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A bit of history on program transformation

fib(0) = a

fib(1) = b

fib(n+2) = fib(n+1) + fib(n)

- Burstall-Darlington (1977) transformation of functional programs
- Tamaki-Sato (1984) transformation of logic programs

- Etalle-Gabbrielli (1996) transformation of constraint logic programs

 Transformation: from correct specifications to efficient implementations

fib(n) = a where  <a,b>=r(n)

r(0)   = <a,b>

r(2n) = <u2+2uv, u2+v2>

r(2n+1) = <(u+v)2+u2, u2+2uv > 

where  <u,v>=r(n)

1. ‘improving’

2. ‘proving’  (this talk)    

∀i,j 0!i<j!n → A[i] ! A[j]

merge-sort

quick-sort

3. ‘synthesizing’
...



Program Transformation

P0                    P1                     ...                         Pn 

M(P0)     =      M(P1)     =           ...          =           M(Pn) 

semantics 
preserving

r
Pi                    Pi+1 rule r ∈ R

need for strategies for rule application

various settings: functional, logic, and constraint logic programs

r1r0 rn-1

a theoretical limitation:  equivalence of programs is undecidable

various semantics M 



Program Verification

Parametric framework:

1. program  P  in a language L

2. property " in a logic F

The metalanguage is Constraint Logic Programming (CLP).

(a)  a1. C-like commands    (sequential)

   a2. Incorrectness triples

(b) b1. Transition Systems (parallel)

b2. Computational Tree Logic (CTL)

(c)  c1. Milner’s Calculus of Communicating Systems 

      c2.  Bisimulations

(d)  d1. Constraint Logic Programs

      d2. First-order predicate calculus properties



Program Verification by Program Transformation

Given a program P and a property ",

in order to establish:  Sem(P)      "

we do:

          <Sem, P, ">

                  P   a constraint logic program defining the predicate prop

                  Q a new constraint logic program defining the predicate prop

such that Sem(P)     "     iff     M(Q)      prop

formalize

transform

Sem,"



(a1) C-like commands and their semantics in CLP



(a2) Incorrectness Triples in CLP



(a2) Correctness of the Formalization in CLP



The Transformation Method

Step 1. Removal of the interpreter tr

Step 2. Propagation of the constraints of "      and " init error

Transformation Strategy.

TransP = ∅;     

Defs = {incorrect :- initConf(X), reach(X)};

while there exists a clause c ∈ Defs do 

Unf = RemoveClause(Unfold(c));

 Defs = (Defs – {c}) ∪ Generalize(Defs);

TransP = TransP ∪ Fold(Unf,Def)

     od



Transformation Rules



Verification (1.1)



Verification (1.2)



Verification (2.1)



Verification (2.2)



Verification (2.3)



Need for Good Generalizations

Generalizations should guarantees that a finite number of 
new definitions are introduced.

Widening.

Convex-Hull & Widening.

...



Suitable Generalizations (1)

Generalization guarantees that a finite number of new definitions 
are introduced.

Widening.

new1(...) # X=0 ∧ Y=0 ∧ B(X,Y)

new2(...) # X=1 ∧ Y=1 ∧ B(X,Y)

by widening we get:

new3(...) # X>=0 ∧ Y>=0 ∧ B(X,Y)

...

widening



Suitable Generalizations (2)

Convex-Hull & Widening.

new1(...) # X=0 ∧ Y=0 ∧ B(X,Y)

new2(...) # X=1 ∧ Y=1 ∧ B(X,Y)

by convex-hull we get:

new3(...) # 0<=X<=1 ∧ 0<=Y<=1 ∧ X=Y ∧ B(X,Y)

new4(...) # 1<=X<=2 ∧ 1<=Y<=2 ∧ X=Y ∧ B(X,Y)

then, by widening we get:

new5(...) # 0<=X ∧ 0<=Y ∧ X=Y ∧ B(X,Y)

...

...

convex-hull



Proofs of Array Programs   (1)



Proofs of Array Programs   (2)



Proofs of Recursively Defined Properties



Experimental Evaluation



(b1-b2) Transition Systems



Computational Tree Logic (CTL)
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Ticket Protocol in CLP



Computational Tree Logic in CLP



Starvation Freedom for Ticket Protocol



Experimental Evaluation   (2)



MAP: a tool for program transformation and program specialization. 

MAP

http://map.uniroma2.it/mapweb
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(c1-c2) Calculus for Communicating Systems (1)


