
Generation of test data structures using
Constraint Logic Programming?

Valerio Senni1 and Fabio Fioravanti2

1 DISP, University of Rome Tor Vergata, Rome, Italy
senni@disp.uniroma2.it

2 Dipartimento di Scienze, University ‘G. D’Annunzio’, Pescara, Italy
fioravanti@sci.unich.it

Abstract. The goal of Bounded-Exhaustive Testing (BET) is the automatic
generation of all the test cases satisfying a given invariant, within a given
bound. When the input has a complex structure, the development of correct
and efficient generators becomes a very challenging task. In this paper we use
Constraint Logic Programming (CLP) to systematically develop generators
of structurally complex test data.
Similarly to filtering-based test generation, we follow a declarative approach
which allows us to separate the issue of (i) defining the test structure and
invariant, from that of (ii) generating admissible test input instances. This
separation helps improve the correctness of the developed test case genera-
tors. However, in contrast with filtering approaches, we rely on a symbolic
representation and we take advantage of efficient search strategies provided
by CLP systems for generating test instances.
Through some experiments on examples taken from the literature on BET,
we show that CLP, by combining the use of constraints and recursion, allows
one to write intuitive and easily understandable test generators. We also show
that these generators can be much more efficient than those built using ad-hoc
filtering-based test generation tools like Korat.

1 Introduction

The identification of test cases, which is a central task in the testing process, is
very often carried out as a manual activity. As a consequence, it is error-prone,
it has limited applicability, and can be very expensive (around 50% of the cost of
software development). Formal and automated techniques have thus received interest
from the testing community because they can be used to develop test suites in a
more systematic and affordable way, by enforcing correctness and allowing flexible
integration with the considered code coverage criteria.

In this paper we focus on the bounded-exhaustive testing [7,26] approach (BET),
whose goal is to test a program on all the input instances satisfying a given invariant,
up to a given bound on their size. The motivation underlying the BET approach is
based on the observation that defects, if any, are likely to appear already in small-
sized instances of the inputs.

? This paper has been accepted to appear in the proceedings of the conference Tests &
Proofs 2012, Lecture Notes in Computer Science 7305, Springer, 2012 (in press).

Automated test input generators should be (i) correct, that is, they should gener-
ate only test input instances which satisfy the considered invariant, and (ii) efficient,
when generating test input candidates and filtering out those which are not admissi-
ble, so that they can be applied to large and realistic domains.

Modern software often manipulates input data with complex structure (like trees
and graphs) and satisfying non-trivial invariants (like sorting, coloring, depth bal-
ancing). The correct and efficient generation of structurally complex inputs is a chal-
lenging task because the number of test input candidates can grow very fast, but only
a few inputs, which satisfy the desired invariants, are to be selected as admissible.
The generation of large and complex test objects is also required by some recent
application domains, such as XML documents generation, considered in [18], where
an RSS feed parser is tested for HTML injection vulnerabilities, and in [4], where
they are used for testing Web Services.

In this paper we propose a framework based on Constraint Logic Programming
(CLP) for the systematic development of generators of large sets of structurally
complex test data.

Similarly to filtering-based techniques, we adopt a declarative approach which
allows us to separate the issue of (i) defining the test input structure and invariants,
from that of (ii) generating admissible test input instances. This separation helps
improve the correctness of the developed test case generators, because it lets testing
engineers write what to generate, in a very intuitive and easily understandable way.
Efficient CLP search strategies are then used for specifying how test instances should
be generated.

Although heavy optimizations require in-depth knowledge of CLP techniques, we
will show that excellent results can be already obtained by following some simple
programming guidelines. In particular, we show that test generators should be writ-
ten following the so-called constrain-and-generate approach, according to which the
structural and invariant constraints should be computed first, postponing as much
as possible the actual generation of test instances. This allows the CLP computation
engine to prune the search space at the symbolic level, avoiding useless executions of
the expensive instantiation phase.

We experiment with some examples taken from the literature on BET, and we
show that CLP, by combining the use of constraints and recursion, allows us to write
test generators which are simpler and more efficient than those built using the ad-hoc
test generation tool Korat [29]. However, our focus is not on deriving CLP generators
from Korat ones. Rather, we assume that those generators have been derived from a
given, abstract, model and we evaluate their efficiency.

Our evaluation shows that modern CLP systems can be used effectively as a core
component to construct fast and correct test generators and for more complex test
suite development frameworks.

In Sec. 2, we briefly recall the Korat approach and illustrate, as a case-study,
a Red-Black Trees generator. In Sec. 3, we introduce our CLP-based approach and
we illustrate its expressiveness by providing a clean and strongly declarative defi-
nition of a Red-Black Trees generator. We also show how to use some optimization
techniques known in the Logic Programming community to obtain even faster genera-

2

tors. Finally, in Sec. 4, we carry out an extensive comparison between our CLP-based
approach and that of Korat.

2 The Korat Approach

We now illustrate the Korat approach for writing automated test generators. Ko-
rat [29] is a tool for bounded-exhaustive testing of Java programs, which is specifi-
cally tailored for the construction of structurally complex test inputs. It allows the
generation of complex data structures by providing primitives to populate an object
domain, to initialize objects, and to set links among them.

Given a data structure definition, Korat requires (1) a finitization method, which
defines the bounds of the search space, and (2) a method repOK(), which specifies the
data structure invariant. Korat performs a systematic search of the program input
space, avoiding the full exploration of failing regions and the generation of isomorphic
structures (i.e. equal modulo Java objects identity). Details of the optimizations used
in the search can be found in [5,25,29].

We now illustrate how the Korat approach works by applying it for writing a test
input generator for Red-Black Trees.

Example 1. A Red-Black Tree [8] is a binary search tree where each node has two
labels: a color, which is either red or black, and an integer, called key (for the purpose
of test generation, node values are abstracted away in the definition of the data
structure). Therefore, it satisfies the following type equation:

Color ::= 0 | 1

Key ::= ... | -1 | 0 | 1 | ...

Tree ::= e | Color x Key x Tree x Tree

where 0 and 1 denote red and black, respectively, and e denotes the emtpy tree. A
Red-Black Tree must also satisfy the following three invariants:

(I1) every path from the root to a leaf has the same number of black nodes,
(I2) no red node has a red child, and
(I3) for every node n, all the nodes in the left (respectively, right) subtree of n, if

any, have keys which are smaller (respectively, bigger) than the key labeling n.

Since Red-Black Trees enjoy a weak form of balancing, operations such as inserting,
deleting, and finding values are more efficient, in the worst-case, than in ordinary
binary search trees.

We consider the Red-Black Tree generator implementation taken from the Korat
repository.3 The RedBlackTree class, shown in Fig. 1, uses an internal class Node

defining the generic node of the Red-Black Tree data structure. The Node class has
integer attributes key, color and value, and attributes left, right and parent of
type Node.

The finitization method finRedBlackTree, shown in Fig. 2, is used to define the
search space for generating the test candidates. It accepts the following arguments:

3 https://korat.svn.sourceforge.net/

3

public class RedBlackTree {
private Node root = null;
private int size = 0;
private static final int RED = 0;
private static final int BLACK = 1;

public static class Node {
int key, value;
Node left = null, right = null, parent;
int color = BLACK;

}

METHODS...
}

Fig. 1: Red-Black Trees java class

public static IFinitization finRedBlackTree
(int numEntries, int minSize, int maxSize, int numKeys) {

IFinitization f = FinitizationFactory.create(RedBlackTree.class);
IClassDomain entryDomain = f.createClassDomain(Node.class, numEntries);
IObjSet entries = f.createObjSet(Node.class, true);
entries.addClassDomain(entryDomain);

IIntSet sizes = f.createIntSet(minSize, maxSize);
IIntSet keys = f.createIntSet(-1, numKeys - 1);
IIntSet values = f.createIntSet(0);
IIntSet colors = f.createIntSet(0, 1);

f.set("root", entries); f.set("size", sizes);
f.set("Node.left", entries); f.set("Node.color", colors);
f.set("Node.right", entries); f.set("Node.key", keys);
f.set("Node.parent", entries); f.set("Node.value", values);

return f;
}

Fig. 2: Red-Black Trees finitization method

numEntries, denoting the number of objects of class Node which can be used for
building the Red-Black Tree, minSize and maxSize, denoting the minimum and
maximum number of nodes of the tree (maxSize is expected to be not bigger than
numEntries), and numKeys, denoting the upper bound for keys values (with lower
bound 0). The methods createClassDomain, createObjSet, and addClassDomain

populate the object domain, while the calls to the method createIntSet populate
the integer domains for tree sizes and node keys, values, and colors, respectively.
Finally, the method set is used to map class attributes to the appropriate domains
(nodes or integers), which will be used by Korat during the candidate instantiation
phase. Notice that, though color and value are declared as integers, color can only
take values in {0, 1} and value is a constant, (so, in practice, values are abstracted
away).

The method repOK(), which can be found in Appendix A, is an imperative spec-
ification of the Red-Black Tree data structure invariants I1, I2, and I3. It is used by
Korat to filter, among the many candidate trees generated, only those that satisfy
the Red-Black Trees invariants.

4

3 The CLP-based Approach

Logic Programming [24] is a declarative programming paradigm based on a computa-
tional interpretation of resolution-based first-order theorem proving. Sets of formulas
can be regarded as programs and proof search can be used as a general-purpose
problem solving mechanism.

Constraint Logic Programming (briefly, CLP) [20] extends Logic Programming
with constraints, which are managed by fast, domain-specific, constraint solvers. Dur-
ing the proof search process, constraints are collected in a store which is required to
be consistent at each step, and the problem solving process amounts to reducing
the initial problem to a satisfiable set of constraints. Among several other appli-
cations, CLP has shown to be well suited for encoding and solving combinatorial
problems [11].

Let us now briefly recall the CLP framework and its operational semantics, for
more details we refer the reader to [20]. Let Σ be a logic language signature Σ =
〈F ,V, Π ∪ ΠC〉, where F is a finite set of function and constant symbols, V is a
denumerable collection of variables, Π∪ΠC is a finite set of predicate symbols, where
Π and ΠC are disjoint sets. Atoms are of the form p(s1, . . . , sn) where p is a predicate
symbol in Π and si’s are (F ,V)-terms. A constraint is a first-order formula over F ,
V, and ΠC , (typically, a conjunction such as X#>3,X+Y#<0). In logic programming
notation, a comma denotes a conjunction and the symbol :- denotes the implication
←. Strings denote variables if they start with a capital letter and constants, otherwise.
Comments are started by %. When variables need not be named, they are replaced
by _. A CLP program P over Σ is a finite set of clauses of the form:

H :− c, A1, . . . , Am.
where c is a constraint, and H and Ai’s are atoms.

A CLP system computes the answers to a user query (called goals) of the form
c, A1, . . . , Ak against a program P , where c is a constraint and A1, . . . , Ak is a finite
conjunction of atoms. Given a program P , an answer to a goal c, A1, . . . , Ak is a
substitution ϑ such that ∀(A1, . . . , Ak)ϑ is a logical consequence of P and cϑ is
satisfiable in the constraints theory. We denote by [[G]]P the set of all the answers to
the goal G against the program P . We will feel free to omit the subscript P whenever
the intended program is clear from the context. An answer ϑ is ground whenever
(c, A1, . . . , Ak)ϑ contains no variables.

The programming paradigm of CLP, sometimes referred to as constrain-and-
generate [27], is structured mainly in two phases: first constraints are added to the
constraint store and checked for consistency (constrain), then the solver instantiates
variables to produce actual values that satisfy the constraints in the store (generate).
Since in the constrain phase the constraint store is checked for consistency at each
modification, several unsatisfiable cases are rejected at the symbolic level. When the
problem is satisfiable, the search for a satisfying substitution is committed to a ded-
icated solver. This behavior is quite different from the generate-and-test approach of
Korat and other filter-based techniques [14,22,29]. In particular, we focus on Con-
straint Logic Programming over Finite Domains (CLP(FD) [27]) where constraints
are linear arithmetic equalities and inequalities on variables ranging over finite in-
teger domains. Note that CLP(FD) can handle more general constraints, however,

5

for the examples considered in this paper, arithmetic equalities and inequalities are
sufficiently expressive.

The FD comparison predicates we assume available in ΠC are #=, #>, #>=, #<, #=<.
The function signature F extends the set {+, -, *}∪Z and the set {[], [_|_]} of list
constructors. Predicates and function symbols in FD have the standard interpreta-
tion over Z. We assume to have the built-in predicates: fd_domain(Vs,Min,Max),
that constrains all the variables in the list Vs to range over [Min, . . . , Max]⊂Z, and
fd_labeling(Vs), that forces each variable in Vs to assume a concrete value among
those allowed by the current constraint store (an additional Settings argument is
contemplated, for configuring the search process).

We propose the following instantiation of the constrain-and-generate paradigm
for the implementation of efficient (filter-based) test case generators:

gen_structure(Struct,P1,...,Pk) :-

% Preamble (constrain)

...definition of the variables in Vars and their domain,

% Symbolic Definition (constrain)

structure(Struct,P1,...,Pk,Vars), % data structure shape

...filters, % invariants

% Instantiation (generate)

fd_labeling(Vars).

The semantics of this predicate is that, for any given value of the parameters P1,. . . ,Pk
we build a structure Struct that satisfies the desired invariants.

The Preamble contains the definition of the set Vars of the required variables and
their domains. The Symbolic Definition phase contains: (i) a call to a predicate
structure which defines, by structural induction, the data structure shape (e.g. list,
tree, graph) using variables in Vars as placeholders for values, and (ii) a filters

part which contains a conjunction of predicates that assert constraints among the
variables in Vars. Finally, the Instantiation phase invokes the built-in labeling
mechanism, possibly using problem-specific settings to configure the search strat-
egy. The solver tries to minimize backtracking on assignments and each assignment
triggers a deterministic propagation towards related variables, which reduces their
domain and the set of future choices.

Concerning point (i) of the Symbolic Definition phase above, in this paper
we consider simple tree-like structures, where Logic Programming can show the ad-
vantage of the built-in unification mechanism. Graph-like structures are a bit more
involved to deal with and one can rely on a classical incidence/adjacency-matrix
representation or rely on more sophisticated decompositions [31].

Let gen_structure be a generator predicate and let p1,. . . ,pk be concrete val-
ues for the parameters, the set T of test cases induced by the generator is T =
{Structϑ | ϑ∈ [[gen_structure(Struct,p1,...,pk)]]}. Note that, due to the final
Instantiation phase, we have that T contains only ground test cases.

3.1 Red-Black Trees

Let us now illustrate the CLP-based specification of a Red-Black Tree generator.
This generator is parameterized, as for Korat, by the maximum and minimum tree

6

size (defined as the number of its nodes), and by the maximum value for the keys.
Since we do not generate nodes beforehand, but on demand, we do not need an extra
parameter for counting the number of nodes, as Korat does. The following clause
defines the predicate rbtree:
rbtree(T,MinSize,MaxSize,NumKeys) :-

% Preamble

MinSize#=<S, S#=<MaxSize, fd_labeling([S]),

varlist(S,Keys), varlist(S,Colors), Max#=NumKeys-1,

fd_domain(Keys,0,Max), fd_domain(Colors,0,1),

% Symbolic Definition

lbt(T,S,Keys,[]), % data structure shape

pi(T,_), ci(T,Colors,[]), ordered(T,0,NumKeys), % filters

% Instantiation

fd_labeling(Keys), fd_labeling(Colors).

where the predicate varlist(N,L), is used for constructing a list L of N fresh vari-
ables. Given the ground (non-negative) input integers minSize, maxSize, and numKeys,
the set [[rbtree(T,minSize,maxSize,numKeys)]] contains all the red-black trees of
size ranging in {minSize, . . . ,maxSize}, with keys ranging in {0, . . . ,numKeys-1}.

The first line of the Preamble chooses a tree size value S. Then, two lists of
(distinct) variables are defined, Keys and Colors, with the corresponding domains,
{0,. . . ,NumKeys-1} and {0,1}, respectively. These variables are placed along the tree
structure in the Symbolic Definition part by the predicate lbt, which defines (2-
)labeled binary trees by structural induction:
1. lbt(e,S, Ks, Ks) :- S#=0.

2. lbt(t(_,K,L,R),S,[K|Ks],NKs) :- S#>=1, SL#>=0, SR#>=0,

NS#=S-1, fdsum(NS,SL,SR),

lbt(L,SL,Ks,TKs), lbt(R,SR,TKs,NKs).

The first argument is either the constant e denoting the empty tree or a term
t(C,K,L,R) denoting a (non-empty) tree with left subtree L, right subtree R, and
whose root node is labeled with color C and key K. The second argument is the
size of the tree (the number of nodes) which, in clause 2, is at least 1 and is non-
deterministically split by the fdsum predicate into a pair of non-negative integers
SL and SR denoting the size of the left and right subtrees, respectively, such that
S = SL + SR + 1. The left and right subtrees are then constructed recursively. Note
that the variables in Keys are placed in distinct nodes.

The predicate pi (for path invariant) encodes the invariant (I1) of Sec. 1 and is
defined as follows:
9. pi(e ,C) :- C#=0.

10. pi(t(C,_,L,R),D) :- ND#>=0, D#=ND+C, pi(L,ND), pi(R,ND).

The semantics of pi is the following: for a given tree t, pi(t,d) holds if and only if
on all root-to-leaf paths in t there are exactly d black nodes. In this case, we say that
d is the value of the black-nodes counter of t. Note that if a tree is empty then its
black-nodes counter is 0, otherwise, the black-nodes counter is computed by adding
the ‘color’ of the root (i.e. 0, if red, and 1, if black) to the black-nodes counter of
(both) its subtrees (that must have the same value).

The predicate ci (for color invariant) encodes the invariant (I2) of Sec. 1 and is
defined as follows:

7

4. ci(e, Cs, Cs).

5. ci(t(C,_,L,R),[C|Cs],NCs) :- C#=1, % root is black

ci(L,Cs,TCs), ci(R,TCs,NCs).

6. ci(t(C,_,L,R),[C|Cs],NCs) :- C#=0, % root is red

not_redroot(L), not_redroot(R),

ci(L,Cs,TCs), ci(R,TCs,NCs).

7. not_redroot(e).

8. not_redroot(t(C,_,_,_)) :- C#=1. % root is black

Note that the color variables are placed in distinct nodes. In clause 6 the color
invariant is enforced by testing the color of the roots of the left and right subtrees.

Finally, the predicate ordered defines the invariant (I3) in Sec. 2, concerning the
ordering of the keys, and is defined as follows:

11. ordered(e, _, _).

12. ordered(t(_,N,L,R),Min,Max) :- Min #=< N, N #< Max, M #= N+1,

ordered(L,Min,N), ordered(R,M,Max).

There is a simple correspondence between the CLP(FD) generator and the Korat
generator. The predicate lbt is essentially a definition of the tree data type, as
given in Sec. 1. This allows us to start from trees rather than from graphs, which
is a significant advantage over Korat, which must perform the acyclicity check. The
filter predicates ci, pi, and ordered are very similar to the Korat code for repOk(),
which can be retrieved in the Korat repository. Note that repOk() executes three
tests: (i) acyclicity, using the repOkAcyclic() procedure, (ii) invariants (I1) and
(I2) using the repOkColors() procedure, and (iii) ordering invariant (I3), using the
repOkKeysAndValues() procedure. The repOkColors() procedure returns true iff
the goal pi(T,_),ci(T,Colors,[]) succeeds and repOkKeysAndValues() returns
true iff the goal ordered(T,0,Max) succeeds.

We compared the efficiency of the CLP-based Red-Black Trees generator with
the Korat-based one. Following the approach of [25], we consider the ‘canonical set’
[[rbtree(T,s,s,s)]], which is the set of all red-black trees of s nodes and keys ranging
in {0,. . . ,s-1}.

The results of this comparison are summarized in Fig. 3 (columns 1-4,9) and
show that the CLP-based Red-Black Trees generator, which has been run using two
different CLP systems, SICStus4 and GNU Prolog5, is very efficient with respect to
the Korat generator. Further details and discussion about the experimental evaluation
can be found in Sec. 4.

3.2 Optimizations

In this section we discuss some optimization techniques available in the field of logic
programming that can be used for building even more efficient test case generators.
Simple optimizations can be done by using information coming from groundness anal-
ysis [19] and determinacy checking [23], that allow us to determine when a predicate
has at most one answer. In order to improve determinism, one can put such predicates

4 http://www.sics.se/sicstus/
5 http://www.gprolog.org/

8

Fig. 3: Comparison of Red-Black Trees generators. The table reports the size of the red-black trees
(column 1), the number of computed red-black trees (2), the time, in seconds, for generating all the
structures running the original CLP generator of Sec. 3 using GNU Prolog and SICStus (3-4), the partially
evaluated CLP generator of Sec. 3.2 (5-6), the synchronized CLP generator of Sec 3.2 (7-8), and Korat (9).
Zero means less than 10 ms and (-) means more than 200 seconds.

Size Trees Time

Original Partially evaluated Synchronized Korat

GNU SICStus GNU SICStus GNU SICStus Korat

6 20 0 0.01 0 0 0 0 0.47
7 35 0.01 0.06 0 0.03 0 0.01 0.63
8 64 0.02 0.20 0.01 0.07 0 0.03 1.49
9 122 0.08 0.71 0.04 0.28 0 0.06 4.51

10 260 0.29 2.60 0.16 0.98 0.01 0.13 21.14
11 586 1.07 9.52 0.58 3.55 0.03 0.26 116.17
12 1296 3.98 35.19 2.17 13.00 0.06 0.54 -
13 2708 14.85 131.13 8.15 47.90 0.12 1.17 -
14 5400 55.77 - 30.73 177.63 0.26 2.49 -
15 10468 - - 115.59 - 0.55 5.35 -
20 279264 - - - - 25.90 - -

in the Preamble so that they are evaluated only once (we applied this optimization
to the Heaparrays example, discussed in Sec. 4) and whose code can be found in
Appendix B).

A more sophisticated technique is Program Transformation, that is a semantics-
preserving program rewriting technique which is applicable, among other languages,
also to Constraint Logic Programming [12]. It can be used to optimize and synthe-
size programs [13] and it is based on rewriting rules, whose application is directed by
strategies. Here we use Program Transformation to optimize our Red-Black Trees gen-
erator. The transformations are performed by using our transformation tool MAP [2].

Step 1. We perform a partial evaluation [21] of lbt, pi, ci, and ordered w.r.t. their
first argument and the term domain T ::= e | t(_,_,T,T), by using the unfolding
rule (which unrolls predicate calls by using their definitions). For reasons of space,
we show the effect of this transformation only for predicate pi:

pi(e,0).

pi(t(C,_, e, e),D) :- D#=C.

pi(t(C,_, e,t(Cr,Lr,Kr,Rr)),D) :- D#=C, pi(t(Cr,Kr,Lr,Rr),0).

pi(t(C,_,t(Cl,Ll,Kl,Rl), e),D) :- D#=C, pi(t(Cl,Kl,Ll,Rl),0).

pi(t(C,_,t(Cl,Ll,Kl,Rl),t(Cr,Lr,Kr,Rr)),D) :- ND#>=0, D#=ND+C,

pi(t(Cl,Kl,Ll,Rl),ND),

pi(t(Cr,Kr,Lr,Rr),ND).

(the rest of the clauses can be found in Appendix C). Performance improvement is
due to the instantiation of the heads of the clauses which reduces unification successes
and prunes the search tree, at the cost of an increase in the number of clauses. The
performance of the partially evaluated generator w.r.t. that of the original one is
shown in Fig. 3. �

The execution of a conjunction of atoms that share a variable ranging over a
term domain (such as T ::= e | t(_,_,T,T) above) may be inefficient and even
non-terminating, under the standard depth-first CLP evaluation strategy. In the Red-
Black Trees generator the predicates lbt, pi, ci, and ordered share the tree variable
T. Each tree is traversed four times. Indeed, there are productive interactions between

9

those predicates that we do not take advantage of. Namely, the check of the path
invariant of pi may produce earlier failure for a given distribution of the nodes of T.
Similarly for the choice of nodes colors in ci and the lengths of the paths computed
in T.

Step 2. We apply a program transformation strategy that optimizes programs to
avoid multiple traversals of a data structure [30]. This strategy replaces a conjunction
of atoms G by a new atom that performs a synchronized execution on the shared
variables, and produces the same results. The effect is to obtain (i) a single traversal of
terms in the shared domain and (ii) a better interaction among the constraints of each
predicate in G to promote as early as possible failures/successes. We take advantage
of the previous partial evaluation step by applying the current transformation to the
partially evaluated versions of lbt, pi, ci, and ordered. We do not have enough
space here to discuss the details of this transformation, but we give a sketch of it.
In goalG=lbt(T,S,Keys,[]),pi(T,_),ci(T,Colors,[]),ordered(T,0,NumKeys)

(occurring in the definition of rbtree) the atoms share the variable T. We introduce
a new predicate sync (which stands for synchronized) defined by the following clause:

sync(T,S,Keys,NewKeys,Colors,NewColors,Min,Max,D) :-

lbt(T,S,Keys,NewKeys),

pi(T,D), ci(T,Colors,NewColors), ordered(T,Min,Max).

(†)

where the goal G is abstracted to one containing only variables. Then we derive a
recursive definition of sync in two steps. First, we perform a partial evaluation, by
unfolding, and we obtain (after rearrangement of the constraints to the left of the
other atoms) the following new definition:

sync(e,A, B,B, C,C,_,_,0) :- A#=0.
sync(t(A,B, e, e),C,[B|D],D,[A|E],E,F,G,H) :- C#=1, H#=A, F#=<B, B#<G.
sync(t(A,B, e,t(C,D,E,F)),G,[B|H],I,[A|J],K,L,M,N) :-

G#>=2, O#=G-1, A+C#>0, N#=A, L#=<B, B#<M, P#=B+1,
lbt(t(C,D,E,F),O,H,I), pi(t(C,D,E,F),0), ci(t(C,D,E,F),J,K), ordered(t(C,D,E,F),P,M).

sync(t(A,t(B,C,D,E),F, e),G,[F|H],I,[A|J],K,L,M,N) :-
G#>=2, O#=G-1, A+B#>0, N#=A, L#=<F, F#<M,
lbt(t(B,C,D,E),O,H,I), pi(t(B,C,D,E),0), ci(t(B,C,D,E),J,K), ordered(t(B,C,D,E),L,F).

sync(t(A,F,t(B,C,D,E),t(G,H,I,J)),K,[F|L],M,[A|N],O,P,Q,R) :-
K#>=3, S#=K-1, T#>0, U#>0, A+B#>0, A+G#>0, V#>=0,
R#=V+A, P#=<F, F#<Q, W#=F+1, fdsum(S,T,U),
lbt(t(B,C,D,E),T,L,X), pi(t(B,C,D,E),V), ci(t(B,C,D,E),N,Y), ordered(t(B,C,D,E),P,F),
lbt(t(G,H,I,J),U,X,M), pi(t(G,H,I,J),V), ci(t(G,H,I,J),Y,O), ordered(t(G,H,I,J),W,Q).

Next, by folding, we replace goals that match the body of the clause (†) by the
corresponding instances of the head and we obtain the following clauses:

1. sync(e,A, B,B, C,C,_,_,0) :- A#=0.
2. sync(t(A,B, e, e),C,[B|D],D,[A|E],E,F,G,H) :- C#=1, H#=A, F#=<B, B#<G.
3. sync(t(A,B, e,t(C,D,E,F)),G,[B|H],I,[A|J],K,L,M,N) :-

G#>=2, O#=G-1, A+C#>0, N#=A, L#=<B, B#<M, P#=B+1,
sync(t(C,D,E,F),O,H,I,J,K,P,M,0). % replacement

4. sync(t(A,t(B,C,D,E),F, e),G,[F|H],I,[A|J],K,L,M,N) :-
G#>=2, O#=G-1, A+B#>0, N#=A, L#=<F, F#<M,
sync(t(B,C,D,E),O,H,I,J,K,L,F,0). % replacement

5. sync(t(A,F,t(B,C,D,E),t(G,H,I,J)),K,[F|L],M,[A|N],O,P,Q,R) :-
K#>=3, S#=K-1, T#>0, U#>0, A+B#>0, A+G#>0, V#>=0,
R#=V+A, P#=<F, F#<Q, W#=F+1, fdsum(S,T,U),
sync(t(B,C,D,E),T,L,X,N,Y,P,F,V), % replacement
sync(t(G,H,I,J),U,X,M,Y,O,W,Q,V). % replacement

10

The definition of the predicate sync is now made of the clauses {1, 2, 3, 4, 5}. The
final step of this transformation consists in a further application of folding which
replaces the goal G in the definition of rbtree (which is an instance of the body
of clause (†)) by the goal sync(T,S,Keys,[],Colors,[],0,NumKeys,_). The per-
formance improvements of the synchronized generator w.r.t. the partially evaluated
generator and the original one are shown in Fig. 3. �

By correctness of the transformation rules and of the transformation strategy, we
are ensured that the two generators are equivalent, in terms of their least Herbrand
models [24] and, thus, define the same set of test cases.

4 Experimental Evaluation
In order to measure the effectiveness of our technique, we retrieved the code of several
test case generators from the Korat repository and we encoded the corresponding
CLP(FD)-based generators (their code can be found in Appendix B).

We considered generators for: (i) sorted lists of integers, (ii) an array-based rep-
resentation of the heap data structure, (iii) integer-labeled search trees, and (iv) an
array-based representation of disjoint partitions of a set. For disjoint sets, we found
it difficult to reverse-engineer the exact specification from the Java code in the Korat
repository and, thus, we decided to recode the Korat version from scratch w.r.t. an
abstract model (the code can be found in Appendix D). The new Korat generator has
performances not far from the original one but selects a restricted class of structures.

In all our experiments, we found that the performance of CLP-based test gener-
ators is always much better than the performance of the corresponding Korat gen-
erators. We should stress here some points discussed in Sec. 3. Korat builds data
structures starting from a domain of graphs. In logic programming, on the contrary,
terms are first-class objects, and graphs are represented through terms (see standard
textbooks encodings). This is an advantage of logic programming, which allows us
to choose the most adequate and simple primitive data structure. In contrast, Korat
generates trees through the computationally expensive process of generating directed
graphs and filtering the acyclic ones.

All the experiments were performed on an Intel Core 2 Duo E7300 2.66 GHz under
the Linux operating system, using GNU Prolog 1.3.0 and SICStus Prolog 3.12.8, and
the timings were collected using built-in CLP and Java statistics predicates.

In particular, the CLP timings were measured by exploring the whole search space
through a call of the form gen_structure(Struct,p1,...,pk),fail for the param-
eter values of interest. The idea is to exploit the CLP backtracking mechanism to
explore each success of gen_structure, while trying to succeed. For every success of
the subgoal gen_structure(Struct,p1,...,pk), a concrete structure is generated.
Since we are not interested in keeping all the structures in memory (which could be
unmanageable), each structure is deleted as soon as it has been constructed. Due to
the presence of the fail built-in, the whole goal fails, and, thus, the CLP system back-
tracks and tries to find another solution to gen_structure(Struct,p1,...,pk). The
computation terminates after all the structures have been generated. At this stage,
we are not yet addressing the issue of converting the CLP structures to proper Java
objects. This issue will be briefly discussed in Sec. 5.

11

We selected two different CLP(FD) systems for running our CLP-based test gen-
erators: SICStus, for its diffusion and industrial strength, and GNUProlog, for its
efficient compilation. We found that, in our experiments, GNUProlog outperforms
SICStus, due to its efficient compilation. However, we chose to keep also the SICStus
timings, because they revealed to be much more stable w.r.t. different encodings we
experimented with (such as moving term comparison constraints from the head to
the body). Therefore, SICStus seems to be more reliable in a setting where the user is
not aware of the inner evaluation mechanism and cannot take advantage of it, while
being still efficient.

Fig. 4: Generators performance evaluation.

Size Sorted Lists Time

GNU SICStus Korat

8 6435 0.00 0.01 0.61
9 24310 0.00 0.05 1.08

10 92378 0.02 0.17 1.83
11 352716 0.09 0.65 6.37
12 1352078 0.36 2.51 24.95
13 5200300 1.40 9.63 125.73
14 20058300 5.40 37.35 -
15 77558760 21.16 143.79 -
16 300540195 82.22 -

Size Heaparrays Time

GNU SICStus Korat

6 13139 0.00 0.01 0.30
7 117562 0.03 0.15 0.86
8 1005075 0.17 1.27 3.41
9 10391382 1.66 12.65 34.103

10 111511015 17.57 134.26 -

Size Search Trees Time

GNU SICStus Korat

7 429 0.01 0.03 0.87
8 1430 0.02 0.11 4.43
9 4862 0.08 0.43 33.99

10 16796 0.28 1.67 -
11 58786 1.11 6.53 -
12 208012 4.43 25.42 -
13 742900 17.68 100.09 -
14 2674440 70.75 - -

Size Disjoint Sets Time

GNU SICStus Korat

6 203 0.00 0.00 1.60
7 877 0.00 0.01 37.10
8 4140 0.01 0.06 -
9 21147 0.10 0.28 -

10 115975 0.61 1.58 -
11 678570 3.90 9.83 -
12 4213597 26.63 65.29 -
13 27644437 189.42 - -

In Fig. 4 we show the tables con-
taining the timings for GNU Prolog,
SICStus Prolog, and Korat, with a
timeout of 200 seconds. The memory
consumption of the CLP generators
is negligible and grows very slowly
on the size of the structures (as in
Korat) so we did not report it.

The results show that the CLP(FD)-
based approach outperforms Korat
in all the examples we considered. In
some examples the CLP(FD)-based
approach allowed us to explore a
much larger input domain.

We did not explore different tun-
ings of the CLP(FD)-solver, other
than the default ones, which re-
vealed to be already satisfactory.
However, more complex problems
(involving, for example, conditions
based on minimization) may benefit
of the many built-in predicates im-
plementing more sophisticated solu-
tion search algorithms [27].

These promising results allow us
to draw first conclusions on the valid-
ity of our CLP(FD)-based approach.
The CLP(FD) encoding of genera-
tors requires no more ingenuity that
the Korat encoding. On the contrary,
we claim that correctness is a natural
outcome of this approach and the programmer confidence in the developed generators
is greatly increased. Furthermore, while being more declarative, this approach is also
much more efficient and deserves to be further investigated for better integration into
real-world testing frameworks.

12

5 Related Work and Conclusions

Constraint-based techniques have been widely used in the field of test case generation,
since pioneering work in [10]. Early use of CLP for test generation can be found in
the tool ATGen [28], developed for testing Spark ADA programs.

Several approaches using constraints are white-box and aim at the automatic
extraction of CLP test generators from program source code, according to given cov-
erage criteria. Moreover, most of them are not directly concerned with the efficiency
of bounded-exhaustive generation of complex inputs.

In particular, in [9], white-box testing of an imperative language with pointers
and heap is performed by symbolic execution of a small-step operational semantics
in CLP, guided by coverage criteria. This approach can generate pointer-based data
structures, at the expense of defining ad-hoc constraint solvers for the considered
structures (mainly lists). Further work on white-box testing has been done in [6,17]
for the generation of heap-allocated data structures, following a fixed coverage criteria
for the choice of the test cases. The work in [16] presents a technique for white-
box testing of object-oriented programming languages, which is more general and
language independent than previous ones. Indeed, test case generators are obtained
by partial evaluation of a language interpreter w.r.t. a given program.

The declarative approach has also been adopted by test generation tools such as
Korat [29], which has been used in our experimental evaluation, UDITA [14], and
TestEra [22]. These tools are quite efficient in practice but require careful implemen-
tations of clever ad-hoc backtracking mechanisms and search strategies, which are
either built-in (like non-deterministic choice) or easily implementable in standard
CLP systems. Lazy instantiation strategies in UDITA [14] can be seen as a partic-
ular CP solution strategy. Moreover, these tools are language-specific and they are
not easily adaptable to other languages. Their integration with homogeneous but
more general testing environments such as JPF [32] can be expensive and lead to
suboptimal performance w.r.t. their original version [15].

In contrast, the proper interaction between a CLP test generator and, for example,
a Java-based testing environment can be achieved either by using a bidirectional Java-
Prolog interface, provided by most CLP systems, or by using an intermediate string
representation of CLP data structures combined with Java’s (de)serialization. In the
latter case, for example, one could (i) generate XML encodings of CLP terms, and
(ii) use libraries like XStream6 or Simple7 for constructing Java objects from XML.
The problem of obtaining XML from CLP data structures can be solved, once and for
all, by writing a single, universal, translator which constructs XML elements while
recursively traversing a generic CLP term. We expect the CLP to Java translation
to add negligible overhead. It should be noted, indeed, that such translation would
be triggered only for structures which are of actual interest for testing (in contrast
with the partial building of the Java objects and their destruction, if unsatisfactory,
as in Korat [5]).

6 http://xstream.codehaus.org
7 http://simple.sourceforge.net

13

Efficiency aspects are considered in [33,34] where the process of generating the
shape of the data structure is separated from that of generating proper values for data.
In our approach, this separation is achieved transparently by following the constrain-
and-generate programming approach of CLP, which prescribes the invocation of the
instantiation mechanism only after all the constraints have been generated. Many
unfeasible structures can, therefore, be eliminated at the symbolic level by constraint
consistency checks.

In this paper we focus on showing that CLP can be used as a core component for
efficient test case generators of complex input data. In contrast to some of the above-
mentioned techniques, our method does not start from source code and has been
designed for black-box testing. It does not require the development of ad-hoc con-
straint solvers or search strategies, but it leverages commonly available CLP systems
and libraries. However, strategies can easily be customized, if needed, and further
LP instruments (some of which discussed in Sec. 3.2) are available to optimize the
generators obtained according to our general scheme.

For example, in [7] it is shown that the use of BET for verifying large systems is
feasible and provides effective results, but requires significant effort to be tuned and
combined with abstraction techniques to reach the generation of useful test sets. For
this purpose, our approach could easily benefit from decades of research on program
analysis and abstract interpretation of constraint logic programs.

This work can be extended along several directions.

In [3] the Korat engine is modified to reduce the search space, by trying to skip
structures which are in the same equivalence class of already considered structures.
A similar issue is addressed in [4] for partition-based testing. Although we did not
experiment on this subject (because the focus was on building all the structures) we
believe that this optimization can be easily integrated in CLP by generating exactly
one or a small set of witnesses per equivalence class.

There are several issues that deserve further study. Among these, we plan to
explore the relationship between constraint solution strategies and test coverage cri-
teria. Indeed, one may be interested into exploring the set of possible structures
according to an ordering, parameterized by a given coverage criteria.

Furthermore, while in this paper we focused on model-based input generation only,
we believe that the CLP approach can be successfully applied also for generating test
oracles which can be used for verifying the post-conditions of the methods under test,
since CLP generators can also be used as acceptors.

Regarding the application of program transformation and other optimization tech-
niques, we plan to develop fully automatic optimization techniques tuned for this
specific problem and for our CLP-based approach. A further application domain of
program transformation is the automated extraction of test generators from (formal)
specifications.

In conclusion, we believe that, due to its inherent symbolic execution mechanism,
Constraint Logic Programming has a promising application field in test-case gener-
ation. CLP provides a highly declarative language and ensures efficiency by using
dedicated constraint solvers and heuristics. On the basis of the results presented in

14

this work we claim that correctness and efficiency of generators can take advantage
from CLP-based techniques, especially in the case of complex input data.

Acknowledgements. We would like to thank Maurizio Proietti for many stim-
ulating conversations. We would also like to thank the anonymous referees for their
constructive comments on a preliminary version of this paper.

References

1. ICST 2009, Second International Conference on Software Testing Verification and Val-
idation, 1-4 April 2009, Denver, Colorado, USA. IEEE Computer Society, 2009.

2. The MAP transformation system. http://www.iasi.cnr.it/~proietti/system.html,
c© 1995–2012.

3. N. Aguirre, V.S. Bengolea, M.F. Frias, and J.P. Galeotti. Incorporating coverage criteria
in bounded exhaustive black box test generation of structural inputs. In M. Gogolla
and B. Wolff, editors, TAP, volume 6706 of Lecture Notes in Computer Science, pages
15–32. Springer, 2011.

4. C. Bartolini, A. Bertolino, E. Marchetti, and A. Polini. WS-TAXI: A WSDL-based
testing tool for web services. In ICST [1], pages 326–335.

5. C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated testing based on Java
predicates. In ISSTA, pages 123–133, 2002.

6. F. Charreteur, B. Botella, and A. Gotlieb. Modelling dynamic memory management in
constraint-based testing. Journal of Systems and Software, 82(11):1755–1766, 2009.

7. D. Coppit, J. Yang, S. Khurshid, W. Le, and K.J. Sullivan. Software assurance by
bounded exhaustive testing. IEEE Trans. Software Eng., 31(4):328–339, 2005.

8. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms
(3. ed.). MIT Press, 2009.

9. F. Degrave, T. Schrijvers, and W. Vanhoof. Towards a framework for constraint-based
test case generation. In D. De Schreye, editor, LOPSTR, volume 6037 of Lecture Notes
in Computer Science, pages 128–142. Springer, 2009.

10. R.A. DeMillo and A.J. Offutt. Constraint-based automatic test data generation. IEEE
Trans. Software Eng., 17(9):900–910, 1991.

11. A. Dovier, A. Formisano, and E. Pontelli. An empirical study of constraint logic pro-
gramming and answer set programming solutions of combinatorial problems. J. Exp.
Theor. Artif. Intell., 21(2):79–121, 2009.

12. F. Fioravanti, A. Pettorossi, and M. Proietti. Transformation rules for locally stratified
constraint logic programs. In M. Bruynooghe and K.-K. Lau, editors, Program Devel-
opment in Computational Logic, volume 3049 of Lecture Notes in Computer Science,
pages 291–339. Springer, 2004.

13. F. Fioravanti, A. Pettorossi, M. Proietti, and V. Senni. Program transformation for
development, verification, and synthesis of programs. Intelligenza Artificiale, 5(1):119–
125, 2011.

14. M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncak, and D. Marinov. Test
generation through programming in UDITA. In J. Kramer, J. Bishop, P.T. Devanbu,
and S. Uchitel, editors, ICSE (1), pages 225–234. ACM, 2010.

15. M. Gligoric, T. Gvero, S. Lauterburg, D. Marinov, and S. Khurshid. Optimizing gen-
eration of object graphs in Java PathFinder. In ICST [1], pages 51–60.

16. M. Gómez-Zamalloa, E. Albert, and G. Puebla. Test case generation for object-oriented
imperative languages in CLP. TPLP, 10(4-6):659–674, 2010.

15

17. A. Gotlieb, B. Botella, and M. Rueher. A CLP framework for computing structural
test data. In J.W. Lloyd, V. Dahl, U. Furbach, M. Kerber, K.-K. Lau, C. Palamidessi,
L. Moniz Pereira, Y. Sagiv, and P.J. Stuckey, editors, Computational Logic, volume
1861 of Lecture Notes in Computer Science, pages 399–413. Springer, 2000.

18. D. Hoffman, H.-I. Wang, M. Chang, and D. Ly-Gagnon. Grammar based testing of
HTML injection vulnerabilities in RSS feeds. In Proceedings of the 2009 Testing: Aca-
demic and Industrial Conference - Practice and Research Techniques, TAIC-PART ’09,
pages 105–110, Washington, DC, USA, 2009. IEEE Computer Society.

19. J.M. Howe and A. King. Efficient groundness analysis in prolog. Theory Pract. Log.
Program., 3:95–124, January 2003.

20. J. Jaffar and M.J. Maher. Constraint logic programming: A survey. J. Log. Program.,
19/20:503–581, 1994.

21. N.D. Jones, C.K. Gomard, and P. Sestoft. Partial evaluation and automatic program
generation. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

22. S.A. Khalek, G. Yang, L. Zhang, D. Marinov, and S. Khurshid. TestEra: A tool for
testing Java programs using Alloy specifications. In P. Alexander, C.S. Pasareanu, and
J.G. Hosking, editors, ASE, pages 608–611. IEEE, 2011.

23. J. Kriener and A. King. RedAlert: Determinacy Inference for Prolog. Theory and
Practice of Logic Programming, 11(4-5):537–553, July 2011.

24. J.W. Lloyd. Foundations of Logic Programming, 2nd Edition. Springer, 1987.
25. D. Marinov. Automatic Testing of Software with Structurally Complex Inputs. PhD

thesis, MIT, 2005.
26. D. Marinov, A. Andoni, D. Daniliuc, S. Khurshid, and M. Rinard. An evaluation of

exhaustive testing for data structures. Technical report, MIT Computer Science and
Artificial Intelligence Laboratory Report MIT -LCS-TR-921, 2003.

27. K. Marriott and P.J. Stuckey. Programming with constraints : an introduction. MIT
Press, Cambridge, Mass., 1998.

28. C. Meudec. ATGen: automatic test data generation using constraint logic programming
and symbolic execution. Software Testing, Verification and Reliability, 11(2):81–96,
2001.

29. A. Milicevic, S. Misailovic, D. Marinov, and S. Khurshid. Korat: A tool for generating
structurally complex test inputs. In ICSE, pages 771–774. IEEE Computer Society,
2007.

30. M. Proietti and A. Pettorossi. Unfolding-definition-folding, in this order, for avoiding
unnecessary variables in logic programs. Theor. Comput. Sci., 142(1):89–124, 1995.

31. R.W. Robinson. Counting unlabeled acyclic digraphs. In Charles Little, editor, Com-
binatorial Mathematics V, volume 622 of Lecture Notes in Mathematics, pages 28–43.
Springer Berlin / Heidelberg, 1977. 10.1007/BFb0069178.

32. W. Visser, C.S. Pasareanu, and S. Khurshid. Test input generation with Java
PathFinder. In G.S. Avrunin and G. Rothermel, editors, ISSTA, pages 97–107. ACM,
2004.

33. S. Visvanathan and N. Gupta. Generating test data for functions with pointer inputs.
In ASE, pages 149–. IEEE Computer Society, 2002.

34. R. Zhao and Q. Li. Automatic test generation for dynamic data structures. In SERA,
pages 545–549. IEEE Computer Society, 2007.

16

A The Korat Red-Black Tree invariant

public boolean repOK() {
if (!repOkAcyclic()) return false;
if (!repOkColors()) return false;
return repOkKeysAndValues();

}
private boolean repOkAcyclic() {

...
}
private boolean repOkColors() {

// RedHasOnlyBlackChildren
java.util.LinkedList workList = new java.util.LinkedList();
workList.add(root);
while (!workList.isEmpty()) {

Node current = (Node) workList.removeFirst();
Node cl = current.left;
Node cr = current.right;
if (current.color == RED) {

if (cl != null && cl.color == RED) return debug("failure");
if (cr != null && cr.color == RED) return debug("failure");

}
if (cl != null) workList.add(cl);
if (cr != null) workList.add(cr);

}

// PathsFromRootToNILHaveSameNumberOfBlackNodes
int numberOfBlack = -1;
workList = new java.util.LinkedList();
workList.add(new Pair(root, 0));
while (!workList.isEmpty()) {

Pair p = (Pair) workList.removeFirst();
Node e = p.e;
int n = p.n;
if (e != null && e.color == BLACK)

n++;
if (e == null) {

if (numberOfBlack == -1)
numberOfBlack = n;

else if (numberOfBlack != n) return debug("failure");
} else {

workList.add(new Pair(e.left, n));
workList.add(new Pair(e.right, n));

}
}
return true;

}
private boolean repOkKeysAndValues() {

if (!orderedKeys(root, null, null)) return debug("failure");
return true;

}
private boolean orderedKeys(Node e, Object min, Object max) {

if (((min != null) && (compare(e.key, min) <= 0))
|| ((max != null) && (compare(e.key, max) >= 0)))

return false;
if (e.left != null)

if (!orderedKeys(e.left, min, e.key)) return false;
if (e.right != null)

if (!orderedKeys(e.right, e.key, max)) return false;
return true;

}

The repOK() method specifying the Red-Black Trees invariant, and some auxiliary
methods.

B Experiments

sortedlist(A,Size,MaxNat) :-
% Preamble

L#>=0, Size#>L, fd_labeling([L]),
varlist(L,A), fd_domain(A,1,MaxNat),

% Symbolic Definition
sorted(A),

% Instantiation
fd_labeling(A).

sorted([]).
sorted([_]).
sorted([A,B|Rest]) :- B#>=A, sorted([B|Rest]).

Size Lists Time

GNU SICStus Korat

8 6435 0.00 0.01 0.61
9 24310 0.00 0.05 1.08

10 92378 0.02 0.17 1.83
11 352716 0.09 0.65 6.37
12 1352078 0.36 2.51 24.95
13 5200300 1.40 9.63 125.73
14 20058300 5.40 37.35 -
15 77558760 21.16 143.79 -
16 300540195 82.22 -

heaparray(A,S,MaxNat) :-
% Preamble

L#>=0, S#>=L, fd_labeling([L]), varlist(L,H), fd_domain(H,0,MaxNat), RS#=S-L,
pad_rest(Rest,RS), append(H,Rest,A),

% Symbolic Definition
heap(H),

% Instantiation
fd_labeling(H).

heap([]).
heap([R|H]) :- heap_c(H,[R|H]).

heap_c([],_).
heap_c([C],[F|_]) :- F#>=C.
heap_c([LC,RC|Cs],[F|H]) :- F#>=LC, F#>=RC, heap_c(Cs,H).

pad_rest([],_).
pad_rest([-1|Rest],S) :- S#>0, T#=S-1, pad_rest(Rest,T).

Size Heaps Time

GNU SICStus Korat

6 13139 0.00 0.01 0.30
7 117562 0.03 0.15 0.86
8 1005075 0.17 1.27 3.41
9 10391382 1.66 12.65 34.103

10 111511015 17.57 134.26 390.96
11 - 232.01 - -

searchtree(T,S,MaxNat) :-
% Preamble

varlist(S,Vs), Max #= MaxNat-1,
fd_domain(Vs,0,Max), all_different(Vs),

% Symbolic Definition
bt(T,S,Vs,_),
ordered(T,0,MaxNat),

% Instantiation
fd_labeling(Vs).

bt(t(e,K,e),S,[K|Ks], Ks) :- S#=1.
bt(t(e,K,R),S,[K|Ks],NKs) :- S#>=2, NS#=S-1, bt(R,NS,Ks,NKs).
bt(t(L,K,e),S,[K|Ks],NKs) :- S#>=2, NS#=S-1, bt(L,NS,Ks,NKs).
bt(t(L,K,R),S,[K|Ks],NKs) :- S#>=3, NS#=S-1, SL#>0, SR#>0, fdsum(NS,SL,SR),

bt(L,SL, Ks,TKs), bt(R,SR,TKs,NKs).

Size Trees Time

GNU SICStus Korat

7 429 0.01 0.03 0.87
8 1430 0.02 0.11 4.43
9 4862 0.08 0.43 33.99

10 16796 0.28 1.67 234.16
11 58786 1.11 6.53 -
12 208012 4.43 25.42 -
13 742900 17.68 100.09 -
14 2674440 70.75 395.36 -

The ordered/2 predicate has been defined in Sec. 3.

disjset(DS,S,MaxNat) :-
% Preamble

varlist(S,Set), Max #= MaxNat-1,
fd_domain(Set,0,Max),
fd_all_different(Set),

% Symbolic Definition
disjset(DS,S,Set,_),
heads(DS,Hs),
sorted(Hs),

% Instantiation
fd_labeling(Set).

disjset([],0,_Set,_Rest).
disjset([P|Ps],S,Set,Rest) :- S1#>0, S1#=<S, S2#=S-S1, fd_labeling([S1]),

length(P,S1), sorted(P), append(P,Rest,Set), disjset(Ps,S2,Rest,_).

heads([],[]).
heads([[H|_]|Ls],[H|L]) :- heads(Ls,L).

Size Sets Time

GNU SICStus Korat

6 203 0.00 0.00 1.60
7 877 0.00 0.01 37.10
8 4140 0.01 0.06 1153.08
9 21147 0.10 0.28 -

10 115975 0.61 1.58 -
11 678570 3.90 9.83 -
12 - 26.63 65.29 -
13 - 189.42 - -

The sorted/1 predicate has been defined in the sortedlist example above.

% Auxiliary predicates
varlist(0,[]).
varlist(N,[_|L]) :- N#>0, M#=N-1, varlist(M,L).

fdsum(Sum,X,Y) :- fd_domain([X],0,Sum), fd_labeling([X]), Y#=Sum-X.

C Partially evaluated Red-Black Tree generator

% Binary Trees

lbt(e,S, Ks, Ks) :- S#=0.
lbt(t(_,e,K,e),S,[K|Ks], Ks) :- S#=1.
lbt(t(_,e,K,t(Cr,Lr,Kr,Rr)),S,[K|Ks],NKs) :- S#>=2, SR#=S-1, lbt(t(Cr,Lr,Kr,Rr),SR,Ks,NKs).
lbt(t(_,t(Cl,Ll,Kl,Rl),K,e),S,[K|Ks],NKs) :- S#>=2, SL#=S-1, lbt(t(Cl,Ll,Kl,Rl),SL,Ks,NKs).
lbt(t(_,t(Cl,Ll,Kl,Rl),K,t(Cr,Lr,Kr,Rr)),S,[K|Ks],NKs) :- S#>=3, N#=S-1, SL#>0, SR#>0, fdsum(N,SL,SR),

lbt(t(Cl,Ll,Kl,Rl),SL,Ks,TKs),
lbt(t(Cr,Lr,Kr,Rr),SR,TKs,NKs).

% Color Invariant

ci(e, Cs, Cs).
ci(t(C,e,_,e),[C|Cs], Cs).
ci(t(C,e,_,t(Cr,Lr,Kr,Rr)),[C|Cs],NCs) :- C+Cr#>0, ci(t(Cr,Lr,Kr,Rr),Cs,NCs).
ci(t(C,t(Cl,Ll,Kl,Rl),_,e),[C|Cs],NCs) :- C+Cl#>0, ci(t(Cl,Ll,Kl,Rl),Cs,NCs).
ci(t(C,t(Cl,Ll,Kl,Rl),_,t(Cr,Lr,Kr,Rr)),[C|Cs],NCs) :- C+Cl#>0, C+Cr#>0,

ci(t(Cl,Ll,Kl,Rl),Cs,TCs),
ci(t(Cr,Lr,Kr,Rr),TCs,NCs).

% Paths Invariant

pi(e,0).
pi(t(C,e,_,e),D) :- D#=C.
pi(t(C,e,_,t(Cr,Lr,Kr,Rr)),D) :- D#=C, pi(t(Cr,Lr,Kr,Rr),0).
pi(t(C,t(Cl,Ll,Kl,Rl),_,e),D) :- D#=C, pi(t(Cl,Ll,Kl,Rl),0).
pi(t(C,t(Cl,Ll,Kl,Rl),_,t(Cr,Lr,Kr,Rr)),D) :- ND#>=0, D#=ND+C,

pi(t(Cl,Ll,Kl,Rl),ND),
pi(t(Cr,Lr,Kr,Rr),ND).

% Ordering

ordered(e, _, _).
ordered(t(_,e,K,e),Min,Max) :- Min#=<K, K#<Max.
ordered(t(_,e,K,t(C,L,Kr,R)),Min,Max) :- Min#=<K, K#<Max, NK#=K+1, ordered(t(C,L,Kr,R),NK,Max).
ordered(t(_,t(C,L,Kl,R),K,e),Min,Max) :- Min#=<K, K#<Max, ordered(t(C,L,Kl,R),Min,K).
ordered(t(_,t(Cl,Ll,Kl,Rl),K,t(Cr,Lr,Kr,Rr)),Min,Max) :- Min#=<K, K#<Max, NK#=K+1,

ordered(t(Cl,Ll,Kl,Rl),Min,K),
ordered(t(Cr,Lr,Kr,Rr),NK,Max).

D The Korat code for Disjoint Sets

public class DisjSet2 {
// helper class
public static class Record {

public int parent;
public int rank;

public Record() {
}

public Record(Record rec) {
parent = rec.parent;
rank = rec.rank;

}
}// end of helper class

private Record[] elements;
private int size;

public boolean allDifferent() {
int n = size - 1;
for (int i = 0; i < n; i++) {

for (int j = i + 1; j <= n; j++) {
// all different

if (elements[i].rank == elements[j].rank)
return false;

// If two elements have the same parent, then one of them is the head of the list.
// This condition ensures that we have lists, not trees.
if ((elements[i].parent == elements[j].parent)
&& !(elements[i].parent == i || elements[i].parent == j))

return false;
}

}
return true;

}

// methods used by Korat
public boolean repOK() {

if (elements.length != size)
return false;

for (int i = 0; i < size; i++) {
int parentID = elements[i].parent;
if (parentID < 0 || parentID >= size)

return false;

// records are sorted by rank, in decreasing order
if ((i<size-1) && !(elements[i].rank >= elements[i+1].rank))
return false;

// elements of the lists are sorted in decreasing order
if (parentID != i) {

int parentRank = elements[parentID].rank;
if (parentRank <= elements[i].rank)

return false;
}

}

if (!allDifferent())
return false;

return true;
}

public static IFinitization finDisjSet2(int size) {
IFinitization f = FinitizationFactory.create(DisjSet2.class);

IClassDomain bindingsCD = f.createClassDomain(Record.class, size);
IObjSet bindings = f.createObjSet(Record.class);
bindings.addClassDomain(bindingsCD);

IIntSet lens = f.createIntSet(0, size);
IArraySet elems = f.createArraySet(Record[].class, lens, bindings, 1);

f.set("size", f.createIntSet(size, size));
f.set(Record.class, "parent", f.createIntSet(0, size - 1));
f.set(Record.class, "rank", f.createIntSet(0, size - 1));
f.set("elements", elems);

return f;
}

}

