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Abstract

In this paper we study the definability and decidability of binary predicates for
time granularity in monadic languages interpreted over finitely and infinitely layered
structures. We focus our attention on the equi-level (resp. equi-column) predicate
constraining two time points to belong to the same layer (resp. column) and on the
horizontal (resp. vertical) successor predicate relating a time point to its successor
within a given layer (resp. column). We give a number of positive and negative
results by reduction to/from a wide spectrum of decidable/undecidable problems.
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1 Introduction

In this paper we systematically investigate the definability and decidability
of several binary predicates in monadic languages interpreted over temporal
structures for time granularity. The ability of providing and relating tem-
poral representations at different ‘grain levels’ is widely recognized as an
important research theme for temporal logic and a major requirement for
many applications, including specification and verification of reactive system,

∗ Corresponding author. Dipartimento di Matematica e Informatica, Università di
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knowledge representation and reasoning, temporal databases, and data min-
ing [1,4,6,13,14]. We focus our attention on the area of formal specification
and verification where the explicit representation of time granularity makes it
possible to specify in a concise way reactive systems whose behaviour can be
naturally modeled with respect to a possibly infinite set of differently-grained
temporal domains/layers (we shall use the two terms interchangeably) [10,16].

A logical specification framework incorporating a notion of time granularity
has been systematically developed in [16] and later extended in [7]. It is based
on a many-level view of temporal structures that replaces the flat temporal
domain of standard linear and branching temporal logics by a temporal uni-
verse consisting of a possibly infinite set of differently-grained temporal layers.
The monadic second-order (MSO for short) theory of the n-layered (there are
exactly n layers) k-refinable (each time point can be refined into k time points
of the immediately finer layer, if any) temporal structure for time granularity
(n-LS), with matching decidability results, has been investigated in [20]. The
MSO theory of the k-refinable upward unbounded layered structure (UULS),
that is, the ω-layered structure consisting of a finest temporal layer together
with an infinite number of coarser and coarser layers, and the MSO theory
of the k-refinable downward unbounded layered structure (DULS), that is, the
ω-layered structure consisting of a coarsest layer together with an infinite num-
ber of finer and finer layers, have been studied in [17]. The decidability of the
theories of the UULS and the DULS has been proved by reducing their deci-
sion problems to the emptiness problem for systolic and Rabin tree automata,
respectively.

Such a connection between multi-level temporal logics and automata theory
suggests a complementary point of view on time granularity: besides an im-
portant feature of a specification language, it can be viewed as a formal tool
to investigate the definability of meaningful temporal properties, such as pe-
riodicity, density, and exponential grow/decay, as well as the expressiveness
and decidability of temporal logics [8,9,17,19,20]. In this respect, the number
of layers (single vs. multiple, finite vs. infinite) of the underlying temporal
structure, as well as the nature of their interconnections, play a major role:
certain temporal properties can be expressed using a single layer; others using
a finite number of layers; others only exploiting an infinite number of layers
[16,7]. As an example, the MSO theory of the binary 2-LS suffices to state
that a given condition holds at all even points of a given temporal domain,
a situation that cannot be expressed in propositional linear temporal logic.
Moreover, the MSO theory of the k-refinable UULS allows one to state that a
given condition holds at all time points ki, for all natural numbers i, of a given
temporal domain, a situation that cannot be captured by using propositional
or quantified temporal logics over a finite number of layers. Finally, the MSO
theory of the k-refinable DULS allows one to state that a given condition holds
‘densely’ over a given time interval or to constrain two distinct conditions to
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be temporally indistinguishable [17,18].

In this paper, we deal with the definability and decidability of a set of binary
predicates in monadic languages interpreted over the n-layered and ω-layered
structures. We focus our attention on the equi-level (resp. equi-column) pred-
icate constraining two time points to belong to the same layer (resp. column)
and the horizontal (resp. vertical) successor predicate relating a time point to
its successor within a given layer (resp. column), which allow one to express
meaningful properties of time granularity [16]. As a matter of fact, definability
and decidability problems for the equi-level and vertical successor predicates
in monadic languages interpreted over the binary and k-ary trees have been
already studied in the literature. More precisely, the decidability of the ex-
tension of the first-order theory of two successors, devoid of free set variables,
over the infinite binary tree with the equi-level predicate was first proved by
Elgot and Rabin in [3]. Thomas extended this result by showing that the
monadic chain logic extended with the equi-level predicate over the infinite
k-ary tree is decidable [24], while Läuchli and Savoiz proved the undecidability
of the (weak) MSO theory of k successors over the infinite k-ary tree extended
with either the equi-level or the vertical successor predicate [15]. Our paper
generalizes these results in two directions: on the one hand, we interpret the
monadic languages over more general structures; on the other hand, we take
into consideration a larger set of predicates, including the equi-column and the
horizontal successor predicates (these predicates are intimately related to the
vertical successor and equi-level predicates, respectively, but in general they
are not inter-definable).

The paper is organized as follows. In Section 2 we provide background knowl-
edge about monadic theories of time granularity. Then, in Section 3 we intro-
duce the relevant binary predicates for time granularity. In the subsequent sec-
tions, we study the definability and decidability of these predicates in monadic
languages over the UULS, n-LS, and DULS. Conclusions provide an assess-
ment of the work.

2 Monadic theories of layered structures

In this section we introduce the MSO theories of time granularity, and their
first-order, path, and chain fragments (a more detailed presentation can be
found in [5]). MSO theories are systems of MSO logic that allow quantification
over arbitrary sets of elements. We show that some MSO theories of time
granularity can be reduced to well-know classical theories, such as the MSO
theory of one successor and the MSO theory of two successors, while other
granularity theories are proper extensions of them.
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Fig. 1. The 2-refinable 3-layered structure.

Definition 2.1 (The language of monadic second-order logic)

Let τ = c1, . . . , cr, u1, . . . , us, b1, . . . , bt be a finite alphabet of symbols, where
c1, . . . , cr (resp. u1, . . . , us, b1, . . . , bt) are constant symbols (resp. unary rela-
tional symbols, binary relational symbols), and let P be a finite set of unin-
terpreted unary relational symbols. The second-order language with equality
MSO[τ ∪ P ] is built up as follows:

(1) atomic formulas are of the forms x = y, x = ci (with 1 ≤ i ≤ r), ui(x)
(with 1 ≤ i ≤ s), bi(x, y) (with 1 ≤ i ≤ t), x ∈ X, and x ∈ P , where x
and y are individual variables, X is a set variable, and P ∈ P;

(2) formulas are built up from atomic formulas by means of the Boolean con-
nectives ¬ and ∧, and the quantifier ∃ ranging over both individual and
set variables.

In the following, we shall write MSOP [τ ] for MSO[τ ∪ P ]; in particular, we
shall write MSO[τ ] when P is meant to be the empty set.

Relational structures for time granularity consists of a (possibly infinite) num-
ber of distinct layers. We focus our attention on the n-layered structure, which
include a fixed finite number n of layers, and ω-layered structures, which fea-
ture an infinite number of layers.

The n-layered structure. Let n ≥ 1 and k ≥ 2. For every 0 ≤ i < n, let
T i = {ji | j ≥ 0}. The n-layered temporal universe is the set Un =

⋃
0≤i<n T i.

The (k-refinable) n-layered structure (n-LS for short) is the relational structure
〈Un, (↓j)

k−1
j=0 , <〉. Such a structure can be viewed as an infinite sequence of

complete (k-ary) trees of height n − 1, each one rooted at a point of the
coarsest layer T 0 (see Figure 1). The sets T i, with 0 ≤ i < n, are the layers
of the trees. For every 0 ≤ j ≤ k − 1, ↓j is the j-th successor relation over Un

such that ↓j (x, y) (also denoted by ↓j (x) = y) if y is the j-th son of x. Note
that for all x belonging to the finest layer T n−1 there exist no 0 ≤ j ≤ k − 1
and y ∈ Un such that ↓j (x) = y. Finally, < is a total ordering over Un given
by the pre-order (root-left-right in the binary trees) visit of the nodes (for
elements belonging to the same tree) and by the total linear ordering of trees
(for elements belonging to different trees). Formally, for any pair ab, cd ∈ Un,
we have that ↓j (ab) = cd if b < n− 1, d = b + 1, and c = a · k + j. The total
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Fig. 2. The 2-refinable upward unbounded layered structure.

ordering < is defined as follows:

(1) if x = a0, y = b0, and a < b over N, then x < y;
(2) for all x ∈ Un\T n−1, x <↓0 (x), and ↓j (x) <↓j+1 (x), for all 0 ≤ j < k−1;
(3) if x ∈ Un \ T n−1, x < y, and not ancestor(x, y), then ↓k−1 (x) < y;
(4) if x < z and z < y, then x < y,

where ancestor(x, y) if there exists 0 ≤ j ≤ k − 1 such that ↓j (x) = y or
there exist 0 ≤ j ≤ k − 1 and z such that ↓j (z) = y and ancestor(x, z). A
path over the n-LS is a subset of the domain whose elements can be written
as a sequence x0, x1, . . . xm, with m ≤ n − 1, in such a way that, for every
i = 1, . . . m, there exists 0 ≤ j < k for which xi =↓j (xi−1). A full path is a
maximal path with respect to set inclusion. A chain is any subset of a path.
A P-labeled n-LS is a relational structure 〈Un, (↓i)

k−1
i=0 , <, (P )P∈P〉, where the

tuple (Un, (↓i)
k−1
i=0 , <) is the n-LS and, for every P ∈ P , P ⊆ Un is the set of

points labeled with P . The decidability of MSOP [<, (↓i)
k−1
i=0 ] over the n-LS has

been proved in [20] by reducing it to the decidability of the MSO theory of one
successor MSO[<], which is known to be (non-elementarily) decidable [23].

Theorem 2.2 MSOP [<, (↓i)
k−1
i=0 ] over the n-LS is (non-elementarily) decid-

able.

The upward unbounded layered structure. The UULS is a relational
structure 〈U , 〈↓i)

k−1
i=0 , <〉. It can be viewed as a complete (k-ary) infinite tree

generated from the leaves (Figure 2). The sets T i, with i ≥ 0, are the layers of
the tree. For every 0 ≤ j ≤ k− 1, ↓j is the j-th successor relation over U such
that ↓j (x, y) (also denoted by ↓j (x) = y) if y is the j-th son of x. The total
ordering < over U is induced by the in-order (left-root-right in the binary
tree) visit of the treelike structure. Formally, for every ab, cd ∈ U , ↓j (ab) = cd

if b > 0, d = b−1, and c = a ·k + j. The total ordering < is defined as follows:

(1) for all x ∈ U \ T 0, ↓0 (x) < x, x <↓1 (x), and ↓j (x) <↓j+1 (x), for every
0 < j < k − 1;

(2) if x < y and not ancestor(x, y), then ↓k−1 (x) < y;
(3) if x < y and not ancestor(y, x), then x <↓0 (y);
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Fig. 3. The 2-refinable downward unbounded layered structure.

(4) if x < z and z < y, then x < y.

A path over the UULS is a subset of the domain whose elements can be written
as an infinite sequence x0, x1, . . . such that, for every i ≥ 1, there exists 0 ≤ j <
k such that xi−1 =↓j (xi) (for the sake of convenience, in some proofs we shall
introduce finite paths over the UULS and list their elements in the opposite
order, that is, we shall represent them as finite sequences xi0 , xi1 , . . . , xin such
that, for every 0 ≤ j < n, there exists 0 ≤ l < k such that xij+1

=↓l (xij)).
A full path is a maximal (infinite) path with respect to set inclusion. A chain
is any subset of a path. It is worth noting that every pair of paths over the
UULS may differ on a finite prefix only. A P-labeled UULS is obtained by
expanding the UULS with a set P ⊆ U , for any P ∈ P . The decidability of
MSOP [<, (↓i)

k−1
i=0 ] over the UULS has been proved in [17] by reducing it to the

decidability of a proper extension of the MSO theory of one successor [21].

Theorem 2.3 MSOP [<, (↓i)
k−1
i=0 ] over the UULS is (non-elementarily) decid-

able.

The downward unbounded layered structure. Let U =
⋃

i≥0 T i be the ω-
layered temporal universe. The DULS is a relational structure 〈U , (↓i)

k−1
i=0 , <〉.

It can be viewed as an infinite sequence of complete (k-ary) infinite trees,
each one rooted at a point of the coarsest domain T 0 (see Figure 3). The sets
T i, with i ≥ 0, are the layers of the trees. The successor relations ↓j, with
0 ≤ j ≤ k − 1, and the total ordering < over U are defined as for the n-LS.
Formally, for any pair ab, cd ∈ U , we have that ↓j (ab) = cd if and only if
d = b + 1 and c = a · k + j, while the total ordering < is defined as follows:

(1) if x = a0, y = b0, and a < b over N, then x < y;
(2) for all x ∈ U , x <↓0 (x), and ↓j (x) <↓j+1 (x), for all 0 ≤ j < k − 1;
(3) if x < y and not ancestor(x, y), then ↓k−1 (x) < y;
(4) if x < z and z < y, then x < y.

A path over the DULS is a subset of the domain whose elements can be written
as an infinite sequence x0, x1, . . . such that, for every i ≥ 1, there exists 0 ≤
j < k for which xi =↓j (xi−1). A full path is a maximal (infinite) path with
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Fig. 4. A hierarchy of monadic formalisms over layered structures.

respect to set inclusion. A chain is any subset of a path. A P-labeled DULS is
a relational structure 〈U , (↓i)

k−1
i=0 , <, (P )P∈P〉, where the tuple (U , (↓i)

k−1
i=0 , <)

is the DULS and, for every P ∈ P , P ⊆ U is the set of points labeled with P .

The decidability of MSOP [<, (↓i)
k−1
i=0 ] over the DULS has been proved in [17]

by reducing it to the decidability of the MSO theory of k successors, which is
known to be (non-elementarily) decidable [23].

Theorem 2.4 MSOP [<, (↓i)
k−1
i=0 ] over the DULS is (non-elementarily) decid-

able.

We conclude the section by introducing some notations and basic proper-
ties that will help us in comparing expressive power and logical properties of
the various formal systems. Definitions and results are given for full second-
order languages with uninterpreted unary relational symbols, but they im-
mediately transfer to their fragments, possibly devoid of uninterpreted unary
relational symbols. Let M(ϕ) be the set of models of the formula ϕ. We
say that MSOP [τ1] can be embedded into MSOP [τ2], denoted MSOP [τ1] →
MSOP [τ2], if there is an effective translation tr of MSOP [τ1]-formulas into
MSOP [τ2]-formulas such that, for every formula ϕ ∈ MSOP [τ1], M(ϕ) =
M(tr(ϕ)). Moreover, we say that MSOP [τ1] is as expressive as MSOP [τ2], writ-
ten MSOP [τ1] À MSOP [τ2], if both MSOP [τ1] → MSOP [τ2] and MSOP [τ2]
→ MSOP [τ1]. It is immediate to see that if MSOP [τ1] → MSOP [τ2] and
MSOP [τ2] is decidable (resp. MSOP [τ1] is undecidable), then MSOP [τ1] is de-
cidable (resp. MSOP [τ2] is undecidable) as well. Besides decidability issues, we
are interested in definability ones. Let β be a relational symbol. We say that β
is definable in MSOP [τ ] if MSOP [τ ∪ {β}] → MSOP [τ ]. If the addition of β to
a decidable formalism MSOP [τ ] makes the resulting formalism MSOP [τ ∪{β}]
undecidable, we can conclude that β is not definable in MSOP [τ ]. The opposite
does not hold in general: the predicate β may not be definable in MSOP [τ ],
but the extension of MSOP [τ ] with β may preserve decidability. In such a
case, we obviously cannot reduce the decidability of MSOP [τ ∪{β}] to that of
MSOP [τ ].

In the following, we shall explore the definability and decidability of relevant
binary predicates for time granularity with respect to MSO[<, (↓i)

k−1
i=0 ] and

its first-order, path, and chain fragments FO[<, (↓i)
k−1
i=0 ], MPL[<, (↓i)

k−1
i=0 ], and
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MCL[<, (↓i)
k−1
i=0 ] as well as their P-variants FOP [<, (↓i)

k−1
i=0 ], MPLP [<, (↓i)

k−1
i=0 ],

and MCLP [<, (↓i)
k−1
i=0 ] (the path, resp. chain, fragments are obtained by inter-

preting second-order variables over paths, resp. chains). Figure 4 summarizes
the relationships between the expressive powers of such formal systems (an
arrow from T to T ′ stands for T → T ′). From Theorems 2.2, 2.3, and 2.4,
it immediately follows that all the formalisms in Figure 4, when interpreted
over the n-LS, the UULS, and the DULS, are decidable.

3 Binary predicates for time granularity

In this section, we introduce the binary predicates for time granularity we are
interested in; in the subsequent sections, we shall investigate definability and
decidability issues about them. More precisely, we shall investigate the possi-
bility of defining such predicates within the given systems for time granularity,
and, whenever this is not possible, the possibility of adding them preserving
decidability.

Let 〈U , (↓i)
k−1
i=0 , <〉 be a layered structure and let nr and ms be two elements

of U . We focus our attention on the following set of predicates:

(1) equi-level predicate T , such that T (nr,ms) iff r = s;
(2) i-th equi-level predicate T i, such that T i(nr,ms) iff r = s = i;
(3) equi-column predicate D, such that D(nr,ms) iff n = m;
(4) i-th equi-column predicate Di, such that Di(nr,ms) iff n = m = i;
(5) horizontal successor +1, such that +1(nr,ms) iff r = s and m = n + 1;
(6) i-th horizontal successor+i1, such that +i1(nr, ms) iff r = s = i and

m = n + 1;
(7) vertical successor ⊕1, such that ⊕1(nr,ms) iff n = m and s = r + 1;
(8) i-th vertical successor ⊕i1, such that ⊕i1(nr,ms) iff n = m = i and

s = r + 1.

T i, Di, +i1, and ⊕i1, and T , D, +1, and ⊕1 are respectively called local and
global predicates. Global predicates are depicted in Figure 5. Among the many
possible relations between time points belonging to the temporal universe, the
above local predicates can be identified as the primitives for time granularity,
that is, relations that any specification language for time granularity should
be able to express. Global predicates are a natural generalization of local ones.
In particular, the equi-level predicate allows one to check whether or not two
elements belong to the same layer, while the equi-column predicate allows one
to verify whether two elements are at the same distance from the origin of the
layer they belong to.

Some of the above predicates are functional in nature, and we shall sometimes

8
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Fig. 5. The global predicates for time granularity.

use a functional notation for them. For instance, we shall write +1(x) = y for
+1(x, y) (the same for ⊕1). Moreover, we shall write T i(x) as a shorthand for
T i(x, x), which states that x belongs to the i-th layer (the same for Di(x, x)).

It is worth pointing out that the predicates +i1 and T i are inter-definable in
FO[<, (↓i)

k−1
i=0 ] over layered structures as follows:

+i1(x, y) = x < y ∧ T i(x, y) ∧ ∀z((T i(x, z) ∧ x < z) → y ≤ z);

T i(x, y) = ∃w(+i1(x,w)) ∧ ∃w(+i1(y, w)).

Similarly, +1 and T are inter-definable in MSO[<, (↓i)
k−1
i=0 ] as follows:

+1(x, y) = x < y ∧ T (x, y) ∧ ∀z((T (x, z) ∧ x < z) → y ≤ z);

T (x, y) = ∀X(x ∈ X ∧ ∀z(z ∈ X → ∃w(+1(z, w) ∧ w ∈ X)) → y ∈ X)∨
∀X(y ∈ X ∧ ∀z(z ∈ X → ∃w(+1(z, w) ∧ w ∈ X)) → x ∈ X).

In fact, +1 is first-order definable in terms of T , while T is second-order
definable in terms of +1 (note that the interpretation of the second-order
variable X in the definition of T cannot be restricted to paths or chains).
In summary, we have that +i1 (resp. +1) is definable in FO[<, (↓i)

k−1
i=0 ] (resp.

MSO[<, (↓i)
k−1
i=0 ]) if and only if T i (resp. T ) is definable in FO[<, (↓i)

k−1
i=0 ] (resp.

MSO[<, (↓i)
k−1
i=0 ]). Similarly, we can show the inter-definability of the pairs of

predicates (⊕i1, D
i) (resp. (⊕1, D)) in FO[<, (↓i)

k−1
i=0 ] (resp. MSO[<, (↓i)

k−1
i=0 ]).

In the following, we first focus on the upward unbounded layered structure,
then we move to the n-layered structure, and finally we consider the downward
unbounded one. We study the upward unbounded layered structure before
than the n-layered one because some results for the latter can be directly
obtained from those for the former.

4 Definability and decidability over the UULS

In this section, we investigate the definability and decidability of the given
binary predicates in monadic languages interpreted over the UULS. The i-th

9



equi-level T i can be defined as follows:

T 0(x, y) = ¬∃z1(↓0 (x) = z1) ∧ ¬∃z2(↓0 (y) = z2);

T i+1(x, y) = ∃z1∃z2(T
i(z1, z2)∧ ↓0 (x) = z1 ∧ ↓0 (y) = z2).

As we have already shown, the horizontal successor +i can be defined in terms
of T i. As for Di, the predicate D0 can be expressed as follows:

D0(x, y) = ∃X(x ∈ X ∧ y ∈ X ∧ 00 ∈ X ∧ ∀z((T 0(z) ∧ z 6= 00) →
z 6∈ X) ∧ ∀z(z ∈ X → ∃w(↓0 (w) = z ∧ w ∈ X)))∧
∀z((z ∈ X ∧ z 6= 00) → ∃w(↓0 (z) = w ∧ w ∈ X)))).

where 00 is the first-order definable origin of layer T 0. Let ank
n + . . . a0k

0 be
the k-ary representation of i, for any i > 0. Di can be defined as follows:

Di(x, y) = ∃z(D0(z)∧ ↓a0,...,an (z) = x) ∧ ∃z(D0(z)∧ ↓a0,...,an (z) = y).

where, for any w ∈ {0, . . . , k − 1}∗, ↓w (x) is inductively defined as follows:
if w = ε, then ↓w (x) = x, otherwise, if w = av, with a ∈ {0, . . . , k − 1}
and v ∈ {0, . . . , k − 1}∗, then ↓w (x) =↓a (↓v (x)). The vertical successor ⊕i1
can be defined in terms of Di. Notice that second-order quantification comes
into play in the definition of D0 only; furthermore, the semantics of D0 does
not change if we interpret the second-order variable X as a path. Hence, the
i-th equi-column Di and the i-th vertical successor ⊕i1 can be encoded in
MPL[<, (↓i)

k−1
i=0 ], while the i-th equi-level T i and the i-th horizontal successor

+i1 can be encoded in FO[<, (↓i)
k−1
i=0 ].

Consider now the global predicates. We start by showing that the addition
of the vertical predicates ⊕1 or D to FOP [<, (↓i)

k−1
i=0 ] makes it undecidable.

The proof reduces a suitable undecidable version of the tiling problem to the
satisfiability problem for FOP [<, (↓i)

k−1
i=0 ,⊕1]-formulas.

Theorem 4.1 Both FOP [<, (↓i)
k−1
i=0 , D] and FOP [<, (↓i)

k−1
i=0 ,⊕1] over the k-

ary UULS are undecidable.

Proof. We prove the theorem for the binary UULS; the generalization to the
k-refinable UULS is straightforward. We show that FOP [<, ↓0, ↓1,⊕1] over the
binary UULS is undecidable by embedding the octant tiling problem into it [12].
Since FOP [<, ↓0, ↓1,⊕1] → FOP [<, ↓0, ↓1, D], it follows that FOP [<, ↓0, ↓1, D]
is undecidable as well. The octant tiling problem is the problem of establishing
whether, given a finite set of tile types T , T can tile O =

⋃
i≥0{(i, j) | 0 ≤ j ≤

10



i}. For every tile type t ∈ T , let right(t), left(t), up(t), and down(t) be the
colors of the corresponding sides of t. The octant tiling problem consists in
finding a function f : O → T such that right(f(n,m)) = left(f(n + 1,m))
and, whenever m < n, up(f(n,m)) = down(f(n,m+1)). We reduce the octant
tiling problem to the satisfiability problem for FOP [<, ↓0, ↓1,⊕1] over the
binary UULS. Let T = {T1, . . . , Tk} be the set of tile types. We construct a
formula ϕT such that T tiles O if and only if ϕT is satisfiable over the binary
UULS.

The first step is forcing the octant grid over the binary UULS 〈U , ↓0, ↓1, <〉 (cf.
Figure 6). The octant grid domain is the set G =

⋃
i≥0{(2(i−j) − 1)j | 0 ≤ j ≤

i} ⊂ U . We have that x ∈ G if and only if x is reachable through a ‘rightmost
branch’ rooted at some point in {0i | i ≥ 0}. The horizontal grid successor s0
is such that, for every nr ∈ G, s0(nr) = nr+1, while the vertical grid successor
s1 is such that, for every nr ∈ G, with r > 0, s1(nr) = (2n + 1)r−1. For every
nr ∈ G, with r > 0, it holds that s0(s1(nr)) = s1(s0(nr)). In FOP [<, ↓0, ↓1,⊕1]
we can define a unary predicate grid such that grid(x) if and only if x belongs
to the octant grid domain G. Let Plp, Qgrid ∈ P . For all x, we have that grid(x)
if and only if

x ∈ Qgrid ∧ 00 ∈ Plp ∧ ∀y((y ∈ Plp → ∃z(↓0 (z) = y ∧
z ∈ Plp ∧ ↓1 (z) 6∈ Plp)) ∧ (y 6∈ Plp ∧ ¬T 0(y) →
↓0 (y) 6∈ Plp ∧ ↓1 (y) 6∈ Plp)) ∧ ∀y((y ∈ Plp → y ∈ Qgrid)∧
(y ∈ Qgrid ∧ y ∈ Plp ∧ ¬T 0(y) →↓0 (y) ∈ Qgrid ∧ ↓1 (y) ∈ Qgrid)∧
(y ∈ Qgrid ∧ y 6∈ Plp ∧ ¬T 0(y) →↓0 (y) 6∈ Qgrid ∧ ↓1 (y) ∈ Qgrid)∧
(y 6∈ Qgrid ∧ ¬T 0(y) →↓0 (y) 6∈ Qgrid ∧ ↓1 (y) 6∈ Qgrid)).

Moreover, the horizontal successor s0 is ⊕1, and the vertical successor s1 is
↓1. We further need to impose the tiling conditions on the grid. To this end,
we take advantage of monadic predicates in {P1, . . . Pk} ⊂ P corresponding
to the tile types in {T1, . . . Tk}:

(1) exactly one tile is placed at each node (φ1(x))

i=k∨

i=1

x ∈ Pi

∧

1≤i<j≤k

¬(x ∈ Pi ∧ x ∈ Pj);

(2) colors match going right (φ2(x))

∨

right(Ti)=left(Tj)

x ∈ Pi ∧ ⊕1(x) ∈ Pj;

11
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Fig. 6. Shaping the octant over the UULS.

(3) colors match going up (φ3(x))

¬T 0(x) → ∨

up(Ti)=down(Tj)

x ∈ Pi ∧ ↓1 (x) ∈ Pj

We define
ϕT = ∀x(grid(x) → φ1(x) ∧ φ2(x) ∧ φ3(x)).

It is not difficult to show that T tiles O if and only if ϕT is satisfiable over
the binary UULS. ut

We do not know whether the addition of +1 or T to FOP [<, (↓i)
k−1
i=0 ] produces

the same effect. The decidability problems for both FOP [<, (↓i)
k−1
i=0 , +1] and

FOP [<, (↓i)
k−1
i=0 , T ] over the UULS are indeed open.

The following theorem shows that both MSO[<, (↓i)
k−1
i=0 , +1] and MSO[<,

(↓i)
k−1
i=0 , T ] are undecidable. The proof reduces the decidability problem for

MSO[<, adj] 〈N+, <〉 (the set of positive natural numbers), which has been
shown to be undecidable in [22], to the decidability problem for MSO[<,
(↓i)

k−1
i=0 , +1]. The predicate adj over 〈N+, <〉 is defined as follows: adj(x, y)

if and only if x = 2kn + 2kn−1 + . . . + 2k0 , with kn > kn−1 > . . . > k0 > 0,
and y = x + 2k0 + 2k0−1. For instance, if x = 12 = 23 + 22, then k0 = 2 and
y = 12 + 22 + 21 = 18, while if x = 13 = 23 + 22 + 20, then k0 = 0 and thus
there is no y such that adj(13, y).

Theorem 4.2 Both MSO[<, (↓i)
k−1
i=0 , +1] and MSO[<, (↓i)

k−1
i=0 , T ] over the k-

ary UULS are undecidable.

Proof. We prove the thesis for the binary UULS; the generalization to the k-
ary UULS is straightforward. To show that MSO[<, (↓i)

k−1
i=0 , +1] is undecidable,

we embed MSO[<, adj] over 〈N+, <〉 into MSO[<, ↓0, ↓1, +1] over the binary
UULS. Since T and +1 are inter-definable, the undecidability result holds for
MSO[<, ↓0, ↓1, T ] as well. We define the binary predicate adj over the UULS
as follows (we are overloading the symbol adj): for every nr ∈ U , we have
adj(nr,ms) if and only if r > 0, s = r−1, and m = 2(n+1). It is easy to check
that adj(x, y) if and only if y is the adoptive son of x, that is, y is the horizontal
successor of the right son of x. As an example, we have that adj(12, 41) (cf.
Figure 2). The predicate adj is thus definable in MSO[<, ↓0, ↓1, +1] over the

12



r»»»»»»»»
8

..........................................

........................................

r((16

r r.................................................................

...........................................................................

................................................................................

............4 12©©©©

HHHH

r r r r2 6 10 14¡
¡

¡
¡

@
@

@
@

r r r r r r r r¢
¢

¢
¢

¢
¢

¢
¢

A
A

A
A

A
A

A
A

1 3 5 7 9 11 13 15

rXXXXXXXX

»»......................24

r r20 28©©©©

HHHH

r r r r18 22 26 30.......

T 0

T 1

T 2

T 3

T 4

¡
¡

¡
¡

@
@

@
@

r r r r r r r r¢
¢

¢
¢

¢
¢

¢
¢

A
A

A
A

A
A

A
A

17 19 21 23 25 27 29 31

Fig. 7. The 2-refinable UULS over the natural numbers.

2-refinable UULS as follows:

adj(x, y) = ∃z(↓1 (x) = z ∧ +1(z, y)).

Consider now the bijection τ : U → N+ defined as follows: for every nr ∈ U ,
τ(nr) = 2r + n2r+1 (τ is graphically depicted in Figure 7). It is easy to see
that τ is an isomorphism between 〈U , <, adj〉 and 〈N+, <, adj〉. From the
undecidability of MSO[<, adj] over 〈N+, <〉, it follows that MSO[<, adj] over
the UULS is undecidable. Since MSO[<, adj] → MSO[<, ↓0, ↓1, +1], we have
the thesis. ut

From Theorem 4.1, it immediately follows that MSO[<, (↓i)
k−1
i=0 ] extended with

either ⊕1 or D is undecidable. Hence, putting together Theorems 4.1 and 4.2,
we obtain the following corollary.

Corollary 4.3 Global predicates cannot be defined in MSO[<, (↓i)
k−1
i=0 ] over

the k-ary UULS and the extension of MSO[<, (↓i)
k−1
i=0 ] with any global predicate

is undecidable.

The following theorem and its corollary provide information about the rela-
tionships between horizontal and vertical predicates over the UULS (we shall
take advantage of such relationships in subsequent theorems). More precisely,
Theorem 4.4 shows that +1 is first-order definable in terms of D over the
binary UULS.

Theorem 4.4 FO[<, ↓0, ↓1, +1] is embedable in FO[<, ↓0, ↓1, D] over the bi-
nary UULS.

Proof. First, the horizontal successor +1 can be defined in terms of the pred-
icate adj over the UULS as follows:

+1(x, y) = ∃z((↓0 (z) = x∧ ↓1 (z) = y) ∨ (↓1 (z) = x ∧ adj(z, y))).

Next, we encode the predicate adj in FO[<, ↓0, ↓1, D]. We claim that adj(x, y)

13



if and only if φ(x, y), where

φ(x, y) = ¬T 0(x) ∧ ∃z1∃z2∃z3∃z4∃z5(T
0(z1) ∧ D(z1, x) ∧ +01(z1, z2)∧

⊕1(z2, z3)∧ ↓0 (z3) = z4 ∧ D(z4, z5) ∧ z5 ≥ x ∧ ∀w(D(z4, w)∧
x ≤ w → z5 ≤ w) ∧ (D0(x) ∧ x 6= 01 → ⊕1(z5, y))∧
((¬D0(x) ∨ x = 01) → z5 = y)).

We prove that the above definition captures the predicate adj. Let x = nr, y =
ms, and x does not belong to T 0 (that is, r ≥ 1). Suppose that φ(x, y) holds.
Then, there exist z1, . . . , z5, such that z1 = n0, z2 = (n + 1)0, z3 = (n + 1)1,
z4 = (2(n + 1))0, and z5 = min{w | w = (2(n + 1))i ∧ i ≥ 0 ∧ nr ≤ w}. We
show that z5 = y = (2(n + 1))r−1, and thus adj(x, y) holds, whenever ¬D0(x)
or x = 01, and z5 = (2(n + 1))r−2, y = (2(n + 1))r−1, and thus adj(x, y)
holds, whenever D0(x) and x 6= 01 (remind that adj(x, y) if and only if r ≥ 1,
s = r − 1 and m = 2(n + 1)). Suppose ¬D0(x), that is, n ≥ 1. Since, for
every i, j ≥ 0, ij < ij+1, we only have to prove that (2(n + 1))r−2 < nr <
(2(n + 1))r−1. To conclude that (2(n + 1))r−2 < nr, it suffices to prove that
(2(n + 1))r−2 ≤ (4n)r−2, and this follows from the fact that 2(n + 1) ≤ 4n
whenever n ≥ 1. Since (4n)r−2 =↓0 (↓0 (nr)), and, for every point v, ↓0 (v) < v,
we can conclude that (4n)r−2 < nr. To complete the argument for the ¬D0(x)
case, we must prove that nr < (2(n + 1))r−1. It immediately follows from
the fact that (2(n + 1))r−1 = +1(↓1 (nr)), and, for every v, v <↓1 (v) and
v < +1(v). The other two cases (x = 01 and D0(x) ∧ x 6= 01) are easier, and
thus left to the reader. Similarly, we can prove that if adj(x, y) holds, then
φ(x, y) holds. Hence the thesis. ut

Since +1 and T are inter-definable in the MSO language over the (binary)
UULS, and the same holds for ⊕ and D, we have the following corollary.

Corollary 4.5 Let o ∈ {+1, T} and v ∈ {⊕1, D}. MSO[<, ↓0, ↓1, o] is embe-
dable into MSO[<, ↓0, ↓1, v] over the binary UULS.

To complete the picture, we consider the decidability problem for the ex-
tensions of MSO[<, (↓i)

k−1
i=0 ] fragments with global predicates. Surprisingly, it

turns out that the addition of global predicates to the chain fragment MCL[<,
(↓i)

k−1
i=0 ] preserves decidability (global predicates are obviously not definable

in such a fragment). More precisely, we prove that the decidability problem
for both MCL[<, (↓i)

k−1
i=0 , T, +1,⊕1] and MCL[<, (↓i)

k−1
i=0 , D, +1,⊕1] can be

reduced to the decidability problem for MSO[<] over natural numbers by ex-
ploiting two different encodings. As a matter of fact, we do not know whether
the same holds for MCL[<, (↓i)

k−1
i=0 , T, D, +1,⊕1] or not.

Theorem 4.6 MCL[<, (↓i)
k−1
i=0 , T, +1,⊕1] over the k-ary UULS is decidable.
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Proof. The proof is given for k = 2, and it can be easily extended to the
general case of an arbitrary k. As a preliminary result, we prove that MCL[<,
↓0, ↓1, T, +1,⊕1] → MCL[↓0, ↓1, T,⊕1]. First of all, the horizontal successor
+1 is first-order definable in terms of T and <. Next, we prove that < can be
removed. We have that x < y can be defined as follows:

x < y = x 6= y ∧ (x ∈ t↓0(y) ∨ y ∈ t↓1(x) ∨ ∃z(x ∈ t↓0(z) ∧ y ∈ t↓1(z))),

where x ∈ t↓i(y) stands for ‘x belongs to the tree rooted at the i-th son of
y (x ≤P↓i (y) for short)’. In its turn, the formula x <P y can be defined as
follows:

x <P y = x 6= y ∧ ∃X(dcPath(X) ∧ x ∈ X ∧ y ∈ X ∧
∃z(

∨
i∈{0,1} ↓i (z) = y ∧ z 6∈ X)),

where dcPath(X) is the MCL[↓0, ↓1, T,⊕1] formula that constrains the chain
X to be a downward closed path:

dcPath(X) = ∀x((x ∈ X ∧ x 6∈ T 0) → (↓0 (x) ∈ X ∨ ↓1 (x) ∈ X)).

Finally, it is not difficult to show that MCL[↓0, ↓1, T,⊕1] is equivalent to a
version of chain logic in which only second-order variables occur and atomic
formulas are of the forms X1 ⊆ X2 (chain X1 is included in chain X2), Sing(X)
(chain X is a singleton), proji(X1, X2) (chain X1 = {x1}, chain X2 = {x2} and
↓i (x) = y), equiL(X1, X2) (chain X1 = {x1}, chain X2 = {x2}, and T (x, y)),
and vsucc(X1, X2) (chain X1 = {x1}, chain X2 = {x2}, and ⊕1(x, y)).

It is possible to prove that every formula of the resulting chain logic can be
encoded into an equi-satisfiable formula of the decidable theory MSO[<] over
natural numbers. The proof is by induction on the structure of the formulas
of the chain logic (the idea is partly borrowed from [24]). Any second-order
variable X interpreted as a chain is encoded by a pair of set variables ChX and
LvX over the natural numbers. ChX is interpreted as a set of natural numbers
encoding the leftmost upward unbounded path (starting from the first layer)
containing the chain X, i.e., i ∈ ChX if and only if the element of the i-th
layer of the mentioned path is a right-hand side son. LvX is interpreted as a
set of natural numbers describing the elements of the path actually belonging
to the chain, i.e., i ∈ LvX if and only if the element of the i-th layer of
the path belongs to the chain X. To guarantee that a chain X corresponds
to a unique pair (ChX , LvX), we impose the condition unique(ChX , LvX) =
∀y(y ∈ ChX → min(LvX) ≤ y), where min(X) is the minimum of the set X of
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natural numbers with respect to the usual ordering relation <. As for atomic
formulas, X1 ⊆ X2 is encoded as ChX1 ⊆ ChX2 ∧ LvX1 ⊆ LvX2 ; Sing(X) in
encoded as ‘LvX is a singleton’, that is, ∃Y (Y ⊆ LvX ∧ LvX 6= Y ∧ ¬∃Z(Z ⊆
LvX ∧ Z 6= LvX ∧ Z 6= Y )); proj0(X1, X2) is encoded as ChX1 = ChX2 , ‘LvX1

is a singleton {x1}’, ‘LvX2 is a singleton {x2}’, and x1 = x2 +1; proj1(X1, X2)
is encoded as ‘LvX1 is a singleton {x1}’, ‘LvX2 is a singleton {x2}’, x1 = x2+1,
and ChX1 = ChX2 ∪ {x2}; equiL(X1, X2) is encoded as ‘LvX1 is a singleton
{x1}’, ‘LvX2 is a singleton {x2}’, and x1 = x2; vsucc(X1, X2) is encoded
as ‘LvX1 is a singleton {x1}’, ‘LvX2 is a singleton {x2}’, x2 = x1 + 1, and
ChX2 = {n + 1 | n ∈ ChX1}. The inductive cases ∧ and ¬ are trivial. The
second-order existentially quantified chain formula ∃Xφ(X) is translated into
the formula ∃ChX∃LvX(unique(ChX , LvX) ∧ φτ (ChX , LvX)), where φτ is the
translation of φ. ut

T +1 D ⊕1

FO Decidable Decidable Decidable Decidable

MPL Decidable Decidable Decidable Decidable

MCL Decidable Decidable Decidable Decidable

FOP ? ? Undecidable Undecidable

MPLP ? ? Undecidable Undecidable

MCLP ? ? Undecidable Undecidable

MSO = MSOP Undecidable Undecidable Undecidable Undecidable

Table 1. Decidability results for the UULS.

Theorem 4.7 MCL[<, (↓i)
k−1
i=0 , D, +1,⊕1] over the k-ary UULS is decidable.

Proof. The proof is given for k = 2, and it can be easily extended to any k.
Moreover, since ⊕1 is first-order definable in terms of D, from Theorem 4.4 it
follows that MCL[<, ↓0, ↓1, D, +1,⊕1] → MCL[<, ↓0, ↓1, D], thus allowing us
to focus on the decidability of the latter.

We prove the decidability of MCL[<, ↓0, ↓1, D] by encoding any formula φ
of MCL[<, ↓0, ↓1, D] into an equi-satisfiable formula of MSO[<] over natural
numbers.

We start by showing the encoding of individual variables and set variables
(interpreted as chains). Any individual variable x is mapped into a pair of
individual variables sx (shift) and lx (length), and a set variable Chx, which
satisfy the constraint Pointx = lx ≤ sx ∧ ∀z(z ∈ Chx → 0 < z ≤ lx) ∧ (lx >
0 → 1 ∈ Chx). Such a triplet can be viewed as the specification of a point
in the UULS as follows: it identifies the point of layer sx − lx which can be
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reached from the point of layer sx belonging to the leftmost branch of the
tree by following the path of length lx codified in Chx (i ∈ Chx if and only
if the i-th step of the path leads from a point z to the point ↓1 (z), and thus
i 6∈ Chx if and only if the i-th step of the path leads from a point z to the point
↓0 (z)). Notice that the points belonging to the leftmost branch of the tree
are characterized by lx = 0 and thus Chx = ∅. Any set variable X is mapped
into an individual variable sX and three set variables ChX , UpX , and DownX

which satisfy the constraint ChainX = ∀z(z ∈ ChX → 0 < z ≤ sX) ∧ ∀z(z ∈
DownX → z ≤ sX) ∧ ∀z(z ∈ UpX → z > sX) ∧ (sX > 0 → 1 ∈ ChX). Such
a tuple determines a chain in the UULS as follows: sX and ChX identify the
full path lying on the leftmost branch of the structure until layer sX and then
following the path specified by ChX from the layer sX to layer 0; UpX (resp.
DownX) identifies the subset of layers greater than (resp. less than or equal
to) sX to which the elements of the chain belong.

On the basis of the given correspondence of variables, we inductively define
the translation τ of MSO[<, ↓0, ↓1, D] formulas into MSO[<] formulas as
follows:

τ(x = y) is Chx = Chy ∧ lx = ly ∧ sx = sy;

τ(x < y) is sx < sy ∨ (sx = sy ∧ (∃k(k ∈ Chy ∧ k 6∈ Chx∧
∀k′(k′ < k → (k′ ∈ Chy ↔ k′ ∈ Chx)))∨
(ly < lx ∧ ly + 1 6∈ Chx ∧ ∀k(k ∈ Chy → k ∈ Chx∧
(k ≤ ly ∧ k ∈ Chx) → k ∈ Chy))));

τ(↓0 (x) = y) is sx ≥ lx + 1 ∧ Chx = Chy ∧ lx + 1 = ly ∧ sx = sy;

τ(↓1 (x) = y) is sx ≥ lx + 1 ∧ Chx ∪ {lx + 1} = Chy ∧ lx + 1 = ly∧
sx = sy;

τ(D(x, y)) is Chx = Chy ∧ lx = ly;

τ(x ∈ Y ) is (sY = sx ∧ lx ∈ DownY ∧ ∀z(0 < z ≤ lx → (z ∈ Chx

↔ z ∈ ChY ))) ∨ (sY < sx ∧ lx = 0 ∧ sx ∈ UpY );

τ(φ ∧ ψ) is τ(φ) ∧ τ(ψ);

τ(¬φ) is ¬τ(φ);

τ(∃xφ) is ∃Chx, lx, sx(Pointx ∧ τ(φ));

τ(∃Xφ) is ∃sX , ChX , DownX , UpX(ChainX ∧ τ(φ)).

The equi-satisfiability of φ and τ(φ) can be easily proved by induction on the
structure of φ. ut
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SLω(Trellis) ⊆ MSO[<, 2×] = MSO[<, ↓0, ↓1, D]

( ⊆ ⊆

SLω(Y-Trees) ( MSO[<, adj] = MSO[<, ↓0, ↓1, T ]

( ( (

SLω(B-Trees) = MSO[<, flip] = MSO[<, ↓0, ↓1]

Fig. 8. Systolic ω-languages and monadic second-order theories.

The decidability results for the UULS are summarized in Table 1 (a ques-
tion mark stands for an open problem). Such results allow us to connect
MSO languages over the binary UULS (Figure 8, right column) to both MSO
languages over N+ (Figure 8, middle column) and systolic ω-languages over
binary trees, Y-trees, and trellis [21,22] (Figure 8, left column) 1 . They es-
tablish a connection between MSO[<, 2×] (resp. MSO[<, adj]) over N+ and
MSO[<, ↓0, ↓1, D] (resp. MSO[<, ↓0, ↓1, T ]) over the binary UULS. Moreover,
we have that MSO[<, ↓0, ↓1, T ] is a proper extension of MSO[<, ↓0, ↓1], and
that it can be embedded into MSO[<, ↓0, ↓1, D]. One advantage of such a con-
nection is a different and more intuitive characterization of Y-tree ω-automata:
every Y-tree automaton A can be associated with an MSO[<, ↓0, ↓1, T ]-formula
ϕA interpreted over the binary UULS such that the models of ϕA are, modulo
an isomorphism, all and only the ω-words accepted by A. The opposite embed-
ding does not hold, since Y-tree automata are not closed under complementa-
tion. Similarly, trellis ω-automata, whose expressive power is greater than that
of Y -tree automata, can be embedded into MSO[<, ↓0, ↓1, D]-formulas. In this
case, the opposite embedding is an open problem interestingly related to the
closure under complementation of the well-known computational complexity
class NP [22].

5 Definability and decidability over the n-LS

In this section, we investigate the definability and decidability of local and
global binary predicates in monadic languages interpreted over the n-LS. We
start with the i-th equi-level predicate T i which can be inductively defined as
follows:

T 0(x, y) = ¬∃z1(↓ (z1) = x) ∧ ¬∃z2(↓ (z2) = y);

T i+1(x, y) = ∃z1∃z2(T
i(z1, z2)∧ ↓ (z1) = x∧ ↓ (z2) = y),

1 A survey on systolic computations can be found in [11].
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where ↓ (x) = y is a shorthand for
∨k−1

j=0 ↓j (x) = y.

The equi-level predicate T (x, y) can be defined as
∨n−1

i=0 (T i(x, y)). Horizon-
tal successors +i1 and +1 are definable in terms of T i and T , respectively.
Consider now the equi-column predicate Di. Let +ij(x, y) be a shorthand for
(+i1)j(x) = y and 00 be the first-order definable origin of T 0. D0(x, y) can be
defined as follows:

D0(x, y) =
n−1∨

i=0

(↓0i (00) = x) ∧
n−1∨

i=0

(↓0i (00) = y).

Then, for i > 0, we define Di(x, y) as follows:

Di(x, y) =
∨n−1

j=0 ∃z(T j(z) ∧ D0(z) ∧ +ji(z, x))∧
∨n−1

j=0 ∃z(T j(z) ∧ D0(z) ∧ +ji(z, y)).

Once more, the vertical successor predicate ⊕i1 can be defined in terms of Di.
Since all the above definitions do not exploit second-order quantification, we
can conclude that all local predicates and the global predicates T and +1 are
definable in FO[<, (↓i)

k−1
i=0 ] over the n-LS.

We now turn our attention to the global predicates equi-column D and vertical
successor ⊕1. We show that D is not definable in MSO[<, ↓0, ↓1] over the
binary 2-layered structure, and, even worse, the addition of D to MSO[<,
↓0, ↓1] yields undecidability. Since D and ⊕1 are inter-definable, the same
holds for ⊕1. Moreover, it is easy to show that MSO[<, ↓0, ↓1] over the binary
2-layered structure can be embedded in MSO[<, (↓i)

k−1
i=0 ] over the k-ary n-

layered structures (for any k and n), and thus all the above results generalize
to MSO[<, (↓i)

k−1
i=0 ] over the k-ary n-layered structure.

We begin with an auxiliary lemma. Let us define the predicate D over natural
numbers as the reflexive and symmetric closure of the following set:

{(3k,
3k + 2

2
) | k even} ∪ {(3k,

3k + 1

2
) | k odd}.

The following lemma proves that MSO[<] over the natural numbers cannot
be extended with such a predicate preserving decidability.

Lemma 5.1 MSO[<,D] over 〈N, <〉 is undecidable.

Proof. Let P0 = {3n | n ≥ 0}, P1 = {3n+1 | n ≥ 0} and P2 = {3n+2 | n ≥
0} be three unary predicates over natural numbers representing the congruence
classes modulo 3. They can be easily defined in MSO[<]. For instance, P0(x)
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Fig. 9. The binary 2-layered structure over the natural numbers.

is defined as follows:

P0(x) = ∃X(x ∈ X ∧ 0 ∈ X ∧ ∀y, v, z, w(y ∈ X → ((+1(y, v) → v 6∈ X)∧
(+2(y, z) → z 6∈ X) ∧ (+3(y, w) → w ∈ X))),

where 0 is the first-order definable constant representing the natural number
0 and +1, +2 and +3 are the first-order definable predicates defining the first,
the second, and the third successor of a point, respectively. By exploiting
P0(x), P1(x), and P2(x) and the relation D, we are able to define the relation
2× such that 2×(x, y) if and only if y = 2x as follows:

2× (x, y) = (x = 0 → y = 0) ∧ ∃z, w(

(P0(x) ∧ +1(x,w) ∧ D(z, w) ∧ w 6= z) → y = z ∧
(P1(x) ∧ +2(z, w) ∧ D(z, x) ∧ x 6= z) → y = w∧
(P2(x) ∧ +1(z, w) ∧ D(z, x) ∧ x 6= z) → y = w).

It is well known that MSO[<, 2×] over natural numbers is undecidable, since
it allows one to interpret full first-order arithmetic. This allows us to conclude
that MSO[<,D] over the natural numbers is undecidable. ut

To prove our thesis, it suffices to show that MSO[<, D] over natural numbers
can be embedded into MSO[<, ↓0, ↓1, D] over the binary 2-LS.

Theorem 5.2 The predicate D (resp. ⊕1) is not definable in MSO[<, (↓i)
k−1
i=0 ]

over the k-ary n-LS and the extension of MSO[<, (↓i)
k−1
i=0 ] with D (resp. ⊕1)

is undecidable.

Proof. We first show that MSO[<,D] over natural numbers can be embed-
ded into MSO[<, ↓0, ↓1, D] over 2-layered binary structures (for notational
simplicity, we are overloading the symbols < and D). Let us consider the
bijection τ : U → N (depicted in Figure 9) defined as follows: τ(n0) = 3n,
τ(n1) = (3n + 2)/2 if n is even, and τ(n1) = (3n + 1)/2 if n is odd. It is
easy to see that τ is an isomorphism between 〈U , <, D〉 and 〈N, <, D〉. It fol-
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lows that, for every ϕ ∈ MSO[<,D], ϕ is satisfiable over 〈N, <, D〉 if and
only if ϕ is satisfiable over 〈U , <,D〉. From Lemma 5.1, it immediately fol-
lows that MSO[<, ↓0, ↓1, D] is undecidable. Moreover, it is easy to show that
MSO[<, ↓0, ↓1] over the binary 2-LS is embedable in MSO[<, (↓i)

k−1
i=0 ] over

the k-ary n-LS. Hence, MSO[<, (↓i)
k−1
i=0 , D] and, thus, MSO[<, (↓i)

k−1
i=0 ,⊕] are

undecidable. Since MSO[<, (↓i)
k−1
i=0 ] over the k-ary n-LS is decidable (Theo-

rem 2.2), we have that D and ⊕ are not definable in MSO[<, (↓i)
k−1
i=0 ]. ut

T +1 D ⊕1

FO Decidable Decidable Decidable Decidable

MPL Decidable Decidable Decidable Decidable

MCL Decidable Decidable Decidable Decidable

FOP Decidable Decidable ? ?

MPLP Decidable Decidable ? ?

MCLP Decidable Decidable ? ?

MSO = MSOP Decidable Decidable Undecidable Undecidable

Table 2. Decidability results for the n-LS.

Positive results can be achieved in the case of MSO[<, (↓i)
k−1
i=0 ] fragments:

it is possible to show that the extensions of its chain, path, and first-order
fragments with the undefinable predicate D are decidable. The decidability
of MCL[<, (↓)k−1

i=0 , D] is a consequence of Theorem 4.7, since the n-LS can be
easily embedded into the UULS. The decidability of both MPL[<, (↓)k−1

i=0 , D]
and FO[<, (↓)k−1

i=0 , D] immediately follows. Since ⊕1 is first-order definable in
terms of D, it follows that the extensions of the chain, path, and first-order
fragments of MSO[<, (↓i)

k−1
i=0 ] with ⊕1 are decidable as well. The decidability

results for the n-layered structure are summarized in Table 2.

6 Definability and decidability over the DULS

We conclude the paper by investigating the definability and decidability of the
given binary predicates in monadic languages interpreted over the DULS. The
local predicates T i and +i1 can be expressed as in the case of the n-LS. On
the contrary, the definition of the local predicate Di given in the case of the
n-LS does not work anymore since we have to cope with an infinite number
of layers. We first define D0(x, y) as follows:
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D0(x, y) = ∃X(x ∈ X ∧ y ∈ X ∧ 00 ∈ X ∧ ∀z(T 0(z) ∧ z 6= 00 →
z 6∈ X) ∧ ∀z((z ∈ X → (↓0 (z) ∈ X ∧ ∧k−1

i=1 ↓i (z) 6∈ X))∧
(z 6∈ X → ∧k−1

i=0 ↓i (z) 6∈ X))),

where 00 is the first-order definable origin of layer T 0. For i > 0, let ank
n +

. . . + a0k
0 be the k-ary representation of i. We define Di(x, y) as follows:

Di(x, y) = (
∨blogk(i)c

j=0 ∃z(D0(z) ∧ T j(z) ∧ +ji(z) = x) ∨ ∃z(D0(z)∧
↓a0,...,an (z) = x)) ∧ (

∨blogk(i)c
j=0 ∃z(D0(z) ∧ T j(z)∧

+ji(z) = y) ∨ ∃z(D0(z)∧ ↓a0,...,an (z) = y)).

As we have already shown, ⊕i1 can be defined in terms of Di. Moreover, as
in the case of the UULS, second-order quantification is needed to define D0

only, and the semantics of D0 does not change if we interpret the second-order
variable X as a path. Hence, both the i-th equi-column Di and the i-th vertical
successor ⊕i1 can be encoded in MPL[<, (↓i)

k−1
i=0 ], while the i-th equi-level T i

and the i-th horizontal successor +i1 can be encoded in FO[<, (↓i)
k−1
i=0 ].

Let us consider now the global predicates. As in the case of the UULS, the
addition of the vertical predicates ⊕1 or D to FOP [<, (↓i)

k−1
i=0 ] leads to un-

decidability. The proof takes advantage of a reduction of the N × N tiling
problem to the satisfiability problem for FOP [<, ↓0, ↓1,⊕1] (as a matter of
fact, the proof of Theorem 6.1 does not exploit the whole DULS, but only its
first tree).

Theorem 6.1 Both FOP [<, (↓i)
k−1
i=0 , D] and FOP [<, (↓i)

k−1
i=0 ,⊕1] over the k-

ary DULS are undecidable.

Proof. We show that both theories are undecidable over the binary infinite
tree. Since the binary infinite tree is embedable into the k-ary DULS, we have
the thesis. We show that FOP [<, ↓0, ↓1,⊕1] over the binary infinite tree is
undecidable by embedding the N×N tiling problem into it [2]. Since FOP [<, ↓0,
↓1,⊕1] → FOP [<, ↓0, ↓1, D], it follows that FOP [<, ↓0, ↓1, D] is undecidable as
well. The N× N tiling problem is the problem of establishing whether, given
a finite set of tile types T , T can tile N × N. For every tile type t ∈ T , let
right(t), left(t), up(t), and down(t) be the colors of the corresponding sides
of t. We must find a function f : N × N → T such that right(f(n,m)) =
left(f(n + 1,m)) and up(f(n,m)) = down(f(n,m + 1)). The embedding is
accomplished as follows. Let T = {T1, . . . , Tk} be the set of tile types. We
construct a formula ϕT ∈ FOP [<, ↓0, ↓1,⊕1] such that T tiles N × N if and
only if ϕT is satisfiable over the binary infinite tree.
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The first step consists in the construction of the grid over the binary infinite
tree 〈{0, 1}∗, <〉. The grid is given by the domain {0∗1∗}, and the horizontal
(resp. vertical) successor s0 (resp. s1) is such that s0(x) = x1 (resp. s1(x) =
0x). For every x ∈ {0∗1∗}, it holds that s0(s1(x)) = s1(s0(x)). In FOP [<,
↓0, ↓1,⊕1], we can define a monadic predicate grid such that grid(x) if and
only if x belongs to the grid domain {0∗1∗}. Notice that {0∗1∗} =

⋃
i≥0{0i1∗},

and thus grid(x) if and only if x is reachable through a rightmost path rooted
at some point in {0∗}. Let Plp, Qgrid ∈ P . For every x, we have that grid(x)
if and only if

x ∈ Qgrid ∧ ε ∈ Plp ∧ ∀y((y ∈ Plp →↓0 (y) ∈ Plp ∧ ↓1 (y) 6∈ Plp)∧
(y 6∈ Plp →↓0 (y) 6∈ Plp ∧ ↓1 (y) 6∈ Plp)) ∧ ∀y((y ∈ Plp → y ∈ Qgrid)∧
(y ∈ Qgrid ∧ y ∈ Plp →↓0 (y) ∈ Qgrid ∧ ↓1 (y) ∈ Qgrid) ∧ (y ∈ Qgrid ∧
y 6∈ Plp →↓0 (y) 6∈ Qgrid ∧ ↓1 (y) ∈ Qgrid) ∧ (y 6∈ Qgrid →↓0 (y) 6∈ Qgrid ∧
↓1 (y) 6∈ Qgrid))

Once we have shaped the grid, we can encode the horizontal and vertical
successors as ↓1 and ⊕1, respectively, and we can write the tiling constraints
on the grid. To this end, we make use of monadic predicates in {P1, . . . Pk} ⊂ P
corresponding to the tile types in {T1, . . . Tk}:

(1) exactly one tile is placed at each node (φ1(x))

i=k∨

i=1

x ∈ Pi

∧

1≤i<j≤k

¬(x ∈ Pi ∧ x ∈ Pj);

(2) colors match going right (φ2(x))
∨

right(Ti)=left(Tj)

x ∈ Pi ∧ ↓1 (x) ∈ Pj;

(3) colors match going up (φ3(x))
∨

up(Ti)=down(Tj)

x ∈ Pi ∧ ⊕1(x) ∈ Pj.

We define
ϕT = ∀x(grid(x) → φ1(x) ∧ φ2(x) ∧ φ3(x)).

It is not difficult to see that T tiles N×N if and only if ϕT is satisfiable over
the binary infinite tree. ut

As for the equi-level predicate T , it is possible to show that its addition to
MPLP [<, (↓i)

k−1
i=0 ] does not preserve decidability. Once more, the proof exploits

an embedding of the N× N tiling problem.
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Theorem 6.2 MPLP [<, (↓i)
k−1
i=0 , T ] over the k-ary DULS is undecidable.

Proof. We prove the theorem for the binary DULS; the generalization to
the k-ary DULS is straightforward. We show that MPLP [<, ↓0, ↓1, T ] over
the binary DULS is undecidable by reducing to it the N × N tiling problem.
Suppose that T = {T1, . . . , Tk} is the given set of tile types. We shall construct
an MPLP [<, ↓0, ↓1, T ]-formula ϕT such that T tiles N × N if and only if ϕT
is satisfiable over the binary DULS.

The first step consists in forcing the grid over the binary DULS 〈U , ↓0, ↓1, <〉.
We define the grid domain as the set G =

⋃
i≥0{(i2j)j | j ≥ 0} ⊂ U , the

horizontal successor s0(nr) as (n + 2r)r, and the vertical successor s1(nr) as
(2n)r+1. Note that, for every nr ∈ G, s0(s1(nr)) = s1(s0(nr)). Moreover, it
is easy to define in MPLP [<, ↓0, ↓1, T ] a monadic predicate grid such that
grid(x) if and only if x belongs to the grid domain G. This predicate is true
over x if and only if x is reachable along a leftmost path rooted at some point
belonging to layer T 0. We have

grid(x) = ∃y(T 0(y) ∧ LP(y, x),

where LP(y, x) if and only if ∃X(x ∈ X ∧ y ∈ X ∧ ∀z(z ∈ X →↓0 (z) ∈ X))
(x and y belongs to the same leftmost path). Moreover, the vertical successor
can be defined as ↓0 and the horizontal successor as →, where

→ (x, y) = ∃v, w(T (x, y) ∧ LP(v, x) ∧ T 0(v) ∧ +0(v, w) ∧ LP(w, y)).

The rest of the proof proceeds as the proof of Theorem 6.1, and thus it is
omitted. ut

Unlike the proof of Theorem 6.1, the proof of Theorem 6.2 involves the whole
DULS. We do not know whether the addition of the horizontal successor +1
to MPLP [<, (↓i)

k−1
i=0 ] has the same effect. However, since T and +1 are inter-

definable in the MSO language, it follows that MSO[<, (↓i)
k−1
i=0 , +1] is unde-

cidable. Summing up, we have the following corollary.

Corollary 6.3 Global predicates cannot be defined in MSO[<, (↓i)
k−1
i=0 ] over

the k-ary DULS and the extension of MSO[<, (↓i)
k−1
i=0 ] with any global predicate

is undecidable.

The following theorem and its corollary provide information about the re-
lationships between horizontal and vertical predicates over the DULS. More
precisely, Theorem 6.4 shows that +1 is first-order definable in terms of D
over the binary DULS.

Theorem 6.4 FO[<, ↓0, ↓1, +1] is embedable in FO[<, ↓0, ↓1, D] over the bi-
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nary DULS.

Proof.

First, the horizontal successor +1 can be defined in terms of the predicate adj
over the DULS as follows:

+1(x, y) iff ∃z((↓0 (z) = x∧ ↓1 (z) = y) ∨ (↓1 (z) = x ∧ adj(z, y)))∨
(T 0(x) ∧ +01(x, y)).

Next, we show how to encode the predicate adj into FO[<, ↓0, ↓1, D]. We claim
that adj(x, y) if and only if φ(x, y), where

φ(x, y) iff ∃z1∃z2∃z3∃z4(T
0(z1) ∧ D(z1, x) ∧ +01(z1, z2)∧ ↓0 (z2) = z3 ∧

D(z3, z4) ∧ z4 ≥ x ∧ ∀w(D(z3, w) ∧ x ≤ w → z4 ≤ w)∧
((D0(x) ∨ D1(x)) → ⊕1(y, z4)) ∧ (¬(D0(x) ∨ D1(x)) →
z4 = y)).

We prove that the above definition captures the predicate adj. Let x = nr and
y = ms. Note that adj(x, y) if and only if s = r+1 and m = 2(n+1). Suppose
that φ(x, y) holds. Then, there exist z1, . . . , z4 such that z1 = n0, z2 = (n+1)0,
z3 = (2(n + 1))1, and z4 = min{w | w = (2(n + 1))i ∧ i ≥ 0 and nr ≤ w}.
We claim that z4 = y = (2(n + 1))r+1, and thus adj(x, y) holds, whenever
neither D0(x) nor D1(x), and z4 = (2(n + 1))r+2 and y = (2(n + 1))r+1,
and thus adj(x, y) holds, whenever (D0(x) or D1(x)). Suppose that neither
D0(x) nor D1(x), that is, n > 1. Since, for every i, j ≥ 0, ij < ij+1, we
only have to prove that (2(n + 1))r+2 < nr < (2(n + 1))r+1. To show that
(2(n+1))r+2 < nr, consider the set {ir+2 | i ≥ 0}. It is easy to verify that, for
every i ≥ 4n, nr < ir+2, and, for every i < 4n, ir+2 < nr. Hence, it suffice to
prove that 2(n+1) < 4n, which is true for n > 1. Since, for every v, v <↓1 (v)
and v < +1(v), the inequality nr < (2(n + 1))r+1 follows from the fact that
(2(n + 1))r+1 = +1(↓1 (nr)), The case (D0(x) or D1(x)) is easier, and thus
left to the reader. Similarly, we can prove that if adj(x, y) holds, then φ(x, y)
holds. Hence the thesis. ut

Since +1 and T are inter-definable in the MSO language over the (binary)
DULS, and the same holds for ⊕ and D, we have the following corollary.

Corollary 6.5 Let o ∈ {+1, T} and v ∈ {⊕1, D}. MSO[<, ↓0, ↓1, o] is embe-
dable in MSO[<, ↓0, ↓1, v] over the binary DULS.
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The only positive result is the decidability of MCL[<, (↓i)
k−1
i=0 , T, +1] over the

k-ary DULS. Its proof is similar to that of Theorem 4.6, and thus omitted.

Theorem 6.6 MCL[<, (↓i)
k−1
i=0 , T, +1] over the k-ary DULS is decidable.

The decidability results for the DULS are summarized in Table 3.

T +1 D ⊕1

FO Decidable Decidable ? ?

MPL Decidable Decidable ? ?

MCL Decidable Decidable ? ?

FOP ? ? Undecidable Undecidable

MPLP Undecidable ? Undecidable Undecidable

MCLP Undecidable ? Undecidable Undecidable

MSO = MSOP Undecidable Undecidable Undecidable Undecidable

Table 3. Decidability results for the DULS.

7 Conclusions

The outcomes of the research work presented in this paper can be summarized
as follows. We first showed that all the considered binary predicates are not
definable in the MSO language over the DULS and the UULS, and that their
addition immediately leads the MSO theories of such structures to undecid-
ability. As for the n-LS, we pointed out the different status of the horizontal
(equi-level and horizontal successor) and vertical (equi-column and vertical
successor) predicates: while horizontal predicates are easily definable, verti-
cal ones are undefinable and their addition yields undecidability. Then, we
studied the effects of adding the above predicates to suitable fragments of the
MSO language, such as its first-order, path, and chain fragments, possibly ad-
mitting free set variables. We systematically explored all the possibilities, and
gave a number of positive and negative results. From a technical point of view,
(un)definability and (un)decidability results are obtained by reduction from/to
a wide spectrum of undecidable/decidable problems. We are still missing the
complete picture, because some decidability problems are open. However, the
achieved results suffice to formulate some general statements. We proved that
all predicates can be added to first-order, path, and chain fragments, devoid of
free set variables, over the n-LS and the UULS preserving decidability. In the
case of the DULS, we proved the same result for the equi-level and horizontal
successor predicates, while we do not know yet whether the same holds for
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the equi-column and vertical successor predicates. Moreover, we proved that
the addition of the equi-column or vertical successor predicates to first-order
fragments over the ω-layered structures, with free set variables, makes the
resulting theories undecidable. The effect of such additions to the n-layered
structure is not known yet. As for the equi-level predicate, we only proved that
adding it to the monadic path fragment over the DULS, with free set variables,
leads to undecidability. Finally, as far as the MSO language over the UULS
is concerned, we established an interesting connection between its extension
with the equi-level (resp. equi-column) predicate and systolic ω-languages over
Y -trees (resp. trellis) [11].
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