigenfactor
largely differs from the distribution of the other surveyed measures in terms of deviation from
the mean, concentration, entropy, and skewness. Moreover, it is the one that best fits to the
lognormal theoretical model. Surprisingly, the eigenfactor is also the most variable indicator
when computed across different fields of science and social science, while article influence is the
most stable in this respect, and hence the most suitable metric to be used interdisciplinarily.
Finally, the journal rankings provided by impact factors and article influence are relatively
similar and diverge from the one produced by eigenfactor, which is closer to that given by
the total number of received citations.

Keywords: Journal influence measures, Impact factor, Eigenfactor metrics, Cross-field
variability.

1. Introduction

The impact factor is, undoubtedly, the most popular and controversial bibliometric in-
dicator available at the moment. It is defined, for a given journal, as the mean number of
citations in a given census year to papers published in the journal during a target window
consisting of the two previous years. It has been proposed by Eugene Garfield, working to-
gether with Irv Sher, to identify influential journals using the recent citations received from
other journals (Garfield and Sher, 1963), and has been used at least since 1976, when the
first Journal Citation Reports appeared as part of the Science Citation Index.

The use of the impact factor as a metric of journal status has been widely discussed
(Wilson, 1999; Bar-Ilan, 2008; Moed, 2002). The strengths of the impact factor are com-
prehensibility, simplicity, robustness, wide and fast availability (Glanzel and Moed, 2002;
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Pendlebury, 2009). On the other hand, frequently mentioned flaws of the impact factor are
that the target window of two years is too short, it does not represent a typical value since
it is a mean of a highly skewed distribution, it does not consider the status of the citing
journals, and it widely differs from one discipline to another (Seglen, 1997; Amin and Mabe,
2000; Campbell, 2008).

Thomson Reuters is not deaf to these criticisms and honestly admits the major drawbacks
of the impact factor, warning, at the same time, against possible misuse of the metric, like
assessing individual scholars or papers, that was never intended by the creators (Garfield,
2006; Pendlebury, 2009). In the 2007 editions of the Journal Citation Reports for science
and social science, Thomson Reuters added three alternative journal performance measures,
which try to avoid the mentioned flaws of the original 2-year impact factor. These are:

e S-year impact factor. This is computed as the original impact factor but with a longer
target window of 5 years;

e cigenfactor. This is the sum of normalized citations received from other journals
weighted by the status of the citing journals. Citations are normalized with respect to
the total amount of cited references of the citing journal. The citation target period is
5 years;

e article influence. This is the eigenfactor score divided by the number of articles pub-
lished by the journal over the 5-year target period.

Given the availability of these four metrics over a large-scale journal set (6598 science
journals and 1980 social science journals in the 2007 Journal Citation Reports), it is inter-
esting to analyse and compare them. In particular, in this paper we address the following
issues:

1. What is the form of the empirical distribution associated with the journal indicators in
terms of deviation from the mean, concentration, entropy, and skewness? In particular,
we investigate how well the empirical distributions follow the theoretical lognormal
model.

2. Which is the indicator that is most stable across different disciplines? Do the new
indicators reduce the well-known cross-field variability of the 2-year impact factor?
This issue is related to the interdisciplinary usage of the metrics.

3. How similar are the journal rankings provided by the performance indicators?

Section 2 explores carefully the mentioned issues. Section 3 reports the related work, and
Section 4 concludes the paper.

2. Factors of journal influence

Journal impact factors are defined as the mean number of citations in a given census year
to papers published in the journal during an immediately previous target period. Typical
target windows are 2 years long and 5 years long, giving rise to the 2-year impact factor (IF2)
and the 5-year impact factor (IF5).

The computation method of the eigenfactor (EF) is more involved and exploits the entire
citation network (Pinski and Narin, 1976; Bollen et al., 2006; Bergstrom et al., 2008). Unlike



the impact factor, the eigenfactor method weights journal citations by the status of the citing
journals. As a result, the status of a journal is determined not only by the number of received
citations, but also by the status of the citing journals. More precisely, let us fix a census year
and let C' = (¢; ;) be a journal-journal citation matrix such that ¢; ; is the number of citations
from articles published in journal 7 in the census year to articles published in journal j during
a target window consisting of the 5 previous years. Journal self-citations are ignored, hence
c¢i;; = 0 for all 7. Moreover, let a be an article vector such that a; is the number of articles
published by journal ¢ over the 5-year target window divided by the total number of articles
published by all journals over the same period. A dangling node is a journal i that does
not cite any other journals. The citation matrix C is transformed into a normalized matrix
H = (h; ;) such that all rows (journals) that are not dangling nodes are normalized by the
row sum (the total number of citations made by the journal). Furthermore, H is mapped to
a matrix H in which all rows corresponding to dangling nodes are replaced with the article
vector a. A new matrix P is defined as follows:

P=al+(1-a)A

where A is the matrix with identical rows each equal to the article vector a, and « is a free
parameter of the algorithm, usually set to 0.85. Let 7 be the left eigenvector of P associated
with the unity eigenvalue, that is, the vector w such that @ = wP. The vector 7, called the
influence vector, contains the scores used to weight citations allocated in matrix H. Finally,
the eigenfactor vector r is computed as

mH
>ilmH]:

That is, the eigenfactor score of a journal is the sum of normalized citations received from
other journals weighted by the eigenfactor scores of the citing journals. The eigenfactor scores
are normalized such that they sum to 100 (West et al., 2009a).

Finally, the article influence (AI) for a journal is simply its eigenfactor divided by the
number of articles published by the journal over the 5-year target period; hence, it corresponds
to the journal eigenfactor score per published article (Bergstrom et al., 2008).

All these measures are available at Thomson Reuters Journal Citation Reports (JCR) for
the indexed science and social science journals. Furthermore, eigenfactor and article influence
scores are published on the eigenfactor web site for journals listed in JCR and also for those
journals that do not belong to JCR but are cited by other JCR. journals® (West et al., 2009a).
In the present study, we use JCR 2007 science and social science editions.

r =100 -

2.1. Variability, skewness, and model fitting

This section describes the form of the distribution of the different measures of journal
influence in terms of deviation, concentration, entropy, and skewness. Moreover, we investi-
gate the fitting of the indicator distributions with respect to the lognormal model. Finally,
we study the cross-field variability of the indicator scores, and discuss the reasons for such a
variability.

I Eigenfactor scores are added to the eigenfactor web site six months after they are published in JCR.



index 1st Qu median mean 3rd Qu max dev conc ent skew

IF2 0.625 1.210 1.850 2200 74580 1.43 0.50 0.40 8.10
IF5 0.772 1.478 2.138 2543  50.770 131 0.48 0.51 6.46
Al 0.257 0.503 0.809 0.8815  24.860 1.67 0.54 0.45 7.53

EF 0.00106  0.00288 0.01195 0.00812 1.76400 4.27 0.77 0.13 19.80

Table 1: Descriptive statistics for factors of journal influence: 1st quartile, median (2nd quartile), mean, 3rd
quartile, maximum, deviation (dev), concentration (conc), entropy (ent), and skewness (skew).

Table 1 summarizes centrality, variability, and skewness descriptive statistics we have
computed for the indicators at hand. The deviation of a distribution is the attitude of the
data to deviate from the typical value, the mean, of the distribution. A relative measure
of deviation is the coefficient of variation C'V, defined as the ratio between the standard
deviation ¢ and the mean p of the distribution:

oV — g _ \/% Z?:l(xi — p)?
1 1

The eigenfactor largely dominates the other measures in terms of deviation: its standard
deviation if more than four times its mean (Table 1, column dev). The coefficients of variation
of the other three measures are close, with 5-year impact factor having the lowest deviation
from the mean.

Concentration measures how the character is equally distributed among the statistical
units. The two extreme situations are equidistribution, in which each statistical unit receives
the same amount of character, and maximum concentration, in which the total amount of the
character is attributed to a single statistical unit. A typical application of concentration is the
analysis of the allocation of wealth among individuals; Pareto (1897) originally observed that
a larger share of wealth of any society (approximately 80%) is owned by a smaller fraction
(about 20%) of the people in the society (Pareto principle or 80-20 rule). Concentration is a
particular measure of variability that is conceptually different from deviation, although the
extreme cases of maximality and minimality are the same for both measures.

Figure 1 depicts an (inverted) Lorenz diagram with curves representing the concentration
of the different indicators?. The curve for a given indicator is obtained by sorting journals
in decreasing order with respect to the indicator scores. Then, the share of top journals
collecting a given percentage of indicator score is plotted. Notice that all four curves are
contained inside a solid bounding triangle: the side of the triangle corresponding to the
segment with slope 1 leading from point (0,0) to point (1,1) represents the extreme situation
of equidistribution: each journal receives the same amount of total score. The other two
sides of the triangle represent the alternative extreme situation of maximum concentration:
the total amount of score is assigned to a single journal (the first is the sorted sequence). A
relative measure of concentration is the concentration ratio C R, which is the ratio between
the area Ro contained between the curve and the equidistribution line and the area Rr of

2With respect to the traditional Lorenz curve, the statistical units are sorted in decreasing order.



the bounding triangle3. It turns out that

Re = %(% 211(%71 +qi) — 1)
Ry = 324
CR = fo— n (157 (g +q)—1)

where g9 = 0 and, for ¢+ > 0, ¢; is the percentage of total score collected by the top ¢
journals. Notice that the concentration ratio ranges between 0 and 1 with O representing
equidistribution and 1 representing maximum concentration.

By inspecting the different curves in Figure 1 and the corresponding concentration ratios
contained in column conc of Table 1, we observe that the concentration of impact factors and
that of article influence are quite close, with 5-year impact factor being the most equidis-
tributed sample. On the other hand, the eigenfactor is far more concentrated than the other
journal metrics. In particular, the top 5% of the journals collect more than half of the
eigenfactor score, and the top half of the journals harvest 95% of the eigenfactor score. Inter-
estingly, exactly 80% of the eigenfactor score comes from 20% of the top journals, perfectly
matching the above mentioned Pareto principle. As for the less concentrated metric, that is
article influence, we have that the top 16% of the journals collect more than half of the article
influence score, and the top half of the journals represent the 83% of the article influence
score.

Entropy is a measure of heterogeneity that captures the amount of uncertainty or random-
ness in a distribution. It is also related to the theoretical compression rate that is possible
to achieve when the distribution sample is viewed as a message to be transmitted across a
channel (Shannon, 1948). For each indicator, let us divide the domain interval [m, M], where
m is the minimum indicator score and M is the maximum indicator score in the sample, into
k intervals of equal size. Let f; be the relative frequency of elements contained in the ith
segment, that is, f; is the ratio between the number of sample elements belonging to the ith
interval and the total number of sample elements. The entropy H of the distribution sample
is as follows:

k
H=->"filog, fi
1=0

where f;log, fi = 0 if f; = 0. The entropy is minimum (equal to 0) when there is some j
such that f; = 1 and f; = 0 for all ¢ # j. That is, all sample elements are contained in the
jth interval and, therefore, there is no uncertainty about which interval contains an element
randomly chosen from the sample. The entropy is maximum (equal to log, k) when f; = 1/k
for all 4. That is, each interval contains the same number of sample elements and, therefore,
there is maximum uncertainty about which interval a random sample element belongs to.
A relative measure of uncertainty is the ratio H/log, k¥ which ranges between 0 (minimum
uncertainty) and 1 (maximum uncertainty). Entropy is a measure of heterogeneity different
from deviation and concentration. In particular, the situation of minimum concentration (or
deviation) corresponds to the situation of minimum entropy, but the situation of maximum
concentration (or deviation) and maximum entropy are different.

3This corresponds to the Gini coefficient for the traditional Lorenz diagram.
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Figure 1: Inverted Lorenz diagram with curves for IF2 (solid), IF5 (dashed), AI (dotted), and EF (dot-
dashed). The curves are contained is a triangle representing the extreme cases of equidistribution (the side
of the triangle corresponding to the segment with slope 1) and maximum concentration (the other two sides
of the triangle).

We computed the uncertainty ratio for the journal influence factor distributions setting
the number of intervals k = 100 (Table 1, column ent). The eigenfactor conveys the lowest
uncertainty: the absolute entropy is 0.88 bits, which amounts to 13% of the maximum entropy
for the fixed valued of k, thus the theoretical compression rate is 87%. On the other hand,
5-year impact factor is the most entropic measure: the absolute entropy is 2.99 bits, which
corresponds to 45% of the maximum randomness, achieving a lower theoretical compression
rate of 55%. The values of entropy for the other two indicators (IF2 and AI) are closer to
that of IF5 than to the one for EF.

Finally, skewness measures the symmetry of a distribution. A distribution is symmetric
if the values are equally distributed around its mean; a well-known example is the normal
distribution. A distribution is right-skewed if it contains many low values and a relatively
few high values. It is left-skewed if it comprises many high values and a relatively few low
values. As a rule of thumb, when the mean is larger than the median the distribution is
right-skewed and when the median dominates the mean the distribution is left-skewed. A
numerical indicator of skewness is the third standardized central moment SK, that is:

% 22;1(11' - N)S

o3

SK =

Positive values for the skewness indicator correspond to right skewness, negative values cor-
respond to left skewness, and values close to 0 mean symmetry.
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Figure 2: Histograms for factors of journal influence.

Figure 2 illustrates the histograms for the four journal influence factors under investi-
gation. From a visual inspection of the histograms it is clear that all factor distributions
are right-skewed and that the skewness of the eigenfactor distribution is more pronounced
that the asymmetry of the other three distributions. The outcomes of the visual analysis
are confirmed by the computation of the skewness indicator (Table 1, column skew): the
skewness of EF is more than three times higher than the skewness of IF5, whose distribution
is the most symmetric one. Furthermore, notice that, for each indicator, the mean is greater
than the median and the gap between the median (2nd quartile) and the 1st quartile is less
than the gap between the 3rd quartile and the median. In particular, for the eigenfactor, the
mean is even greater than the 3rd quartile.

Next, we compare the empirical distributions of the journal influence indicators with the
theoretical lognormal model. The lognormal probability density function is defined in terms
of parameters y and o > 0 as follows:

1 _ Qog(x)—m)?

:E) = e 202
xoV 2T

for z > 0. A variable is lognormally distributed if the logarithm of the variable is normally
distributed. The lognormal distribution is commonly used to model bibliometric phenomena,
including scientific productivity of scholars (Shockley, 1957) and citations to journal articles
(Stringer et al., 2008; Radicchi et al., 2008). We computed the logarithm of the indicator
values and checked the fitting of the resulting distributions with the normal distribution



index median mean sd skew KS p-value

IF2 0.1906 0.1253 1.0383 -0.82 0.049 0.062
IF5 0.3907 0.3123 0.9792 -0.57 0.054 0.041
Al -0.6872 -0.7887 1.1176 -0.71 0.070 0.003
EF -5.8500 -5.8520 1.6629 -0.18 0.040 0.178

Table 2: Statistics for the logarithm of indicator scores: median, mean, standard deviation (sd), skewness,
Kolmogorov-Smirnov statistic (KS) and corresponding p-value for the lognormal fitting.

using the Kolmogorov-Smirnov test*. We estimated the distribution parameters using the
maximum likelihood method. Table 2 contains the results we have found for the logarithm of
the original distributions. The best fitting with respect to the lognormal model is observed for
the eigenfactor distribution: the mean is very close to the median and the skewness indicator
is close to 0. Furthermore, the eigenfactor has the lowest Kolmogorov-Smirnov statistic and
the highest p-value (greater than the usual significance level of 5%). The p-values for the
impact factors are also significative (IF2 passed the test at the 5% significance level and IF5
at the 1% level), while the article influence sample does not seem to fit well the lognormal
model.

We conclude this section by studying the variability of the scores for the journal influence
factors across different disciplines within science and social science. The mapping of science
journals into disciplines is taken from the map of science based on Thomson Reuters subject
categories that was recently computed by Leydesdorff and Rafols (2009). The authors used
exploratory factor analysis to cluster the 175 subject categories into 14 factors corresponding
to disciplines in science, e.g., biomedical sciences, engineering, geosciences. For each disci-
pline, we selected the 5 subject categories with the highest factor loadings on the cluster
identified by the discipline; they correspond to the most representative categories of the dis-
cipline. For instance, for the discipline computer sciences, we selected categories hardware &
architecture, information systems, artificial intelligence, electrical & electronic engineering,
and theory & methods. Finally, we included in each discipline sample all journals belonging
to the selected subject categories. The resulting science sample comprises 4318 journals.
Leydesdorff and Rafols chose to exclude the social sciences from their map. In order to pop-
ulate the social science samples, we selected the JCR subject categories in the social sciences
with the highest number of journals and aggregated them into 6 disciplines using domain
knowledge. The resulting social science sample contains 1018 journals.

Table 3 contains the disciplines, sorted in increasing order with respect to the median
value of each of the four influence indicator that we consider. Disciplines neurosciences,
biomedical sciences, and infectious diseases are those with the highest scores irrespective of
the indicator. On the other hand, education and educational research and sociology are the
disciplines with the lowest scores. In general, the scores for science disciplines are higher
than the scores for social science disciplines, and the scores for biology-medical disciplines
dominate the scores for the other science disciplines. We measured the variability across

4The test compares an empirical sample and a theoretical model by computing the maximum absolute
difference between the empirical and theoretical cumulative frequencies.



IF2 score IF5 score Al score EF score

EDU 0.55 POL 0.63 AGR 0.282 SOC 0.0011
POL 0.56 EDU 0.71 EDU 0.330 EDU 0.0012
SOC 0.63 SOC 0.75 SOC 0.364 LAW 0.0013
ENG 0.71 LAW 0.81 CS 0.374 POL 0.0015
EMB 0.75 ENG 0.82 MAT 0.386 AGR 0.0020
CS 0.80 CS 0.91 LAW 0.388 PSY 0.0022
LAW 0.87 EMB 0.98 CHE 0.391 CS 0.0023
AGR 0.91 AGR 0.99 ENG 0.400 EMB 0.0024
MAT 0.95 MAT 0.99 ENV 0.409 ENG 0.0025
ENV 0.97 PHY 1.08 POL 0.416 ECO 0.0027
GEO 1.02 ENV 1.10 CLM 0.446 ENV 0.0028
ECO 1.13 GEO 1.22 ECO 0.450 GEO 0.0031
PSY 1.14 CHE 1.28 GMH 0.466 MAT 0.0040
PHY 1.18 ECO 1.33 GEO 0.540 GMH 0.0043
CHE 1.22 GMH 1.42 EMB 0.542 CHE 0.0046
GMH 1.40 PSY 1.44 PHY 0.577 CLM 0.0053
CLM 1.43 CLM 1.48 PSY 0.586 PHY 0.0058
NEU 2.22 IND 2.35 IND 0.728 NEU 0.0065
BIOM 2.37 BIOM 242 BIOM 0.799 BIOM 0.0073
IND 2.39 NEU 2.53 NEU 0.815 IND 0.0078

Table 3: Disciplines sorted in increasing order with respect to the discipline median indicator score. Disci-
pline names are abbreviated as follows: ARG (agriculture), BIOM (biomedical sciences), CHE (chemistry),
CLM (clinical medicine), CS (computer sciences), ECO (ecology), ENG (engineering), ENV (environmental
sciences), GMH (general medicine and health), GEO (geosciences), IND (infectious diseases), MAT (material
sciences), NEU (neurosciences), PHY (physics), EMB (economics, management, and business), EDU (educa-
tion and educational research), LAW (law), POL (political science), PSY (psychology), SOC (sociology).

disciplines of the different influence measures by computing the coefficient of variation of the
median discipline scores. The most stable indicator is AT (0.31), followed by IF5 (0.45), IF2
(0.48) and EF (0.59).

These outcomes deserve a broader discussion. In principle, one might expect that the
average influence of journals in each discipline, and hence the scores of the corresponding
indicators, is comparable. In practice, however, this is not the case, and this prevents the
fair comparison of bibliometric indicators across disciplines. Impact factors are well known
to vary widely across disciplines (Moed et al., 1985; Seglen, 1997). Recently, Althouse et al.
(2008) analyse the sources of these variations and conclude, surprisingly, that the greatest
contributor to differences across fields is discipline internal coverage of Thomson Reuters Web
of Science data source, that is, the fraction of references cited in articles of the discipline that
match papers contained in Web of Science. Internal coverage of Web of Science largely varies
across disciplines; for instance, the internal coverage of molecular and cell biology is 0.802,
that of psychology is 0.538, and that of computer science is 0.266. Additional factors of cross-
field variability are average length of article bibliographies and the fraction of references that
were published in the 2-year target window used by the traditional impact factor. Notice



disc LAW SOC EDU POL EMB PSY ECO GEO ENG CS
Size 31 33 36 41 49 o1 91 93 95 106
disc AGR GMH NEU ENV IND BIOM CLM MAT PHY CHE
Size 110 110 118 119 163 166 170 261 276 284

disc IND MAT BIOM GMH CS PHY CHE CLM ENV NEU

CHL 5.8 6.0 6.2 6.5 6.5 6.5 6.6 6.6 6.6 6.8
disc ENG POL GEO AGR ECO LAW EDU EMB PSY SOC
CHL 7.1 7.2 7.5 7.5 7.6 7.9 7.9 8.0 8.0 8.6

Table 4: Disciplines sorted in increasing order with respect to the mean journal size (Size) and mean cited
half-life (CHL). Discipline names are abbreviated as in Table 3.

that discipline internal coverage has nothing to do with citation practices of the discipline,
but relates to the content of the particular database only.

The creators of the eigenfactor claim that this method mitigates the impact of different
discipline citation practices, because it normalizes in its formula citations from a source
item to a target item by the total number of citations given by the source item (West
et al., 2009a). Furthermore, it uses a 5-year target window, larger than the 2-year period
commonly exploited by the impact factor. This allows a more suitable evaluation for journals
with longer cited lives. Nevertheless, the eigenfactor cross-discipline variability is the highest
among the analysed factors. The main reason for this is that eigenfactor is size-dependent:
with all else equal, bigger journals will have larger eigenfactor scores, since they have more
articles and hence we expect them to be cited more often. But journal size strongly differs
across disciplines: the average size (number of articles published in one year) of a journal
in chemistry is 284, that of a journal in computer science is 106, that of a journal in law is
31 (see Table 4). Indeed, the cross-field variability of article influence, which corresponds
to eigenfactor per article and thus normalizes with respect to the size factor, is much lower
than that of eigenfactor, and, notably, is the lowest among the surveyed indicators. Hence,
the original intuition of the eigenfactor inventors is correct, but it is capitalized only by the
article influence version of the measure. Causes of the remaining cross-field variability in the
article influence scores are the different discipline internal coverage of the data source Web
of Science and the fraction of references that were published in the 5-year target period used
by the article influence. As for the latter variability factor, we noticed that the mean journal
cited half-life — the median age of the journal articles cited in a given year, an indicator of the
velocity of accumulation of citations for the journal — varies across fields, from a maximum
of 8.6 years for sociology to minimum of 5.8 years for infectious diseases (see Table 4).

2.2. Correlation analysis

In this section we study the correlation between the journal influence indicators covered
in the present study.

We start by comparing the discipline ranking contained in Table 3. We look for disci-
plines having strongly diverging ranks with respect to the following three pairs of indicators:
(IF2, IF5), (IF5, AI), and (AL, EF). The discipline rankings provided by IF2 and IF5 are

10



IF2 IF5 Al EF

IF2 - 0.96 0.84 0.77
IF5 0.96 - 0.90 0.77
Al 0.84 0.90 - 0.76
EF 0.77 0.77 0.76 -

Table 5: Spearman correlation matrix for the surveyed indicators (correlations > 0.90 are highlighted in
bold).

strongly correlated: the Spearman correlation coefficient is 0.95. Hence, we noticed no strong
divergence. The association between the discipline rankings given by IF5 and Al is less sig-
nificative (Spearman 0.74). The main difference between IF5 and Al is that the latter takes
into account the status of the citing journal. Disciplines that loose an important number of
positions when moving from IF5 to AI rankings are agriculture (-7 positions), chemistry (-6
positions), and clinical medicine (-6 positions). On the other hand, disciplines that gain a
significative number of positions when shifting from IF5 to Al rankings are political science
(49 positions) and economics, management, and business (+8 positions). The correlation be-
tween the discipline rankings according to Al and EF is 0.68, the lowest among the analysed
pairs. Recall that EF measures the cumulative performance of a journal, while AT measures
the performance per article. Hence, EF is a size-dependent indicator that, with all else equal,
favours journals that publish more papers (see Table 4). Compared to EF, the AI ranking
mostly favours disciplines psychology (+11 positions), economics, management, and business
(47 positions), and political science (+6 positions), and it mostly hampers material sciences
(-8 positions) and chemistry (-8 positions).

In the rest of the section we study the correlation among the journal rankings (and not
the discipline ones) provided by the surveyed indicators. Table 5 contains the Spearman
rank-based correlation matrix for the four indicators we consider in this study:

e indicators IF2, IF5, and AI form a correlation cluster (Franceschet, 2009), with an
average mutual correlation of 0.90. These indicators are size-independent, that is, they
do not depend on the size (number of published articles) of the journal. Despite the
statistically significant correlation, a close analysis reveals that the journal compilations
according to these metrics contain more than a few marked discrepancies (Franceschet,
2010; West et al., 2009b);

e the size-dependent indicator EF does not join the main correlation cluster. On the
other hand, we observed that it is strongly associated with the total number of cita-
tions received by the journal in the JCR year (correlation 0.93). In fact, this strong
correlation is not much surprising, since both variables are associated with the size of
the journal (West et al., 2009b).

Figure 3 illustrates the linear regression models for the six pairs of indicators. We notice
that:

e the linear model well captures the pairwise relationships among the size-independent
indicators (IF2, IF5 and AI). The falling star-shaped scatterplots for the three pairs of

11
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Figure 3: Linear regression models for each pair of indicators.

metrics are quite similar to each other (the outlier in the first two plots corresponds
to CA: A Cancer Journal for Clinicians). The regression equations along with the
coefficients of determination R? are given below:

IF5 = 0.999-1F2 + 0.233, R?>=10.95
Al = 0.446-IF2 — 0.041, R? =0.81
Al = 0.452-1F5 —0.157, R%2=0.88

Interestingly enough, the 5-year impact factor for a journal can be approximated by
adding to the journal 2-year impact factor score a constant value of 0.233.

On the other hand, the linear model does not explain well the mutual relationships
between EF and the size-independent indicators. Indeed, the coefficients of determi-
nation are much lower: 0.17 (IF2), 0.18 (IF5), and 0.17 (AI). Many more outliers are

12



present, in particular journals with high EF scores with respect to the values for the
other metrics. Also in this case, the shapes of the corresponding three scatterplots
resemble each other.

3. Related work

The rankings provided by impact factor and eigenfactor methods have been object of
previous investigation. Bollen et al. (2006) compare journal PageRank with 2-year impact
factor on 2003 science edition JCR dataset. The Spearman rank correlation between the
whole rankings is 0.61, while that for physics, computer science, and medicine is 0.59, 0.63,
and 0.77, respectively. The main difference between journal PageRank and eigenfactor is
that the former includes journal self citations in the computation. Moreover, to enforce irre-
ducibility of the citation matrix, and hence convergence of the method, in both approaches
the original citation matrix is perturbed by adding artificial transitions, with low probability,
among journals. In the eigenfactor method the weight of each artificial transition is pro-
portional to the number of article published by the target journal, whereas in the journal
PageRank approach artificial transitions are uniformly distributed over all journals. 7 makes
a thorough comparison of the rankings provided by eigenfactor and 5-year impact factor for
science and social science journals included in the 2007 edition of JCR. The author finds
that, although the two bibliometric measures are generally statistically correlated, they also
significantly diverge in some cases. The two methods diverge more for the hard sciences,
including physics, engineering, material sciences, and computer sciences, than they do for
the geosciences, for biology-medical disciplines, and for the social sciences. Moreover, the
author identifies the science and social science journals with the highest diverging ranks with
respect to eigenfactor and 5-year impact factor as well as with respect to article influence
and 5-year impact factor.

Furthermore, Davis (2008) compares the rankings according to eigenfactor and 2-year
impact factor for 165 journals from the category medicine (general and internal). The author
finds a significant correlation between the two measures (Spearman 0.84), and an even higher
association (Spearman 0.95) between eigenfactor and the total number of citations. An
impressive correlation between the PageRank method and the total number of citations is
also noticed in (Chen et al., 2007; Ma et al., 2008), where the PageRank algorithm is used to
find the influence of scientific papers instead of that of scientific journals. In particular, Chen
et al. (2007) analyze all publications in the Physical Review family of journals from 1863 to
2003 and measure a Spearman correlation of 0.91 between the article rankings provided by
PageRank and total number of citations. Ma et al. (2008) analyze papers published in period
2000-2005 in the field of molecular chemistry and molecular biology that are included in Web
of Science and find a Spearman correlation of 0.98 between PageRank and total number of
citations.

A couple of papers use factor analysis with the aim of clustering different scientific impact
measures including impact factor and journal PageRank as well as social network centrality
indexes (Bollen et al., 2009; Leydesdorff, 2009). They assign impact factor and journal
PageRank to different clusters; in particular the latter is aggregated with centrality measures.

Finally, Saad (2010) calculates pairwise correlations between 2-year impact factor, eigen-
factor, article influence as well as, interestingly, journal h index for different (small) samples
of journals. The author notices that the impact factor is better correlated to article influence
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than it is to eigenfactor and that there is an important correlation between eigenfactor and
journal h index. Similar conclusions are obtained by Rousseau and STIMULATE 8 Group
(2009) on a sample of 77 journals from different fields. Rousseau investigates the relationships
between 2-year and 5-year impact factors. Results indicate that the two measures lead statis-
tically to the same rankings per category and that, in the majority of cases, the medium term
impact factor scores are larger than the short term ones (Rousseau, 2009). These conclusions
are coherent with the outcomes of the present investigation.

4. Conclusion

We performed a thorough comparison of four main indicators of journal influence, namely
2-year and 5-year impact factors, eigenfactor and article influence. We retrieved the indicator
scores for all science and social science journals indexed in Thomson Reuters JCR 2007 and
studied the form of the retrieved samples in terms of deviation, concentration, entropy, and
symmetry. We compared the empirical distributions of the journal influence measures with
the theoretical lognormal model. Furthermore, we investigated the variability of the indicator
scores across the different disciplines forming the sciences and the social sciences. Finally, we
analysed the correlation between the journal rankings provided by the mentioned indicators.

The eigenfactor is the indicator with the highest deviation, concentration, and skewness
and with the lowest entropy. On the other hand, 5-year impact factor is the measure with the
lowest deviation, concentration, and skewness, and it is the most entropic (least foreseeable)
one. Article influence and 2-year impact factor are close to 5-year impact factor with respect
to the considered distribution variables. The empirical distribution of the eigenfactor fits
very well the theoretical lognormal model, those of impact factors match moderately well
the lognormal model, and that of article influence is not well explained by the lognormal
distribution. The article influence measure is the most stable indicator across different dis-
ciplines, while the eigenfactor scores widely vary across fields. Finally, impact factors and
article influence form a cluster of mutually correlated indicators, and eigenfactor and total
number of citations produce similar journal rankings.

As observed by Rousseau and STIMULATE 8 Group (2009), the association between
article influence and impact factor and the fact that the former measure is freely accessible
at eigenfactor.org with a limited temporal delay with respect to the publication in JCR
are good news for developing countries® who might not have the resources to procure access
to commercial data sources.
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