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Abstract. We investigate different approaches based on correlation analysis to reduce the complex-
ity of a space of quantitative indicators for the assessment of research performance. The proposed
methods group bibliometric indicators into clusters of highly inter-correlated indicators. Each cluster
is then associated with a representative indicator. The set of all representatives corresponds to a base
of orthogonal metrics capturing independent aspects of research performance and can be exploited
to design a composite performance indicator. We apply the devised methodology to isolate orthog-
onal performance metrics for scholars and journals in the field of computer science and to design a
global performance indicator. The methodology is general and can be exploited to design composite
indicators that are based on a set of possibly overlapping criteria.1

1 Introduction

There is a general agreement in bibliometrics that research quality is not characterised by a single element
of performance [van Raan, 2006b]. Two potential dangers of condensing down quality of research to a
single metric are: (i) a person may be damaged by the use of a simple index in a decision-making process if
the index fails to capture important and different aspects of research performance, and (ii) scientists may
focus on maximizing that particular indicator to the detriment of doing more justifiable work.

Several performance indicators have been proposed to assess the quality of research of scholars and
journals. In particular, metrics used for scholars can be classified as follows:

– productivity metrics, including number of (cited) papers, number of papers per academic year, number
of papers per individual author;

– impact metrics, comprising total number of citations, number of citations per academic year, number
of citations per individual author;

– hybrid metrics, consisting of average number of citations per paper as well as h index [Hirsch, 2005]
and its variants: the m quotient [Hirsch, 2005], the g index [Egghe, 2006], the contemporary h index
[Katsaros et al., 2006], and the individual h index [Batista et al., 2006]. These indicators aim to capture
both productivity and impact in a single figure.

Proposals to assess journal performance comprise the impact factor (roughly, the number of recent
citations per paper) [Garfield, 1979], h-type indexes for journals [Braun et al., 2006], and prestige-oriented
metrics [Bollen et al., 2006].

While it is wise to use a variety of metrics, it is unsystematic and confusing to have too many of them,
in particular when metrics are highly correlated. We have a strong feeling that the (ever growing) space

1 Accepted for publication in Journal of the American Society for Information Science and Technology 60(10),
1950-1964, 2009.



of bibliometric indicators can be partitioned into clusters of indicators represented by orthogonal metrics.
Each cluster contains indicators that are mutually strongly correlated and hence it may be represented by
a single representative metric. Different clusters (representatives) capture independent aspects of research
performance. Ideally, research performance should be characterized by different orthogonal aspects and
each performance aspect should be clearly captured by a single performance metric.

Our paper is a contribution toward this ideal situation. We investigate three methods based on corre-
lation analysis to group bibliometric indicators into sets of pairwise strongly correlated indicators; we call
these sets correlation clusters. The first method is based on the analysis of the structural properties of the
correlation graph associated with the correlation matrix of the involved bibliometric variables. The second
method uses hierarchical agglomerative clustering techniques. Here, we devise three different strategies
to merge sets of indicators during the clustering process. The last method exploits principal component
analysis, a technique used in statistics to reduce a multi-dimensional data space to a lower dimension.
Techniques to elect a representative indicator of a correlation cluster are suggested. The set of represen-
tative indicators forms a reduced base of orthogonal indicators capturing the information of the entire
bibliometric space. We take advantage of the clustering structure to design a global performance indicator
that considers independent aspects of performance.

We apply the clustering methods to computer science literature. We analyse both scholar and journal
publications as stored in Google Scholar and Web of Science. We use two data samples: (i) the most brilliant
computer science scholars working at the Department of Mathematics and Computer Science of Udine in
Italy, (ii) the top-20 computer science journals in subject category theory and methods according to the
number of received citations as recorded in Web of Science database. We perform a correlation analysis
using 13 bibliometric indicators for the first sample and 6 meaningful metrics for the second sample.

The rest of the paper is organized as follows. Section 2 discusses and compares related work. Section 3
illustrates the methods that we propose to compute correlation clusters of bibliometric indicators. In
Section 4 we test the goodness of the proposed methods by analysing both scholar and journal publications
as recorded in Google Scholar and Web of Science (Subsections from 4.1 to 4.3). Subsection 4.4 uses the
outcomes of our study to build a global performance indicator. Section 5 concludes the paper.

2 Related literature

We have found five studies that focus on the clustering of bibliometric indicators on the basis of the
statistical correlation among indicators2.

Costas and Bordons apply principal component analysis to bibliometric indicators at the level of indi-
vidual scholars [Costas and Bordons, 2007]. The authors study the publications of scientists at the Spanish
Research Council in the area of Natural Resources as recorded in Web of Science. The analysis includes
productivity indicators, like number of published papers, observed impact indicators, like total number
of citations and average number of citations per paper, expected impact indicators, based on the impact
factor of journals in which the scholar has published, and the h index. They found that the first factor
is associated with number of documents, number of citations, and h index, the second has high loadings
on relative citation rates, that are individual citation measures as compared with those of the publication
journal, the third factor groups average number of citations per paper and percentage of highly cited

2 One of them – Leydesdorff’s paper – was pointed out by an anonymous referee. All these studies are very recent;
in particular, two of them were published after the submission of this paper and one is unpublished at the writing
moment and available as a pre-print.



papers, and the last factor comprises expected impact indicators. The authors claim that the h index is a
size-dependent indicator, as previously noticed by van Raan [van Raan, 2006a].

Bornmann et al. compare nine variants of the h index, including m quotient, g index, h(2) index, a
index, m index, r index, ar index and hw index, using a dataset of biomedicine from Web of Science
[Bornmann et al., 2008]. The results of the principal component analysis indicate two types of indexes: the
first type (h, g, h(2) indexes and m quotient) describes the quantity of the most productive core of the
output of a scientist, the second (a, m, r, ar, and hw indexes) depicts the impact of the papers in the core.

Hendrix uses principal component analysis to compare indicators at the institutional level [Hendrix, 2008].
The author analyses information about publications and citations contained in Web of Science, about fund-
ing provided by the National Institutes of Health, and about faculty size for schools that are members of
the Association of American Medical Colleges. The author clusters the variables in three distinct groups:
the first cluster refers to gross research productivity and comprises total number of papers, total number
of citations, and total number of faculty. The second factor reflects the impact of research and includes av-
erage number of citations per article, impact index (h index divided by a factor of the number of published
articles), and number of uncited papers. The third group describes research productivity and impact at
individual level, like number of papers/citations per faculty member. Funding demonstrates a significant
relationship with all three factors.

Leydesdorff adopts principal component analysis to cluster journal indicators [Leydesdorff, 2009]. The
analysis comprises total number of papers, total number of citations, number of self-citations, total number
of cited papers, h index, journal PageRank, impact factor (two and five years), Scimago journal rank,
immediacy index and cited half-life. Moreover, the study includes social network centrality measures like
degree, betweeness, and closeness centrality both in the cited and citing dimensions. The dataset was
collected from both Web of Science and Scopus. Size-dependent measures including total papers and total
cites are clustered in the first factor. Size-independent measures like impact factor, Scimago journal rank
as well as immediacy index group in the second component. The h index loads on both the first and second
factors, but mainly on the second one. Social network centrality indicators, including the network-based
indicator PageRank, mainly populate the third component, with the exception of betweeness cited; finally,
cited half-life is isolated.

Finally, Bollen et al. study the aggregation of various journal indicators including bibliometric and social
network indexes computed on both citation and usage networks [Bollen et al., 2009]. The citation network
is based on Web of Science data, whereas the usage graph is constructed from usage log data available at
web portals of scientific publishers and institutional library services. Principal component analysis as well as
hierarchical and repeated partition (K-means) clustering techniques are used, leading to similar conclusions.
Usage-based measures are close together; impact factor is among others surrounded by Scimago cites per
paper, Scimago journal rank, and JCR immediacy index; citation degree centrality metrics, total cites
measures, and h index are clustered together, and, finally, PageRank and betweeness centrality indicators
are mutually correlated. The authors observe that the first principal component separates usage from
citation measures, while the second principal component seems to discriminate between popularity-based
measures and prestige-based ones.

The present contribution applies both hierarchical clustering and principal component analysis to group
bibliometric measures at both scholar and journal levels. It differs from the above mentioned studies for
the following reasons:

– at scholar level, our study distinguishes from related ones because we include new indicators. In par-
ticular, cited papers, papers per year, papers per author, citations per year, citations per author,
contemporary h index, and individual h index are not considered in the above mentioned papers;



– at journal level, we include in the study g index and individual h index that are not comprised in any
of the related studies;

– we use data from both Web of Science and Google Scholar. In the concluding section, we highlight the
differences we have found in our study between the two data sources. By contrast, no related study
uses Google Scholar as a data source;

– besides using principal component analysis, we take advantage of three original hierarchical agglom-
erative clustering strategies we have devised for the problem at hand. Bollen et al. use clustering
techniques as well. However, the two analyses differ: Bollen et al. evaluate the similarity between two
metrics by computing the Euclidean distance of the measure correlation vectors, whereas we use the
Pearson correlation coefficient as a similarity metric.

The algorithms we devise in this paper belong to the class of hierarchical agglomerative clustering
algorithms [Dubes and Jain, 1988]. The main differences between the clustering strategies we propose in
this paper and standard hierarchical agglomerative methods are: (i) we use a similarity function based on
statistical correlation between variables (bibliometric indicators); (ii) we exploit the peculiarities of such
a similarity function in the clustering process in order to define a global measure of correlation for a set
of indicators, and (iii) we stop the merging process as soon as it is not possible to proceed unless the
objective function value decreases below the given threshold. Hence, we do not necessarily generate the
entire clustering dendrogram.

Clustering methods have a long tradition in bibliometrics as tools for grouping bibliometric units
(e.g., publications or concepts) on the basis of similarity properties measuring the distance between them
[Small, 1973,Kessler, 1963,Callon et al., 1983]. Once the similarity strength between bibliometric units has
been established, bibliometric units are typically represented as graph nodes and the similarity relationship
between two units is represented as a weighted edge connecting the units, where weights stand for the
similarity intensity. Such visualizations are called bibliometric maps and resemble the correlation graphs
that we exploit in our analysis. At this point, standard hierarchical clustering algorithms can be exploited
to find an optimal number of clusters of bibliometric units. When the units are publications or concepts,
the identified clusters represent in most cases recognizable research fields [van Raan, 2006b].

3 Methodology

In this section we describe in full detail the proposed methodology, while in Section 4 we apply it to
computer science literature.

3.1 Data sources, data samples and bibliometric indicators

We chose two types of actors for our evaluation, scholars and journals, and two data sources, Google
Scholar3 and Thomson Scientific Web of Science4. While Web of Science database contains mainly journal
publications, Google Scholar finds different types of sources, including journal papers, conference papers,
books, theses and reports [Meho and Yang, 2007]. We used the following two data samples:

– 13 computer science scholars of the Department of Mathematics and Computer Science of Udine, Italy.
We analysed the papers published until July 2008. We call this sample the scholar sample;

3 http://scholar.google.com
4 http://scientific.thomson.com/products/wos/



– the top-20 computer science journals in subject category theory and methods according to the number
of received citations recorded in Web of Science database in July 2008. For these journals, we analyzed
the published articles during years 2005 and 2006 and the citations they have received until July 2008.
We refer to this sample as the journal sample.

We opted for the first sample mainly to address the problem of homonymy for scholars. The sampled
computer science researchers work in the department of the writing author. This gave to him the possibility
to carefully check the association of bibliographic items with authors either by using his domain knowledge
or by directly consulting the local scholars. We computed the following bibliometric indicators on the
scholar sample:

1. papers (pap). The number of papers.
2. cited papers (cp). The number of papers with at least one citation.
3. papers per year (ppy). The number of papers divided by the academic age of the scholar.
4. papers per author (ppa). The number of papers per author. This is computed by dividing each paper

unit by the number of authors of that paper and summing the results over all papers.
5. citations (cit). The number of received citations.
6. cites per year (cpy). The number of citations divided by the academic age.
7. cites per author (cpa). The number of citations per author. This is computed by dividing each citation

count of a paper by the number of authors of that paper and summing the results over all papers.
8. cites per paper (cpp). The number of citations divided by the number of papers.
9. h index (h). The highest number h of papers that have each received at least h citations [Hirsch, 2005].

10. g index (g). The highest number g of papers that received together at least g2 citations [Egghe, 2006].
11. m quotient (m). The h index divided by the academic age [Hirsch, 2005].
12. contemporary h index (hc). An age-weighted h index obtained by giving more weight to recent papers

[Katsaros et al., 2006]. In particular, citations to papers published k years ago are weighted 4/(k+1).
The h index is then computed as usual on the weighted citation counts.

13. individual h index (hi). The h index divided by the mean number of authors in the set of papers
contributing to the h index [Batista et al., 2006].

Our initial experience with citation analysis of journals highlighted two problems. The first one is a
limit problem of Google Scholar: it outputs at most 1000 items. On the other hand, most of the journals
that we analysed contained more than 1000 articles. A second problem that we encountered is a subject
problem: different journals belonging to the computer science ISI categories have strong overlapping with
research areas that are far from computer science. As a typical example, Bioinformatics belongs to the
following subject categories: (i) biochemical research methods, (ii) biotechnology & applied microbiology,
(ii) computer science, interdisciplinary applications, (iv) mathematical & computational biology, and (v)
statistics & probability. This is problematic since our goal is to restrict the analysis to (pure) computer
science literature. The chosen journal sample solved both the problems. The use of a 2-year temporal
interval solved the limit problem. Moreover, journals of computer science in subject category theory and

methods are pure computer science journals with few significant relationships with other research areas.
On this sample we computed the following indicators: total number of papers, total number of citations,
average number of citations per paper, h index, g index, individual h index. The indicator cites per paper
is strongly correlated to the 2007 impact factor as computed by Thomson Scientific5.

5 Pearson correlation 0.91 with p-value 1.435 · 10−8.



3.2 Data collection and correlation

Data collection, in particular for scholars, was complicated by the well known name problem: scholars are
usually recorded using initials and surname, e.g., “M. Franceschet”, but sometimes the full name is used,
e.g., “Massimo Franceschet”. Moreover, journals are stored either using the full journal name, like “ACM
Transactions on Graphics” or using some abbreviation, like “ACM T Graphic”6. Using the abbreviated
name for a target increases the probability of homonymy, but using the full name may cut off those
bibliographic items that contain only the abbreviated form of the name. To address the name problem
for scholars, we decided to sample scholars from the department of the writing author, whose research
publications are known to the writing author. Moreover, in order to retrieve journal papers from Google
Scholar, we wrote queries containing both the full journal name and its ISO abbreviation. For Web of
Science we wrote the full journal name as recorded in Thomson Scientific Journal Citation Report.

Next, we computed values for the chosen bibliometric indicators on the extracted bibliographic data.
For Google Scholar, we took advantage of Publish or Perish7, a free software that queries Google Scholar
and computes several citation statistics for scholars and journals. The statistics computed by Thomson
Scientific for Web of Science database do not cover all indicators we are using in this paper. Moreover, to
the best of our knowledge, there is no automatic tool similar to Publish or Perish for Web of Science. For
these reasons, we implemented a software tool that computes all statistics we need, and in particular all
indicators computed by Publish or Perish, on the basis of the data given by Web of Science. The outcome of
this step is a bibliometric matrix for each data source under consideration. Such a matrix contains, for each
actor (scholar or journal) under investigation, a row with the values of the different bibliometric indicators
for that actor. We represented the bibliometric matrices in XML format. This allowed to query the data
using XQuery and transform them into an HTML web page with XSLT [Harold and Means, 2004].

For each bibliometric matrix, we computed a corresponding correlation matrix. This is a squared matrix
containing the correlation coefficient for each pair of indicators. We used three standard correlation meth-
ods: Pearson product moment correlation coefficient, Spearman rank correlation coefficient and Kendall
rank correlation coefficient [Moore, 2006]. The last two are non-parametric tests that measure the cor-
relation of the ranks of the samples instead of that of the actual values. By computing the (Pearson)
correlation of the three pairs of correlation matrices, we discovered that the three statistical methods are
highly correlated on our samples, although Kendall coefficients are lower than the other two. Therefore,
in this paper we report on the results according to Pearson correlation only. For statistical computations
we took advantage of R, a free software [R Development Core Team, 2007].

3.3 Correlation clusters, partitions, and bibliometric bases

The correlation of a pair of indicators is defined by the correlation coefficient between the indicators in the
pair. However, how do we measure the correlation of a set of indicators? Different measures are possible. Let
I be a set of bibliometric indicators (that we call the bibliometric space) and RI = [ρi,j ] be its correlation
matrix. Given a set X ⊆ I containing n > 1 indicators, the correlation cor(X) of X can be defined as
follows:

– the minimum of the absolute binary correlation coefficients of indicators in X, that is

cor(X) = min(X) = min{i,j}⊆X{|ρi,j |}

6 Each journal has an abbreviation defined by the ISO.
7 Available at http://www.harzing.com/pop.htm



– the average of absolute binary correlation coefficients of indicators in X, that is

cor(X) = avg(X) =

∑
{i,j}⊆X |ρi,j |

n · (n − 1)/2

– the maximum eigenvalue of the correlation matrix RX of indicators in X divided by n, that is

cor(X) =
max{λi}

n

The last measure deserves some explanation. It is known that tr(RX) =
∑n

i=1
λi, where λi ≥ 0

are the eigenvalues of the correlation matrix RX and tr(RX) is the trace of RX , that is, the sum of
the elements on the diagonal. Since all elements on the diagonal of a correlation matrix are equal to
1, then tr(RX) =

∑n

i=1
λi = n. High values for the defined measure are shown when there is some

dominant eigenvalue (close to n) and all other eigenvalues are smaller (close to 0). Low values for the
defined measure are obtained when all eigenvalues have similar values (close to 1). By virtue of principal
component analysis [Jolliffe, 2002], the former situation characterizes highly correlated variables, while the
latter situation denotes uncorrelated variables.

We define the correlation of a singleton (a set with just one element) to be 1. Notice that in any
case the correlation is a real number in [0, 1] that measures how strongly the indicators of the set are
inter-correlated. Values close to 1 indicate (either positive or negative) high correlation, while values close
to 0 represent low correlation. In the experiments presented in Section 4, we adopt the definition of set
correlation based on the average.

A correlation cluster is a set of indicators with a significant correlation. It contains indicators that
are mutually strongly correlated. We can consider a correlation cluster as a macro indicator. That is,
we can elect a representative indicator for the cluster. Given a cluster X, a simple method to choose a
representative of X is to select the indicator i with the maximum average pairwise correlation between i and
the other indicators in X. A more involved method is to use principal component analysis [Jolliffe, 2002]
for each cluster of indicators and to use the first principal component as representative.

At the opposite side of correlation clusters we have isolated indicators. An indicator i is said to be
isolated if the average pairwise correlation between i and the other indicators in the bibliometric space is
low. It is unlikely that an isolated indicator belongs to a correlation cluster with other indicators.

A partition P of I is a set of subsets of I such that: (i) each subset is not empty; (ii) subsets are pairwise
disjoint; (iii) the union of all subsets is I. Two trivial partitions are the one containing only singletons (the
singleton partition) and the one containing the only set I (the universal partition). The cardinality |P| of
a partition P is the number of subsets it contains. A partition P is smaller than another partition Q if the
cardinality of P is smaller than the cardinality of Q. The minimum correlation of a partition is the minimum
of correlations of sets in the partition, that is, min(P) = minX∈P{cor(X)}. The average correlation of a
partition is the average correlation of sets in the partition, that is, avg(P) =

∑
X∈P cor(X)/|P|.

Our goal is to simplify the bibliometric universe by computing a partition of it and then forming a
bibliometric base containing all representatives of the sets in the partition. What is a good partition of
the universe of indicators? How can we efficiently find good partitions? We consider the following two
desiderata for the goodness of a partition:

– the partition should have small cardinality. The smaller is the partition, the bigger is the reduction of
the bibliometric space;

– the partition should have high minimum correlation. The higher is the correlation of the sets in the
partition, the better these sets are captured by representative indicators.



A strategy to find a good partition has to compromise between the two desiderata and can be of
two types: (i) the strategy attempts to find the partition with the highest minimum correlation and with
cardinality smaller than a given threshold, or (ii) the strategy attempts to find the partition with the
smallest cardinality and with minimum correlation bigger than a given threshold. Since we do not know a
priori the number of clusters of our partition we aim at strategies that operate in the second way.

3.4 Clustering algorithms

Clustering is the process of organizing objects into groups whose members are similar in some way
[Anderberg, 1973,Dubes and Jain, 1988]. A cluster is a collection of objects which are similar between
them and are dissimilar to objects belonging to other clusters. In the following we propose a clustering al-
gorithm for bibliometric indicators based on three different merging strategies. Our goal is to find partitions
of indicators with small cardinality and minimum correlation greater than or equal to a given threshold.
We first propose an algorithmic schema. Let fix a correlation threshold α ∈ [0, 1]:

1. start with the singleton partition;
2. union two sets A and B such that the union A ∪ B has correlation bigger than or equal to α. Repeat

step 2 until there are no more sets whose union has correlation bigger than or equal to α.

The given algorithmic schema guarantees the following properties that are immediate to verify:

1. the algorithm returns a partition with a minimum correlation of at least α;
2. the smaller is the correlation level α, the smaller is the returned partition;
3. if the task of choosing the pair of sets to union has polynomial complexity, then the algorithm has

polynomial complexity as well.

The above algorithmic schema must be instantiated with a method of choice of the sets to merge. We
propose the following three different strategies for this task; all of them can be implemented in polynomial
time:

Strategy S1. This strategy unions the pair of sets such that the correlation of the union of them is the
greatest;

Strategy S2. This strategy merges the pair of sets such that the minimum correlation of the resulting
partition is the greatest.

Strategy S3. This strategy joins the pair of sets such that the average correlation of the resulting
partition is the greatest.

We have implemented the clustering scheme with the mentioned strategies. The code is available as free
software at the author’s web page. The three outlined strategies are different, as shown in the following
examples:

– S1 is different from S2. Let X,Y,Z be sets such that cor(X) = cor(Y ) = 1 and cor(Z) = 1

2
. Suppose

that cor(X ∪ Y ) = 1 and cor(X ∪ Z) = cor(Y ∪ Z) = 3

4
. Strategy S1 clearly chooses to union the

pair X,Y , however strategy S2 picks the pair X,Z (or Y,Z). Indeed, if we union the pair X,Z (or
Y,Z), then the resulting partition has minimum correlation 3

4
, and if we union the pair X,Y , then the

resulting partition has a smaller minimum correlation of 1

2
;



– S1 is different from S3. Let X,Y,Z be sets such that cor(X) = cor(Y ) = 1

2
and cor(Z) = 1. Suppose

that cor(X ∪ Y ) = 3

8
and cor(X ∪ Z) = cor(Y ∪ Z) = 3

4
. Strategy S1 clearly opts for the pair X,Z

(or Y,Z), however strategy S3 chooses the pair X,Y . Indeed, if we union the pair X,Z (or Y,Z), then
the resulting partition has average correlation of 10

16
, and if we union the pair X,Y , then the resulting

partition has a bigger average correlation of 11

16
;

– S2 is different from S3. Use the previous example. Strategy S2 settles on the pair X,Z (or Y,Z): if we
union the pair X,Z (or Y,Z), then the resulting partition has minimum correlation of 1

2
, and if we

union the pair X,Y , then the resulting partition has a smaller minimum correlation of 3

8
. However, as

shown above, strategy S3 selects the pair X,Y .

A natural question is: do these strategies output the smallest partition among all partitions with a
minimum correlation greater or equal to a given threshold? The answer is no, as shown in the following
counter-example. Consider the correlation graph depicted in Figure 1 and a correlation threshold of 0.5.
Nodes are indicators and edges are labelled with the binary correlation coefficients. If two nodes are not
connected by an edge then the correlation for that pair of nodes is 0. Define the correlation of a set of
indicators X either as cor(X) = min(X) or as cor(X) = avg(X). It turns out that strategies S1, S2,
and S3 return the partition {{A,B}, {C,D}, {E,F}}. However, the smallest partition with a minimum
correlation of 0.5 is {{A,B,C}, {D,E, F}}.

A

B0.9

C0.5

0.5

D
0.9

E
0.5

F0.5

0.9

Fig. 1. A counter-example for the coarsest partition problem

Is there any efficient (polynomial) algorithm to find the smallest partition with a given minimum
correlation threshold? This is very unlikely. Indeed, let us define a dissimilarity function dis between two
bibliometric indicators as an arbitrarily function such that (a) dis(i, j) ≥ 0, (b) dis(i, i) = 0, and (c)
dis(i, j) = dis(j, i). Assume that we measure the dissimilarity of a set of bibliometric indicators X either
as the maximum dissimilarity among pairs of indicators or as the average dissimilarity among pairs of
indicators (the dissimilarity of singletons is 0). Then, we have that the problem of computing the smallest
partition with a given maximum dissimilarity threshold is NP-complete. The proof follows from results
in [Gonzalez, 1985,Gonzalez and Sahni, 1976], in particular from the fact that P2 form of the clustering
problem defined in [Gonzalez, 1985] is NP-hard. NP-completeness for a problem means that, unless the
complexity classes P and NP are equal, which is not the current conjecture, there is no polynomial algorithm
that solves the problem in the general case [Cormen et al., 2001].

4 A case study for computer science literature

In this section we apply the methodology proposed in Section 3 to computer science literature.



4.1 Computer science scholars on Google Scholar

In this section we make a correlation analysis of the scholar sample on Google Scholar according to
the methods outlined in Section 3. The Pearson correlation matrix is given in Table 1. A corresponding
correlation graph is depicted in Figure 2; nodes represent indicators and edges correspond to correlations
between them. The lightness and thickness of edges is proportional to the correlation strength between the
connected variables. For the sake of readability, only correlations greater than or equal to 0.8 are showed.

h g pap cp cit cpp m hc ppy cpy ppa cpa hi

h 1.00 0.73 0.88 0.87 0.82 0.38 0.19 0.87 0.80 0.81 0.74 0.71 0.66

g 0.73 1.00 0.69 0.73 0.98 0.85 -0.21 0.73 0.36 0.92 0.60 0.91 0.42

pap 0.88 0.69 1.00 0.98 0.77 0.23 -0.08 0.67 0.78 0.74 0.93 0.73 0.67

cp 0.87 0.73 0.98 1.00 0.82 0.30 -0.05 0.68 0.77 0.80 0.92 0.76 0.67

cit 0.82 0.98 0.77 0.82 1.00 0.76 -0.10 0.78 0.49 0.95 0.69 0.91 0.51

cpp 0.38 0.85 0.23 0.30 0.76 1.00 -0.11 0.56 0.01 0.75 0.16 0.70 0.10

m 0.19 -0.21 -0.08 -0.05 -0.10 -0.11 1.00 0.36 0.40 0.15 -0.11 -0.12 0.12

hc 0.87 0.73 0.67 0.68 0.78 0.56 0.36 1.00 0.67 0.84 0.50 0.62 0.41

ppy 0.80 0.36 0.78 0.77 0.49 0.01 0.40 0.67 1.00 0.61 0.75 0.49 0.68

cpy 0.81 0.92 0.74 0.80 0.95 0.75 0.15 0.84 0.61 1.00 0.68 0.90 0.54

ppa 0.74 0.60 0.93 0.92 0.69 0.16 -0.11 0.50 0.75 0.68 1.00 0.78 0.81

cpa 0.71 0.91 0.73 0.76 0.91 0.70 -0.12 0.62 0.49 0.90 0.78 1.00 0.69

hi 0.66 0.42 0.67 0.67 0.51 0.10 0.12 0.41 0.68 0.54 0.81 0.69 1.00

Table 1. Pearson correlation matrix for the scholar sample on Google Scholar

The correlation graph highlights two correlation clusters: a paper-based group containing papers, cited
papers, and papers per author, with computed cluster correlation at 0.94 and papers as representative
indicator, and a citation-based set comprising g, cites, cites per year, cites per author, with computed
cluster correlation at 0.93 and cites as representative indicator (notice that this cluster corresponds to a
clique in the correlation graph). The m quotient is an isolated indicator, meaning that is not connected
with any other indicator in the correlation graph. On the other hand, the h index is the most central
indicator, that is, it has the highest number of links to other indicators in the correlation graph (six links).

We now consider the output of the clustering algorithms that we proposed in Section 3. We use (a
generalized version of) a dendrogram to visualize the output of our hierarchical clustering algorithms. A
dendrogram is a forest of binary trees in which nodes are sets of objects (indicators in our case). Leaves
corresponds to singletons. Each internal (non-leaf) node has two children that are the sets that have been
merged to form that node during the clustering process. The partition of indicators is formed by taking
all roots of trees in the dendrogram. We labelled each internal node with the timestamp of the merging
operation. This allows to track the evolution of the merging process of the algorithm. The granularity of
the partition can be controlled with the correlation threshold parameter. The extreme cases are when the
threshold is 1 (the forest contains only singleton trees corresponding to the singleton partition) and 0 (the
forest is a unique tree corresponding to the universal partition). In general, the lower is the correlation
threshold, the coarser is the resulting partition.

Figure 3 depicts the dendrogram of clustering strategy S1 with a correlation threshold at 0.9. We
printed trees bottom-up, from leaves to the root; singleton trees (trees with one node) are not shown
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Fig. 2. Correlation graph for the scholar sample on Google Scholar: darker, thicker edges correspond to higher
correlations

in the dendrogram. The resulting partition contains the two main clusters identified by the analysis of
the correlation graph. Figure 4 shows the dendrogram of clustering strategy S2 with a lower correlation
threshold at 0.8; notice that the resulting partition is coarser. Finally, Figure 5 contains the dendrogram of
clustering strategy S3 with correlation threshold at 0.8. The resulting partition contains one main cluster
containing both paper-based and citation-based metrics. Notice that the merging process of strategy S3 is
different from those of strategies S1 and S2. In the clustering approach, isolated indicators correspond to
objects that are reluctant to join a cluster. These indicators can be identified by setting a low correlation
threshold and searching for indicators that join a cluster with a high timestamp. The quotient m is an
example.
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Fig. 3. Dendrogram for clustering strategy S1 (threshold at 0.9)
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Fig. 4. Dendrogram for clustering strategy S2 (threshold at 0.8)
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Fig. 5. Dendrogram for clustering strategy S3 (threshold at 0.8)



1 2 3 4 5 6 7 8 9 10 11 12

principal components

va
ria

nc
es

0
2

4
6

8

Fig. 6. Screeplot of the variances

0.0 0.2 0.4 0.6 0.8

0.
0

0.
4

0.
8

first PC

se
co

nd
 P

C

h

g

pap

cit
cpp

m

hc

ppy

cpy

ppa

cpa

hi

Fig. 7. Scatterplot of scholar indicators on the two principal components



Finally, we apply principal component analysis (PCA) to the bibliometric matrix8. PCA is a multi-
variate statistics technique used to reduce a multi-dimensional space to a lower dimension [Jolliffe, 2002].
Figure 6 shows the screeplot for the variances explained by the principal components. According to Kaiser
method (eigenvalues greater than 1), the first three principal components are selected; they explain 92% of
the variance, whereas the first two account for 81% of it. The scree method also suggests the use of three
principal components – the scree in the screeplot starts just after the third component. Table 2 shows
the component loadings for the three selected components, rotated using variance maximizing (varimax)
method, and Figure 7 shows the projection of bibliometric indicators on the bi-dimensional plane identified
by the first two principal components. Two main groups are clear: one contains the impact measures cites,
cites per author, cites per year, g and contemporary h, and the other comprises the productivity measures
papers, papers per author, papers per year. Interestingly, h and individual h are between these two clusters,
but closer to the productivity group. Cites per paper and m quotient are isolated.

PC h g pap cit cpp m hc ppy cpy ppa cpa hi

PC1 0.79 0.39 0.93 0.52 -0.11 0.06 0.53 0.85 0.52 0.89 0.51 0.70

PC2 0.49 0.90 0.33 0.84 0.98 -0.07 0.64 0.10 0.82 0.26 0.77 0.18

PC3 0.19 -0.16 -0.11 -0.07 -0.03 0.99 0.38 0.36 0.18 -0.14 -0.09 0.10

Table 2. Loadings of the first three principal components (varimax rotation method)

4.2 Computer science scholars on Web of Science

In this section we analyze the correlation for the scholar sample on Web of Science. Table 3 shows the
Pearson correlation matrix. The corresponding correlation graph is depicted in Figure 8. The following
correlation cluster is evident from the correlation graph: {papers, cited papers, papers per year, papers
per author}, with correlation at 0.92 and papers as representative indicator (the cluster is a clique in the
correlation graph). Moreover, two additional inter-related clusters can be noticed in the lower part of the
graph. They are: {h, g, cites, cites per year, cites per author} and {h, g, cites, hc} both with correlation at
0.87 and cites as representative indicator. Cites per paper and m quotient are isolated metrics, and cites
is the most central indicator with five adjacent nodes.

Moving to cluster analysis, Figure 9 shows the dendrogram of clustering strategies S1 and S2, while
Figure 10 is the dendrogram of clustering strategy S3. In each case the correlation threshold is set to 0.8.
The upper part of the correlation graph, related to productivity metrics, and the lower part, related to
impact metrics, are clearly identified in the dendrograms by the left and right trees, respectively. Notice
the difference between strategies S1 (or S2) and S3: S1 first discovers the cluster {h, g, cites, hc} and then
joins cites per year and cites per author, while S3 works the other way around, first discovering {g, cites,
cites per year, cites per author} and then merging h and hc.

Turning to principal component analysis, Figure 11 shows the screeplot for the principal components.
Both Kaiser and scree methods agrees on the number of components to select – two components; they
express 86% of the total variance. Table 4 contains the varimax rotated component loadings and Figure 12

8 We removed cited papers from the matrix to avoid system singularity (13 variables, 13 observations). We already
know from previous analyses that cited papers is highly correlated to papers.



h g pap cp cit cpp m hc ppy cpy ppa cpa hi

h 1.00 0.85 0.75 0.76 0.91 0.40 0.66 0.87 0.52 0.82 0.71 0.71 0.60

g 0.85 1.00 0.46 0.45 0.95 0.74 0.53 0.78 0.24 0.89 0.43 0.81 0.70

pap 0.75 0.46 1.00 0.99 0.67 -0.15 0.60 0.70 0.89 0.64 0.96 0.54 0.43

cp 0.76 0.45 0.99 1.00 0.67 -0.16 0.60 0.69 0.88 0.63 0.95 0.53 0.40

cit 0.91 0.95 0.67 0.67 1.00 0.57 0.61 0.84 0.46 0.94 0.65 0.85 0.70

cpp 0.40 0.74 -0.15 -0.16 0.57 1.00 0.22 0.46 -0.29 0.56 -0.15 0.58 0.42

m 0.66 0.53 0.60 0.60 0.61 0.22 1.00 0.64 0.71 0.77 0.54 0.65 0.55

hc 0.87 0.78 0.70 0.69 0.84 0.46 0.64 1.00 0.50 0.79 0.70 0.76 0.61

ppy 0.52 0.24 0.89 0.88 0.46 -0.29 0.71 0.50 1.00 0.55 0.83 0.41 0.32

cpy 0.82 0.89 0.64 0.63 0.94 0.56 0.77 0.79 0.55 1.00 0.62 0.93 0.74

ppa 0.71 0.43 0.96 0.95 0.65 -0.15 0.54 0.70 0.83 0.62 1.00 0.60 0.57

cpa 0.71 0.81 0.54 0.53 0.85 0.58 0.65 0.76 0.41 0.93 0.60 1.00 0.83

hi 0.60 0.70 0.43 0.40 0.70 0.42 0.55 0.61 0.32 0.74 0.57 0.83 1.00

Table 3. Pearson correlation matrix for the scholar sample on Web of Science
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Fig. 8. Correlation graph for the scholar sample on Web of Science
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Fig. 9. Dendrogram for clustering strategies S1 and S2 (threshold at 0.8)

shows the scatterplot of scholar indicators using the first two principal components. Comparing with Google
Scholar, h and individual h are closer to impact metrics rather than to productivity ones; moreover,
m quotient is between productivity and impact indicators and does not define a separate performance
dimension. Cites per paper is still in the back of beyond. Costas and Bordons [Costas and Bordons, 2007]
also aggregate the h index with citations and separate them from cites per paper.

PC h g pap cit cpp m hc ppy cpy ppa cpa hi

PC1 0.76 0.98 0.30 0.90 0.83 0.47 0.71 0.09 0.85 0.29 0.79 0.67

PC2 0.55 0.17 0.95 0.43 -0.42 0.48 0.51 0.91 0.40 0.92 0.32 0.25

Table 4. Loadings of the first two principal components (varimax rotation method)

Finally, for each indicator, we computed the average pairwise correlation between the indicator and the
other indicators both on Google Scholar and on Web of Science. The results are shown in Table 5.

The most inter-correlated indicators for both data sources are cites per year, cites and h. Isolated
indicators are m quotient and cites per paper in case of Google Scholar, and cites per paper in case of Web
of Science. These results confirm the analysis made on the structural properties of the correlation graph.
The only significant difference between the two data sources is for m quotient – 0.04 on Google Scholar
and 0.59 on Web of Science– as already observed using principal component analysis.
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Fig. 10. Dendrogram for clustering strategy S3 (threshold at 0.8)
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Fig. 11. Screeplot of the variances of principal components

source h g pap cp cit cpp m hc ppy cpy ppa cpa hi

Google Scholar 0.71 0.64 0.67 0.69 0.70 0.39 0.04 0.64 0.57 0.72 0.62 0.67 0.52

Web of Science 0.71 0.65 0.62 0.61 0.73 0.26 0.59 0.69 0.50 0.74 0.62 0.68 0.57

Table 5. Average correlation for scholar indicators
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Fig. 12. Scatterplot of scholar indicators on the two principal components

4.3 Computer science journals

In this section we study and compare the correlation for the journal sample on both Google Scholar and
Web of Science.

We start with the analysis of Google Scholar. Table 6 contains the Pearson correlation matrix. The
corresponding correlation graph is depicted in Figure 13. Indicators cites, h, g, and hi are strongly correlated
with each other, with a correlation at 0.91. Papers is moderately correlated with cites (0.79), but it shows
lower correlation with respect to other measures. Cites per paper is isolated. The main correlation cluster
is immediately discovered by the clustering procedures we have devised using any of the three joining
strategies.

pap cit cpp h g hi

pap 1.00 0.79 -0.33 0.60 0.41 0.52

cit 0.79 1.00 0.12 0.93 0.86 0.83

cpp -0.33 0.12 1.00 0.36 0.49 0.49

h 0.60 0.93 0.36 1.00 0.95 0.94

g 0.41 0.86 0.49 0.95 1.00 0.92

hi 0.52 0.83 0.49 0.94 0.92 1.00

Table 6. Pearson correlation matrix for the journal sample on Google Scholar

The results for principal components analysis are as follows. Figure 14 shows the screeplot for the prin-
cipal components: the first component explains 70% of the variance and the first two components account
for 95% of the variance. Table 7 shows the component loadings for the first two principal components and
Figure 15 shows the scatterplot of journal indicators on the first two principal components. Indicators h,
g, cites and hi are close together, whereas papers and cites per paper are far from this group and from
each other. Notice that while papers significantly loads on both components, cites per paper mainly loads
only on the second one. This difference keeps apart the two indicators in the scatterplot in Figure 15.

Turning to Web of Science, Table 8 shows the Pearson correlation matrix. The corresponding cor-
relation graph is given in Figure 16. As found for Google Scholar, indicators cites, h, g, and hi form a
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Fig. 15. Scatterplot of journal indicators on the two principal components.

PC h g cit hi pap cpp

PC1 0.97 0.94 0.97 0.92 0.69 0.27

PC2 0.10 0.33 -0.17 0.16 -0.72 0.72

Table 7. Loadings of the first two principal components (varimax rotation method)



correlation cluster; the degree of correlation is, however, somewhat lower (0.84 compared to 0.91). Papers
is moderately correlated with cites (0.74) and otherwise scarcely associated; cites per paper is isolated.
The main correlation cluster is soon detected by the clustering procedures we have proposed using any of
the three joining strategies.

pap cit cpp h g hi

pap 1.00 0.74 -0.28 0.44 0.34 0.27

cit 0.74 1.00 0.24 0.89 0.81 0.77

cpp -0.28 0.24 1.00 0.51 0.65 0.58

h 0.44 0.89 0.51 1.00 0.95 0.82

g 0.34 0.81 0.65 0.95 1.00 0.80

hi 0.27 0.77 0.58 0.82 0.80 1.00

Table 8. Pearson correlation matrix for the journal sample on Web of Science
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Fig. 16. Correlation graph for the journal sample on Web of Science

As for principal components analysis, Figure 17 shows the screeplot for the principal components: the
first component explains 68% of the variance and the first two components account for 92% of the variance.
Table 9 shows the varimax rotated component loadings and Figure 18 depicts the scatterplot of journal
indicators on the first two principal components. Indicators h, g, and hi are clustered. Citations lies between
this group and papers, marking a difference with respect to Google Scholar. Cites per paper is still cut off.
These results are in accordance with the findings of Leydesdorff [Leydesdorff, 2009] and those of Bollen et
al. [Bollen et al., 2009] with one minor difference: in Leydesdorff’s analysis citations and papers are closer
together than in our study.

PC h g cit hi pap cpp

PC1 0.87 0.93 0.61 0.77 0.03 0.79

PC2 0.46 0.31 0.78 0.35 0.92 -0.32

Table 9. Loadings of the first two principal components (varimax rotation method)
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0.0 0.2 0.4 0.6 0.8

−
0.

2
0.

2
0.

6

first PC

se
co

nd
 P

C

h
g

cit

hi

pap

cpp

Fig. 18. Scatterplot of journal indicators on the two principal components



The average correlation for each indicator with respect to other indicators on Google Scholar and on
Web of Science is shown in Table 10.

source pap cit cpp h g hi

Google Scholar 0.40 0.71 0.22 0.76 0.73 0.74

Web of Science 0.30 0.69 0.34 0.72 0.71 0.65

Table 10. Average correlation for journal indicators

The outcomes confirm the correlation graph analysis: papers and cites per paper are the most isolated
indicators, while cites, h, g, and hi are highly correlated. The degree of association is higher for Google
Scholar.

4.4 A global performance indicator

In the following we show how the outcomes of our experiments can be exploited to design a fair and global
performance metric for scholars and journals. By fair indicator we mean an indicator that equally weights
orthogonal and important aspects of research performance. The need for such an indicator is illustrated
in the following example. Suppose we want to design a global indicator using partial indicators A, B, C,
and D. We might blindly take the arithmetic mean of the four indicators. However, suppose that A and
B are strongly correlated, while C and D are independent from A and B and among each other. Hence,
both A and B measure roughly the same performance aspect, while C and D measure different aspects.
By taking the arithmetic average, we would weight twice the performance aspect related to A and B to
the detriment of the aspects measured by C and D. A better solution is to take the weighted average in
which A and B are loaded one-half.

We follow such intuition to design a global performance indicator (gpi) that takes into account the cor-
relation structure among partial performance indicators. In particular, we use the loadings of the principal
component analysis to weight the various indicators. Let B be a bibliometric matrix with n bibliometric
units and m bibliometric indicators. We compute the gpi as follows:

1. the bibliometric matrix B is standardized to allow equal scales among the different indicators;
2. k < m principal components are computed along with the corresponding loading matrix L in which

the entries are the absolute values of the original figures;
3. the matrix product P = B ×L is performed. The resulting matrix P has n rows and k columns. Each

row contains the k principal scores for the corresponding bibliometric unit;
4. finally, a global performance score for the i-th bibliometric unit is given by the (arithmetic) average of

the i-th row of P . In this way, we equally weight each independent aspect.

Table 11 shows the rankings of scholars according to the above defined global performance indicator
computed on Google Scholar and Web of Science. The Spearman association between the two compilations
is 0.78, p-value 0.0024. Table 12 gives global performance rankings of journals both on Google Scholar and
Web of Science. The Spearman association between the two compilations is 0.73, p-value 0.00035.

As a further example of application of the techniques proposed in this paper, we considered the two most
popular college and university rankings: THE-QS World University Rankings (THE-QS) and Academic



Google Scholar Web of Science

gpi scholar scholar gpi

5.90 FH GF 4.71

2.26 LC LC 3.33

1.88 GF FH 2.92

0.66 AP SM 1.41

0.64 AM AP 0.55

-0.54 CT AM 0.13

-0.55 AD VR -0.58

-0.86 SM CT -0.62

-1.12 CP CP -0.66

-1.41 MF AD -1.15

-1.93 ML MF -3.03

-2.07 MM MM -3.14

-2.86 VT ML -3.89

Table 11. Global performance rankings of scholars

Google Scholar Web of Science

gpi journal journal gpi

3.27 IEEE T PARALL DISTR IEEE T EVOLUT COMPUT 4.351

3.25 THEOR COMPUT SCI FUZZY SET SYST 2.419

2.23 COMMUN ACM THEOR COMPUT SCI 2.363

1.92 J SYST SOFTWARE IEEE ACM T NETWORK 1.015

0.93 ACM COMPUT SURV IEEE T PARALL DISTR 0.987

0.89 FUZZY SET SYST COMMUN ACM 0.852

0.64 IEEE T EVOLUT COMPUT ACM COMPUT SURV 0.362

0.36 J ALGORITHM J SYST SOFTWARE 0.047

-0.30 IEEE T NEURAL NETWOR SIAM J COMPUT -0.013

-0.44 IEEE ACM T NETWORK IMAGE VISION COMPUT -0.117

-0.65 IMAGE VISION COMPUT COMPUT METH PROG BIO -0.227

-0.85 INFORM COMPUT IEEE T NEURAL NETWOR -0.734

-0.91 J PARALLEL DISTR COM J ALGORITHM -0.860

-1.02 J SYMB COMPUT INFORM COMPUT -1.061

-1.11 IBM SYST J J SYMB COMPUT -1.181

-1.35 J ACM J PARALLEL DISTR COM -1.455

-1.41 J COMPUT SYST SCI IBM SYST J -1.609

-1.56 SIAM J COMPUT EVOL COMPUT -1.695

-1.81 COMPUT METH PROG BIO J COMPUT SYST SCI -1.710

-2.09 EVOL COMPUT J ACM -1.734

Table 12. Global performance rankings of journals



Ranking of World Universities (ARWU). THE-QS is compiled by Times Higher Education in association
with Quacquarelli Symonds and combines the following six weighted indicators: (1) academic peer review
(40%); (2) employer review (10%); (3) faculty student ratio (20%); (4) citations per faculty (20%); (5)
international faculty (5%); (6) international students (5%). ARWU is published by Shanghai Jiao Tong
University and is based on the following six weighted criteria: (1) alumni winning Nobel Prizes and Fields
Medals (10%); (2) staff winning Nobel Prizes and Fields Medals (20%); (3) highly cited researchers (20%);
(4) articles published in Nature or Science (20%); (5) publications in Web of Science (20%); (6) per capita
performance on the above indicators (10%).

We analysed the 2008 top-100 university rankings in both cases. THE-QS indicators are mostly indepen-
dent; the higher association degree is between the two international scores (Spearman 0.68). Interestingly,
the reviews of worldwide academic peers and of university employers do not show a striking association
and correlate less than the international scores (0.55). Since indicators are independent, no clustering is
necessary and a global performance index (GPI) can be obtained by taking the arithmetic (unweighted)
mean of all indicators. The GPI and the THE-QS rankings correlate at 0.75, with a median change of rank
of 12 positions and a maximum rank change of 52 positions (University of St Andrews). Only 4 universities
maintain the same rank in both compilations. By contrast, ARWU indicators form two main correlation
clusters: one contains alumni and staff price winners (indicators 1 and 2), and the second comprises the
three bibliometric indicators (indicators 3, 4, and 5). In particular, highly cited researchers and articles
published in Nature or Science have the best correlation (0.82). In this case, we computed a global per-
formance index (GPI) using factor loadings as explained above. The two rankings are similar (correlation
0.98), with a median rank change of 2 positions, a maximum rank change of 32 positions (Ecole Normale
Super Paris), and 24 universities that have the same position in both compilations.

5 Conclusion

We proposed different clustering techniques to group bibliometric indicators used in the quantitative as-
sessment of research quality and compared the results with principal component analysis. Our methods
can be applied to reduce the complexity of the space of bibliometric indicators when it contains many
dependent metrics. In particular, they allow the design a composite performance indicator that considers
independent aspects of research performance. We are aware that clustering, being an unsupervised learn-
ing approach, constitutes a descriptive and exploratory method. Moreover, our results may be sensible to
both data sources and data sets used in our experiments. Nevertheless, the principal component analysis
matches well the results of the cluster analysis. More importantly, our experiments are fully reproducible:
the methodology is clear and the necessary software tools are freely available (with the exception of Web
of Science). This allows interested scholars to compute bibliometric bases in other fields or in the same
field on different data sets.

With respect to the evaluation of individual scholars, the clustering method discovers a base of metrics
composed of the following indexes:

1. number of papers, measuring scholar productivity;
2. total number of citations, measuring absolute (size-dependent) impact of the scholar;
3. average number of citations per paper, measuring relative (size-independent) impact of the scholar;
4. m quotient, measuring enduring impact over time.

With respect to the assessment of journal performance, orthogonal measures are number of papers,
measuring the size of the journal, h index (or total number of citations), capturing the absolute impact of
the journal, and average number of citations per paper, accounting for the relative impact of the journal.



We noticed that the h index is a size-dependent indicator which is more correlated to the total number
of citations rather than to the number of papers. This holds true for journals over both Google Scholar
and Web of Science and for scholars over Web of Science. Interestingly, on the scholar sample evaluated on
Google Scholar, the h index is better associated to papers (Pearson 0.88) rather than to citations (Pearson
0.82). This discrepancy is related to the content of the two data sources – Web of Science contains mainly
journal publications while Google Scholar finds different types of sources, including conference papers and
books [Meho and Yang, 2007,Franceschet, 2009], which are important publication sources in computer
science – and to the difference in the two datasets – at scholar level, Google Scholar finds more citing
(source) publications as well as more cited (target) papers with respect to Web of Science, while at journal
level the possible differences are only in the set of citing publications, since the set of target papers is fixed.

Finally, we observed that the m quotient defines a separate performance dimension only on Google
Scholar. We explain this as follows. Recall that m is the ratio between the h index and the academic age
of a scholar. We noticed that scholars with high m values on Google Scholar are young scholars with a
good h score for their age, mostly obtained thanks to conference papers. These scholars have low values
for the other indicators because they published few papers with respect to senior scholars. This explains
the low average correlation of m quotient on Google Scholar. The same young scholars have few journal

papers, which take longer to be written and published, and hence their h and m scores on Web of Science
are small. Thus m is better correlated with other indicators when computed on Web of Science. It follows
that in the field of computer science and in fields with similar publication patterns, the m quotient can be
used to discover talented young researchers when computed on Google Scholar or on similar data sources.
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