
Verification of Programs
by Transformation

of Constraint Logic Programs

Emanuele De Angelis (University “d’Annunzio”, Pescara, Italy),

Fabio Fioravanti (University “d’Annunzio”, Pescara, Italy),

Alberto Pettorossi (University “Tor Vergata”, Rome, Italy),

Maurizio Proietti (IASI-CNR, Rome, Italy),

Dave Schmidt Celebration Symposium, Manhattan, KS, USA
September, 19-20, 2013

A bit of history on program transformation

fib(0) = a

fib(1) = b

fib(n+2) = fib(n+1) + fib(n)

- Burstall-Darlington (1977) transformation of functional programs
- Tamaki-Sato (1984) transformation of logic programs

- Etalle-Gabbrielli (1996) transformation of constraint logic programs

 Transformation: from correct specifications to efficient implementations

fib(n) = a where <a,b>=r(n)

r(0) = <a,b>

r(2n) = <u2+2uv, u2+v2>

r(2n+1) = <(u+v)2+u2, u2+2uv >

where <u,v>=r(n)

1. ‘improving’

2. ‘proving’ (this talk)

∀i,j 0!i<j!n → A[i] ! A[j]

merge-sort

quick-sort

3. ‘synthesizing’
...

Program Transformation

P0 P1 ... Pn

M(P0) = M(P1) = ... = M(Pn)

semantics
preserving

r
Pi Pi+1 rule r ∈ R

need for strategies for rule application

various settings: functional, logic, and constraint logic programs

r1r0 rn-1

a theoretical limitation: equivalence of programs is undecidable

various semantics M

Program Verification

Parametric framework:

1. program P in a language L

2. property " in a logic F

The metalanguage is Constraint Logic Programming (CLP).

(a) a1. C-like commands (sequential)

 a2. Incorrectness triples

(b) b1. Transition Systems (parallel)

b2. Computational Tree Logic (CTL)

(c) c1. Milner’s Calculus of Communicating Systems

 c2. Bisimulations

(d) d1. Constraint Logic Programs

 d2. First-order predicate calculus properties

Program Verification by Program Transformation

Given a program P and a property ",

in order to establish: Sem(P) "

we do:

 <Sem, P, ">

 P a constraint logic program defining the predicate prop

 Q a new constraint logic program defining the predicate prop

such that Sem(P) " iff M(Q) prop

formalize

transform

Sem,"

(a1) C-like commands and their semantics in CLP

(a2) Incorrectness Triples in CLP

(a2) Correctness of the Formalization in CLP

The Transformation Method

Step 1. Removal of the interpreter tr

Step 2. Propagation of the constraints of " and " init error

Transformation Strategy.

TransP = ∅;

Defs = {incorrect :- initConf(X), reach(X)};

while there exists a clause c ∈ Defs do

Unf = RemoveClause(Unfold(c));

 Defs = (Defs – {c}) ∪ Generalize(Defs);

TransP = TransP ∪ Fold(Unf,Def)

 od

Transformation Rules

Verification (1.1)

Verification (1.2)

Verification (2.1)

Verification (2.2)

Verification (2.3)

Need for Good Generalizations

Generalizations should guarantees that a finite number of
new definitions are introduced.

Widening.

Convex-Hull & Widening.

...

Suitable Generalizations (1)

Generalization guarantees that a finite number of new definitions
are introduced.

Widening.

new1(...) # X=0 ∧ Y=0 ∧ B(X,Y)

new2(...) # X=1 ∧ Y=1 ∧ B(X,Y)

by widening we get:

new3(...) # X>=0 ∧ Y>=0 ∧ B(X,Y)

...

widening

Suitable Generalizations (2)

Convex-Hull & Widening.

new1(...) # X=0 ∧ Y=0 ∧ B(X,Y)

new2(...) # X=1 ∧ Y=1 ∧ B(X,Y)

by convex-hull we get:

new3(...) # 0<=X<=1 ∧ 0<=Y<=1 ∧ X=Y ∧ B(X,Y)

new4(...) # 1<=X<=2 ∧ 1<=Y<=2 ∧ X=Y ∧ B(X,Y)

then, by widening we get:

new5(...) # 0<=X ∧ 0<=Y ∧ X=Y ∧ B(X,Y)

...

...

convex-hull

Proofs of Array Programs (1)

Proofs of Array Programs (2)

Proofs of Recursively Defined Properties

Experimental Evaluation

(b1-b2) Transition Systems

Computational Tree Logic (CTL)

eu(",$) :

...

...

...

"" " $

af(") :
...

...

...

...

...

"

"

"

"

ex(") :

...

...

...

"

ag(") :
...

...

...

...

...

"

"

"

"

"

"

"

"

"

Ticket Protocol in CLP

Computational Tree Logic in CLP

Starvation Freedom for Ticket Protocol

Experimental Evaluation (2)

MAP: a tool for program transformation and program specialization.

MAP

http://map.uniroma2.it/mapweb

References

E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among

variables of a program. In: POPL’78, 84–96, 1978.

F. Fioravanti, A. Pettorossi, M. Proietti, and V. Senni. Generalization Strategies for

the Verification of Infinite State Systems. Theory and Practice of Logic

Programming. Vol. 13, Special Issue 02, 175–199, 2013.

M. Leuschel, T. Massart. Infinite State Model Checking by Abstract Interpretations

and Program Specialization. In: LOPSTR’99, LNCS 1817, 63–82. Springer, 2000.

ALV: T. Yavuz-Kahveci and T. Bultan. Action Language Verifier: An Infinite-State

Model Checker for Reactive Software Specifications. Formal Methods in System

Design, 35(3):325–367, 2009.

J. C. Peralta, J. P. Gallagher, and H. Saglam. Analysis of Imperative Programs

through Analysis of Constraint Logic Programs. Proc. SAS!98, LNCS 1503,

246–261. Springer, 1998.

D. A. Schmidt. Data flow analysis is model checking of abstract interpretations. In:

POPL’98, 38–48. ACM Press, 1998.

Thanks

to: Anindya, Kyung-Goo, Olivier, and John for their invitation to take part

 in this celebration.

 Ami and John for their help in the travel arrangements.

 Dave for his friendship and his beautiful example of dedication to

 research and teaching. Ad maiora!

(c1-c2) Calculus for Communicating Systems (1)

