Verification of Programs by Transformation of Constraint Logic Programs

Emanuele De Angelis (University "d'Annunzio", Pescara, Italy), Fabio Fioravanti (University "d'Annunzio", Pescara, Italy), Alberto Pettorossi (University "Tor Vergata", Rome, Italy), Maurizio Proietti (IASI-CNR, Rome, Italy),

Dave Schmidt Celebration Symposium, Manhattan, KS, USA September, 19-20, 2013

A bit of history on program transformation

- Burstall-Darlington

- Tamaki-Sato

- (1977) transformation of functional programs(1984) transformation of logic programs
- Etalle-Gabbrielli
- (1996) transformation of constraint logic programs

Transformation: from correct specifications to efficient implementations

2. 'proving' (this talk)

Program Transformation

- $\blacksquare Pi \longrightarrow Pi+1 \qquad rule r \in R$
- various semantics M
- need for strategies for rule application
- various settings: functional, logic, and constraint logic programs
- a theoretical limitation: equivalence of programs is undecidable

Program Verification

Parametric framework:

- 1. program P in a language \mathcal{L}
- 2. property ϕ in a logic ${\mathcal F}$

The metalanguage is Constraint Logic Programming (CLP).

(a) a1. C-like commandsa2. Incorrectness triples

(sequential)

- (b) b1. Transition Systems (parallel) b2. Computational Tree Logic (CTL)
- (c) c1. Milner's Calculus of Communicating Systemsc2. Bisimulations
- (d) d1. Constraint Logic Programsd2. First-order predicate calculus properties

Program Verification by Program Transformation

such that $Sem(P) \models \varphi$ iff $M(Q) \models prop$

(a1) C-like commands and their semantics in CLP

A configuration:

 $\langle\!\langle \text{ command } c, \text{ environment } \delta \rangle\!\rangle$

 $\delta: Var \to \mathbb{Z}$

- 1. $\langle\!\langle \ell : x = e, \delta \rangle\!\rangle \Longrightarrow \langle\!\langle at(nextlab(\ell)), update(\delta, x, \llbracket e \rrbracket \delta) \rangle\!\rangle$
- 2. $\langle\!\langle \ell : goto \ \ell', \ \delta \rangle\!\rangle \Longrightarrow \langle\!\langle at(\ell'), \ \delta \rangle\!\rangle$
- 3. $\langle\!\langle \ell : \text{if } (e) \ \ell_1 \text{ else } \ell_2, \delta \rangle\!\rangle \Longrightarrow \langle\!\langle at(\ell_1), \delta \rangle\!\rangle \qquad \text{if } \llbracket e \rrbracket \delta \neq 0$
- 4. $\langle\!\langle \ell : \text{if } (e) \ \ell_1 \text{ else } \ell_2, \ \delta \rangle\!\rangle \Longrightarrow \langle\!\langle at(\ell_2), \ \delta \rangle\!\rangle \qquad \text{if } \llbracket e \rrbracket \delta = 0$

 $\langle\!\langle _, _ \rangle\!\rangle$ formalized as $cf(_,_)$

- 1. tr(cf(cmd(L, asgn(int(X), E)), D), cf(cmd(L1, C), D1)) : nextlab(L,L1), at(L1,C), eval(E,D,V), update(D,int(X),V,D1).
- 2. tr(cf(cmd(L,goto(L1)),D), cf(cmd(L1,C),D)) := at(L1,C).
- 3. $tr(cf(cmd(L,ite(E,L1,L2)),D), cf(cmd(L1,C),D)) :- V \neq 0$, eval(E,D,V), at(L1,C).
- 4. tr(cf(cmd(L,ite(E,L1,L2)),D), cf(cmd(L2,C),D)) :- V = 0, eval(E,D,V), at(L2,C).

(a2) Incorrectness Triples in CLP

An incorrectness triple:

 $\{\{\varphi_{init}\}\} \in \{\{\varphi_{error}\}\}$

С

 $\ell_0: c_0, \ldots, \ell_h:$ halt acting on variables z_1, \ldots, z_n $\varphi_{init}(z_1,\ldots,z_r)$ initial configuration $\varphi_{error}(z_1,\ldots,z_r)$ error configuration

• {{ φ_{init} } c {{ φ_{error} } iff $\exists \delta_0, \delta_h$. $\varphi_{init}(\delta_0(z_1), \dots, \delta_0(z_r))$ $\langle\!\langle \ell_0 : c_0, \, \delta_0 \rangle\!\rangle \Longrightarrow^* \langle\!\langle \ell_h : \text{halt}, \, \delta_h \rangle\!\rangle \wedge$ $\varphi_{error}(\delta_h(z_1),\ldots,\delta_h(z_r))$

 $\{\{x > 0\}\}\ \ell_0: \text{ if } (x < n) \ \ell_1 \text{ else } \ell_h; \ \ell_1: x = x + 1; \ \ell_2: \text{ goto } \ell_0; \ \ell_h: \text{ halt } \{\{x < 0\}\}\$

- 0. at(0, ite(less(int(x), int(n)), 1, h)).
- 1. at(1, asgn(int(x), plus(int(x), int(1)))).
- 2. at(2,goto(0)).
- h. at(h,halt).

(a2) Correctness of the Formalization in CLP

 \implies^* formalized using reach

```
incorrect :- initConf(X), reach(X).
reach(X) :- tr(X,X1), reach(X1).
reach(X) :- errorConf(X).
```

```
phiInit(X) := X > 0.
phiError(X) := X < 0.
```

Theorem. (Correctness of the CLP Formalization)

Let $\operatorname{Tr} \cup \operatorname{At} \cup \operatorname{Reach}$ be the CLP clauses formalizing $\{\{\varphi_{init}\}\}\ c\ \{\{\varphi_{error}\}\}\$. Then, $\{\{\varphi_{init}\}\}\ c\ \{\{\varphi_{error}\}\}\$ does not hold (that is, c is correct) iff $\operatorname{incorrect} \notin \operatorname{M}(\operatorname{Tr} \cup \operatorname{At} \cup \operatorname{Reach})$.

The Transformation Method

Step 1. Removal of the interpreter trStep 2. Propagation of the constraints of ϕ_{init} and ϕ_{error}

```
Transformation Strategy.

TransP = \emptyset;

Defs = {incorrect :- initConf(X), reach(X)};

while there exists a clause c \in Defs do

Unf = RemoveClause(Unfold(c));

Defs = (Defs - {c}) \cup Generalize(Defs);

TransP = TransP \cup Fold(Unf,Def)

od
```

Transformation Rules

r1. Definition Introduction: $newp(X_1, \dots, X_n) \leftarrow c \land A$

 $\begin{array}{l} \text{r2. Unfolding: } p(X_1,\ldots,X_n) \leftarrow c \wedge \underline{q}(X_1,\ldots,X_n) \\ & \underline{q}(X_1,\ldots,X_n) \leftarrow \underline{d_1 \wedge A_1}, \ \ldots, \ \underline{q}(X_1,\ldots,X_n) \leftarrow \underline{d_m \wedge A_m} \\ & p(X_1,\ldots,X_n) \leftarrow c \wedge \underline{d_1 \wedge A_1}, \ \ldots, \ p(X_1,\ldots,X_n) \leftarrow c \wedge \underline{d_m \wedge A_m} \\ \hline \text{r3. Folding: } p(X_1,\ldots,X_n) \leftarrow c \wedge \underline{A} \\ & \underline{q}(X_1,\ldots,X_n) \leftarrow d \wedge \underline{A} \quad \text{and} \quad c \rightarrow d \\ & \text{yields} \\ & p(X_1,\ldots,X_n) \leftarrow c \wedge \underline{q}(X_1,\ldots,X_n) \end{array}$

r4. Clause Removal:

if c is unsatisfiable or
$$(p(X_1, ..., X_n) \leftarrow d \text{ and } c \rightarrow d)$$
,
then remove $p(X_1, ..., X_n) \leftarrow c \land q(X_1, ..., X_n)$

Verification (1.1)

```
 \{\!\!\{x > 0\}\!\!\} \ \ell_0: \text{ if } (x < n) \ \ell_1 \ \text{else} \ \ell_h; \quad \ell_1: x = x + 1; \quad \ell_2: \ \text{goto} \ \ell_0; \quad \ell_h: \ \text{halt} \ \{\!\!\{x < 0\}\!\!\}  Initial program: Tr \cup At \cup Reach
```

Step 1. Removal of the interpreter tr.

Program Transformation:

• define:

```
• fold:
```

```
incorrect:- X>0, new0(N,X).
```

• unfold:

newO(N,X) := X < 0, X > = N.

• fold:

```
newO(N,X) :- X<N, X'=X+1, newO(N,X').
newO(N,X) :- X<O, X>=N.
```

Derived program after removal of the interpreter tr: incorrect:- X>0, new0(N,X). new0(N,X) :- X<N, X'=X+1, new0(N,X').</pre>

newO(N,X) :- X < 0, X>=N.

Verification (1.2)

Step 2. Propagation of the constraints in φ_{init} .

```
Program after removal of the interpreter tr:
incorrect: -X>0, new0(N,X).
newO(N,X) := X < N, X' = X + 1, newO(N,X').
newO(N,X) := X < 0, X > = N.
  Program Transformation:
• define:
  new1(N,X) := X>0, new0(N,X).
• fold:
  incorrect: -X>0, new1(N,X).
• unfold:
  new1(N,X) := X>0, X<N, X'=X+1, new0(N,X').
  new1(N,X) :- X>0, X<0, X>=N.
• fold:
  new1(N,X) := X>0, X<N, X'=X+1, new1(N,X').
  Derived program P:
incorrect: -X>0, new1(N,X).
new1(N,X) := X < N, X' = X + 1, X > 0, new1(N,X').
(•) No constrained facts for new1.
   incorrect \notin \mathbf{M}(\mathbf{P}).
   The C-like program is correct.
```

Verification (2.1)

```
\{\!\{x = 0, y = 0\}\!\} \ \ell_0: \, \texttt{while} \, (x < n) \ \{x = x + 1; \ y = y + 1\}; \ \ell_h: \, \texttt{halt} \, \{\!\{y > x\}\!\}
```

Program after removal of the interpreter tr:

incorrect: -X=0, Y=0, new0(N,X,Y). newO(N,X,Y) := X < N, X' = X + 1, Y' = Y + 1, newO(N,X',Y').newO(N,X,Y) :- Y>X, X>=N. **Program Transformation:** • define: new1(N,X,Y) := X=0, Y=0, new0(N,X,Y).(0)• fold: incorrect: -X=0, Y=0, new1(N,X). • unfold: (1)new1(N,X,Y) := X=0, Y=0, X<N, X'=X+1, Y'=Y+1, new0(N,X',Y'). $\frac{\text{new1}(N,X,Y) := X=0, Y=0, Y>X, X>=N}{N}$ We cannot fold. • generalize: new2(N,X',Y') := X' >= 0, Y' >= 0, new0(N,X',Y').(>=0)

Verification (2.2)

• generalize: new2(N,X',Y') := X' >= 0, Y' >= 0, new0(N,X',Y').(>=0)• fold: new1(N,X,Y) := X=0, Y=0, X<N, X'=X+1, Y'=Y+1, new2(N,X',Y').• unfold: $new2(N,X,Y) := X \ge 0, Y \ge 0, X \le N, X' = X + 1, Y' = Y + 1, new0(N,X',Y').$ $new2(N,X,Y) := X \ge 0, Y \ge 0, Y \ge X, X \ge N.$ • fold: $new2(N,X,Y) := X \ge 0, Y \ge 0, X \le N, X' = X + 1, Y' = Y + 1, new2(N,X',Y').$ Derived program *P* : incorrect :- X=0, Y=0, new1(N,X,Y). new1(N,X,Y) :- X=0, Y=0, X<N, X'=1, Y'=1, new2(N,X',Y'). new2(N,X,Y) :- X>=0, Y>=0, X<N, X'=X+1, Y'=Y+1, new2(N,X',Y'). $new2(N,X,Y) := X \ge 0, Y \ge 0, Y \ge X, X \ge N.$ -(•)

(•) There is a constrained fact for new2.

Unable to prove or disprove correctness of the C-like program. Need for smart generalizations.

Verification (2.3)

- generalize 'by branching preserving': new2(N,X',Y') :- X'>=0, Y'>=0, X'>=Y', new0(N,X',Y').
 (bp)
- fold:

new1(N,X,Y) := X=0, Y=0, X<N, X'=1, Y'=1, new2(N,X',Y').

• unfold:

new2(N,X,Y) :- X>=0, Y>=0, X<N, X>=Y, X'=X+1, Y'=Y+1, new0(N,X',Y'). new2(N,X,Y) :- X>=0, Y>=0, Y>X, X>=Y, X>=N.

• fold:

new2(N,X,Y) :- X>=0, Y>=0, X<N, X'=X+1, Y'=Y+1, new2(N,X',Y').

New derived program P_{bp} :

incorrect :- X=0, Y=0, new1(N,X,Y).
new1(N,X,Y) :- X=0, Y=0, X<N, X'=1, Y'=1, new2(N,X',Y').
new2(N,X,Y) :- X>=0, Y>=0, X<N, X'=X+1, Y'=Y+1, new2(N,X',Y').</pre>

(•) No a constrained facts for new2.
 incorrect ∉ M(P_{bp}).
 The C-like program is correct.

Need for Good Generalizations

Generalizations should guarantees that a finite number of new definitions are introduced.

Widening.

Convex-Hull & Widening.

- 1.00

Suitable Generalizations (1)

Generalization guarantees that a finite number of new definitions are introduced.

Widening. $new1(...) \leftarrow X=0 \land Y=0 \land B(X,Y)$ $new2(...) \leftarrow X=1 \land Y=1 \land B(X,Y)$

by widening we get:

 $new3(...) \leftarrow X \ge 0 \land Y \ge 0 \land B(X,Y)$

Suitable Generalizations (2)

Convex-Hull & Widening. $new1(...) \leftarrow X=0 \land Y=0 \land B(X,Y)$ $new2(...) \leftarrow X=1 \land Y=1 \land B(X,Y)$

by convex-hull we get:

 $new4(...) \leftarrow 1 \le X \le 2 \land 1 \le Y \le 2 \land X = Y \land B(X,Y)$

then, by widening we get: $new5(...) \leftarrow 0 \le X \land 0 \le Y \land X = Y \land B(X,Y)$

Proofs of Array Programs (1)

$$\begin{split} &\{\!\{i \ge 0 \land n = \dim(a) \land n \ge 1\}\!\} \\ &\ell_0: (x = 1); \quad \ell_1: \text{ while } (x < n) \ \{ a[i] = a[i-1] + 1; \ i = i+1]; \ \} \quad \ell_h: \text{ halt} \\ &\{\!\{ \exists j \ (0 \le j \land j < n \land j + 1 < n \land a[j] > a[j+1]) \}\!\} \end{split}$$

An execution: $[4,1,3,7,2] \implies^* [4,5,6,7,8]$

 $\delta: (Var \to \mathbb{Z}) \cup (AVar \to (\mathbb{N} \to_{fin} \mathbb{Z}))$

5. $\langle\!\langle \ell : a[ie] = e, \delta \rangle\!\rangle \Longrightarrow \langle\!\langle at(nextlab(\ell)), update(\delta, a, write(\delta(a), [\![ie]\!]\delta, [\![e]\!]\delta))\rangle\!\rangle$

5. tr(cf(cmd(L,asgn(arrayelem(A,IE),E)),D), cf(cmd(L1,C),D1)) : nextlab(L,L1), at(L1,C),
 eval(IE,D,I), eval(E,D,V), lookup(D,array(A),FA), write(FA,I,V,FA1),
 update(D,array(A),FA1,D1).

read(A,I,U) iff A[I] is U
write(A,I,U,B) iff by assigning to A[I] the value U we get the array B.

Proofs of Array Programs (2)

THEORY OF ARRAYS:

A1. $I = J, read(A, I, U), read(A, J, V) \rightarrow U = V$

- A2. I = J, write(A, I, U, B), read(B, J, V) \rightarrow U = V
- A3. $I \neq J$, write(A,I,U,B), read(B,J,V) \rightarrow read(A,J,V)

EXTRA TRANSFORMATION RULES:

```
RR1. If c \rightarrow I = J then
       replace: read(A, I, U), read(A, J, V) by: read(A, I, U), U = V
RR2. If c \equiv (read(A, I, U), read(A, J, V), d) and d \neq I \neq J and d \rightarrow U \neq V then
       add: I \neq J
RW1. If \mathbf{c} \rightarrow \mathbf{I} = \mathbf{J} then
       replace: write(A, I, U, B), read(B, J, V)
       by: write(A, I, U, B), U = V
RW2. If c \not\rightarrow I = J and c \not\rightarrow I \neq J then
       replace: H :- c, write(A, I, U, B), read(B, J, V), G
                                                                                     (splitting)
       by: H:-c, I=J, U=V, write(A, I, U, B), G
                                                                          and
                 H:-c, I \neq J, write(A, I, U, B), read(A, J, V), G
RW3. If \mathbf{c} \to \mathbf{I} \neq \mathbf{J} then
       replace: write(A, I, U, B), read(B, J, V)
       by: write(A, I, U, B), read(A, J, V)
```

Proofs of Recursively Defined Properties

 $\{\{m \ge 1 \land n \ge 1\}\} \\ \ell_0: x = m; \\ \ell_1: y = n; \\ \ell_2: \text{ while } (x \neq y) \{ \text{ if } (x > y) \ x = x - y; \text{ else } y = y - x; \} \\ \ell_3: z = x; \\ \ell_h: \text{ halt} \\ \{\{\exists d \ (gcd(m, n, d) \land d \neq z)\}\}$

Experimental Evaluation

		APMC	HSE	TRACER		
	WIAT	ANNC	1151	SPost	WPre	
right answers	185	138	160	91	103	
correct problems	154	112	138	74	85	
incorrect problems	31	26	22	17	18	
wrong answers	0	9	4	13	14	
missed bugs	0	1	1	0	0	
false alarms	0	8	3	13	14	
errors	0	18	0	20	22	
timeout	31	51	52	92	77	
total time	10717	15788	15770	27757	23259	
average time	58	114	99	305	226	

Times are in seconds. Timeout = 300 seconds.

Benchmark of 216 programs (DAGGER, TRACER, InvGen, TACAS SVCOMP13).

(b1-b2) Transition Systems

A reactive system as a *Kripke structure*: $\langle S, I, R, L \rangle$

- S: the (possibly infinite) set of *states*
- *I*: the set of the *initial states*
- R: a total binary *transition relation* denoted \rightarrow
- *L*: a *labeling function*: $S \rightarrow 2^{Elem}$

A computation path: an infinite sequence of states $s_0 s_1 \dots$ such that $\forall i \ge 0, s_i \longrightarrow s_{i+1}$.

Computational Tree Logic (CTL)

 $\varphi ::= e \mid \operatorname{not}(\varphi) \mid \operatorname{and}(\varphi_1, \varphi_2) \mid \operatorname{ex}(\varphi) \mid \operatorname{eu}(\varphi_1, \varphi_2) \mid \operatorname{af}(\varphi)$ where $e \in Elem$, a set of elementary properties.

Starvation Freedom for process A: $ag(wait_A \rightarrow af(use_A))$

Ticket Protocol in CLP

N := N+1 $T_A := T;$ T := T+1 $w: wait_A$ $T_A \leq N$ $u: use_A$

The Ticket Protocol: transitions for process A.

• *state* of process A: $\langle s_A, T_A \rangle$

 $-s_A \in \{t, w, u\}$ (that is, *think*_A, *wait*_A, and *use*_A)

- $-T_A$: the ticket of process A
- *state* of process *B*: $\langle s_B, T_B \rangle$
- global state: $\langle s_A, T_A, s_B, T_B, T, N \rangle$
 - -T: the next ticket

-N: if $T_A \leq N$, then process A may access the shared resource.

- 1. *initial*($\langle t, T_A, t, T_B, T, N \rangle$) $\leftarrow T = N \land T \ge 0$
- 2. $tr(\langle t, T_A, s_B, T_B, T, N \rangle, \langle w, T, s_B, T_B, T1, N \rangle) \leftarrow T1 = T+1$
- 3. $tr(\langle w, T_A, s_B, T_B, T, N \rangle, \langle u, T_A, s_B, T_B, T, N \rangle) \leftarrow T_A \leq N$
- 4. $\operatorname{tr}(\langle u, T_A, s_B, T_B, T, N \rangle, \langle t, T_A, s_B, T_B, T, N1 \rangle) \leftarrow N1 = N+1$

and analogous clauses for process B.

Computational Tree Logic in CLP

5. $sat(X,F) \leftarrow elem(X,F)$ 6. $sat(X, and(F_1,F_2)) \leftarrow sat(X,F_1) \land sat(X,F_2)$ 7. $sat(X, not(F)) \leftarrow \neg sat(X,F)$ 8. $sat(X, ef(F)) \leftarrow \neg sat(X,F)$ 9. $sat(X, ef(F)) \leftarrow \underline{tr}(X,Y) \land sat(Y, ef(F))$ 10. $sat(X, af(F)) \leftarrow \underline{sat}(X,F)$ 11. $sat(X, af(F)) \leftarrow \underline{trs}(X,Ys) \land sat_all(Ys, af(F))$ 12. $sat_all([],F) \leftarrow$ 13. $sat_all([X|Xs],F) \leftarrow sat(X,F) \land sat_all(Xs,F)$

elem(X,F) iff F is an elementary property holding at state X trs(X, Ys) iff Ys is a list of all the successor states of X

14. $\operatorname{trs}(\langle t, T_A, t, T_B, T, N \rangle, [\langle w, T, t, T_B, T1, N \rangle, \langle t, T_A, w, T, T1, N \rangle]) \leftarrow T1 = T+1$ 15. $\operatorname{trs}(\langle w, T_A, t, T_B, T, N \rangle, [\langle u, T_A, t, T_B, T, N \rangle, \langle w, T_A, w, T, T1, N \rangle]) \leftarrow T_A \leq N \wedge T1 = T+1$ 16. $\operatorname{trs}(\langle w, T_A, t, T_B, T, N \rangle, [\langle w, T_A, w, T, T1, N \rangle]) \leftarrow T_A > N \wedge T1 = T+1$ 17. $\operatorname{trs}(\langle u, T_A, t, T_B, T, N \rangle, [\langle t, T_A, t, T_B, T, N1 \rangle, \langle u, T_A, w, T, T1, N \rangle]) \leftarrow T1 = T+1 \wedge N1 = N+1$

Starvation Freedom for Ticket Protocol

prop $\equiv_{def} \forall X(initial(X) \rightarrow sat(X, F))$ for some formula represented by the ground term *F*.

Starvation Freedom for process *A*: $F \equiv ag(wait_A \rightarrow af(use_A))$, that is, *not*(ef(*and*(*wait_A*, *not*(af(*use_A*))))).

By Lloyd-Topor transformation:

- 18. $prop \leftarrow \neg negprop$
- **19.** $negprop \leftarrow initial(X) \land sat(X, ef(and(wait_A, not(af(use_A))))))$

By program transformation we get: $prop \leftarrow$

• The Ticket Protocol enjoys Starvation Freedom.

Experimental Evaluation (2)

	М	AP		AL	V		Hy	Tech
Program	WM	WS	default	Α	F	L	Fw	Bw
Bakery (safety)	30	20	20	30	90	30	8	20
Bakery (liveness)	90	60	30	30	90	30	×	×
Peterson N	190	220	71690	\perp	œ	œ	70	œ
Ticket (safety)	20	20	œ	80	30	œ	∞	œ
Ticket (liveness)	80	110	œ	230	40	8	×	×
Berkeley RISC	30	30	10	\perp	20	60	∞	20
DEC Firefly	20	20	10	\perp	20	80	~	20
IEEE Futurebus+	110	2460	320	\perp	8	670	8	380
Illinois University	10	30	10	\perp	8	140	×	20
MESI	30	30	10	\perp	20	60	8	20
Synapse N+1	20	20	10	\perp	10	30	8	10
Xerox PARC Dragon	30	30	20	\perp	40	340	∞	20
Barber	1160	1220	340	\perp	90	360	8	90
Bounded Buffer	3580	3580	10	10	8	20	œ	10
Unbounded Buffer	3810	3810	10	10	40	40	×	20
Consprodjava	25300	8	œ	×	œ	œ	∞	œ
CSM	6410	6540	79490	\perp	œ	œ	8	œ
Consistency	70	60	8	\perp	8	œ	8	2030
Insertion Sort	100	90	40	60	8	70	8	10
Selection Sort	8	180	œ	390	8	×	∞	œ
Office Light Control	50	50	20	20	30	20	8	œ
Reset Petri Net	20	20	∞	\perp	8	10	∞	10
Kanban	8130	8000	œ	×	8	×	700	œ
Train	30900	57260	42240	\perp	8	30	8	8
no. of verified properties	23	23	17	9	12	16	2	14

Comparison of the MAP, ALV, and HyTech. Times in milliseconds.

' \perp ' means 'Unable to verify'. ' ∞ ' means 'No answer' within 100 seconds. ' \times ' means 'test not performed'.

MAP: a tool for program transformation and program specialization. http://map.uniroma2.it/mapweb

1. Program Uploading	2. Options Selection	3. Specialization	4. Perfect Model
Bakery Protocol 2 processes - safety [De]	zanno-Podelski,2001)	Specialization Options:-	
		Invariant	invl v
a Transitions		Timeout	: 10 s 🔻 📐
(s(t,A,S,B),s(w,D,S,B)) :- D=:=B+1, A>=0,	B>=0.	📃 🔍 Default 🖲 Custom	
(s(w, A, S, B), s(u, A, S, B)) :- A <b, a="">=0. (s(w, A, S, B), s(u, A, S, B)) :- B=:=0. A>=0.</b,>		Generalization Parame	eters:
(s(u,A,S,B),s(t,D,S,B)) :- D=:=0, A>=0, B:	>=0.	MaxCoef	f: off v
(s(S,A,T,B),s(S,A,W,D)) :- D=:=A+1, A>=0. (s(S,A,W,B),s(S,A,U,B)) :- B <a, b="">=0.</a,>		Firing Relation	n: variant V
:(s(S,A,w,B),s(S,A,u,B)) :- A=:=0, B>=0. :(s(S,A,u,B),s(S,A,t,D)) :- D=:=0, B>=0, A:	⇒=0.	Gen. Oper	.: widen V
		Gen. Param	.: e_leq_maxsum 🔻
s Elementary Properties			
elem(s(u,A,u,B),unsafe) :- A>=0, B>=0.		Polyvariance Paramet	ers:
elem(s(t.A.t.C).initial) :- A=:=0. C=:=0.		Partitioning	g: single 🔻
<pre>selem(s(w, A, w, A), initial): - A>0.</pre>		Include Foldable	e: include V
		Candidate	e: w.r.t. ancestor V
5 Temporal Properties		Post-Folding	: most general v
invl unreachable(backward initial uncafe		▼	

References

E. M. Clarke, O. Grumberg, and D. Peled. *Model Checking*. MIT Press, 1999.

P. Cousot and N. Halbwachs. *Automatic discovery of linear restraints among variables of a program.* In: POPL'78, 84–96, 1978.

F. Fioravanti, A. Pettorossi, M. Proietti, and V. Senni. *Generalization Strategies for the Verification of Infinite State Systems.* Theory and Practice of Logic Programming. Vol. 13, Special Issue 02, 175–199, 2013.

M. Leuschel, T. Massart. *Infinite State Model Checking by Abstract Interpretations and Program Specialization.* In: LOPSTR'99, LNCS 1817, 63–82. Springer, 2000.

<u>ALV</u>: T. Yavuz-Kahveci and T. Bultan. *Action Language Verifier: An Infinite-State Model Checker for Reactive Software Specifications*. Formal Methods in System Design, 35(3):325–367, 2009.

J. C. Peralta, J. P. Gallagher, and H. Saglam. Analysis of Imperative Programs through Analysis of Constraint Logic Programs. Proc. SAS'98, LNCS 1503, 246–261. Springer, 1998.

D. A. Schmidt. *Data flow analysis is model checking of abstract interpretations.* In: POPL'98, 38–48. ACM Press, 1998.

Thanks

to: Anindya, Kyung-Goo, Olivier, and John for their invitation to take part in this celebration.

Ami and John for their help in the travel arrangements.

Dave for his friendship and his beautiful example of dedication to research and teaching. *Ad maiora!*

(c1-c2) Calculus for Communicating Systems (1)

- The infinite set A of *names*. $\forall \ell \in A$ there exists a *co-name*, denoted by $\overline{\ell} \in \overline{A}$.
- The set Act of actions, which is $A \cup \overline{A} \cup \{\tau\}$, where τ is a distinguished element.
- The set *Id* of *identifiers* which are introduced by *definitions* of the form: $P =_{def} p$.
- The set \mathscr{P} of *processes*:

 $p ::= 0 \mid \alpha.p \mid p_1 + p_2 \mid p_1 \mid p_2 \mid p \setminus L \mid P$

The operational semantics as a binary relation $\stackrel{\alpha}{\longrightarrow} \subseteq \mathscr{P} \times \mathscr{P}$.