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Abstract. We present a method for verifying properties of imperative programs that manipulate
integer arrays. Imperative programs and their properties are represented by using Constraint Logic
Programs (CLP) over integer arrays. Our method is refutational. Given a Hoare triple{ϕ} prog{ψ}
that defines a partial correctness property of an imperativeprogramprog, we encode the negation
of the property as a predicateincorrect defined by a CLP programP , and we show that the
property holds by proving thatincorrect is not a consequence ofP . Program verification is
performed by applying a sequence of semantics preserving transformation rules and deriving a new
CLP programT such thatincorrect is a consequence ofP iff it is a consequence ofT . The
rules are applied according to an automatic strategy whose objective is to derive a programT that
satisfies one of the following properties: either (i)T is the empty set of clauses, hence proving that
incorrect does not hold andprog is correct, or (ii)T contains the factincorrect, hence proving
that prog is incorrect. Our transformation strategy makes use of an axiomatization of the theory
of arrays for the manipulation of array constraints, and also applies the widening and convex hull
operators for the generalization of linear integer constraints. The strategy has been implemented in
the VeriMAP transformation system and it has been shown to bequite effective and efficient on a set
of benchmark array programs taken from the literature.
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1. Introduction

Many methods have been proposed in the literature for verifying and proving properties of C-like, im-
perative programs using the formalism of Constraint Logic Programming (CLP).

Some of those methods follow the approach initially presented in [44], which is based on program
specialization and abstract interpretation [7]. The first step of that approach consists in encoding as a
CLP program the interpreter of the imperative language in which programs are written, and then, in the
second step, this CLP program is specialized with respect tothe imperative program under investigation,
thereby deriving a new CLP program. Finally, in the third step, this new CLP program is analyzed by
computing an overapproximation of its least model by a bottom-up evaluation of an abstraction of the
program [1, 27, 41], and that analysis is used to prove (or disprove) the property of interest.

Other program verification methods start off from a partial correctness triple of the form{ϕ}prog{ψ}
and from that triple they generate a CLP program, called theverification conditionsfor prog [5, 50] and
here denoted byVC, by using ad hoc algorithms which take into account the semantics of the imperative
language in whichprog is written. The CLP programVC does not contain any explicit reference to the
imperative programprog. Then, fromVC one can infer the validity of the given triple by using goal
directed, symbolic evaluation together with other techniques such asinterpolation[14, 18, 30, 31].

In order to infer the validity of a given triple, various other reasoning techniques can be applied to
the CLP programVC. In particular, the techniques presented in [4, 23, 46, 48] (where CLP programs
are also calledconstrained Horn clauses), make use ofCounterExample-Guided Abstraction Refinement
(CEGAR) andSatisfiability Modulo Theories(SMT).

In this paper we follow the verification approach for imperative programs based on transformations
of CLP programs which has been presented in [10, 12]. Given a partial correctness property expressed by
the triple{ϕ} prog {ψ}, we first encode the negation of that property as a predicateincorrect defined
by a CLP programP . Then, similarly to [44], we specialize the CLP programP with respect to the CLP
representation of the imperative programprogand we generate a new CLP programVC representing the
verification conditions forprog. At this point our verification method departs from the one presented
in [44] and all other verification methods mentioned above. Indeed, the final step of our verification
method consists in the application toVC of a sequence of equivalence preserving transformations with
the objective of deriving a CLP programT such that either (i)T is the empty set of clauses, hence proving
thatincorrect does not hold andprog is correct, or (ii)T contains the factincorrect, hence proving
thatprog is incorrect.

Due to the undecidability of the partial correctness problem, it may be the case that from the pro-
gramVC, using our verification method, we derive a CLP program containing one or more clauses of
the form incorrect :- G, whereG is a non-empty conjunction, and we can conclude neither thatprog
is correct nor thatprog is incorrect. However, despite the possibility for these inconclusive answers, our
verification method performs well in practice, as experimentally shown in Section 6.

The main contributions of this paper are the following.

(1) We provide a method that given any partial correctness triple {ϕ}prog{ψ}, whereprog is an impera-
tive program that manipulates integers and integer arrays,generates the verification conditions forprog.
In those verification conditions the read and write operations on arrays are represented as constraints.



E. De Angelis et al. / Rule-based Verification of Array Programs 331

(2) We show how the verification conditions can be manipulated by using the familiarunfold/fold trans-
formation rulesfor CLP programs [15]. The transformation rules include aconstraint replacementrule
which is used for manipulating the read and write constraints on arrays.

(3) We propose atransformation strategyfor guiding the application of the transformation rules, with
the objective of transforming verification conditions and proving the validity of the given triple. In par-
ticular, we design a novelgeneralization strategy for array constraintsfor the introduction, during the
transformation of the CLP programs, of the new predicate definitions required for the verification of the
properties of interest. These new predicate definitions correspond to the invariants holding throughout
the execution of the imperative programs. Our generalization strategy makes use of operators, such as
the widening and convex hull operators, that have been introduced in the field ofabstract interpreta-
tion [9] and extends to CLP(Array) programs the generalization strategies considered in [16, 17] for CLP
programs over the integers.

(4) Finally, through an experimental evaluation based on a prototype implementation that uses the
VeriMAP transformation system [11], we demonstrate that our verification method performs well on
a set of benchmark programs taken from the literature.

The paper is structured as follows. In Section 2 we introducethe class of CLP(Array) programs,
that is, logic programs with constraints over the integers and integer arrays. In Section 3 we present
the unfolding/folding rules including the constraint replacement rule for manipulating constraints over
integer arrays [6, 20, 39]. Then, in Section 4 we show how to generate the verification conditions via the
specialization of CLP(Array) programs. In Section 5 we present an automatic strategy for guiding the
application of the transformation rules with the objectiveof proving (or disproving) a given property of
interest. Finally, in Section 6 we present various experimental results obtained by using our VeriMAP
verification system [11].

This paper is an improved, extended version of [10]. Here we present formal soundness, termination,
and confluence results, and a more extensive experimental comparison with related techniques.

2. CLP(Array): Constraint Logic Programs on Arrays

In this section we recall some basic notions concerning Constraint Logic Programming (CLP), and we
introduce the set, called CLP(Array), of CLP programs with constraints over the integers and the integer
arrays. Other notions concerning CLP can be found in [29]. For reasons of simplicity, in this paper
we will consider one-dimensional arrays only. We leave it for future investigation the case of multi-
dimensional arrays.

Atomic integer constraintsare formulas of the form:p1= p2, or p1> p2, or p1> p2, wherep1 andp2
are linear polynomials with integer variables and coefficients. When writing polynomials, the symbols+
and* denote sum and multiplication, respectively. Aninteger constraintis a conjunctions of atomic
integer constraints.Atomic array constraintsare constraints of the form:dim(A, N), denoting that the
arrayA has dimensionN, or read(A, I, V), denoting that theI-th element of the arrayA is the valueV,
or write(A, I, V, B), denoting that the arrayB is equal to the arrayA, except that itsI-th element is the
valueV. We assume that indexes of arrays and elements of arrays are integers. Anarray constraintis a
conjunctions of atomic array constraints. Aconstraintis eithertrue, or false, or an integer constraint,
or an array constraint, or a conjunction of constraints.
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An atom is an atomic formula of the form:q(t1,...,tm), whereq is a predicate symbol not in
{=, >, >, dim, read, write}, andt1, . . . , tm are terms constructed out of variables, constants, and func-
tion symbols different from+ and *. A CLP(Array) program is a finite set of clauses of the form
A :- c, B, whereA is an atom,c is a constraint, andB is a (possibly empty) conjunction of atoms.
Given a clauseA :- c, B, the atomA and the conjunctionc, B are called theheadand thebodyof the
clause, respectively. Without loss of generality, we assume that in every clause head, all occurrences of
integer terms are distinct variables. For instance, the clausep(X,X+1) :- X>0, q(X) will be written as
p(X,Y) :- Y=X+1, X>0, q(X). A clauseA :- c is called aconstrained fact. If c is true, then it is omitted
and the constrained fact is called afact. A CLP(Array) program is said to belinear if all its clauses are
of the formA :- c, B, whereB consists of at most one atom.

We say that a predicatep depends ona predicateq in a programP if either in P there is a clause
of the formp(...) :- c, B such thatq occurs inB, or there exists a predicater such thatp depends onr
in P andr depends onq in P . By vars(ϕ) we denote the set of all free variables of the formulaϕ.

Now we define the semantics of CLP(Array) programs. AnA-interpretationI is an interpretation
such that:

(i) the carrier ofI is the Herbrand universe [38] constructed out of the setZ of the integers, the finite
sequences of integers (which provide the interpretation for arrays), the constants, and the function
symbols different from+ and*,

(ii) I assigns to the symbols+, *, =, >, > the usual meaning inZ,
(iii) for all sequencesa0 . . . an−1 of integers, for all integersd, dim(a0 . . . an−1, d) is true inI iff d=n,
(iv) for all sequencesa0 . . . an−1 andb0 . . . bm−1 of integers, for all integersi andv,

read(a0 . . . an−1, i, v) is true inI iff 0≤i≤n−1 andv=ai, and
write(a0 . . . an−1, i, v, b0 . . . bm−1) is true inI iff

0≤i≤n−1, n=m, bi=v, and forj=0, . . . , n−1, if j 6=i thenaj=bj,
(v) I is an Herbrand interpretation [38] for function and predicate symbols different from+, *, =, >, >,

dim, read, andwrite.

We can identify anA-interpretationI with the set of all ground atoms that are true inI, and hence
A-interpretations are partially ordered by set inclusion. If a formulaϕ is true in everyA-interpretation
we writeA |= ϕ, and we say thatϕ is true inA. A constraintc is satisfiableif A |= ∃(c), where for every
formulaϕ, ∃(ϕ) denotes the existential closure ofϕ. Likewise,∀(ϕ) denotes the universal closure ofϕ.
A constraint isunsatisfiableif it is not satisfiable. A constraintc entailsa constraintd, denotedc ⊑ d, if
A |= ∀(c→d). Given any two integer constraintsi1 andi2, we will feel free to writeZ |= ∀(i1↔i2),
instead ofA |= ∀(i1 ↔ i2). Given a constraintc, we writec↓Z to denote the conjunction of all the
integer constraints occurring inc.

The semantics of a CLP(Array) programP is defined to be theleastA-modelof P , denotedM(P ),
that is, the leastA-interpretationI such that every clause ofP is true inI.

3. Transformation Rules for CLP(Array) Programs

Our verification method is based on the application of some transformation rules that preserve the least
A-model semantics of CLP(Array) programs. In particular, weapply the followingtransformation rules,
collectively calledunfold/fold rules: (i) Definition, (ii) Unfolding, (iii) Constraint Replacement, and
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(iv) Folding. These rules are an adaptation to CLP(Array) programs of theunfold/fold rules for a generic
CLP language (see, for instance, [15]). The soundness of therules we consider is proved in [15].

Let P be any given CLP(Array) program.

(i) Definition Rule.By the definition rule we introduce a clause of the formnewp(X) :- c,A, wherenewp
is a new predicate symbol (occurring neither inP nor in a clause previously introduced by the definition
rule),X is the tuple of variables occurring in the atomA, andc is a constraint.

(ii) Unfolding Rule. Let us consider a clauseC of the formH :- c,L,A,R, whereH andA are atoms,
c is a constraint, andL andR are (possibly empty) conjunctions of atoms. Let us also consider the set
{Ki :- ci,Bi | i=1, . . . ,m} of the (renamed apart) clauses ofP such that, fori=1, . . . ,m, A is unifiable
with Ki via the most general unifierϑi and(c,ci)ϑi is satisfiable. By unfoldingC w.r.t.A usingP , we
derive the set{(H :- c,ci,L,Bi,R)ϑi | i = 1, . . . ,m} of clauses.

(iii) Constraint Replacement Rule.Let us consider a clauseC of the form: H :- c0, B, and some con-
straintsc1, . . . , cn such that

A |= ∀ ((∃X0 c0)↔(∃X1 c1 ∨∨ . . . ∨∨ ∃Xn cn))
where, fori=0, . . . , n, Xi = vars(ci)−vars(H, B). Then, by constraint replacement from clauseC we
deriven clausesC1, . . . , Cn obtained by replacing in the body ofC the constraintc0 by then constraints
c1, . . . , cn, respectively.

The equivalences, also called theLaws of Arrays, needed for applying the constraint replacement rule
can be shown to be true inA by using (a relational version of) the theory of arrays with dimension [6, 20].
This theory includes the following axioms, where all variables are universally quantified at the front:
(A1) I=J, read(A, I, U), read(A, J, V) → U=V

(A2) I=J, write(A, I, U, B), read(B, J, V) → U=V

(A3) I 6=J, write(A, I, U, B), read(B, J, V) → read(A, J, V)

Axiom (A1) is often calledarray congruence, and Axioms (A2) and (A3) are collectively calledread-
over-write. We do not list here the obvious axioms that state that the array indexes of the read and write
operations are within the bounds specified by the predicatedim.

(iv) Folding Rule.Given a clauseE: H :- e, L, A, R and a clauseD: K :- d, D introduced by the defi-
nition rule. Suppose that, for some substitutionϑ, (i) A = Dϑ, and (ii)∀ (e→ dϑ). Then by foldingE
usingD we deriveH :- e, L, Kϑ, R.

FromP we can derive a new programTransfPby: (i) selecting a clauseC in P , (ii) deriving a new
setTransfCof clauses by applying one or more transformation rules, and(iii) replacingC by TransfC
in P . Clearly, we can apply a new sequence of transformation rules starting fromTransfPand iterate this
process at will.

The following theorem is an immediate consequence of the soundness results for the unfold/fold
transformation rules of CLP programs [15].

Theorem 3.1. (Soundness of the Transformation Rules) Let the CLP(Array) programTransfPbe derived
from P by a sequence of applications of the transformation rules. Suppose that every clause introduced
by the definition rule is unfolded at least once in this sequence. Then, for every ground atomA in the
language ofP ,A∈M(P) iff A∈M(TransfP).

The assumption that the unfolding rule should be applied at least once, is required for technical
reasons [15]. Informally, that assumption forbids the replacement of a definition clause of the form
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A:-B by the clauseA:-A that is obtained by folding clauseA:-B usingA:-B itself. Indeed, a similar
replacement in general does not preserve the leastA-model semantics.

4. Generating Verification Conditions via Specialization

We consider a C-like imperative programming language with integer and array variables, assignments (=),
sequential compositions (;), conditionals (if-else), while-loops (while), and jumps (goto). A pro-
gram is a sequence of (labeled) commands. We assume that in each program there is a unique initial
command with labelℓ0 and a uniquehalt command with labelℓh which, when executed, causes the
program to terminate.

The semantics of the imperative language considered here isdefined by means of atransition rela-
tion, denoted=⇒, betweenconfigurations. Each configuration is a pair〈〈c, δ〉〉 of a commandc and an
environmentδ. An environmentδ is a function that maps: (i) every integer variable identifier x to its
valuev, and (ii) every integer array identifiera to a finite sequencea0 . . . an−1 of integers, wheren is
the dimension of the arraya. The definition of the relation=⇒ is similar to the ‘small step’ operational
semantics given in [47] and is omitted. We say that a configuration 〈〈c, δ〉〉 satisfies a propertyϕ whose
free variables arez1, . . . , zr iff ϕ(δ(z1), ..., δ(zr)) is true inA.

We find it convenient to define the partial correctness of a program by considering thenegation
of the postcondition of the program. We say that the Hoare triple {ϕinit} prog {¬ϕerror} is valid,
meaning thatprog is partially correct (or, simply, correct) with respect to the given precondition and
postcondition, if for all terminating executions ofprog starting from an input satisfyingϕinit , the output
satisfies¬ϕerror . In other words,prog is incorrect if there exists an execution ofprog that leads from
a configuration satisfying the propertyϕinit and whose command is the initial command (also called an
initial configuration), to a configuration whose command ishalt and whose environment satisfies the
propertyϕerror (also called anerror configuration). In this paper we assume thatϕinit andϕerror are
formulas of the form:∃x1 . . . ∃xn.c, wherec is a constraint and the free variables of∃x1 . . . ∃xn.c are
global variables occurring inprog.

Obviously, when writing a Hoare triple we may use a less restrictive syntax, as long as the triple can
be translated into one or more triples of the form specified above. For example, in Section 6 we wrote
the triple for thecopyprogram as:{true} copy{∀i. (0≤ i∧ i<n) → a[i]=b[i]} and this is a legal triple
because it can be translated into the conjunction of the following two triples:
(1) {true} copy{¬∃i. 0≤ i ∧ i<n ∧ a[i]>b[i]} (2) {true} copy{¬∃i. 0≤ i ∧ i<n ∧ a[i]<b[i]}

It follows directly from the definitions that the problem of checking whether or notprog is incorrect can
be encoded as the problem of checking whether or not the nullary predicateincorrect is a consequence
of the CLP(Array) programP made out of the following clauses:

incorrect :- errorConf(X), reach(X).

reach(Y) :- tr(X, Y), reach(X).

reach(Y) :- initConf(Y).

together with the clauses for the predicates (i)initConf(X), (ii) errorConf(X), and (iii) tr(X, Y).
These three predicates encode an initial configuration, an error configuration, and the transition relation
=⇒ between configurations, respectively. The predicatereach(Y) holds if a configurationY can be
reached from an initial configuration. Note that the existential quantifiers possibly occurring in the two
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formulasϕinit andϕerror are dropped when these formulas are used in the body of the definition of
initConf(X) anderrorConf(X), respectively, thereby obtaining CLP(Array) clauses.

As an example of the clauses defining the predicatetr, let us present the following clause encoding
the transition relation for the labeled commandℓ : a[ie]= e that assigns the value ofe to the element of
index ie of the arraya (here a configuration of the form〈〈ℓ : c, δ〉〉, wherec is a command with labelℓ
andδ is an environment, is denoted by the termcf(cmd(L, C), D)):

tr(cf(cmd(L, asgn(arrayelem(A, IE), E)), D), cf(cmd(L1, C), D1)) :-

eval(IE, D, I), eval(E, D, V), lookup(D, A, FA), write(FA, I, V, FA1),

update(D, A, FA1, D1), nextlab(L, L1), at(L1, C).

In this clause: (i)arrayelem(A, IE) is a term representing the expressiona[ie], (ii) eval(IE, D, I) holds
iff I is the the value of the index expressionIE in the environmentD, (iii) eval(E, D, V) holds iff V
is the value of the expressionE in the environmentD, (iv) lookup(D, A, FA) holds iff FA is the value
of the arrayA in the environmentD, (v) update(D, A, FA1, D1) holds iff D1 is the environmentD after
the assignment to arrayA producing the new arrayFA1, (vi) nextlab(L, L1) holds iff L1 is the label
of the command following the command with labelL in the encoding of the given programprog, and
(vii) at(L1, C) holds iff C is the command with labelL1 in that encoding. As shown in [12], simi-
lar clauses for the predicatetr can be defined for the other commands of the imperative language we
consider.

The Hoare triple{ϕinit} prog {¬ϕerror} is valid iff incorrect 6∈M(P ), whereM(P ) is the least
A-model of programP (see Section 2).

Our verification method consists of the following two steps,each of which is performed by a se-
quence of applications of the unfold/fold transformation rules presented in Section 3, starting from pro-
gramP :
(i) the Generation of Verification Conditions(VCGen), outlined below, and
(ii) the Transformation of Verification Conditions(VCTransf), which will be presented in the next section.
Since the rules preserve the leastA-model (see Theorem 3.1), we will have thatincorrect∈M(P ) iff
incorrect∈M(T ), whereT is the CLP program derived after applyingVCGenandVCTransf.

During VCGen, programP is specialized with respect to the predicate definitions oftr (which
depends onprog), initConf, anderrorConf, thereby deriving a new program, called theverification
conditionsfor prog and denoted byVC , which does not contain any occurrence of those predicates and
has no reference to the commands of the imperative programprog. For this reason, programVC is said
to be derived by applyingthe removal of the interpreter(see, for instance, [12]).

We say that programVC is satisfiableiff incorrect 6∈ M(VC ). Thus, the satisfiability of the
verification conditions forprog guarantees that the Hoare triple{ϕinit} prog{¬ϕerror} is valid.

In our verification method, the specialization ofP is done by applying a variant of the removal of
the interpreter strategy presented in [12]. The main difference with respect to [12] is that the CLP pro-
grams we consider here may containread, write, anddim predicates. Theread andwrite predicates
are never unfolded during the specialization and they occurin the residual CLP(Array) programVC .
Moreover all occurrences of thedim predicate are eliminated by replacing them by suitable integer con-
straints on indexes. We do not show here theVCGenstep, and we refer to [12] for a detailed presentation
in the case of programs without array operations. Here we only show an example of generation of the
verification conditions.
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Let us consider the following programSeqInitwhich initializes a given arraya of n integers by the
sequence:a[0], a[0]+1, . . . , a[0]+n−1:

SeqInit: ℓ0 : i = 1;
ℓ1 : while (i<n) { a[i] = a[i−1] + 1; i = i+ 1; };
ℓh : halt

We consider the Hoare triple{ϕinit (i, n, a)} SeqInit {¬ϕerror (n, a)}, where:
(i) ϕinit(i, n, a) is i≥0 ∧∧ n=dim(a) ∧∧ n≥1, and
(ii) ϕerror (n, a) is ∃j. j≥0 ∧∧ j≤n−2 ∧∧ a[j]≥a[j+1].

First, the above triple is translated into a CLP(Array) programP . In particular, the propertiesϕinit and
ϕerror are defined by the following clauses, respectively:

1. phiInit(I, N, A) :- I≥0, dim(A, N), N≥1.

2. phiError(N, A) :- K=J+1, J≥0, J≤N−2, U≥V, read(A, J, U), read(A, K, V).

The clauses defining the predicatesinitConf anderrorConf which specify the initial and the error
configurations, respectively, are as follows:

3. initConf(cf(cmd(l0,Cmd), [(i, I), (n, N), (a, A)])) :- at(l0,Cmd), phiInit(I, N, A).
4. errorConf(cf(cmd(lh,Cmd), [(i, I), (n, N), (a, A)])) :- at(lh,Cmd), phiError(N, A).

where the environment is a finite function encoded as a list of(identifier, value) pairs. (In particular,I
andN range over integers, andA ranges over sequences of integers.)

In order to encode the programSeqInit , we first replace the while-loop command by a conditional
and a jump command, and then we introduce the following factsdefining the predicateat:

at(l0, asgn(i, 1)). at(l1, ite(less(i, n), l2, lh)).
at(l2, asgn(arrayelem(a, i), plus(arrayelem(a, minus(i, 1)), 1))).
at(l3, asgn(i, plus(i, 1))). at(l4, goto(l1)). at(lh, halt).

Now we perform theVCGenstep and from programP we obtain the following programVC :

5. incorrect :- K=J+1, J≥0, J≤N−2, U≥V, N≤I, read(A, J, U), read(A, K, V), p(I, N, A).
6. p(I, N, A) :- 1≤H, H≤N−1, G=H−1, I=H+1, Z=W+1, read(B,G,W), write(B,H,Z,A), p(H,N,B).
7. p(I, N, A) :- I=1, N≥1.

which represents the verification conditions forSeqInit.
The following Theorem 4.1 is a straightforward extension tothe case of CLP(Array) programs of the

results shown in [12].

Theorem 4.1. (Termination and Soundness of the VCGen Transformation) Let P be the CLP(Array)
program defining the predicateincorrect which holds iff the triple{ϕinit} prog{¬ϕerror} is not valid.
TheVCGentransformation terminates on the inputP , and derives a CLP(Array) programVC such that
incorrect∈M(P ) iff incorrect∈M(VC ). Moreover,VC is a linear CLP(Array) program.

5. A Strategy for Transforming the Verification Conditions

In order to check whether or notincorrect ∈ M(VC ), the standard evaluation methods are often
inadequate, because the leastA-modelM(VC ) may be infinite and both the bottom-up and the top-
down evaluation of the predicateincorrect may not terminate (indeed, this is the case in ourSeqInit
program above).
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In this section, we present theVCTransf transformation step, which propagates the constraints oc-
curring inϕinit andϕerror with the objective of deriving from programVC a new programT where
the predicateincorrect is defined by either (i) the factincorrect (in which case the verification con-
ditions are unsatisfiable, that is,incorrect ∈M(VC ), andprog is incorrect), or (ii) the empty set of
clauses (in which case the verification conditions are satisfiable, that is,incorrect 6∈M(VC ), andprog
is correct). In the case where neither (i) nor (ii) holds, we cannot conclude anything about the correctness
of prog. However, similarly to what has been proposed in [10], we caniterate a few times theVCTransf
step in the hope of deriving a program where either (i) or (ii)holds. Obviously, due to undecidability
limitations, it may be the case that we never get a program where either (i) or (ii) holds.

VCTransf is performed by applying the unfold/fold transformation rules according to the strategy
shown in Figure 1.VCTransfcan be viewed as a backward propagation of the constraints inϕerror .
The forward propagation of the constraints inϕinit can be obtained by combiningVCTransfwith the
Reversaltransformation described in [10].

Input: A linear CLP(Array) programVC .
Output: ProgramT such thatincorrect∈M(VC ) iff incorrect∈M(T ).

INITIALIZATION : Let InDefsbe the set of all clauses ofVC whose head is the atomincorrect;
T :=∅ ; Defs:= InDefs;
while in InDefsthere is a clauseC do

UNFOLDING: Unfold C w.r.t. the single atom in its body by usingVC , and derive a setU(C) of
clauses;

CONSTRAINT REPLACEMENT: Apply a sequence of constraint replacements based on the Laws of
Arrays, and derive fromU(C) a setR(C) of clauses;

CLAUSE REMOVAL : Remove fromR(C) all clauses whose body has an unsatisfiable constraint;
DEFINITION & FOLDING: Introduce a (possibly empty) set of new predicate definitions and add

them toDefsand toInDefs;
Fold the clauses inR(C) different from constrained facts by using the clauses inDefs, and derive
a setF(C) of clauses;

InDefs:= InDefs− {C}; T := T ∪ F(C);
end-while;
REMOVAL OF USELESSCLAUSES: Remove from programT all clauses with head predicatep, if in T
there is no constrained factq(. . .) :- c whereq is eitherp or a predicate on whichp depends.

Figure 1. TheVCTransftransformation strategy.

Let us describe in more detail the UNFOLDING, CONSTRAINT REPLACEMENT, and DEFINITION &
FOLDING phases of theVCTransfstrategy.

5.1. Unfolding

The UNFOLDING phase corresponds to one inference step, in a backward way, starting from the error
configuration. For instance, let us consider again theSeqInitprogram of Section 4, and letVC be the
CLP program made out of clauses 5, 6, and 7. TheVCTransfstrategy starts off by unfolding clause 5
w.r.t. the atomp(I, N, A). We get the clause:
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8. incorrect:- K=J+1, J≥0, J≤N−2, U≥V, N≤I, 1≤H, H≤N−1, G=H−1, I=H+1, Z=W+1,
read(A, J, U), read(A, K, V), read(B, G, W), write(B, H, Z, A), p(H, N, B).

whereB denotes the array from which the output arrayA computed by theSeqInitprogram is derived.
Basically, the body of clause 8 represents the set of configurations from which the error configuration
is reachable. Note that the unfolding rule derives one clause only, because the conjunction of the con-
straintc1 occurring in clause 5 and the constraintc2 occurring in clause 7 is unsatisfiable (that is, the
initial configuration is not backward reachable in one step from the error configuration).

5.2. Constraint Replacement

The CONSTRAINT REPLACEMENT transformation phase applies the Laws of Arrays and infers new
constraints on the variables of the single atom that occurs in the body of each clause derived at the
end of the UNFOLDING phase. The objective of CONSTRAINT REPLACEMENT is to simplify the array
constraints and, in particular, to replaceread constraints in favor of integer constraints (see rules RR1
and WR1). CONSTRAINT REPLACEMENT also performs, whenever possible, case reasoning on the array
indexes (see clauses(α) and(β) of rule WR3).

This transformation phase works as follows. We select a clause in the setU(C) of the clauses
obtained by unfolding, and we replace it by the clause(s) obtained by applyingas long as possiblethe
following rules RR1–WR3, which are based on axioms A1–A3 of Section 3.

Let H :- k, G be a clause wherek ≡ (c, read(A, I, U), read(A, J, V)), c is a constraint, andG is a con-
junction of atoms.
(RR1) If k↓Z ⊑ (I=J) then replacek by (c, U=V, read(A, I, U)).
(RR2) If k↓Z 6⊑ (I 6=J) andk↓Z ⊑ (U 6=V) then add tok the constraintI 6=J.

Let H :- k, G be a clause wherek ≡ (c, write(A, I, U, B), read(B, J, V)), c is a constraint, andG is a
conjunction of atoms.
(WR1) If k↓Z ⊑ (I=J) then replacek by (c, U=V, write(A, I, U, B)).
(WR2) If k↓Z ⊑ (I 6=J) then replacek by (c, write(A, I, U, B), read(A, J, V)).
(WR3) If k↓Z 6⊑ I=J andk↓Z 6⊑ I 6=J then replaceH :- k, G by the two clauses:

(α) H :- c, I=J, U=V, write(A, I, U, B), G
and (β) H :- c, I 6=J, write(A, I, U, B), read(A, J, V), G

The replacement process, which in general is nondeterministic, is confluent and terminating, as stated in
the following theorem.

Theorem 5.1. (Soundness, Termination, and Confluence of Constraint Replacement)
(1. Soundness) Each rule among RR1, RR2, WR1, WR2, and WR3 is a sound application of the con-
straint replacement rule. Indeed,
(i) if H :- c0, G is replaced byH :- c1, G, by using a rule among RR1, RR2, WR1, WR2, then

A |= ∀(c0 ↔ c1), and
(ii) if H :- c0, G is replaced byH :- c1, G andH :- c2, G, by using WR3, thenA |= ∀(c0 ↔ c1 ∨∨ c2).

(2. Termination) Let D be a clause obtained after the UNFOLDING phase of theVCTransf strategy.
Then, the execution of the CONSTRAINT REPLACEMENT phase onD terminates.
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(3. Confluence) The rules RR1, RR2, WR1, WR2, and WR3 are confluent, modulo equivalence of
integer constraints.

Proof:
(1.Soundness) (i). The proof proceeds by cases on the rule used. Suppose that H :- k, G is replaced by
H :- k1, G by using RR1, wherek is of the form(c, read(A, I, U), read(A, J, V)), k↓Z ⊑ (I=J) holds,
andk1 is of the form(c, U = V, read(A, J, V)). From axiom A1 of Section 3, we derive:

A |= ∀(c, read(A, I, U), read(A, J, V) ↔ c, U = V, read(A, J, V)).
Similarly, the soundness of the application of rules RR2, WR1, and WR3 is derived by using (the con-
trapositive of) axiom A1, axiom A2, and axiom A3, respectively.
(1.Soundness) (ii). Suppose thatH :- k,G is replaced byH :- k1,G andH :- k2,G, by using WR3. Thenk
is the constraint(c, write(A,I,U,B), read(B,J,V)), k1 is the constraint(c, I=J, U=V, write(A,I,U,B)),
andk2 is the constraint(c, I 6=J, write(A, I, U, B), read(A, J, V)). By case split, we get:

A |= ∀((c, write(A, I, U, B), read(B, J, V)) ↔ ((c, I=J, write(A, I, U, B), read(B, J, V))

∨∨ (c, I 6=J, write(A, I, U, B), read(B, J, V))).
By using A3, we get:

A |= ∀((c, write(A, I, U, B), read(B, J, V)) ↔ ((c, I=J, U=V, write(A, I, U, B), read(B, J, V))

∨∨ (c, I 6=J, write(A, I, U, B), read(B, J, V), read(A, J, V))).
Since we have thatA |= ∀(I=J, U=V, write(A, I, U, B) → read(B, J, V)), and we also have that
A |= ∀(I 6=J, write(A, I, U, B), read(A, J, V) → read(B, J, V)), we get:

A |= ∀((c, write(A, I, U, B), read(B, J, V)) ↔ ((c, I=J, U=V, write(A, I, U, B))

∨∨ (c, I 6=J, write(A, I, U, B), read(A, J, V))).
(2. Termination) Let us define a relation, denoted≺, on the setvars(D) of the variables occurring in
clauseD as follows:A≺B iff the constraintwrite(A, I, U, B) occurs inD. The constraintwrite(A, I, U, B)
denotes that the result of a write operation on arrayA is a new arrayB, and henceB is a variable not oc-
curring as the fourth argument of any otherwrite constraint. Thus, the transitive closure≺+ of ≺
is irreflexive, and sincevars(D) is a finite set,≺+ is a well-founded ordering onvars(D). Note also
that for every clauseD′ derived fromD during the CONSTRAINT REPLACEMENT phase, we have that
vars(D′)=vars(D).

Let us introduce the following measures for every clauseE in the setS of clauses with variables
in vars(D):
(1) µn(E), which is the number ofread constraints in the body ofE,
(2)µr(E), which is the sum, for all constraints of the formread(B,_,_) in the body ofE, of the number

of variablesA in vars(D) such thatA≺+B,
(3) µp(E), which is the number of pairs(I, J) of integer variables invars(D) such thatc 6⊑(I 6=J),

wherec is the constraint in the body ofE, and
(4) τ(E) =def 〈µn(E), µr(E), µp(E) 〉.

Now the termination of the CONSTRAINT REPLACEMENT phase is a consequence of the fact that if
clauseE is obtained from clauseF by applying any of the rules in{RR1, RR2, WR1, WR2, WR3}, then
τ(E)<lex τ(F ), where<lex is the lexicographic ordering on triples of natural numbers(recall that<lex

is a well-founded ordering). Indeed, the following facts hold:
(i) when applying rules RR1, WR1, and WR3(α), the measureµn decreases and no other rule application
increases it,
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(ii) when applying rule WR2, the measureµr decreases and no other rule application increases it (indeed,
if clauseE1 is derived from clauseE2 by replacing a constraintread(B, J, V) by the new constraint
read(A, J, V) with A≺+B, thenµr(E1)<µr(E2)), and
(iii) when applying rules RR2 and WR3(β), the measureµp decreases and no other rule application
increases it.
(3. Confluence) In order to prove the confluence of the rewriting rules RR1, RR2, WR1, WR2, and
WR3, since the constraint replacement is terminating (see Point 2), by the Newman Theorem [28] it is
enough to provelocal confluence, that is, it is enough to prove the following property: for all clausesC
and all setsS1 andS2 of clauses, if{C} can be rewrittenin one stepinto the setS1 and alsoin one
stepinto the setS2, then (i)S1 can be rewritten, in zero or more steps, into a set, say{C11, . . . , C1n},
of clauses, (ii)S2 can be rewritten, in zero or more steps, into a set, say{C21, . . . , C2n}, of clauses,
and (iii) for k = 1, . . . , n, clausesC1k andC2k, after variable renaming, are of the formH :- i1, c, G
andH :- i2, c, G, respectively, where:i1 andi2 are integer constraints,c is an array constraint,G is a
conjunction of atoms, andZ |= i1 ↔ i2.

Now we consider the various cases for the one step rewritings. In what follows, for reason of concise-
ness we will write the prefix ‘1-’, instead of ‘one step’, and when writing constraints, we allow ourselves
to silently apply equivalences that hold inZ.

• (CaseRR1-RR1). Let us consider the constraintk ≡ (c, read(A, I, U), read(A, J, V), read(A, K, W))
such thatk↓Z ⊑(I=J) andk↓Z ⊑(J=K).

The constraintk 1-rewrites by RR1 intok1 ≡ (c, U=V, read(A, I, U), read(A, K, W)), andk also
1-rewrites by RR1 intok2 ≡ (c, V=W, read(A, I, U), read(A, J, V)).

Now we have thatk1 can be 1-rewritten by RR1 intok1′ ≡ (c, U=V, U=W, read(A, I, U)), andk2
can be 1-rewritten by RR1 intok2′ ≡ (c, U=V, V=W, read(A, I, U)).

SinceZ |= (U=V, U=W) ↔ (U=V, V=W), we get local confluence.
• (CaseRR1-RR2). Let us consider the constraintk ≡ (c, read(A, I, U), read(A, J, V)), such that
k↓Z⊑(I=J) andk↓Z 6⊑(I 6=J) andk↓Z⊑(U 6=V). Thus, in particular,c↓Z⊑(I=J) andc↓Z⊑(U 6=V).

The constraintk 1-rewrites by RR1 intok1 ≡ (c, U=V, read(A, I, U)), andk also 1-rewrites by RR2
into k2 ≡ (c, I 6=J, read(A, I, U), read(A, J, V)). Now, sincec↓Z ⊑ (I=J), k2 1-rewrites by RR1 into
k2′ ≡ (c, I 6=J, U=V, read(A, I, U)). Moreover, sincec↓Z ⊑ (U 6=V) andc↓Z ⊑ (I=J), we have that
Z |= (c↓Z, U=V) ↔ false, andZ |= (c↓Z, I 6=J, U=V) ↔ false. Thus, we get local confluence.
• (CaseRR1-WR1). Let us consider the constraintk≡(c, read(A,I,U), read(A,J,V), write(A0,I,U,A)),
such thatk↓Z ⊑ (I=J).

The constraintk 1-rewrites by RR1 intok11 ≡ (c, U=V, read(A, I, U), write(A0, I, U, A)), andk
also 1-rewrites by WR1 intok21 ≡ (c, U=V, read(A, I, U), write(A0, I, U, A)). Sincek11 andk21 are
syntactically equal, we get local confluence.

The constraintk may also 1-rewrite by WR1 intok22 ≡ (c, read(A, J, V), write(A0, I, U, A)). Now,
k11 is 1-rewritten by WR1 into(c, U=V, write(A0, I, U, A)) andk22 is 1-rewritten by WR1 into the
same constraint(c, U=V, write(A0, I, U, A)), and thus we get local confluence also in this case.

The constraintk also 1-rewrites by RR1 intok12 ≡ (c, U=V, read(A, J, V), write(A0, I, U, A)).
Now, since the constraintsk12, k21, andk22 can all be 1-rewritten by RW1 into a constraint of the form
(c, U=V, write(A0, I, U, A)), we get local confluence.
• (CaseRR1-WR2) and (CaseRR1-WR3). These cases are impossible because: (i) it is not the case that
k↓Z ⊑(I=J) andk↓Z ⊑(I 6=J)hold, and (ii) it is not the case thatk↓Z ⊑(I=J) andk↓Z 6⊑(I=J) hold.
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Now we have to consider all other cases of the 1-rewritings when the first rule is not RR1. The proofs of
all these cases are similar to ones shown above, and we leave them to the reader.

Here we only show the following cases.
• (CaseRR2-WR1). Let us consider the constraintk ≡(d, read(A,I,U), read(A,J,V), write(A0,I,U,A)),
whered↓Z 6⊑ (I 6=J) andd↓Z ⊑ (U 6=V) andd↓Z ⊑ (I=J).

The constraintk 1-rewrites by RR2 intok1 ≡ (k, I 6=J). The constraintk also 1-rewrites by WR1
into k21 ≡ (d, U=V, read(A, I, U), write(A0, I, U, A)). Now, sinced↓Z ⊑ (I=J), k1 1-rewrites by
RR1 intok1′ ≡ (d, I 6=J, U=V, read(A, I, U), write(A0, I, U, A)). Moreover, sinced↓Z ⊑ (I=J) and
d↓Z ⊑ (U 6=V), we have thatZ |= (d↓Z, I 6=J, U=V) ↔ false, andZ |= (d↓Z, U=V) ↔ false. Thus,
we get local confluence.

The constraintk also 1-rewrites by WR1 intok22 ≡ (d, U=U, read(A, J, V), write(A0, I, U, A)).
This constraint by WR1 is 1-rewritten into(d, U=V, U=U, write(A0, I, U, A)). Now k1′ is 1-rewritten
by WR1 into (d, I 6=J, U=V, U=U, write(A0, I, U, A)). Sinced↓Z ⊑ (U 6=V) and d↓Z ⊑ (I=J), we
have thatZ |= (d↓Z, U=V, U=U) ↔ false andZ |= (d↓Z, I 6=J, U=V, U=U) ↔ false. Thus, we get
local confluence.
• (CaseWR1-WR1). (Case of overlapping redexes onwrite). Let us consider the constraintk ≡
(c, write(A, I, U, B), read(B, J, V), read(B, K, W)), wherec↓Z ⊑ (I=J) andc↓Z ⊑ (I=K).

The constraintk 1-rewrites by WR1 intok1 ≡ (c, U=V, write(A, I, U, B), read(B, K, W)). Also the
constraintk also 1-rewrites by WR1 intok2 ≡ (c, U=W, write(A, I, U, B), read(B, J, V)).

Now k1 can be 1-rewritten by WR1 intok1′ ≡ (c, U=V, U=W, write(A, I, U, B)) and k2 can be
1-rewritten by WR1 intok2′ ≡ (c, U=W, U=V, write(A, I, U, B)). By commutativity of constraints inZ,
we get local confluence.
• (CaseWR1-WR1). (Case of overlapping redexes onread). Let us consider the constraintk ≡
(c, write(A, I, U, B), read(B, J, V), write(A, K, W, B)), wherec↓Z ⊑ (I=J) and c↓Z ⊑ (K=J). This
case is impossible because there are twowrite(A,K,W,B) constraints with the same fourth argument.
• (CaseWR3-WR3). (Case of overlapping redexes onwrite). Let us consider the constraintk ≡
(c, write(A,I,U,B), read(B,J,V), read(B,K,W)), wherec↓Z 6⊑(I=J) andc↓Z 6⊑(I6=J) andc↓Z 6⊑(I=K)
andc↓Z 6⊑(I6=K).

By considering the constraint(c, write(A, I, U, B), read(B, J, V)), k 1-rewrites by WR3 into the two
constraints:

k1α ≡ (c, I=J, U=V, write(A, I, U, B), read(B, K, W))

k1β ≡ (c, I 6=J, write(A, I, U, B), read(A, J, V), read(B, K, W)).

By considering the constraint(c, write(A, I, U, B), read(B, K, W)), k also 1-rewrites by WR3 into the
two constraints:

k2α ≡ (c, I=K, U=W, write(A, I, U, B), read(B, J, V))
k2β ≡ (c, I 6=K, write(A, I, U, B), read(A, K, W), read(B, J, V)).

Fromk1α andk1β, sincec↓Z 6⊑ (I=K) andc↓Z 6⊑ (I 6=K), we get by 1-rewritings by WR3 the follow-
ing constraints:

k1αα ≡ (c, I=J, I=K, U=V, U=W, write(A, I, U, B))
k1αβ ≡ (c, I=J, I 6=K, U=V, write(A, I, U, B), read(A, K, W))

k1βα ≡ (c, I 6=J, I=K, U=W, write(A, I, U, B), read(A, J, V))
k1ββ ≡ (c, I 6=J, I 6=K, write(A, I, U, B), read(A, J, V), read(A, K, W)).
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Fromk2α andk2β, sincec↓Z 6⊑ (I=J) andc↓Z 6⊑ (I 6=J), we get by 1-rewritings by WR3 the follow-
ing constraints:

k2αα ≡ (c, I=K, I=J, U=W, U=V, write(A, I, U, B))
k2αβ ≡ (c, I=K, I 6=J, U=W, write(A, I, U, B), read(A, J, V))
k2βα ≡ (c, I 6=K, I=J, U=V, write(A, I, U, B), read(A, K, W))
k2ββ ≡ (c, I 6=K, I 6=J, write(A, I, U, B), read(A, K, W), read(A, J, V)).

Now let us consider the pair(k1αα, k2αα) of constraints. We have that:Z |= k1αα ↓Z ↔ k2αα ↓Z.
Actually, k1αα andk2αα are syntactically equal, modulo commutativity of conjunction. The same holds
for the other pairs of constraints:(k1αβ , k2βα), (k1βα, k2αβ), and(k1ββ, k2ββ). Thus, we get local
confluence.
(CaseWR3-WR3). (Case of overlapping redexes onread). As for the case WR1-WR1, this case is
impossible. ⊓⊔

Let us continue our verification of theSeqInitprogram by performing the CONSTRAINT REPLACE-
MENT transformation phase. First, we simplify clause 8 by replacing the integer constraint in its body
with an equivalent one. We get:

8r. incorrect:- K=J+1, J≥0, K≤H, G=H−1, N=H+1, Z=W+1, U≥V,
read(A, J, U), read(A, K, V), read(B, G, W), write(B, H, Z, A), p(H, N, B).

SinceJ 6=H is entailed by the constraint in clause 8r, we apply rule WR2 and we replace ‘read(A, J, U),
write(B, H, Z, A)’ by ‘ read(B, J, U), write(B, H, Z, A)’. We get:

8r.1incorrect:- K=J+1, J≥0, K≤H, G=H−1, N=H+1, Z=W+1, U≥V,
read(B, J, U), read(A, K, V), read(B, G, W), write(B, H, Z, A), p(H, N, B).

Then, since neitherK=H nor K 6=H is entailed by the constraint in clause 8r.1, we apply rule WR3 and
we obtain the following two clauses (we have underlined the constraints involved in this replacement):

8r.2incorrect:- K=J+1, J≥0, K≤H, G=H−1, N=H+1, Z=W+1, U≥V,
K=H, Z=V, read(B, J, U), read(B, G, W), write(B, H, Z, A), p(H, N, B).

8r.3incorrect:- K=J+1, J≥0, K≤H, G=H−1, N=H+1, Z=W+1, U≥V,
K 6=H, read(B, J, U), read(B, K, V), read(B, G, W), write(B, H, Z, A), p(H, N, B).

Finally, sinceJ=G is entailed by the constraint in clause 8r.2 (indeed,K=J+1, G=H−1, K=H), we
apply rule RR1 to clause 8r.2 and we replace the constraintread(B, G, W) by the constraintW=U, thereby
deriving the unsatisfiable constraint ‘W=U, Z=W+1, Z=V, U≥V’. Thus, clause 8r.2 is removed by the
subsequent CLAUSE REMOVAL phase. From clause 8r.3, by rewriting ‘K≤H, K 6= H’ as ‘K≤H−1’, we
get:

9. incorrect:- K=J+1, J≥0, K≤H−1, G=H−1, N=H+1, Z=W+1, U≥V,
read(B, J, U), read(B, K, V), read(B, G, W), write(B, H, Z, A), p(H, N, B).

5.3. Definition and Folding

The DEFINITION & FOLDING phase introduces new predicate definitions by suitable generalizations of
the constraints. Generalization guarantees the termination of VCTransf. In particular, by using the Gen-
eralization Algorithm presented in Figure 2, we enforce theintroduction of afinite set Defs of new
predicate definitions such that all clauses derived by applying unfolding, constraint replacement, and
clause removal to the clauses inDefscan be folded by using clauses in the setDefsitself.
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Unfortunately, in some cases our generalization techniquemay introduce an overly general new
predicate definition whose unfolding may generate constrained facts, thereby preventing us to prove that
incorrect 6∈M(P ), even if the given array manipulating program is correct. Informally, this case may
happen when the new predicate provides a too coarse overapproximation of the set of configurations that
are reachable in a backward way from the error configurations. Indeed, this overapproximation includes
initial configurations (because the predicate has constrained facts), which are not actually reachable from
the error configurations (because the program is correct). Clearly, due to the undecidability of program
correctness, no generalization technique can guarantee termination and, at the same time, the derivation
of a program without constrained facts wheneverincorrect 6∈M(P ).

The DEFINITION & FOLDING phase works as follows. LetC1 in R(C ) be a clause of the form
H :- c, p(X). In order to reason about the predicate definitions introduced in previous steps ofVCTransf,
we structure the setDefsas a tree of clauses, where clauseA is the parent of clauseB if B has been
introduced for folding a clause inR(A). If in Defsthere is (a variant of) a clauseD: newp(X) :- d, p(X)
such thatvars(d) ⊆ vars(c) andc ⊑ d, then we foldC1 usingD. Otherwise, we introduce a clause
of the formnewp(X) :- gen, p(X) where: (i)newp is a predicate symbol occurring neither in the initial
program nor inDefs, and (ii) gen is a constraint such thatvars(gen) ⊆ vars(c) andc ⊑ gen. The
constraintgen is called ageneralizationof the constraintc.

Many different generalizations of constraints can be defined. In Figure 2, we propose a Generaliza-
tion Algorithm for computing one such generalization. Thisalgorithm is parametric with respect to the
operator⊖ that is used for generalizing linear constraints.⊖ is a binary operator such that, for any two
integer constraintsi1 andi2, we havevars(i1⊖i2) ⊆ vars(i2) andi2 ⊑ i1⊖i2. We refer to [9, 17, 43]
for the definition of generalization operators for linear constraints based onwideningandconvex hull.

Let us make some remarks on the Generalization Algorithm. Step 1 is justified by the fact thatwrite
constraints are redundant after the application of theread-over-writeconstraint replacements RW1–RW3.
After Step 1 we havevars(i1, r1) ⊆ vars(c) andi1, rw1 ⊑ i1, r1.

At Step 2 we compute the projectioni2 of i1 in the rationalsQ (and hencei1 ⊑ i2 holds in the
domain of the integers), because linear constraints are notclosed under projection in the domain of the
integers. We have thatvars(i2, r1) ⊆ vars(i1, r1) andi1, r1 ⊑ i2, r1.

At Step 3 the deletion of constraints of the formread(A, I, V), whereA does not occur inX, is
motivated by the fact thatA can be treated as an existentially quantified variable, and∃A. read(A, I, V)
holds for allI andV. The deletion of constraints of the formread(A, I, V), whereV does not occur
in i2, is motivated by the fact thatV can be treated as an existentially quantified variable and, since by
constructioni2 ensures that the indexI is within bounds, we have that∃V. read(A, I, V) holds for allA
andI. Thus, at the end of Steps 2–3,vars(i2, r2) ⊆ vars(i2, r1) andi2, r1 ⊑ i2, r2.

Step 4 computes a generalizationg of the integer constrainti2 if an ancestor clause inDefscontains
a subconjunctionr0 of the read constraintr2. We will show in the next section that this condition
guarantees the termination of theVCTransf strategy. If the condition of theIf-then-elseholds, then
vars(gen) = vars(g, r0) ⊆ vars(i2, r2) andi2, r2 ⊑ g, r0 = gen. If the condition of theIf-then-else
does not hold, thengen is i2, r2, and hencevars(gen) = vars(i2, r2). Thus, after Step 4,vars(gen) ⊆
vars(c) andc ⊑ gen.

All generalization operators⊖ used at Step 4 guarantee the termination and soundness ofVCTransf,
but they may have an influence on the number of transformationsteps needed to terminate, and also
on the success of the verification (recall thatVCTransf may terminate without proving or disproving
correctness). The comparison among the various generalization operators we have considered, has been
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Input: (i) A clauseC, (ii) a clause inR(C ) of the formH :- c, p(X), and (iii) a treeDefsof predicate
definitions.
Output: A constraintgen which is ageneralizationof the constraintc.

Letc be of the formi1, rw1, wherei1 is an integer constraint andrw1 is a conjunction ofread andwrite
constraints. Without loss of generality, we assume that alloccurrences of integers inread constraints
of c are distinct variables not occurring inX (this condition can always be fulfilled by adding extra integer
equalities).
1. Delete allwrite constraints fromrw1, hence derivingr1.
2. Compute the projectioni2 (in the rationalsQ) of the constrainti1 ontovars(r1) ∪ {X}. (Recall that

the projection inQ of a constraintc(Y, Z) onto the tupleY of variables is a constraintcp(Y) such that
Q |= ∀ Y(cp(Y) ↔ ∃ Z c(Y, Z)).)

3. Delete fromr1 all read(A, I, V) constraints such that either (i)A does not occur inX, or (ii) V does
not occur ini2, thereby deriving a new value forr1. If at least oneread has been deleted during this
step, then go to Step 2.

4. Leti2, r2 be the constraint obtained after the possibly repeated executions of Steps 2–3.
If in Defsthere is an ancestor (defined as the reflexive, transitive closure of the parent relation) ofC

of the formH0 :- i0, r0, p(X) such thatr0, p(X) is a subconjunction ofr2, p(X),
thenlet g bei0 ⊖ i2. Define the constraintgen asg, r0;
elsedefine the constraintgen asi2, r2.

Figure 2. The Generalization Algorithm.

done on an experimental basis and the results of that comparison are reported in Section 6.

Let us continue our program verification example by performing, starting from clause 9, the DEFI-
NITION & FOLDING phase of theVCTransfstrategy. In order to fold clause 9, we will introduce a new
predicate definition by applying the Generalization Algorithm. We start off by renaming the variables
occurring in clause 9. This renaming has the objective of simplifying the matching process of Step 4 of
the Generalization Algorithm. We get the following clause:

9r. incorrect:- K=J+1, J≥0, K≤I−1, G=I−1, N=I+1, Z=W+1, U≥V,
read(A, J, U), read(A, K, V), read(A, G, W), write(A, I, Z, A1), p(I, N, A).

Now, we delete thewrite constraint (Step 1) and we project the integer constraints (Step 2), thereby
deletingZ=W+1. We get a constraint where the variableW occurs inread(A, G, W) only. Thus, after
deleting the constraintread(A, G, W) (Step 3) and by applying projection again (this step resultsin the
deletion ofG=I−1), we derive the constraint:

K=J+1, J≥0, K≤I−1, N=I+1, U≥V, read(A, J, U), read(A, K, V).

Finally, we apply Step 4 of the Generalization Algorithm and, by using the convex hull operator, we com-
pute a generalization of the integer constraintK=J+1, J≥0, J≤N−2, N≤I, U≥V occurring in the
body of clause 5, and the constraintK=J+1, J≥0, K≤I−1, N=I+1, U≥V obtained after Steps 1–3.
We get the following new predicate definition:

10.new1(I, N, A) :- K=J+1, J≥0, J≤N−2, J≤I−2, N≤I+1, U≥V,
read(A, J, U), read(A, K, V), p(I, N, A).
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By folding clause 9r using clause 10, we get:

11.incorrect:- K=J+1, J≥0, K≤I−1, G=I−1, N=I+1, Z=W+1, U≥V,
read(A, J, U), read(A, K, V), read(A, G, W), write(A, I, Z, A1), new1(I, N, A).

5.4. Termination and Soundness of theVCTransf Transformation Strategy

The following theorem, together with Theorem 4.1, ensures that our verification method, consisting of
two stepsVCGenandVCTransf, terminates and is sound.

Theorem 5.2. (Termination and Soundness of VCTransf) (i) The VCTransfstrategy terminates.
(ii) Let programT be the output of theVCTransf strategy applied on the input programVC . Then,
incorrect∈M(VC ) iff incorrect∈M(T ).

Proof:
(i) The VCTransf strategy is parametric with respect to the generalization operator⊖ on integer con-
straints used in the Generalization Algorithm. We assume that⊖ has a property ensuring that only finite
chains of generalizations of any given integer constraint can be generated by applying the operator. This
assumption is formalized by the following property:
(F) if 〈g0, g1, . . .〉 is an infinite sequence of integer constraints and, for allm>0, there exist an index

j<m and an integer constrainti such thatgm = gj ⊖ i,
then there existk, n such thatk<n andgn ⊑ gk.

The already mentioned generalization operators presentedin [9, 17, 43] satisfy property (F).
Let us first note that the UNFOLDING, CONSTRAINT REPLACEMENT, CLAUSE REMOVAL, and DEF-

INITION & FOLDING phases terminate. In particular, constraint satisfiability and entailment are decid-
able for the class of quantifier-free array constraints we are considering, and hence can be checked by
a terminating solver (note that completeness of the solver is not necessary for the termination of the
VCTransfstrategy), and each sequence of constraint replacements terminates (see Theorem 5.1).

Next we note that the while-loop of theVCTransfstrategy terminates if and only if the set of new
predicate definitions that, during the execution of the strategy, is introduced by executions of the DEFINI-
TION & FOLDING phase is finite. Indeed, each new predicate definition is added to InDefsand processed
in one execution of the body of the while-loop.

Let us now prove that the set of new predicate definitions is finite.
By construction, each predicate definition is of the formnewp(X) :- i, r, p(X), where: (1)i is an integer
constraint, (2)r is a conjunction of array constraints of the formread(A, I, V), whereA is a variable in
X and the variablesI andV occur ini only (see Step 1 of the Generalization Algorithm), and (3)p(X) is
a predicate occurring inVC .

The proof proceeds by contradiction. Let assume that the setof new predicate definitions is infinite, and
hence there exists an infinite sequence〈D0,D1, . . .〉 of clauses inDefssuch that, fori≥0,Di is the parent
of Di+1. Since theelsebranch of theIf-then-elseof Step 4 of the Generalization Algorithm can only be
applied a finite number of consecutive times during the construction of the sequence〈D0,D1, . . .〉, we
can extract from that sequence an infinite subsequence of clauses of the form:

〈 newp0(X) :- g0, r0, p(X), newp1(X) :- g1, r0, p(X), newp2(X) :- g2, r0, p(X), . . . 〉

where, form=1, 2, . . . , gm=gj ⊖ i, for somej<m and integer constrainti. By Property (F) we get that
there existk, n such thatk<n andgn ⊑ gk. Thus, we have reached a contradiction. Indeed, according
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to the DEFINITION & FOLDING phase, the clauseDn: newpn(X) :- gn, r0, p(X) should have not been
introduced because inDefs there is a clauseDk: newpk(X) :- gk, r0, p(X) such thatgn ⊑ gk, and any
clause that can be folded usingDn could have been folded usingDk.

Thus, the set of new predicate definitions is finite and theVCTransfstrategy terminates.

(ii) Each transformation step in theVCTransfstrategy is a sound application of the rules presented in
Section 3. In particular, by Theorem 5.1, each constraint replacement in the CONSTRAINT REPLACE-
MENT phase is a sound application of the constraint replacement rule. Moreover, every clause defining
a new predicate introduced during the DEFINITION & FOLDING phase is unfolded once during the exe-
cution of the strategy. Thus, the soundness of the strategy with respect to the leastA-model semantics
follows from Theorem 3.1. ⊓⊔

Let us now conclude the verification of theSeqInitprogram. TheVCTransf strategy proceeds by
performing a second iteration of the body of the while-loop becauseInDefsis not empty (indeed, at this
point clause 10 belongs toInDefs).

UNFOLDING. By unfolding clause 10 we get the following clause:

12.new1(I, N, A) :- K=J+1, J≥0, J≤N−2, J≤I−2, N≤I+1, U≥V,

1≤H, H≤N−1, G=H−1, I=H+1, Z=W+1,

read(A, J, U), read(A, K, V), read(B, G, W), write(B, H, Z, A), p(H, N, B).

CONSTRAINT REPLACEMENT. Then, by simplifying the integer constraints and applyingrules RR1,
WR2, and WR3, from clause 12 we get the following clause:

13.new1(I, N, A) :- K=J+1, I=H+1, Z=W+1, G=H−1, N≤H+2,

K≤H−1, K≥1, N≥H+1, U≥V,

read(B, J, U), read(B, K, V), read(B, G, W), write(B, H, Z, A), p(H, N, B).

DEFINITION & FOLDING. In order to fold clause 13 we introduce the following clause, whose body is
derived by computing the widening [7, 9] of the integer constraints in the ancestor clause 10 with respect
to the integer constraints in (a renamed version of) clause 13 (recall that the widening of a constraintc
with respect to a constraintd is the conjunction of all atomic constraints ofc that are entailed byd):

14.new2(I, N, A) :- K=J+1, J≥0, J≤I−2, J≤N−2, U≥V,

read(A, J, U), read(A, K, V), p(I, N, A).

By folding clause 13 using clause 14, we get:

15.new1(I, N, A) :- K=J+1, I=H+1, Z=W+1, G=H−1, N≤H+2, K≤H−1, K≥1, N≥H+1, U≥V,

read(B, J, U), read(B, K, V), read(B, G, W), write(B, H, Z, A), new2(H, N, B).

Now we perform the third iteration of the body of the while-loop of the strategy starting from the newly
introduced definition, that is, clause 14. After some executions of the UNFOLDING and CONSTRAINT

REPLACEMENT phases, followed by a final FOLDING phase, from clause 14 we get:

16.new2(I, N, A) :- K=J+1, I=H+1, Z=W+1, G=H−1, K≤H−1, K≥1, N≥H+1, U≥V,

read(B, J, U), read(B, K, V), read(B, G, W), write(B, H, Z, A), new2(H, N, B).

The transformed program is made out of clauses 11, 15, and 16.Since this program has no constrained
facts, by executing the REMOVAL OF USELESSCLAUSES phase, we derive the empty programT , and
we conclude thatincorrect 6∈M(T ) and the Hoare triple{ϕinit} SeqInit {¬ϕerror} is valid.



E. De Angelis et al. / Rule-based Verification of Array Programs 347

6. Experimental Evaluation

We have performed an experimental evaluation of our method on a benchmark set consisting of programs
manipulating arrays. In order to evaluate our method, we have implemented the transformation strategies
VCGenandVCTransf of Sections 4 and 5, respectively, as modules of the VeriMAP software model
checker [11]. The VeriMAP tool consists of: (i) a front-end module, based on a custom implementation
of the C Intermediate Language (CIL) visitor pattern [42], which translates a C program, together with its
precondition and postcondition, into a set of CLP(Array) facts, and (ii) a back-end module, implemented
in Prolog, for CLP(Array) program transformation that generates the verification conditions and applies
theVCTransfstrategy. The back-end also includes a solver for quantifierfree formulas of the theory of
arrays that checks satisfiability and entailment for array constraints by using the rules RR1–WR3 (see
Section 5.2) and the solver for linear equalities and inequalities over the rationals provided by theclpq
library of SICStus Prolog.

We have compared our results with those obtained by the state-of-the-art verifiers BOOSTER[3] and
SMACK+Corral [26] (SMACK, for short). The results of our experiments, summarized in Tables 2
and 3, show that our approach is quite effective and efficientin practice.

Now we briefly discuss the programs, mostly taken from the literature [2, 5, 8, 13, 25, 36, 49], that
have been considered in our experimental evaluation. The source code of these programs can be found in
http://map.uniroma2.it/smc/arrays/. Every program verification experiment we have performed,
consisted in checking the validity of a triple of the form{true} prog{¬ ϕerror}, whereprog and¬ ϕerror

are given in Table 1. The validity check was done by using either VeriMAP, or BOOSTER, or SMACK.

Table 1. Array programs and postconditions. The arraysa, b, andc are assumed to have dimensionn.

Precondition:true Postcondition to be verified:¬ ϕerror

Example:prog

1. bubblesort-inner ∀k. (0≤ i< n ∧∧ 0≤k<j ∧∧ j=n−i−1) → a[k]≤a[j]

2. bubblesort ∀i, j. (0≤ i< j ∧∧ j<n) → a[i]≤a[j]

3. insertionsort-inner ∀k. (0≤ i<n ∧∧ j+1<k≤ i) → a[k]>x

4. selectionsort-inner ∀k. (0≤ i≤k<n) → a[k]≥a[i]

5. copy ∀i. (0≤ i<n) → a[i]=b[i]

6. copy-partial ∀i. (0≤ i<k≤n) → a[i] = b[i]

7. copy-reverse ∀i. (0≤ i<n) → a[i]=b[n−i−1]

8. difference ∀i. (0≤ i<n) → c[i]= a[i]−b[i]

9. sum ∀i. (0≤ i<n) → c[i]=a[i]+b[i]

10. find-first-non-null-1 (0≤p<n) → a[p] 6=0

11. find-first-non-null-2 (0≤p<n) → (a[p] 6= 0 ∧∧ (∀i. (0≤ i<p) → a[i]=0))

12. find (0≤p<n) → a[p]=x

13. init-constant ∀i. (0≤ i<n) → a[i]=d

14. init-partial-zero ∀i. (0≤ i<k≤n) → a[i]=0

15. init-backward-zero ∀i. (0≤ i<n) → a[i]=0

16. init-non-constant ∀i. (0≤ i<n) → a[i]=2 i+d

17. init-sequence ∀i. (1≤ i<n) → a[i]=a[i−1]+1

18. max ∀i. (0≤ i<n) → m≥a[i]

19. partition (∀i. (0≤ i<j) → b[i]≥0) ∧∧ (∀i. (0≤ i<k) → c[i]<0)

20. rearrange-in-situ (∀k. (0≤k <i) → a[k] ≥ 0) ∧∧ (∀k. (j <k<n) → a[k] < 0)
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Programsbubblesort-inner, insertionsort-inner, andselectionsort-innerare the inner loops of the
standard textbook versions of those sorting algorithms. Programbubblesortis the bubblesort algorithm
of the benchmark suite of BOOSTER. Programscopyandcopy-partialperform the element-wise copy
of the entire input array or a portion of it, respectively. Programcopy-reversecopies the input array
in reverse order, by making use of a temporary extra copy. Programsdifferenceandsumperform the
element-wise difference and sum, respectively, of two input arrays. Programsfind-first-non-null-1and
find-first-non-null-2both return the positionp of the first non-zero element of the input array by using
two different algorithms. Programfind returns the positionp of the first occurrence of a given valuex
in the input array. Programinit-constant initializes to the integerd all elements of the input array.
Programinit-partial-zero initializes to0 a portion of the input array (the initialization starts fromthe first
element). Programinit-backward-zeroinitializes to0 the entire input array (the initialization starts from
the last element). Programsinit-non-constantand init-sequenceinitialize the input array using values
that depend on the element position or the preceding element, respectively. Programmaxcomputes the
maximum element of the input array. Programpartition copies the non-negative and negative elements
of the input array into two distinct arrays. Programrearrange-in-situ, rearranges the elements of the
input array, so that all negative elements are placed to the right of the non-negative ones.

In order to verify the above programs, we have applied theVCTransfstrategy using different gener-
alization operators for linear constraints. In particular, when computing new predicate definitions using
the Generalization Algorithm, we have considered theGenW operator, which performs widening, and
the GenCHW operator, which in the same generalization step performs widening and convex hull. We
have also combined these operators with adelaymechanism, thereby obtainingGenWD andGenCHWD,
respectively. TheGenWD operator applies theGenW operator and the convex hull operator in an alternate
way, andGenCHWD does the same forGenCHW. The interested reader may refer to [12, 17] for details on
these operators.

In Table 2 we report the results of our experimental evaluation obtained by using the VeriMAP
tool with the four generalization operators mentioned above and the BOOSTER tool. All programs are
assumed to manipulate arrays of unknown dimensionn. The SMACK tool has not been considered in
this evaluation because it can only deal with arrays of knowndimension. For each program that has been
proved correct, we report the time (in seconds) taken to verify the postcondition of interest. In Table 2 the
entry ‘unknown’ means that the tool terminates without being able to prove or disprove the postcondition,
while the entry ‘timeout’ means that the tool did not provide an answer within 300 seconds. At the bottom
of Table 2 we also report: (i) theprecision, that is, the ratioNC/P , whereNC is the number of programs
proved correct (that is, those programs for which the answeris different from ‘unknown’ and ‘timeout’)
andP is the total number of verification problems (P = 20, in our case), (ii) thetotal timeT , that is,
the time taken for proving theNC programs correct, and (iii) theaverage time, that is,T/NC . These
experiments have been performed on an Intel Core Duo E7300 2.66Ghz processor with 4GB of memory
under the GNU Linux operating system.

The data presented in Table 2 show that the delayed versions of the generalization operators we have
considered have almost the same time performance and at least the same precision of their non-delayed
counterparts. In particular, by using theGenW operator, which is based on widening alone, our method is
able to prove only 6 programs out of 20. Notably, the use of thedelay mechanism inGenWD determines a
significant increase of precision with respect toGenW. Alternatively, precision can be increased by using
the operatorsGenCHW andGenCHWD, which use also convex hull. These results confirm the effectiveness
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Table 2. Verification results using VeriMAP with different generalization operators and BOOSTER. Arrays have
unknown dimension. Times are in seconds.(simple) denotes a program of the decidable classsimple

0

A [2]. The
timeoutoccurs after 300 seconds. ‘unknown’ denotes termination within thetimeoutwithout a proof or a disproof.

Example:prog
VeriMAP

BOOSTER
GenW GenWD GenCHW GenCHWD

1. bubblesort-inner 0.67 0.85 0.70 0.88 0.01

2. bubblesort unknown unknown unknown unknown 0.67

3. insertionsort-inner 0.30 0.32 0.53 0.55 unknown

4. selectionsort-inner unknown 1.34 1.16 1.38 0.15

5. copy unknown 0.30 0.42 0.37 (simple) 0.01

6. copy-partial unknown 0.33 0.42 0.34 (simple) 0.02

7. copy-reverse unknown 0.36 0.68 0.63 (simple) 0.03

8. difference unknown 0.61 1.22 1.08 (simple) 0.02

9. sum unknown 0.65 1.30 1.13 (simple) 0.01

10.find-first-non-null-1 0.14 0.15 0.18 0.17 0.06

11.find-first-non-null-2 0.22 0.24 0.24 0.25 0.45

12.find 0.33 0.49 0.58 0.53 0.08

13. init-constant unknown 0.15 0.20 0.19 (simple) 0.01

14. init-partial-zero unknown 0.13 0.21 0.16 (simple) 0.02

15. init-backward-zero unknown 0.11 0.24 0.21 timeout

16. init-non-constant unknown 0.16 0.40 0.35 (simple) 0.02

17. init-sequence unknown 0.63 0.93 0.85 (simple) 0.72

18.max unknown 0.30 0.30 0.34 0.08

19.partition 0.49 0.53 0.56 0.55 0.12

20. rearrange-in-situ unknown unknown 0.79 0.86 0.23

precision 0.30 0.90 0.95 0.95 0.90

total time 2.15 7.65 11.06 10.82 2.04

average time 0.36 0.42 0.58 0.57 0.15

of the convex hull operator which may help inferring relations among program variables, and may ease
the discovery of useful program invariants, while causing (in our benchmark set) only a slight increase
of the verification time.

The last column of Table 2 reports the results obtained by using BOOSTER. A distinctive feature
of that tool is that it usesloop accelerationtechniques, which allow the replacement of loops belong-
ing to decidable classes [2] with suitable formulas. For those decidable classes BOOSTER generates
proof obligations which can then be discharged by using a complete SMT solver. If the program under
consideration falls outside those decidable classes, BOOSTERfirst runs a bounded model checking mod-
ule and then, if necessary, it runs multiple parallel instances of theMCMT model checking engine [21],
which also uses loop acceleration techniques together withlazy abstraction with interpolantsfor arrays.
In Table 2 we have marked with(simple) the programs that BOOSTER recognizes as belonging to the
decidable class ofsimple0A programs [2] for which loop acceleration performs very well.

In our experiments we found that BOOSTERis very effective at verifying the programs in our bench-
mark set. In some cases, it is able to prove properties of programs containing two nested loops, like the



350 E. De Angelis et al. / Rule-based Verification of Array Programs

bubblesortprogram, which VeriMAP has been unable to prove using the generalization operators consid-
ered in this paper. However, in some examples the applicability and effectiveness of the loop acceleration
techniques turn out to be quite sensitive to small changes inthe code. For instance, we have considered 5
variants of theinit-backward-zeroprogram [8] (see line 15 of Table 2), and BOOSTER fails to verify 2
of these variants not falling into the class ofsimple0A programs. VeriMAP can successfully verify all
these variants. Similarly, a variant of thebubblesortprogram where the innermost loop moves smaller
elements towards the beginning of the array (instead of moving bigger elements towards the end), could
not be proved correct by BOOSTER.

We have also performed an additional experimental evaluation on the same set of problems, but using
arrays of known dimension. In particular, we have considered arrays of dimensionn=10, 25, 50.

Table 3. Verification results using VeriMAP, BOOSTER, and SMACK. Arrays have dimensionn = 10, 25, 50.
Times are in seconds. Thetimeoutoccurs after 300 seconds. ‘unknown’ denotes termination within thetimeout
without a proof or a disproof.

Example:prog
VeriMAP BOOSTER SMACK

n=10 n=25 n=50 n=10 n=25 n=50 n=10 n=25 n=50

1. bubblesort-inner 2.85 2.97 2.85 8.35 10.59 9.28 255.99 timeout timeout

2. bubblesort timeout timeout timeout 0.66 0.71 0.76 timeout timeout timeout

3. insertionsort-inner 1.70 1.69 1.65 unknown unknown unknown 2.71 2.60 2.93

4. selectionsort-inner 3.29 3.27 3.26 0.18 0.15 0.16 timeout timeout timeout

5. copy 1.02 1.01 1.00 0.01 0.03 0.01 18.83 timeout timeout

6. copy-partial 1.01 1.07 1.06 0.03 0.02 0.03 3.87 41.83 timeout

7. copy-reverse 1.68 1.79 1.81 0.04 0.03 0.02 18.09 timeout timeout

8. difference 2.38 2.42 2.46 0.03 0.03 0.02 25.15 timeout timeout

9. sum 2.66 2.59 2.62 0.03 0.03 0.03 15.49 timeout timeout

10.find-first-non-null-1 0.81 0.75 0.78 0.10 0.11 0.10 2.29 2.17 2.28

11.find-first-non-null-2 1.19 1.14 1.15 0.41 0.23 0.37 11.44 149.96 timeout

12.find 1.48 1.51 1.46 0.12 0.12 0.13 2.36 1.68 1.81

13. init-constant 0.66 0.59 0.61 0.02 0.01 0.03 5.42 26.07 164.80

14. init-partial-zero 0.58 0.55 0.58 0.02 0.02 0.02 2.99 8.99 87.17

15. init-backward-zero 0.59 0.58 0.59 0.14 0.31 1.62 9.37 28.39 160.87

16. init-non-constant 0.99 0.97 0.95 0.02 0.01 0.04 6.52 26.71 124.74

17. init-sequence 1.91 1.98 1.90 0.73 0.74 0.73 51.23 timeout timeout

18.max 1.04 1.06 1.07 0.11 0.11 0.15 16.74 timeout timeout

19.partition 2.09 2.05 2.19 timeout timeout timeout timeout timeout timeout

20. rearrange-in-situ 2.19 2.21 2.16 0.27 0.61 0.54 timeout timeout timeout

precision 0.95 0.95 0.95 0.90 0.90 0.90 0.80 0.45 0.35

total time 30.12 30.20 30.15 11.27 13.86 14.04 448.49 288.4 544.6

average time 1.59 1.59 1.59 0.63 0.77 0.78 28.03 32.04 77.80

In Table 3 we report the results obtained by running VeriMAP using theGenCHWD generalization
operator, BOOSTER, and SMACK. These experiments have been performed on an Intel Core i5-2467M
1.60GHz processor with 4GB of memory under the GNU Linux operating system. The performance
of VeriMAP does not depend on the actual dimensions of the input arrays. The verification times are
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slighty higher than the corresponding times, shown in Table2, obtained for programs with arrays of
unknown dimension. This difference of performance is partly due to the differences of the experimental
environments. The performance of BOOSTER is also generally not sensitive to variations of the array
dimension, except for theinit-backward-zeroprogram, which it was not able to prove when using arrays
of unknown dimension. We also note that for two programs the verification times are much higher
than those shown in Table 2, namelybubblesort-innerandpartition (which always runs out of time).
This behavior is possibly due to the fact that BOOSTER, as already mentioned, makes use of a bounded
model checking module before invokingMCMT. The SMACK tool, contrary to VeriMAP and BOOSTER,
belongs to the family ofboundedsoftware verifiers. It guarantees the absence of bugs by exploring the
state space up to a certain depth. SMACK first translates the LLVM intermediate representation (IR)
of the program to the Boogie intermediate verification language [37], and then it uses Corral [35] as a
reachability modulo theories solver. As expected, SMACK isvery sensitive to the dimensions of the input
arrays, except for a few problems, namelyinsertionsort-inner, find-first-non-null-1, andfind, for which
it does not need to reach the so called recursion bound. Moreover, even for small arrays of dimension
n= 10, the verification times are considerably higher than those reported by the other two tools. This
explains the high number of problems for which it runs out of time.

Thus, we may conclude that our transformation-based approach to the verification of programs that
manipulate arrays of known or unknown dimension, is quite competitive, regarding both precision and
time performance, with respect to state-of-the-art software verification methods.

7. Related Work and Conclusions

We have presented a verification method for imperative programs that manipulate integer arrays, based on
an encoding of the verification task into a CLP program with constraints that represent array operations.
Our method makes use of an automated strategy that guides theapplication of semantics preserving
transformation rules, including unfolding, folding, and constraint replacement. The verification method
presented in this paper is an extension of the one introducedin [12], where programs manipulate integer
variables only.

The idea of encoding imperative programs into CLP programs for reasoning about their properties
was presented in various papers [18, 31, 44], where it is shown that through CLP programs one can
express in a simple manner both (i) the symbolic executions of the imperative programs, and (ii) the
invariants that hold during these executions. The peculiarity of our work here is that we use CLPprogram
transformationsto prove properties, rather than symbolic execution or static analysis.

The verification method for proving properties of array manipulating programs we have presented
in this paper, is related to several other methods that use abstract interpretation and theorem proving
techniques.

Among the papers that use abstract interpretations for finding invariants of programs that manipu-
late arrays, we first mention [25]. In that paper, which builds upon [22], invariants are discovered by
partitioning the arrays into symbolic slices and associating an abstract variable with each slice. A sim-
ilar approach is taken in [8], where a scalable, parameterized abstract interpretation framework for the
automatic analysis of array programs is introduced. In [19,34] a predicate abstraction for inferring uni-
versally quantified properties of array elements is presented, and in [24] the authors present a similar
technique that uses template-based quantified abstract domains.
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The methods based on abstract interpretation construct over-approximations of the behaviour of the
programs, that is, invariants implied by program executions. These methods have the advantage of being
quite efficient because they fix in advance a set of assertionswhere the invariants are searched for, but
for the same reason, they may lack flexibility as the abstraction should be re-designed when the program
verification fails.

Also theorem proving techniques have been used for: (i) discovering invariants of the executions
of programs that manipulate arrays, and (ii) proving the verification conditions generated from the pro-
grams to be verified. In particular, in [2, 6] satisfiability decision procedures for decidable fragments
of the theory of arrays are presented. Those fragments are expressive enough to prove properties such
as sortedness of arrays. In [32, 33, 40] the authors present some techniques based on theorem proving
which may generate array invariants. In [49] a backward reachability analysis based on predicate abstrac-
tion and abstraction refinement is used for verifying assertions that are universally quantified over array
indexes. Finally, in [2, 36] some techniques based on Satisfiability Modulo Theories (SMT) have been
presented for the generation and the verification of universally quantified properties over array variables.

The approaches based on theorem proving and SMT are more flexible with respect to those based
on abstract interpretation, because no set of abstractionsis fixed in advance, and the suitable assertions
needed by the proof are generated on the fly, during the verification process itself. In particular, the
techniques presented in [2] and related papers on decision procedures for the theory of arrays [20], have
been integrated in BOOSTER[3]: a tool for verifying C-like programs handling arrays that we have used
in our experimental evaluation. It exploits acceleration techniques to compute in an exact way the set
of reachable states of programs with loops, provided that those programs belong to a restricted class of
programs, calledsimple0A programs [2]. Indeed, for programs belonging to that class,it computes in one
step, the set of the reachable states for which abstraction-based approaches require several refinement
steps. However, since acceleration is based on templates, it is sensitive to the syntactic presentation of
the input programs, and thus the applicability of the technique may have some limitations.

Although the approach based on CLP program transformation shares many ideas and techniques with
the approaches based on abstract interpretation and automated theorem proving, we believe that it has
some distinctive features that can make it quite appealing.Indeed, this paper and previous works [10,
17, 44] show that one can construct a uniform framework whereboth the generation of verification
conditions and the construction of their proofs can be viewed as instances of program transformation.
The transformation-based approach is also parametric withrespect to the imperative language in which
the programs to be verified are written, because interpreters and proof systems can easily be written in
CLP, and verification conditions can automatically be generated by program specialization (which is a
particular instance of program transformation).

Moreover, optimizing transformations considered in the literature [45] can be applied to improve
the efficiency of the verification task. Note also that transformations can be composed together so to
derive powerful verification methods in a modular way. In particular, in [12] it is shown that theiteration
of program specialization combined with suitable constraint propagations can significantly improve the
precision of our program verification method.

Finally, we would like to mention that there are tools, such as the SMACK verifier [26], which au-
tomatically verify array manipulating programs by using bounded model checking techniques. Bounded
model checkers explore the state space up-to a given bound byunrolling the control flow graph a fixed
number of times only. Therefore, once provided with a suitable bound, these tools may prove the cor-
rectness of programs that manipulate arrays ofknownsize. In contrast, the verification method presented
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in this paper and implemented in VeriMAP, as well as the techniques implemented in BOOSTER, are able
to deal with arrays ofunknownsize.

As a future work we plan to extend our approach to the programsthat, besides arrays, also manipulate
dynamic data structuressuch as lists or heaps. This extension will be done by lookingfor a suitable set
of constraint replacement laws that axiomatize those structures. For some specific theories we could also
apply the constraint replacement rule by exploiting the results obtained by external theorem provers or
SMT solvers.
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