
Linköping Electronic Articles in
Computer and Information Science

Vol. n(199n): nr nn

Linköping University Electronic Press
Linköping, Sweden

http://www.ep.liu.se/ea/cis/199n/nnn/

The Complexity of Model
Checking in Modal Event
Calculi with Quantifiers

Iliano Cervesato
Department of Computer Science

Stanford University
Stanford, CA 94305-9045

iliano@cs.stanford.edu

Massimo Franceschet Angelo Montanari
Dipartimento di Matematica e Informatica

Università di Udine
Via delle Scienze, 206 – 33100 Udine, Italy

{francesc|montana}@dimi.uniud.it

Published on February nn,, 199n by
Linköping University Electronic Press

581 83 Linköping, Sweden

Linköping Electronic Articles in
Computer and Information Science

ISSN 1401-9841
Series editor: Erik Sandewall

c©199n First Secondname
Typeset by the author using LATEX

Formatted using étendu style

Recommended citation:
<Author>. <Title>. Linköping Electronic Articles in

Computer and Information Science, Vol. n(199n): nr nn.
http://www.ep.liu.se/ea/cis/199n/nnn/. February nn,, 199n.

This URL will also contain a link to the author’s home page.

The publishers will keep this article on-line on the Internet
(or its possible replacement network in the future)

for a period of 25 years from the date of publication,
barring exceptional circumstances as described separately.

The on-line availability of the article implies
a permanent permission for anyone to read the article on-line,

to print out single copies of it, and to use it unchanged
for any non-commercial research and educational purpose,

including making copies for classroom use.
This permission can not be revoked by subsequent

transfers of copyright. All other uses of the article are
conditional on the consent of the copyright owner.

The publication of the article on the date stated above
included also the production of a limited number of copies

on paper, which were archived in Swedish university libraries
like all other written works published in Sweden.

The publisher has taken technical and administrative measures
to assure that the on-line version of the article will be
permanently accessible using the URL stated above,

unchanged, and permanently equal to the archived printed copies
at least until the expiration of the publication period.

For additional information about the Linköping University
Electronic Press and its procedures for publication and for

assurance of document integrity, please refer to
its WWW home page: http://www.ep.liu.se/

or by conventional mail to the address stated above.

Abstract

Kowalski and Sergot’s Event Calculus (EC) is a simple tempo-

ral formalism that, given a set of event occurrences, derives the

maximal validity intervals (MVIs) over which properties initi-

ated or terminated by these events hold. It does so in polyno-

mial time with respect to the number of events. Extensions of

its query language with Boolean connectives and operators from

modal logic have been shown to improve substantially its scarce

expressiveness, although at the cost of an increase in compu-

tational complexity. However, significant sublanguages are still

tractable. In this paper, we further extend EC queries by admit-

ting arbitrary event quantification. We demonstrate the added

expressive power by encoding a hardware diagnosis problem in

the resulting calculus. We conduct a detailed complexity analy-

sis of this formalism and several sublanguages that restrict the

way modalities, connectives, and quantifiers can be interleaved.

We also describe an implementation in the higher-order logic

programming language λProlog.

1

1 Introduction

The Event Calculus, abbreviated EC [9], is a simple temporal formalism
designed to model and reason about scenarios characterized by a set of
events, whose occurrences have the effect of starting or terminating the
validity of determined properties. Given a possibly incomplete description
of when these events take place and of the properties they affect, EC is
able to determine the maximal validity intervals, or MVIs, over which a
property holds uninterruptedly. In practice, since this formalism is usually
implemented as a logic program, EC can also be used to check the truth of
MVIs and process boolean combinations of MVI verification or computation
requests. The range of queries that can be expressed in this way is however
too limited for modeling realistic situations.

A systematic analysis of EC has recently been undertaken in order to
gain a better understanding of this calculus and determine ways of aug-
menting its expressive power. The keystone of this endeavor has been the
definition of an extendible formal specification of the functionalities of this
formalism [3]. This has had the effects of establishing a semantic reference
against which to verify the correctness of implementations [6], of casting EC
as a model checking problem [4], and of setting the ground for studying the
complexity of this problem, which was proved polynomial [2]. Extensions
of this model have been designed to accommodate constructs intended to
enhance the expressiveness of EC . In particular, modal versions of EC [1],
the interaction between modalities and connectives [4], and preconditions [5]
have all been investigated in this context.

In this paper, we continue this endeavor to enhance the expressive power
of EC by considering the possibility of quantifying over events in queries, in
conjunction with boolean connectives and modal operators. We also admit
requests to check the relative order of two events. We thoroughly analyze
the representational and computational features of the resulting formalism,
that we call QCMEC . We also consider two proper sublanguages of it,
EQCMEC, in which modalities are applied to atomic formulas only, and
CMEC, which is quantifier-free. We show that QCMEC and its restric-
tions can effectively be used to encode diagnosis problems. Moreover, we
provide an elegant implementation in the higher-order logic programming
language λProlog [10] and prove its soundness and completeness. As far as
computational complexity is concerned, we prove that model checking in
CMEC, EQCMEC, and QCMEC is PSPACE-complete. However, while
solving an EQCMEC problem is exponential in the size of the query, it has
only polynomial cost in the number n of events, thus making EQCMEC a
viable formalism for MVI verification or computation. Since in most re-
alistic applications the size of databases (n) dominates by several orders
of magnitude the size of the query, n is asymptotically the parameter of
interest.

The main contributions of this work are: (1) the extension of a family
of modal event calculi with quantifiers; (2) permitting queries to mention
ordering information; (3) the use of the higher-order features of modern
logic programming languages in temporal reasoning; and (4) analyzing the
complexity of model checking in these extensions of EC .

This paper is organized as follows. In Section 2, we formalize QCMEC
and significant subcalculi. Section 3 exemplifies how this calculus can ade-
quately model certain hardware diagnosis problems. In Section 4, we briefly
introduce the logic programming language λProlog, give an implementation
of QCMEC in it and prove the soundness and completeness of the resulting

2

program. We study the complexity of QCMEC and its sublanguages in
Section 5. We outline directions of future work in Section 6.

2 Modal Event Calculi with Quantifiers

In this section, we first briefly recall the syntax and semantics of a number of
modal event calculi. We invite the interested reader to consult [1, 3, 4, 8, 9]
for motivations, examples, properties, and technical details. We then extend
these basic definitions to give a semantic foundation to refinements of these
calculi with quantifiers.

2.1 Event Calculus

The Event Calculus (EC) [9] and the extensions we propose aim at modeling
scenarios that consist of a set of events, whose occurrences over time have the
effect of initiating or terminating the validity of properties, some of which
may be mutually exclusive. We formalize the time-independent aspects of
a situation by means of an EC-structure [1], defined as follows:

Definition 2.1 (EC-structure)
A structure for the Event Calculus (or EC-structure) is a quintuple

H = (E, P, [·〉, 〈·],]·,·[) such that:

• E = {e1, . . . , en} and P = {p1, . . . , pm} are finite sets of events and
properties, respectively.

• [·〉 : P → 2E and 〈·] : P → 2E are respectively the initiating and
terminating map of H. For every property p ∈ P , [p〉 and 〈p] represent
the set of events that initiate and terminate p, respectively.

•]·,·[⊆ P ×P is an irreflexive and symmetric relation, called the exclu-
sivity relation, that models exclusivity among properties. 2

As in the original EC paper [9], we define the initiating and terminating
maps in terms of event occurrences rather than event types. The latter
approach can however easily be accomodate in our setting.

The temporal aspect of EC is given by the order in which events hap-
pen. Unlike the original presentation [9], we focus our attention on situa-
tions where the occurrence time of events is unknown and only assume the
availability of incomplete information about the relative order in which they
have happened. We however require the temporal data to be consistent so
that an event cannot both precede and follow some other event. Therefore,
we formalize the time-dependent aspect of a scenario modeled by EC by
means of a (strict) partial order, i.e. an irreflexive and transitive relation,
over the involved set of event occurrences. We write WH for the set of all
partial orders over the set of events E in an EC -structure H, use the letter
w to denote individual orderings, or knowledge states, and write e1 <w e2

to indicate that e1 precedes e2 in w. The set WH of all knowledge states
naturally becomes a reflexive ordered set when considered together with the
usual subset relation ⊆, which is indeed reflexive, transitive and antisym-
metric. An extension of a knowledge state w is any element of WH that
contains w as a subset. We write ExtH(w) for the set of all extensions of
the ordering w in WH.

Given a structure H = (E, P, [·〉, 〈·],]·,·[) and a knowledge state w,
EC permits inferring the maximal validity intervals, or MVIs, over which a
property p holds uninterruptedly. We represent an MVI for p as p(ei, et),

3

where ei and et are the events that respectively initiate and terminate the
interval over which p holds maximally. Consequently, we adopt as the query
language of EC the set LH(EC) = {p(e1, e2) : p ∈ P and e1, e2 ∈ E} of
all such property-labeled intervals over H. We interpret the elements of
LH(EC) as propositional letters and the task performed by EC reduces to
deciding which of these formulas are MVIs in the current knowledge state
w and which are not. This is a model checking problem.

In order for p(e1, e2) to be an MVI relative to the event ordering w,
it must be the case that e1 <w e2. Moreover, e1 and e2 must witness
the validity of the property p at the ends of this interval by initiating and
terminating p, respectively. The maximality requirement is caught by the
negation of the meta-predicate br(p, e1, e2, w) below, which expresses the
fact that the validity of an MVI must not be broken by any interrupting
event. Any event e which is known to have happened between e1 and e2

in w and that initiates or terminates a property that is either p itself or a
property exclusive with p interrupts the validity of p(e1, e2).

Definition 2.2 (Intended model of EC)
Let H = (E, P, [·〉, 〈·],]·,·[) be a EC-structure. The intended EC -

model of H is the propositional valuation υH : WH → 2LH(EC), where
p(e1, e2) ∈ υH(w) if and only if (i) e1 <w e2, (ii) e1 ∈ [p〉, (iii) e2 ∈ 〈p],
(iv) br(p, e1, e2, w) does not hold, where br(p, e1, e2, w) abbreviates

there exists an event e ∈ E such that e1 <w e, e <w e2 and there
exists a property q ∈ P such that e ∈ [q〉 or e ∈ 〈q], and either]p, q[
or p = q. 2

Definition 2.2 states that an event e interrupts the validity of a property
if it initiates or terminates p itself or a property q which is incompatible with
p. As pointed out in [6], this rule adopts the so-called strong interpretation
of the initiate and terminate relations: a given property p ceases to hold over
a time interval if an event e which initiates or terminates p, or a property
incompatible with p, occurs during this interval. The strong interpretation
is needed when dealing with incomplete sequences of events or, as in our
case, incomplete information about their ordering. For example, consider
a switch that can take two different positions: on and off. Its behavior
can be described by means of two types of event: one that changes the
position from off to on (turn-on), the other from on to off (turn-off). While
two turn-on events cannot occur consecutively in the real world, it may
happen that an incomplete sequence consisting of two consecutive turn-
on events, followed by a turn-off event, is recorded in the database. The
strong interpretation of the initiate relation allows EC to recognize that a
missing turn-off event must have occurred between the two turn-on events.
However, since it is not possible to temporally locate such an event, EC
only concludes that the switch is on between the second turn-on event and
the turn-off event, and it considers the first turn-on event as a pending
initiating event. It is worth mentioning that an alternative interpretation
of the initiate and terminate relations, called weak interpretation, is also
possible. According to this interpretation, a property p is triggered by an
initiating event unless it has already been started and not yet terminated.
The weak interpretation is needed to aggregate homogeneous states. Further
details about the strong/weak distinction, including its formalizations and
other examples, can be found in [6].

4

2.2 Modal EC with Connectives

The query language of the basic EC we just formalized suffers from a re-
markably low expressive power that prevents its use for modelling any but
the most trivial applications. The expressiveness of this formalism is dram-
matically augmented by admitting boolean connectives in queries. This
allows inquiring about logical combinations of basic MVI verification prob-
lems.

In our specific setting, where the ordering of event occurrences is only
partially specified, the set of MVIs computed by EC is not stable with re-
spect to the acquisition of new ordering information. Indeed, as we move
to an extension of the current knowledge state, some MVIs might become
invalid and new MVIs can emerge [7]. Extending the query language of EC
with the modal logic operators 2 and 3 leads to the possibility of enquir-
ing about which MVIs will remain valid in every extension of the current
knowledge state, and about which intervals might become MVIs in some
extension of it [1, 8]. Several ways of combining boolean connectives and
modalities, with different cost and expressiveness, have been proposed [3, 4].

In this paper, we also include a precedence test operator, written <,
which allows checking the relative order of two events in the current knowl-
edge state. In previous work, this was awkwardly achieved either by aug-
menting EC -structures with dedicated properties [4], or by using precondi-
tions [5]. A native precedence test makes inquiring about the relative order
of two events independent from the underlying EC -structure.

Given an EC -structure H, the query language that freely includes these
three extensions is formally defined by the following grammar:

ϕ ::= p(e1, e2) | e1 < e2 | ¬ϕ | ϕ1 ∧ ϕ2 |
ϕ1 ∨ ϕ2 | 2ϕ | 3ϕ.

We call this language LH(CMEC) and CMEC the relative extension of
EC . In addition to the above operators, we admit implication as a derived
connective, where ϕ1 ⊃ ϕ2 is classically defined as ¬ϕ1 ∨ ϕ2.

In order to formalize the semantics of the modalities in CMEC, we must
shift the focus from the current knowledge state w to all knowledge states
that are reachable from w, i.e. ExtH(w). Since ⊆ is a reflexive partial or-
der, (WH,⊆) can be naturally viewed as a finite, reflexive, transitive and
antisymmetric modal frame. If we consider this frame together with the
straightforward modal extension of the valuation υH to an arbitrary knowl-
edge state, we obtain a modal model for CMEC . Connectives are handled
as usual and incorporating the precedence test is trivial.

Definition 2.3 (Intended model of CMEC)
Let H = (E, P, [·〉, 〈·],]·,·[) be an EC-structure. The intended CMEC -

model of H is the modal model IH = (WH,⊆, υH), where the propositional
valuation υH : WH → 2LH(EC) is defined as in Definition 2.2. Given w ∈
WH and ϕ ∈ LH(CMEC), the truth of ϕ at w with respect to IH, denoted
by IH; w |= ϕ, is defined as follows:

IH; w |= p(e1, e2) iff p(e1, e2) ∈ υH(w);
IH; w |= e1 < e2 iff e1 <w e2;
IH; w |= ¬ϕ iff IH;w 6|= ϕ;
IH; w |= ϕ1 ∧ ϕ2 iff IH;w |= ϕ1 and IH; w |= ϕ2;
IH; w |= ϕ1 ∨ ϕ2 iff IH;w |= ϕ1 or IH; w |= ϕ2;
IH; w |= 2ϕ iff for all w′ ∈ ExtH(w), IH;w′ |= ϕ;
IH; w |= 3ϕ iff there is w′ ∈ ExtH(w) s. t. IH;w′ |= ϕ. 2

5

Notice that deciding the truth of a modal formula requires the exploration
of all the extensions of the current knowledge state. Since there are expo-
nentially many, this raises the complexity of CMEC beyond tractability [4].
This distressing fact is overcome in the calculus ECMEC [6, 4], that re-
stricts CMEC by allowing 2 and 3 to enclose only atomic formulas of the
form e1 < e2 and p(e1, e2). To determine the truth of atomic formulas
prefixed by one modal operator, it is possible to exploit necessary and suffi-
cient local conditions over the given partial order, thus avoiding a complete
(and expensive) search of all the consistent extensions of the given order [4].
Therefore, solving modal queries in ECMEC has polynomial cost [4].

This is particularly appealing since numerous CMEC -formulas are log-
ically equivalent to ECMEC -formulas. The transformation proceeds by
pushing the modalities inside the scope of the connectives. An ECMEC
formula cannot always be produced since 2 does not distribute over ∨ ,
and dually 3 cannot be pushed inside a conjunction. We will now consider
conditions that permit overcoming this difficulty in situations of interest.

Specifically, we consider EC-structures H = (E, P, [·〉, 〈·],]·,·[) where
every property is initiated and terminated by at most one event and there
are no exclusive properties. We call this condition the singleton condition.
An atomic formula p(e1, e2) on H is an MVI relative to the knowledge
state w ∈ WH if and only if e1 initiates p, e2 terminate p and (e1, e2)
belongs to w. Indeed, the singleton condition ensures us that there are no
interrupting events for p in (e1, e2) and thus we do not need to check whether
br(e1, p, e2, w) holds since this meta-predicate will be trivially false. The
singleton condition offers further opportunities to push modalities inside the
scope of connectives. We omit the proof of the following simple proposition.

Proposition 2.4 (Consequences of the singleton condition)
Let H = (E, P, [·〉, 〈·],]·,·[) be an EC-structure that satisfies the sin-

gleton condition. Let ϕ be a CMEC-formula. For p ∈ P and e1, e2 ∈ E, let
νp(e1, e2) be either p(e1, e2) or (e1 < e2). Then, for any w ∈ WH such that
e1 <w e2, we have that:

i. w |= 2(νp(e1, e2) ∨ ϕ) iff w |= νp(e1, e2) ∨ 2ϕ;
ii. w |= 3(νp(e1, e2) ∧ ϕ) iff w |= νp(e1, e2) ∧ 3ϕ.

In particular, for ϕ = false (resp. true), we have that w |= 2νp(e1, e2)
(resp. w |= 3νp(e1, e2)) iff w |= νp(e1, e2).

2.3 Modal EC with Connectives and Quantifiers

We will now enrich CMEC with explicit universal and existential event
quantifiers that can be used freely in a query. We call the resulting formalism
QCMEC . A logic programming implementation of CMEC can emulate only
restricted forms of existential quantification by means of unification, while
universally quantified queries are out of reach.

In order to accommodate quantifiers, we extend the query language of an
EC -structure H = (E, P, [·〉, 〈·],]·,·[) in several respects. We first assume
the existence of infinitely many event variables that we denote x, possibly
subscripted. We write ē for a syntactic entity that is either an event in E or
an event variable. The query language of QCMEC, denoted LH(QCMEC),
is the set of closed formulas generated by the following grammar:

ϕ ::= p(ē1, ē2) | ē1 < ē2 | ¬ϕ | ϕ1 ∧ ϕ2 |
ϕ1 ∨ ϕ2 | 2ϕ | 3ϕ | ∀x. ϕ | ∃x. ϕ.

6

The notions of free and bound variables are defined as usual and we identify
formulas that differ only by the name of their bound variables. We write
[e/x]ϕ for the substitution of an event e ∈ E for every free occurrence of
the event variable x in the formula ϕ. Notice that this limited form of
substitution cannot lead to variable capture.

We now extend the notion of intended model to accommodate quanti-
fiers.

Definition 2.5 (Intended model of QCMEC)
Let H = (E, P, [·〉, 〈·],]·,·[) be an EC-structure. The intended QCMEC -

model of H is the modal model IH = (WH,⊆, υH) defined as in Defini-
tion 2.3. Given w ∈ WH and a (closed) formula ϕ ∈ LH(QCMEC), the
truth of ϕ at w with respect to IH, denoted as IH;w |= ϕ, is defined as in
Definition 2.3 with the addition of the following two cases:

IH; w |= ∀x. ϕ iff for all e ∈ E, IH; w |= [e/x]ϕ;
IH; w |= ∃x. ϕ iff there exists e ∈ E s. t. IH; w |= [e/x]ϕ. 2

The well-foundedness of this definition derives from the observation that if
∀x. ϕ and ∃x. ϕ are closed formula, so is [e/x]ϕ for every event e ∈ E.

A universal quantification over a finite domain can always be expanded
into a finite sequence of conjunctions. Similarly an existentially quantified
formula is equivalent to the disjunction of all its instances. The following
lemma, whose simple proof we omit, applies these principles to QCMEC .

Lemma 2.6 (Unfolding quantifiers)
Let H = (E, P, [·〉, 〈·],]·,·[) be an EC -structure, with E = {e1, . . . , en}.

Then, for every w ∈ WH,

i. IH;w |= ∀x. ϕ iff IH; w |= ∧n
i=1[ei/x]ϕ;

ii. IH;w |= ∃x. ϕ iff IH; w |= ∨n
i=1[ei/x]ϕ.

This property hints at the possibility of compiling a QCMEC query to a
quantifier-free formula. Observe however that this is possible only after an
EC -structure has been specified. We will rely on the above lemma in order
to analyze the explicit complexity of the formalism in Section 5. It is also
possible to take advantage of it in order to structure an implementation of
QCMEC into a preprocessor that expands quantifiers into exhaustive sets of
conjunctions or disjunctions, and a CMEC checker that verifies the resulting
formula. We will however follow a more direct approach in Section 4.

We conclude this section by defining a quantified variant of the previ-
ously introduced formalism ECMEC . The calculus EQCMEC differs from
QCMEC by imposing that propositional connectives and quantifiers be ex-
ternal to the scope of the modal operators.

3 Example

In this section, we consider a case study taken from the domain of hard-
ware fault diagnosis that shows how an extension of EC with quantifiers,
connectives and modalities can be conveniently used to model real-world
applications.

We focus our attention on the representation and information process-
ing of fault symptoms that are spread over periods of time and for which
current expert system technology is particularly deficient [11]. Consider
the following example, which diagnoses a fault in a computerized numerical
control center for a production chain.

7

-
time

R1 0
1

ei
1 ei

2

R2 0
1

ei
3 ei

4

C
0
1

ei
0 ei

5

..

..

..

..

..

..

..

..

..

..

..

mi
0

..

..

..

..

..

..

..

..

..

..

..

mi
1

..

..

..

..

..

..

..

..

..

..

..

mi
2

..

..

..

..

..

..

..

..

..

..

..

mi
3

..

..

..

..

..

..

..

..

..

..

..

mi
4

..

..

..

..

..

..

..

..

..

..

..

mi
5

Figure 1: Expected Register Behavior and Measurements during Ses-
sion i.

A possible cause for an undefined position of the tool magazine
is a faulty limit switch S. This cause can however be ruled out
if the status registers R1 and R2 show the following behavior in
every session: from a situation in which both registers contain
the value 0, they assume the value 1 in successive and disjoint
time intervals (first R1 and then R2), and then return to 0. A
session is a time interval initiated when a special register C is
set to 1 and terminated when C is reset to 0.

Figure 1 describes a possible sequence of transitions for R1 and R2 within
an individual session i. If every recorded session has a similar pattern, the
eventuality of S being faulty can be excluded. In order to verify this behav-
ior, the contents of the registers must be monitored over time. Typically,
each value (0 or 1) of a register persists for at least t time units. Measure-
ments are made at fixed intervals (sampling periods), asynchronously with
the change of value of the registers. In order to avoid losing register transi-
tions, measurements must be made frequently enough, that is, the sampling
period must be less than t. However, it may happen that transitions of dif-
ferent registers take place between two consecutive measurements, making
it impossible to recover their relative order.

This situation is depicted in Figure 1, where dotted lines indicate mea-
surements. Moreover, we have given names to the individual transitions of
state of the different registers. In this specific situation, the values found at
measurements mi

0, mi
1 and mi

2 allow us to determine that C has acquired
the value 1 and R1 has successively been set during this interval (transitions
ei
0 and ei

1, respectively). The contents of the registers at measurement mi
3

let us infer that R1 has been reset (transition ei
2) and that the value of R2

has changed to 1 (transition ei
3). We know that both ei

2 and ei
3 have taken

place after ei
1, but we have no information about the relative order of these

transitions. Finally, mi
4 and mi

5 acknowledge that R2 has successively been
reset to 0 (ei

4), and the same has then happened to C (ei
5).

We will now give a formalization of this example and use various modal
event calculi to draw conclusions about it. The situation relative to ses-
sion i depicted in Figure 1 can be represented by the EC -structure Hi =
(Ei, P, [·〉i, 〈·]i,]·,·[), whose components are defined as follows:

• Ei = {ei
0, e

i
1, e

i
2, e

i
3, e

i
4, e

i
5};

8

• P = {C, R1, R2};
• [C〉i = {ei

0}, [R1〉i = {ei
1}, [R2〉i = {ei

3};
• 〈C]i = {ei

5}, 〈R1]i = {ei
2}, 〈R2]i = {ei

4};
•]·,·[= ∅.

We have encoded transitions as events with the same name and denoted
with Rj (j = 1, 2) the property that register Rj has value 1, and similarly
for C.

The ordering w of the transitions inferred from the measurements cor-
responds to the transitive closure of the following graph.

ei
0 ei

1

ei
2

ei
3

ei
4 ei

5
- ©©*

HHj

HHj

©©*
-

Consider the formulas ϕi = R1(ei
1, e

i
2) ∧ (ei

2 < ei
3) ∧ R2(ei

3, e
i
4). In order

to verify that the switch S is not faulty in session i, we must ensure that
the registers R1 and R2 display the expected behavior in all refinements of
the current knowledge state w. This amounts to proving that the CMEC -
formula 2ϕi is true in w. If this is the case, there is no fault in session i,
although other sessions might indicate that S is dysfunctional. If we want
to determine the existence of at least one extension of w where the registers
behave as displayed in Figure 1, we must verify the truth of 3ϕi in w. If
this CMEC -formula is true, we cannot be sure whether S is faulty or not.

Since IHi ;w |= 3ϕi and IHi ; w 6|= 2ϕi, a faulty behavior of S in session
i is possible but not certain. Assume now that, unlike the actual situation
depicted in Figure 1, we extend w so that ei

3 precedes ei
2, call w1 the resulting

state. Then, IHi ; w1 6|= 3ϕi, that is, the evolution of the values in the
registers hints at a fault. Conversely, let us refine w so that ei

2 precedes ei
3,

and call w2 the resulting knowledge state. Then, we can infer IHi ; w2 |=
2ϕi, and hence we can conclude that the switch S is certainly not faulty.

The formulas we have used so far belong to the language of CMEC .
This is unfortunate since model checking is intractable in it. However, there
exist equivalent formulas in the language of ECMEC, that can be checked
in polynomial time. By the distributivity 2 over ∧ , 2ϕi is equivalent to
the ECMEC -formula:

ψi = 2R1(ei
1, e

i
2) ∧ 2(ei

2 < ei
3) ∧ 2R2(ei

3, e
i
4)

Therefore, we can use ECMEC and ψi to establish if the switch S is fault-
free or is possibly defective.

Consider the following approximation of 3ϕi:

χi = 3R1(ei
1, e

i
2) ∧ 3(ei

2 < ei
3) ∧ 3R2(ei

3, e
i
4)

which, in general, is not equivalent to, but only implied by, 3ϕi. It easy
to see that the structure H satisfies the singleton condition (Section 2).
Moreover, (ei

1, e
i
2) and (ei

3, e
i
4) belong to w, and thus, from Proposition 2.4,

it follows that IHi ;w |= χi if and only if IHi ;w |= 3ϕi. Therefore, we can
use ECMEC and χi to establish whether the switch S is certainly faulty or
is possibly correct.

Quantifiers allow extending this line of reasoning from session i to all
recorded sessions, enabling us to give a faithful representation of the given
rule for detecting faults in register S. We achieve this by using quantifiers

9

to abstract from the specific events appearing in ϕi above. Consider the
following QCMEC -formulas ϕ1 and ϕ2:

α(~x) = x0 < x1 ∧ R1(x1, x2) ∧
x2 < x3 ∧ R2(x3, x4) ∧ x4 < x5

ϕ1 = ∀x0. ∀x5. C(x0, x5) ⊃ ∃x1.∃x2.∃x3.∃x4.2α(~x)
ϕ2 = ∀x0. ∀x5. C(x0, x5) ⊃ ∃x1.∃x2.∃x3.∃x4.3α(~x)

where ~x stands for the list of variables (x0, x1, x2, x3, x4, x5). Given a global
EC -structure H, we can be certain that the switch S is not faulty no matter
how the order of actual transitions differs from what was inferred from the
measurements if IH; w |= ϕ1 holds. On the other hand, the possibility that
S behaves correctly is left open if IH; w |= ϕ2 is valid. Both ϕ1 and ϕ2 are
in LH(QCMEC). However, if we distribute the modal operator over the
boolean connectives in ϕ1 and ϕ2, we obtain two formulas, say ϕ′1 and ϕ′2,
that are in the language of EQCMEC and thus can be solved in a time that
is polynomial in the number of events (Section 5). It is possible to show
that, for any w′ ∈ Ext(w), IH;w′ |= ϕ1 if and only if IH; w′ |= ϕ′1 and
IH; w′ |= ϕ2 if and only if IH;w′ |= ϕ′2.

4 Implementation

The Event Calculus [9] has traditionally been implemented in the logic
programming language Prolog [13]. Recent extensions to EC have instead
adopted λProlog [10] in order to achieve a declarative yet simple encoding,
necessary to formally establish correctness issues [6]. In this section, we
will rely again on λProlog to obtain an elegant encoding of QCMEC and to
prove its correctness. Space reasons forbid discussing the implementation
of its subcalculi.

4.1 λProlog in a nutshell

Due to space limitations, we shall assume the reader to be familiar with the
logic programming language Prolog [13]. We will instead illustrate some of
the characteristic constructs of λProlog at an intuitive level. We invite the
interested reader to consult [10] for a more complete discussion, and [6] for
a presentation in the context of the Event Calculus.

Differently from Prolog which is first-order, λProlog is a higher-order
language, which means that the terms in this programming language are
drawn from a simply typed λ-calculus. More precisely, the syntax of terms
is given by the following grammar:

M ::= c | x | F | M1 M2 | x \M
where c ranges over constants, x stands for a bound variable and F de-
notes a logical variable (akin to Prolog ’s variables). Identifiers beginning
with a lowercase and an uppercase letter stand for constants and logical
variables, respectively. Terms that differ only by the name of their bound
variables are considered indistinguishable. “x \M” is λProlog ’s syntax for
λ-abstraction, traditionally written λx. M . In this language, terms and
atomic formulas are written in curried form (e.g. “before E1 E2” rather
than “before(E1, E2)”).

Every constant, bound variable and logical variable is given a unique
type A. Types are either user-defined base types, or functional types of the
form A1 ->A2. By convention, the predefined base type o classifies formulas.
A base type a is declared as “kind a.”, and a constant c of type A is entered

10

in λProlog as “type c A.”. Syntax is provided for declaring infix symbols.
Application and λ-abstraction can be typed if their subexpression satisfy
certain constraints. λProlog will reject every term that is not typable.

While first-order terms are equal solely to themselves, the equational
theory of higher-order languages identifies terms that can be rewritten to
each other by means of the β-reduction rule: (x \M)N = [N/x]M , where
the latter expression denotes the capture-avoiding substitution of the term
N for the bound variable x in M . A consequence of this fact is that uni-
fication in λProlog must perform β-reduction on the fly in order to equate
terms or instantiate logical variables. A further difference from Prolog is
that logical variables in λProlog can stand for functions (i.e. expressions of
the form x \M) and this must be taken into account when unification is
performed.

For our purposes, the language of formulas of λProlog differs from Pro-
log for the availability of implication and of an explicit existential quantifier
in the body of clauses. The goal D ⊃ G, written “D =>G” in the concrete
syntax of this language, is solved by resolving the goal G after having as-
sumed D as an additional program clause. The goal ∃x.G is entered as
“sigma x \G”. We will also take advantage of negation-as-failure, denoted
not. We will not rely directly on the other powerful constructs offered by
this language. Other connectives are denoted as in Prolog : “,” for conjunc-
tion, “;” for disjunction, “:-” for implication with the arguments reversed.
The only predefined predicate we will use is the infix “=” that unifies its
arguments. Given a well-typed λProlog program P and a goal G, the fact
that there is a derivation of G from P, i.e. that G is solvable in P, is denoted
P ` G. See [6, 10] for details.

λProlog offers also the possibility of organizing programs into modules.
A module m is declared as “module m.” followed by the declarations and
clauses that define it. Modules can access other modules by means of the
accumulate declaration.

Finally, % starts a comment that extends to the end of the line.

4.2 Implementation of QCMEC in λProlog

We will now give an implementation of QCMEC in λProlog. The resulting
module, called qcmec, is displayed in Appendix A. The rule to diagnose
hardware faults and an example from Section 3 are included in Appen-
dices B and C. This code has been tested using the Terzo implementation
of λProlog, version 1.0b, which is available from

http://www.cse.psu.edu/~dale/lProlog/

We define a family of representation functions p·q that relate the mathemat-
ical entities we have been using in Section 2 to terms in λProlog. Specifically,
we will need to encode EC -structures, the associated orderings, and the lan-
guage of QCMEC . In the remainder of this section, we will refer to a generic
EC -structure H = (E, P, [·〉, 〈·],]·,·[).

We represent H by giving an encoding of the entities that constitute
it. We introduce the types event and property so that every event in E
(property in P) is represented by a distinct constant of type event (of type
property). Event variables are represented as λProlog variables of the rel-
ative type. The initiation, termination and exclusivity relations, and event
occurrences (traditionally represented in EC) are mapped to the predicate
symbol initiates, terminates, exclusive, and happens, respectively, ap-

11

plied to the appropriate arguments. Declarations for these constants can be
found in Appendix A.

For implementation purposes, it is more convenient to compute the
relative ordering of two events on the basis of fragmented data (a binary
acyclic relation) than to maintain this information as a strict order. We rely
on the binary predicate symbol beforeFact to represent the edges of the
binary acyclic relation. We encapsule the clauses for the predicate before,
which implements its transitive closure, in the module transClo. We do
not show details for space reasons, but a quadratic implementation can be
found in [2].

In order to encode the syntax of QCMEC, we define the type mvi,
intended to represent the formulas of this language (as opposed to the for-
mulas of λProlog, that have type o). The representation of formulas is then
relatively standard [6], except for quantifiers:

pp̄(ē1, ē2)q = period pē1q pp̄q pē2q
pē1 < ē2q = pē1q precedes pē2q

p¬ϕq = neg pϕq
pϕ1 ∧ ϕ2q = pϕ1q and pϕ2q
pϕ1 ∨ ϕ2q = pϕ1q or pϕ2q
pϕ1 ⊃ ϕ2q = pϕ1q implies pϕ2q

p2ϕq = must pϕq
p3ϕq = may pϕq

p∀x. ϕq = forAllEvent (x \ pϕq)
p∃x. ϕq = forSomeEvent (x \ pϕq)

Quantifiers differ from the other syntactic entities of a language such as
QCMEC by the fact that they bind a variable in their argument (e.g. x
in ∃x. ϕ). Bound variables are then subject to implicit renaming to avoid
conflicts and to substitution. Encoding binding constructs in traditional
programming languages such as Prolog is painful since these operations
must be explicitly programmed. λProlog and other higher-order languages
permit a much leaner emulation since λ-abstraction (x \ M) is itself a
binder and their implementations come equipped with (efficient) ways of
handling it. The idea, known as higher-order abstract syntax [10], is then
to use λProlog ’s abstraction mechanism as a universal binder. Binding con-
structs in the object language are then expressed as constants that take a
λ-abstracted term as their argument (for example forSomeEvent is declared
of type (event -> mvi) -> mvi). Variable renaming happens behind the
scene, and substitution is delegated to the meta-language as β-reduction.

An example will shed some light on this technique. Consider the formula
ϕ = ∃x. p(x, e2), which representation is

forSomeEvent (x \ (period x p e2)),

where we have assumed that p and e2 are encoded as the constants p
and e2 of the appropriate type. It is easy to convince oneself that this
expression is well-typed. In order to ascertain the truth of ϕ, we need to
check whether p(e, e2) holds for successive e ∈ E until such an event is
found. Automating this implies that, given a candidate event e1 (repre-
sented as e1), we need to substitute e1 for x in period x p e2. This can
however be achieved by simply applying the argument of forSomeEvent
to e1. Indeed, (x \ (period x p e2)) e1 is equal to period e1 p e2,
modulo β-reduction. This technique is used in clauses 12–13 in our imple-
mentation.

12

We represent the truth of a formula in QCMEC by means of the predi-
cate holds. Clauses 1 to 13 in Appendix A implement the specification of
this language given in Section 2. More precisely, clauses 1 and 2 provide
a direct encoding of Definition 2.1, where clause 2 faithfully emulates the
meta-predicate br. Clause 3 captures the meaning of the precedence con-
struct, while clauses 4 to 7 reduce the truth check for the connectives of
QCMEC to the derivability of the corresponding λProlog constructs. No-
tice that implication is translated back to a combination of negation and
disjunction in clause 7. Clauses 8 to 11 implement the semantics of the
modalities as the recursive visit of all the extensions of the current knowl-
edge state; further details can be found in [6]. Existential quantifiers are
handled similarly to connectives in clause 12. Although λProlog offers a
form of universal quantification, we are forced to take a detour and ex-
press our universal quantifiers as negations and existentials in clause 13. A
lengthy discussion of the logical reasons behind this step can be found in [6].

4.3 Soundness and Completeness

The encoding we have chosen as an implementation of QCMEC permits an
easy proof of its faithfulness with respect to the formal specification of this
formalism. Key factors in the feasibility of this endeavor are the precise
semantic definition of QCMEC given in Section 2, and the exploitation of
the declarative features of λProlog.

We only show the statement of our soundness and completeness result
since a fully worked out proof would require a very detailed account of the
semantics of λProlog, and is rather long, although simple. Space constraints
prevent us from doing so. The interested reader can find the full develop-
ment of a proof that relies on the same techniques in [6].

Theorem 4.1 (Soundness and completeness of qcmec)
Let H = (E, P, [·〉, 〈·],]·,·[) be an EC-structure, o a binary acyclic

relation over E and ϕ and formula in LH(QCMEC), then
qcmec, pHq, poq ` holds ϕ iff IH; o+ |= ϕ.

5 Complexity Analysis

This section is dedicated to studying the complexity of the various modal
event calculi presented in Section 2. We assume the reader familiar with
computational complexity theory [12]. Given an EC -structure H, a knowl-
edge state w ∈ WH and a formula ϕ relative to any of the modal event
calculi presented in Section 2, we want to characterize the complexity of the
problem of establishing whether IH; w |= ϕ is true, which is an instance of
the general problem of model checking.

We model our analysis around the truth relations given in Definitions 2.2,
2.3 and 2.5. We measure the complexity of testing whether IH; w |= ϕ
holds in terms of the size n of the input structure (where n is the number of
recorded events) and the size k of the input formula (without loss of gener-
ality, we sometimes interpret k as the number of atomic formulas occurring
in ϕ).

The notion of cost we adopt is as follows: we assume that verifying the
truth of the propositions e ∈ [p〉 and e ∈ 〈p] costs O(1). Although possible
in principle, it is disadvantageous to maintain knowledge states as transitive
relations. We instead record an acyclic binary relation o on events whose

13

transitive closure o+ is w. Verifying whether e1 <w e2 holds becomes a
reachability problem in o and it can be solved in quadratic time O(n2) in
the number n of events [2]. The cost of solving the query e1 < e2 is therefore
quadratic.

We begin our analysis from the plain Event Calculus. Model checking
in EC (Definition 2.2) is a polynomial task and costs O(n3) [2, 4].

Theorem 5.1 (Cost of model checking in EC)
Model checking in EC has complexity O(n3).

We obtain the same bound if we allow property-labeled intervals p(e1, e2),
possibly prefixed with at most one modal operator [4]. This bound does not
change if we consider precedence queries.

An ECMEC -formula is the boolean combination of a number of atomic
formulas, i.e. property-labeled intervals p(e1, e2) or precedence tests e1 < e2,
possibly prefixed with a modal operator.

Given an ECMEC -formula that contains k atomic formulas, checking
it reduces to testing k atomic formulas, possibly prefixed with a modal
operator, each of them is solved in O(n3). Thus, model checking in ECMEC
has polynomial complexity.

Theorem 5.2 (Cost of model checking in ECMEC)
Model checking in ECMEC has complexity O(kn3).

Model checking in CMEC (Definition 2.3) involves an exhaustive ex-
ploration of the extensions of the current knowledge state, whose number
is, in general, exponential in the number of events. This raises complexity
beyond tractability.

Theorem 5.3 (Cost of model checking in CMEC)
Model checking in CMEC is PSPACE-complete.

Proof. In order to prove that model checking in CMEC is in PSPACE,
we show that this problem belongs to AP, that is, we define an alternating
polynomial time algorithm that solves it.

Let ϕ be a CMEC -formula and w a knowledge state. If ϕ = α ∧ β
(resp. ϕ = α ∨ β), the algorithm enters in an AND (resp. OR) state. It
nondeterministically chooses one among α and β and evaluates it in w. If
ϕ = ¬(α ∧ β) (resp. ϕ = ¬(α ∨ β)), the algorithm evaluates ¬α ∨ ¬β (resp.
¬α ∧ ¬β). If ϕ = ¬¬α, the algorithm verifies α. If ϕ = 2α (resp. ϕ = 3α),
the algorithm enters in an AND (resp. OR) state. It nondeterministically
chooses one extension w′ of w and evaluates α in w′. If ϕ = ¬2α (resp.
ϕ = ¬3α), the algorithm evaluates 3¬α (resp. 2¬α). If ϕ = p(e1, e2) (resp.
ϕ = ¬p(e1, e2)), the algorithm accepts it if and only if all points (resp. at
least one point) from i to iv of Definition 2.2 hold (resp. does not hold).
Finally, if ϕ = e1 < e2 (resp. ϕ = ¬(e1 < e2)), the algorithm accepts if and
only if e1 <w e2 (resp. e1 6<w e2).

It follows, from the definition of acceptance of alternating machines
[12], that a CMEC -instance (H, ϕ, w) is accepted if and only if IH;w |= ϕ.
Moreover, the time needed is polynomial in the size of H and ϕ. Thus,
model checking in CMEC in AP. Since AP = PSPACE [12], it is in
PSPACE.

In order to prove that the considered problem is PSPACE-hard, we
define a (polynomial) reduction of QSAT [12] into CMEC .

14

Let G = ∃x1.∀x2.∃x3.∀x4. . . . Qxn. F (x1, x2, . . . xn), with n ≥ 1, be a
quantified Boolean formula where the quantifiers alternate, so that Q is ∃
(∀) if n is odd (even).

We now define the EC -structure H = (E, P, [·〉, 〈·],]·, ·[) such that:
• E = {exi

, e¬xi
: 1 ≤ i ≤ n};

• P = {pxi : 1 ≤ i ≤ n};
• [pxi

〉 = {exi
}, 〈pxi

] = {e¬xi
}, for 1 ≤ i ≤ n;

•]·, ·[= ∅.
Moreover, let w = ∅, and F̂ be the formula obtained replacing in the formula
F (x1, x2, . . . xn) every occurrence of a variable xi with pxi(exi , e¬xi).

Let V = {x1, x2, ...xn} be the set of variables of G. A knowledge state w
in WH naturally induces an assignment tw for the variables in V such that,
for every x in V , tw(x) is true if and only if w |= px(ex, e¬x). Since only the
relative order of the events ex and e¬x, for every variable x in V , is relevant,
different knowledge states may induce the same assignment. This many-to-
one correspondence between knowledge states and assignments establishes
an equivalence relation on the set of all knowledge states for H such that
the truth of a propositional CMEC-formula on H (i.e. , a CMEC-formula
on H without modalities) is invariant within each equivalence class.

Further, consider the following recursive definition of the CMEC -formula
Fk:

Fk =

3F̂ k = n

3(ψk+1 ∧ 2F̂) k = n− 1
3(ψk+1 ∧ 2(ψk+2 ⊃ Fk+2)) otherwise

where
ψk =

∧
k≤i≤n ¬(exi < e¬xi) ∧ ¬(e¬xi < exi).

Observe that, if w |= ψk, then, for every i from k to n, the events exi and
e¬xi are unordered.

It is possible to prove that, for ϕ = F1, w |= ϕ if and only if G is true.
The basic step of the proof is the mapping of the propositional quantifiers
of G into the modal operators of F1. However, the scope of a quantifier
is limited to the variable that it quantifies, whereas the scope of a modal
operator in the formula 2F or 3F extends to the whole formula F . To
cope with this problem, we take advantage of the formulas ψk in order to
restore the correct context for the evaluation of F .

In the following, we analyze the complexity of the quantified calculi de-
fined in Section 2. We begin our analysis with the complexity of EQCMEC,
i.e. the quantified version of ECMEC . We have proved that model check-
ing in ECMEC is polynomial time-bounded (Theorem 5.2). However, the
extension of ECMEC with quantifiers arises complexity beyond P. In par-
ticular, model checking in EQCMEC is PSPACE-complete, as proved by
the following theorem.

Theorem 5.4 (Cost of model checking in EQCMEC)
Model checking in EQCMEC is PSPACE-complete.

Proof. In order to prove that model checking in EQCMEC is in PSPACE,
we show that it belongs to AP. In order to do so, we extend the alternating
polynomial time algorithm used in the proof of Theorem 5.3. If ϕ = ∀x. α
(resp. ϕ = ∃x. α), the algorithm enters in an AND (resp. OR) state. It
nondeterministically chooses one event, say e, and evaluates the formula
obtained by replacing all occurrences of x in α that are in the scope of the

15

quantifier by e. If ϕ = ¬∀x. α (resp. ϕ = ¬∃x. α), the algorithm evaluates
∃x.¬α (resp. ∀x.¬α).

From the definition of acceptance of alternating machines [12], it follows
that an EQCMEC -instance (H, ϕ, w) is accepted if and only if IH; w |= ϕ.
Moreover, the time needed is polynomial in the size of H and ϕ. Thus,
model checking in EQCMEC is in AP. Since AP = PSPACE [12], it is in
PSPACE.

In order to prove that the considered problem is PSPACE-hard, we
define a (polynomial) reduction of QSAT [12] into EQCMEC .

Let G = ∃x1.∀x2.∃x3.∀x4. . . . Qxn. F (x1, x2, . . . xn), with n ≥ 1, be a
quantified boolean formula where the quantifiers alternate (so that Q is ∃
(∀) if n is odd (even)).

We then define an EC -structure H = (E, P, [·〉, 〈·],]·, ·[) such that:
• E = {e1, e2, . . . en, e};
• P = {p1, p2, . . . pn};
• [pi〉 = {ei} and 〈pi] = {e}, for 1 ≤ i ≤ n;
•]·, ·[= ∅.

Moreover, let w = {(ei, e) : 1 ≤ i ≤ n}}, and

ϕ = ∃x1.∀x2.∃x3.∀x4. . . . Qnxn. F̂ (x1, x2, . . . xn)

where F̂ (x1, x2, . . . xn) is obtained replacing every occurrence of a vari-
able xi in the formula F (x1, x2, . . . xn) with pi(xi, e). Notice that ϕ is
an EQCMEC -formula. In particular, it has no modal operator. It is not
difficult to see that w |= ϕ if and only if G is true.

In the following, we characterize the explicit time complexity of model
checking in EQCMEC . Since model checking in EQCMEC is PSPACE-
complete, we expect an exponential bound.

We will exploit the unfolding lemma (2.6). This result affirms that every
formula involving one event quantifier at its top-level can be replaced with
the conjunction or disjunction of n instances of it, where n is the number
of events. If we have a nesting of q such quantifiers, we are led to solve nq

instances. In general, if we eliminate in this manner all event quantifiers in
a formula ϕ of size k, we will produce a formula ϕ′ without quantifiers, i.e.
an ECMEC formula, of size at most knk. Taking advantage of Theorem 5.2,
we get the following upper bound.

Theorem 5.5 (Upper bound for complexity of model checking in EQCMEC)
Model checking in EQCMEC has complexity O(knk+3).

Practical applications using modal event calculi with quantifiers are
expected to model situations involving a large number of events, while the
size of the queries will in general be limited. The hardware fault diagnosis
example in Section 3 falls into this category. In such contexts, the fact that
EQCMEC is polynomial in the number of events is essential. At worst, the
dependence of the exponent on k may lead to polynomials of high degree.

Finally, we consider the calculus QCMEC . Since EQCMEC is a linguis-
tic fragment of QCMEC, model checking in QCMEC is PSPACE-hard.
Nevertheless, it is possible to show that model checking in QCMEC is poly-
nomial space-bounded.

Theorem 5.6 (Cost of model checking in QCMEC)
Model checking in QCMEC is PSPACE-complete.

16

Proof. To see that the considered problem is in PSPACE, we exploit the
polynomial alternating algorithm defined in the proof of Theorem 5.4 for
EQCMEC . It works correctly for QCMEC as well.

Since EQCMEC is a linguistic fragment of QCMEC and EQCMEC is
PSPACE-hard (Theorem 5.4), model checking in QCMEC is PSPACE-
hard.

In Section 4 we have transliterated the definition of QCMEC and its
subcalculi in the higher-order logic programming language λProlog [10].

6 Conclusions and Future Work

In this paper, we have extended a number of modal event calculi [1, 4, 9]
with the possibility of using quantifiers and precedence tests in queries.
The net effect of these combined additions has been a substantial gain in
expressiveness. The extra computational cost was shown acceptable for
queries of a reasonable size in those subcalculi that are tractable without
quantifiers. We have implemented the resulting formalisms in the higher-
order logic programming language λProlog [10], which we used to encode
case studies from the area of hardware and medical diagnosis.

We restricted our attention to complete actual courses of events, whose
temporal ordering, specified by means of a set of ordered pairs of events, is
only partially known. The considered scenarios are thus characterized by a
set of occurred events, which is fixed once and for all and does not include
concurrent or divisible events, and by incomplete (but consistent) informa-
tion about an actual total order, given in terms of the relative order of pairs
of event occurrences. However, most of these restrictions can actually be
relaxed:

• completeness of the set of event occurrences (we can have incomplete
knowledge about both the event occurrences and their temporal or-
dering);

• occurred events only (the events can be either actual events or hypo-
thetical ones).

All the proved results, indeed, do not rely on such restrictions.
Finally, we intend gaining a better understanding of the interactions

among the various operators of our calculi, in particular between quanti-
fiers and modalities, in order to devise simplifications of costly queries and
thus better implementations. We also intend studying the integration of
preconditions [5].

Acknowledgments

We would like to thank Paolo Liberatore, Peter Jonsson and Rob Miller for
their useful comments.

The first author was supported by ONR grant N00014-97-1-0505, Multidis-
ciplinary University Research Initiative Semantic Consistency in Informa-
tion Exchange. The work of the third author was partially supported by
the CNR project Programmazione logica: strumenti per analisi e trasfor-
mazione di programmi; tecniche di ingegneria del software; estensioni con
vincoli, concorrenza ed oggetti (STE).

17

References

[1] Iliano Cervesato, Luca Chittaro, and Angelo Montanari. A modal cal-
culus of partially ordered events in a logic programming framework. In
L. Sterling, editor, Proceedings of the Twelfth International Conference
on Logic Programming — ICLP’95, pages 299–313, Kanagawa, Japan,
13–16 June 1995. MIT Press.

[2] Iliano Cervesato, Luca Chittaro, and Angelo Montanari. Speeding up
temporal reasoning by exploiting the notion of kernel of an ordering
relation. In S.D. Goodwin and H.J. Hamilton, editors, Proceedings of
the Second International Workshop on Temporal Representation and
Reasoning — TIME’95, pages 73–80, Melbourne Beach, FL, 26 April
1995.

[3] Iliano Cervesato, Luca Chittaro, and Angelo Montanari. A general
modal framework for the event calculus and its skeptical and credulous
variants. In W. Wahlster, editor, Proceedings of the Twelfth Euro-
pean Conference on Artificial Intelligence — ECAI’96, pages 33–37,
Budapest, Hungary, 12–16 August 1996. John Wiley & Sons.

[4] Iliano Cervesato, Massimo Franceschet, and Angelo Montanari. A hi-
erarchy of modal event calculi: Expressiveness and complexity. In
H. Barringer, M. Fisher, D. Gabbay, , and G. Gough, editors, Pro-
ceedings of the Second International Conference on Temporal Logic —
ICTL’97, pages 1–17, Manchester, England, 14–18 July 1997. Kluwer,
Applied Logic Series. To appear.

[5] Iliano Cervesato, Massimo Franceschet, and Angelo Montanari. Modal
event calculi with preconditions. In R. Morris and L. Khatib, edi-
tors, Fourth International Workshop on Temporal Representation and
Reasoning — TIME’97, pages 38–45, Daytona Beach, FL, 10–11 May
1997. IEEE Computer Society Press.

[6] Iliano Cervesato and Angelo Montanari. A general modal framework
for the event calculus and its skeptical and credulous variants. In
Journal of Logic Programming, 1998. To appear.

[7] Iliano Cervesato, Angelo Montanari, and Alessandro Provetti. On the
non-monotonic behavior of the event calculus for deriving maximal
time intervals. International Journal on Interval Computations, 2:83–
119, 1993.

[8] Luca Chittaro, Angelo Montanari, and Alessandro Provetti. Skeptical
and credulous event calculi for supporting modal queries. In A. Cohn,
editor, Proceedings of the Eleventh European Conference on Artificial
Intelligence — ECAI’94, pages 361–365. John Wiley & Sons, 1994.

[9] Robert Kowalski and Marek Sergot. A logic-based calculus of events.
New Generation Computing, 4:67–95, 1986.

[10] Dale Miller. Lambda Prolog: An introduction to the language and
its logic. Current draft available from
http://cse.psu.edu/~dale/lProlog, 1996.

[11] K. Nökel. Temporarily Distributed Symptoms in Technical Diagnosis.
Springer-Verlag, 1991.

[12] Christos Papadimitriou. Computational Complexity. Addison-Wesley,
1994.

18

[13] Leon Sterling and Ehud Shapiro. The Art of Prolog: Advanced Pro-
gramming Techniques. MIT Press, 1994.

A Implementation of QCMEC
module qcmec.

accumulate transClo.

kind event type.

kind property type.

kind mvi type.

type initiates event -> property -> o.

type terminates event -> property -> o.

type exclusive property -> property -> o.

type happens event -> o.

% ------- MVIs

type period event -> property -> event -> mvi.

type holds mvi -> o.

type broken event -> property -> event -> o.

holds (period Ei P Et) :- % 1 %

happens Ei, initiates Ei P,

happens Et, terminates Et P,

before Ei Et, not (broken Ei P Et).

broken Ei P Et :- % 2 %

happens E,

before Ei E, before E Et,

(initiates E Q; terminates E Q),

(exclusive P Q; P = Q).

% ------- Ordering

type precedes event -> event -> mvi. infixr precedes 6.

holds (E1 precedes E2) :- before E1 E2. % 3 %

% ------- Connectives

type neg mvi -> mvi.

type and mvi -> mvi -> mvi. infixr and 5.

type or mvi -> mvi -> mvi. infixr or 5.

type implies mvi -> mvi -> mvi. infixl implies 4.

holds (neg X) :- not (holds X). % 4 %

holds (X and Y) :- holds X, holds Y. % 5 %

holds (X or Y) :- holds X; holds Y. % 6 %

holds (X implies Y) :- holds ((neg X) or Y). % 7 %

% ------- Modalities

type must mvi -> mvi.

type may mvi -> mvi.

type fails_must mvi -> o.

holds (must X) :- holds X, not (fails_must X). % 8 %

fails_must X :- % 9 %

happens E1, happens E2, not (E1 = E2),

not (before E1 E2), not (before E2 E1),

beforefact E1 E2 => not (holds (must X)).

holds (may X) :- holds X. % 10 %

holds (may X) :- % 11 %

happens E1, happens E2, not (E1 = E2),

not (before E1 E2), not (before E2 E1),

beforefact E1 E2 => holds (may X).

% ------- Quantifiers

19

type forAllEvent (event -> mvi) -> mvi.

type forSomeEvent (event -> mvi) -> mvi.

holds (forAllEvent X) :- % 12 %

not (sigma E \ (happens E, not (holds (X E)))).

holds (forSomeEvent X) :- sigma E \ holds (X E). % 13 %

B Diagnosing Hardware Faults
module cncc.

accumulate qcmec.

type c property.

type r1 property.

type r2 property.

type phi1 o.

type phi2 o.

phi1 :- holds (forAllEvent E0 \

forAllEvent E5 \

((period E0 c E5) implies

(forSomeEvent E1 \

forSomeEvent E2 \

forSomeEvent E3 \

forSomeEvent E4 \

(must ((E0 precedes E1) and

(period E1 r1 E2) and

(E2 precedes E3) and

(period E3 r2 E4) and

(E4 precedes E5)))))).

phi2 :- holds (forAllEvent E0 \

forAllEvent E5 \

((period E0 c E5) implies

(forSomeEvent E1 \

forSomeEvent E2 \

forSomeEvent E3 \

forSomeEvent E4 \

(may ((E0 precedes E1) and

(period E1 r1 E2) and

(E2 precedes E3) and

(period E3 r2 E4) and

(E4 precedes E5)))))).

C A Specific Situation
module example.

accumulate cncc.

type e0 event. happens e0. initiates e0 c.

type e1 event. happens e1. initiates e1 r1.

type e2 event. happens e2. terminates e2 r1.

type e3 event. happens e3. initiates e3 r2.

type e4 event. happens e4. terminates e4 r2.

type e5 event. happens e5. terminates e5 c.

beforefact e0 e1. beforefact e1 e2. beforefact e1 e3.

beforefact e2 e4. beforefact e3 e4. beforefact e4 e5.

