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Abstract. We present a method for verifying properties of imperativegpams that manipulate
integer arrays. Imperative programs and their propertiesepresented by using Constraint Logic
Programs (CLP) over integer arrays. Our method is refutatiadGiven a Hoare tripl§¢p} prog {¢'}
that defines a partial correctness property of an imperatiogramprog, we encode the negation
of the property as a predicatecorrect defined by a CLP progran®, and we show that the
property holds by proving thaincorrect is not a consequence aP. Program verification is
performed by applying a sequence of semantics presenangformation rules and deriving a new
CLP programT’ such thatincorrect is a consequence d? iff it is a consequence of’. The
rules are applied according to an automatic strategy whbgetive is to derive a prograffi that
satisfies one of the following properties: eitherTi)s the empty set of clauses, hence proving that
incorrect does not hold angrogis correct, or (iiyI" contains the facincorrect, hence proving
that prog is incorrect. Our transformation strategy makes use of aonaatization of the theory
of arrays for the manipulation of array constraints, and algplies the widening and convex hull
operators for the generalization of linear integer comstsa The strategy has been implemented in
the VeriMAP transformation system and it has been shown tuiite effective and efficient on a set
of benchmark array programs taken from the literature.
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1. Introduction

Many methods have been proposed in the literature for wegfgnd proving properties of C-like, im-
perative programs using the formalism of Constraint LogmgPamming (CLP).

Some of those methods follow the approach initially preseirin [44], which is based on program
specialization and abstract interpretation [7]. The fitepsf that approach consists in encoding as a
CLP program the interpreter of the imperative language iitlwvprograms are written, and then, in the
second step, this CLP program is specialized with respabetomperative program under investigation,
thereby deriving a new CLP program. Finally, in the thirdostihis new CLP program is analyzed by
computing an overapproximation of its least model by a lmottg evaluation of an abstraction of the
program [1, 27, 41], and that analysis is used to prove (@rdi&) the property of interest.

Other program verification methods start off from a part@tectness triple of the forrip} prog{v }
and from that triple they generate a CLP program, calledséniication conditiondor prog [5, 50] and
here denoted byC, by using ad hoc algorithms which take into account the séiosaf the imperative
language in whiclprog is written. The CLP progranvC does not contain any explicit reference to the
imperative progranprog. Then, fromVC one can infer the validity of the given triple by using goal
directed, symbolic evaluation together with other techagsuch amterpolation[14, 18, 30, 31].

In order to infer the validity of a given triple, various oth@asoning techniques can be applied to
the CLP programVVC. In particular, the techniques presented in [4, 23, 46, 4Blefe CLP programs
are also calledonstrained Horn clausg¢smake use o€ounterExample-Guided Abstraction Refinement
(CEGAR) andSatisfiability Modulo Theorie€ESMT).

In this paper we follow the verification approach for impemfprograms based on transformations
of CLP programs which has been presented in [10, 12]. Givemtaapcorrectness property expressed by
the triple{x} prog {'}, we first encode the negation of that property as a prediaaterrect defined
by a CLP progranP. Then, similarly to [44], we specialize the CLP progra&hwith respect to the CLP
representation of the imperative progranog and we generate a new CLP progr&i@ representing the
verification conditions foiprog. At this point our verification method departs from the onesented
in [44] and all other verification methods mentioned abovedekd, the final step of our verification
method consists in the application & of a sequence of equivalence preserving transformatiotis wi
the objective of deriving a CLP programsuch that either (iJ" is the empty set of clauses, hence proving
thatincorrect does not hold angrog is correct, or (ii)7" contains the facincorrect, hence proving
thatprog is incorrect.

Due to the undecidability of the partial correctness pnohlé may be the case that from the pro-
gramVC, using our verification method, we derive a CLP program dairtg one or more clauses of
the form incorrect : - G, whereg is a non-empty conjunction, and we can conclude neitherpiroat
is correct nor thaprog is incorrect. However, despite the possibility for thesmoimclusive answers, our
verification method performs well in practice, as experitaty shown in Section 6.

The main contributions of this paper are the following.

(1) We provide a method that given any partial correctnégketfo}prog{+ }, whereprogis an impera-
tive program that manipulates integers and integer arggrserates the verification conditions foog.
In those verification conditions the read and write operation arrays are represented as constraints.
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(2) We show how the verification conditions can be manipdldtg using the familiaunfold/fold trans-
formation rulesfor CLP programs [15]. The transformation rules includeoastraint replacementle
which is used for manipulating the read and write constsaimt arrays.

(3) We propose @ransformation strategyor guiding the application of the transformation rulesthwi
the objective of transforming verification conditions andying the validity of the given triple. In par-
ticular, we design a novejeneralization strategy for array constraintsr the introduction, during the
transformation of the CLP programs, of the new predicatendiefins required for the verification of the
properties of interest. These new predicate definitionsespond to the invariants holding throughout
the execution of the imperative programs. Our generatinastrategy makes use of operators, such as
the widening and convex hull operators, that have beendoted in the field ofbstract interpreta-
tion [9] and extends to CLP(Array) programs the generalizattcategies considered in [16, 17] for CLP
programs over the integers.

(4) Finally, through an experimental evaluation based ormatofype implementation that uses the
VeriMAP transformation system [11], we demonstrate that \@rification method performs well on
a set of benchmark programs taken from the literature.

The paper is structured as follows. In Section 2 we introdiheeclass of CLP(Array) programs,
that is, logic programs with constraints over the integerd mteger arrays. In Section 3 we present
the unfolding/folding rules including the constraint r@pément rule for manipulating constraints over
integer arrays [6, 20, 39]. Then, in Section 4 we show how tegee the verification conditions via the
specialization of CLP(Array) programs. In Section 5 we presan automatic strategy for guiding the
application of the transformation rules with the objecitbfgoroving (or disproving) a given property of
interest. Finally, in Section 6 we present various expenialeresults obtained by using our VeriMAP
verification system [11].

This paper is an improved, extended version of [10]. Here i@egnt formal soundness, termination,
and confluence results, and a more extensive experimemtgdartson with related techniques.

2. CLP(Array): Constraint Logic Programs on Arrays

In this section we recall some basic notions concerning ains Logic Programming (CLP), and we
introduce the set, called CLP(Array), of CLP programs withstraints over the integers and the integer
arrays. Other notions concerning CLP can be found in [29]t rEBasons of simplicity, in this paper
we will consider one-dimensional arrays only. We leave itfidgure investigation the case of multi-
dimensional arrays.

Atomic integer constraintare formulas of the formp;=p,, Or p1>p,, Of p1> po, Wherep; andp,
are linear polynomials with integer variables and coeffitse When writing polynomials, the symbols
and * denote sum and multiplication, respectively. Ateger constraintis a conjunctions of atomic
integer constraintsAtomic array constraint@re constraints of the formdim(A, N), denoting that the
array A has dimensiom, or read(4, I, V), denoting that th&-th element of the array is the valuev,
orwrite(A,I,V,B), denoting that the arrag is equal to the array, except that itg-th element is the
valuev. We assume that indexes of arrays and elements of arraystagelis. Ararray constraintis a
conjunctions of atomic array constraints.cAnstraintis eithertrue, or false, or an integer constraint,
or an array constraint, or a conjunction of constraints.
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An atomis an atomic formula of the formg(t;,...,ts), Whereq is a predicate symbol not in
{=,>,>,dim, read, write}, andtq,...,t, are terms constructed out of variables, constants, and func
tion symbols different from+ and x. A CLP(Array) program is a finite set of clauses of the form
A :-c, B, whereA is an atom,c is a constraint, an@ is a (possibly empty) conjunction of atoms.
Given a clause : - c, B, the atomA and the conjunctiore, B are called théneadand thebody of the
clause, respectively. Without loss of generality, we asstimt in every clause head, all occurrences of
integer terms are distinct variables. For instance, theselp(X,X+1) : - X>0, q(X) will be written as
p(X,Y) :-Y=X+1, X>0, q(X). AclauseA : - cis called aconstrained factlf c is true, thenitis omitted
and the constrained fact is calleda&t A CLP(Array) program is said to beear if all its clauses are
of the formaA : - ¢, B, whereB consists of at most one atom.

We say that a predicate depends o predicatey in a programP if either in P there is a clause
of the formp(...) : - ¢, B such thaig occurs inB, or there exists a predicatesuch thatp depends o
in P andr depends om in P. By vars(y) we denote the set of all free variables of the formpla

Now we define the semantics of CLP(Array) programs. .Adinterpretation/ is an interpretation
such that:

() the carrier ofI is the Herbrand universe [38] constructed out of theZsef the integers, the finite
sequences of integers (which provide the interpretatiorafiays), the constants, and the function
symbols different fron+ and*,

(i) I assigns to the symbois *, =, >, > the usual meaning i,

(iii) for all sequencesy ... a,; of integers, for all integers, dim(ag . ..ap—1,d) is true in/ iff d=n,

(iv) for all sequencesy ...a, 1 andbg ... b, 4 Of integers, for all integers andv,
read(ap...a, 1,1,v)istruein/ iff 0<i<n—1andv=a;, and
write(ag...an_1,1,V,bg...by_1) IS trueinl iff

0<i<n—1,n=mb;=v,andforj=0,...,n—1,if j#ithena;=b;,

(v) I is an Herbrand interpretation [38] for function and preticgymbols different frons, *,=,> >,
dim, read, andwrite.

We can identify anA-interpretation/ with the set of all ground atoms that are truel/inand hence
A-interpretations are partially ordered by set inclusidra formulay is true in everyA-interpretation
we write A |= ¢, and we say thap is true in.A. A constrainic is satisfiablef A = 3(c), where for every
formulay, 3(¢) denotes the existential closureof Likewise,V () denotes the universal closureof
A constraint isunsatisfiablgf it is not satisfiable. A constraint entailsa constraintl, denotedcc C d, if
A E V(c—4d). Given any two integer constraints andi,, we will feel free to writeZ = V(i <> is),
instead of4 = V(i; +» iz). Given a constraint, we write c,z to denote the conjunction of all the
integer constraints occurring in

The semantics of a CLP(Array) prografhis defined to be thieast.A-modelof P, denoted\M (P),
that is, the leastl-interpretation/ such that every clause éf is true in/.

3. Transformation Rules for CLP(Array) Programs

Our verification method is based on the application of somesfiormation rules that preserve the least
A-model semantics of CLP(Array) programs. In particularapply the followingtransformation rules
collectively calledunfold/fold rules (i) Definition (ii) Unfolding (iii) Constraint Replacemenand
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(iv) Folding. These rules are an adaptation to CLP(Array) programs afrtfed/fold rules for a generic
CLP language (see, for instance, [15]). The soundness ofitbe we consider is proved in [15].

Let P be any given CLP(Array) program.

(i) Definition Rule By the definition rule we introduce a clause of the fatewp(X) : - ¢, A, wherenewp
is a new predicate symbol (occurring neithefmor in a clause previously introduced by the definition
rule), X is the tuple of variables occurring in the atamandc is a constraint.

(i) Unfolding Rule. Let us consider a claus€ of the formH : - ¢,L,A,R, whereH and A are atoms,
c is a constraint, and andRr are (possibly empty) conjunctions of atoms. Let us alsoidenghe set

{K; :-¢;,B; |i=1,...,m} of the (renamed apart) clausestuch that, foi =1, ..., m, A is unifiable
with X; via the most general unifiet; and(c, c;) ¥, is satisfiable. By unfolding’ w.r.t. A using P, we
derive the se{(H :-c,c;,L,B;,R)¥; | i = 1,...,m} of clauses.

(iii) Constraint Replacement Ruleet us consider a clausg of the form:H : - co, B, and some con-
straintscy, . . ., ¢, such that

AEVY((FKoco)+> (FXi1c1v ... vIXpcy))
where, fori=0,...,n, X; = vars(c;)—vars(H,B). Then, by constraint replacement from cladseve
deriven clause<’, ..., Cy obtained by replacing in the body 6fthe constraint, by then constraints
c4,...,Cq, respectively.

The equivalences, also called thews of Arraysneeded for applying the constraint replacement rule
can be shown to be true j# by using (a relational version of) the theory of arrays withehsion [6, 20].
This theory includes the following axioms, where all vatégbare universally quantified at the front:
(Al) I=17J, read(A,1,U), read(A,J,V) — U=V
(A2) I=17J, write(A,I,U,B), read(B,J,V) — U=V
(A3) I+#1J, write(A,I,U,B), read(B,J,V) — read(a,J,V)

Axiom (Al) is often calledarray congruenceand Axioms (A2) and (A3) are collectively calledad-
over-write We do not list here the obvious axioms that state that thayandexes of the read and write
operations are within the bounds specified by the preditiate

(iv) Folding Rule.Given a clausé?: H:-e, L, A, R and a clause: K : -d, D introduced by the defi-
nition rule. Suppose that, for some substitutidn(i) A = D¢, and (ii)V (e —d ). Then by foldingE
using D we deriveHd : - e, L, K¢, R.

From P we can derive a new programansfPby: (i) selecting a claus€' in P, (ii) deriving a new
setTransfCof clauses by applying one or more transformation rules, (@)deplacing C' by TransfC
in P. Clearly, we can apply a new sequence of transformatiors sifting fromrlransfPand iterate this
process at will.

The following theorem is an immediate consequence of thaedmmess results for the unfold/fold
transformation rules of CLP programs [15].

Theorem 3.1. (Soundness of the Transformation Rullest the CLRArray) programTransfPbe derived
from P by a sequence of applications of the transformation rulepp8se that every clause introduced
by the definition rule is unfolded at least once in this segaermhen, for every ground atosh in the
language ofP, Ae M (P) iff Ae M (TransfP.

The assumption that the unfolding rule should be appliecastl once, is required for technical
reasons [15]. Informally, that assumption forbids the aepment of a definition clause of the form
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A:-B by the clauset: -A that is obtained by folding clauge: -B using A: -B itself. Indeed, a similar
replacement in general does not preserve the léasibdel semantics.

4. Generating Verification Conditions via Specialization

We consider a C-like imperative programming language witkger and array variables, assignmes}s (
sequential compositions ), conditionals {f-else), while-loops ¢hile), and jumps goto). A pro-
gram is a sequence of (labeled) commands. We assume thathirpeagram there is a unique initial
command with label, and a uniquehalt command with label;, which, when executed, causes the
program to terminate.

The semantics of the imperative language considered heefirged by means of sansition rela-
tion, denoted—>, betweenconfigurations Each configuration is a paifc, 6) of a command: and an
environmen®. An environment) is a function that maps: (i) every integer variable identifieto its
valuew, and (ii) every integer array identifierto afinite sequencey, ...a, ; of integers, where is
the dimension of the array. The definition of the relatioe=> is similar to the ‘small step’ operational
semantics given in [47] and is omitted. We say that a conftgqurd(c, J)) satisfies a property whose
free variables arey, . .., z, iff ©(6(21),...,0(2,)) is true inA.

We find it convenient to define the partial correctness of ayEnm by considering theegation
of the postcondition of the program. We say that the Hoam@etdy,i;: } prog {—veror + is valid,
meaning thaprog is partially correct (or, simply, correc)) with respect to the given precondition and
postcondition, if for all terminating executions pifog starting from an input satisfying;,.;, the output
satisfies—p..or. In Other wordsprog is incorrectif there exists an execution g@iog that leads from
a configuration satisfying the propengy,,;; and whose command is the initial command (also called an
initial configuration), to a configuration whose commandhis1t and whose environment satisfies the
property ... (also called arerror configuratior). In this paper we assume that,;; and ..., are
formulas of the form:3x; ... dz,,.c, wherec is a constraint and the free variables®f; ... Jx,,.c are
global variables occurring iprog.

Obviously, when writing a Hoare triple we may use a less igite syntax, as long as the triple can
be translated into one or more triples of the form specifiaavab For example, in Section 6 we wrote
the triple for thecopyprogram as{¢rue} copy{Vvi. (0<iAi<n) — ali]=0[i]} and this is a legal triple
because it can be translated into the conjunction of thevidtlg two triples:

(1) {true} copy{—3i. 0<i Ai<n A ali]| >b[i]} (2) {true} copy{—3i. 0<i Ai<n A ali]<b[i]}

It follows directly from the definitions that the problem dfecking whether or ngirog is incorrect can
be encoded as the problem of checking whether or not therpyliadicateincorrect is a consequence
of the CLP(Array) progranm made out of the following clauses:

incorrect :- errorConf(X), reach(X).

reach(Y) :- tr(X,Y), reach(X).

reach(Y) :- initConf(Y).
together with the clauses for the predicatesifijtConf (X), (ii) errorConf (X), and (iii)) tr(X,Y).
These three predicates encode an initial configurationrran eonfiguration, and the transition relation
— between configurations, respectively. The predieatech(Y) holds if a configuratiory can be
reached from an initial configuration. Note that the exis&muantifiers possibly occurring in the two
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formulas ,,;; and ..., are dropped when these formulas are used in the body of thaitibefiof
initConf (X) anderrorConf (X), respectively, thereby obtaining CLP(Array) clauses.

As an example of the clauses defining the predicatdet us present the following clause encoding
the transition relation for the labeled commahdz[ie| = e that assigns the value efto the element of
index ie of the arraya (here a configuration of the forf¥¢ : ¢, §)), wherec is a command with label
and¢ is an environment, is denoted by the tetti{cmd(L, C), D)):

tr(cf(cmd(L, asgn(arrayelem(A, IE),E)),D), cf(cmd(L1,C),D1)) : -
eval(IE,D,I), eval(E,D,V), lookup(D,A,FA), write(FA,I,V,FAl),
update(D, A, FA1,D1), nextlab(L,L1), at(L1,C).

In this clause: (irrrayelem(A, IE) is a term representing the expressidfe], (i) eval(IE,D, I) holds
iff I is the the value of the index expressioR in the environmenD, (iii) eval(E,D,V) holds iff v
is the value of the expressidhin the environmenbD, (iv) lookup(D, A,FA) holds iff FA is the value
of the arrayA in the environmenD, (v) update(D, A,FA1,D1) holds iff D1 is the environmenD after
the assignment to array producing the new arrayA1, (vi) nextlab(L,L1) holds iff L1 is the label
of the command following the command with lakieln the encoding of the given prograprog, and
(vii) at(L1,C) holds iff C is the command with label1 in that encoding. As shown in [12], simi-
lar clauses for the predicater can be defined for the other commands of the imperative laygyuee
consider.

The Hoare triple{winit } pProg {—@eror + is valid iff incorrect & M (P), whereM (P) is the least
A-model of programP (see Section 2).

Our verification method consists of the following two stepach of which is performed by a se-
guence of applications of the unfold/fold transformatiates presented in Section 3, starting from pro-
gramP:

(i) the Generation of Verification Condition® CGer), outlined below, and

(i) the Transformation of Verification Conditiorf¢ CTrans), which will be presented in the next section.
Since the rules preserve the leasimodel (see Theorem 3.1), we will have thakcorrect € M (P) iff
incorrect€ M(T'), whereT is the CLP program derived after applyiMEGenandVCTransf

During VCGen program P is specialized with respect to the predicate definitiongmof(which
depends omprog), initConf, anderrorConf, thereby deriving a new program, called terification
conditionsfor prog and denoted by/C, which does not contain any occurrence of those predicaigs a
has no reference to the commands of the imperative prograg For this reason, prograiC' is said
to be derived by applyinthe removal of the interpretdsee, for instance, [12]).

We say that progranV’C is satisfiableiff incorrect ¢ M(VC). Thus, the satisfiability of the
verification conditions foprog guarantees that the Hoare trigdl@;,;: } prog {—¢eror } is valid.

In our verification method, the specialization Bfis done by applying a variant of the removal of
the interpreter strategy presented in [12]. The main difiee with respect to [12] is that the CLP pro-
grams we consider here may conta#nd, write, anddim predicates. Theead andwrite predicates
are never unfolded during the specialization and they otttine residual CLP(Array) progranvC'.
Moreover all occurrences of thieim predicate are eliminated by replacing them by suitablegariteon-
straints on indexes. We do not show hereWi@Genstep, and we refer to [12] for a detailed presentation
in the case of programs without array operations. Here we silmbw an example of generation of the
verification conditions.
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Let us consider the following progra®eqInitwhich initializes a given array of n integers by the
sequencea|0], a[0]+1, ..., a[0]+n—1:

Seqlnit lo: i =1;

01: while (i<n){afi]| =ali—1]4+1; i=1i+1; };
fp,: halt

We consider the Hoare tripl€y;,i: (i, n, a)} SeqInit {—@error(n,a)}, wWhere:
() @imi(i,n,a)is i>0 A n=dim(a) A n>1, and
(i) @error(n,a)is 33.j>0 A 7<n—2 A alj]>alj+1].
First, the above triple is translated into a CLP(Array) pesg P. In particular, the propertieg;,;; and
werror are defined by the following clauses, respectively:
1.phiInit(I,N,A) :- I>0, dim(A,N), N>1.
2.phiError(N,A) :-K=J+1, J>0, J<N—2, U>V, read(4, J,U), read(A,K,V).
The clauses defining the predicatasitConf anderrorConf which specify the initial and the error
configurations, respectively, are as follows:
3.initConf (cf(cmd(1ly,Cmd), [(i,I), (n,N),(a,A)])) : - at(1o,Cmd), phiInit(I,N,A4).
4. errorConf(cf(cmd(1y,Cmd), [(1i,I), (n,N),(a,4)])) :- at(1y,Cmd), phiError(N,A).
where the environment is a finite function encoded as a ligideftifier, value) pairs. (In particulart
andN range over integers, aridranges over sequences of integers.)

In order to encode the prograffeqinit, we first replace the while-loop command by a conditional
and a jump command, and then we introduce the following f@efsing the predicatet:

at(lo,asgn(i,1)). at(ly,ite(less(i,n),1s,1y)).
at(1ly, asgn(arrayelem(a, i), plus(arrayelem(a,minus(i, 1)),1))).
at(ls,asgn(i,plus(i,1))). at(ls,goto(ly)). at(lp, halt).

Now we perform the/CGenstep and from progran? we obtain the following progran¥C":
5.incorrect :-K=J+1, J>0, J<N—2, U>V, N<I, read(A,J,U), read(AK,V), p(I,N,4).
6.p(I,N,A) :-1<H, H<N—1,G=H—1, I=H+1, Z=W+1, read(B,G,W),write(B,H,Z,A), p(H,N,B).
7.p(I,N,A) :-I=1, N>1.
which represents the verification conditions &gqlnit

The following Theorem 4.1 is a straightforward extensioth®case of CLP(Array) programs of the
results shown in [12].

Theorem 4.1. (Termination and Soundness of the VCGen Transformptieh P be the CLP(Array)
program defining the predicai@correct which holds iff the triple{vi,it } Prog {—@eror } is not valid.
The VCGentransformation terminates on the inpdf and derives a CLP(Array) programiC such that
incorrect € M(P) iff incorrecte M (VC). Moreover,VC is a linear CLP(Array) program.

5. A Strategy for Transforming the Verification Conditions

In order to check whether or natcorrect € M(V(), the standard evaluation methods are often
inadequate, because the leasmodel M (VC') may be infinite and both the bottom-up and the top-
down evaluation of the predicate.correct may not terminate (indeed, this is the case in 8ag|lnit
program above).
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In this section, we present th&CTransftransformation step, which propagates the constraints oc-
curring in @;,;: and ... With the objective of deriving from progranyC' a new programi” where
the predicateincorrect is defined by either (i) the fadlmcorrect (in which case the verification con-
ditions are unsatisfiable, that isncorrect € M (VC'), andprog is incorrect), or (ii) the empty set of
clauses (in which case the verification conditions aref&ie, that isincorrect ¢ M (VC'), andprog
is correct). In the case where neither (i) nor (i) holds, wermt conclude anything about the correctness
of prog. However, similarly to what has been proposed in [10], weitenate a few times th¥ CTransf
step in the hope of deriving a program where either (i) ori@ds. Obviously, due to undecidability
limitations, it may be the case that we never get a progranrevkither (i) or (ii) holds.

VCTransfis performed by applying the unfold/fold transformatioesiaccording to the strategy
shown in Figure 1.VCTransfcan be viewed as a backward propagation of the constraints,ip,.
The forward propagation of the constraintsyp,;; can be obtained by combiningCTransfwith the
Reversatransformation described in [10].

Input A linear CLP(Array) programV/C'.
Output ProgramI” such thatincorrect € M (VC) iff incorrecte M(T).

INITIALIZATION : Let InDefsbe the set of all clauses dfC' whose head is the atotmcorrect;
T:=0; Defs=InDefs;
while in InDefsthere is a claus€’ do
UNFOLDING: Unfold C' w.r.t. the single atom in its body by usingC', and derive a st/ (C') of
clauses;
CONSTRAINT REPLACEMENT: Apply a sequence of constraint replacements based on the dfa
Arrays, and derive from(C') a setR(C') of clauses;
CLAuse REMOVAL: Remove fromR(C) all clauses whose body has an unsatisfiable constraint;
DEFINITION & FOLDING: Introduce a (possibly empty) set of new predicate defingiand add
them toDefsand tolnDefs
Fold the clauses i®®(C') different from constrained facts by using the clause3eéfs and derive
a setF(C) of clauses;
InDefs:= InDefs— {C'}; T :=TUF(C);
end-while;
ReEMoVvAL OF USeLESSCLAUSES. Remove from prograrfi’ all clauses with head predicapeif in T’
there is no constrained fagf. . .) : - c whereq is eitherp or a predicate on which depends.

Figure 1. The/CTransftransformation strategy.

Let us describe in more detail the\WOLDING, CONSTRAINT REPLACEMENT, and DEFINITION &
FOLDING phases of th& CTransfstrategy.

5.1. Unfolding

The UNFOLDING phase corresponds to one inference step, in a backward taayng from the error
configuration. For instance, let us consider again3kglnitprogram of Section 4, and |étC' be the
CLP program made out of clauses 5, 6, and 7. Varansfstrategy starts off by unfolding clause 5
w.r.t. the atonp(I, N, A). We get the clause:
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8.incorrect :- K=J+1,J>0, J<N—2, U>V,N<I,1<H H<N—1,G=H—1,I=H+1,Z=W+1,
read(A, J,U), read(A,K,V), read(B,G,W), write(B,H,Z,A), p(H,N,B).

whereB denotes the array from which the output artagomputed by th&eqlnitprogram is derived.

Basically, the body of clause 8 represents the set of corfligms from which the error configuration

is reachable. Note that the unfolding rule derives one elausy, because the conjunction of the con-

straintc1 occurring in clause 5 and the constrai occurring in clause 7 is unsatisfiable (that is, the

initial configuration is not backward reachable in one stepfthe error configuration).

5.2. Constraint Replacement

The CONSTRAINT REPLACEMENT transformation phase applies the Laws of Arrays and infexs n
constraints on the variables of the single atom that ocouithe body of each clause derived at the
end of the WWFOLDING phase. The objective of @VSTRAINT REPLACEMENT is to simplify the array
constraints and, in particular, to replacead constraints in favor of integer constraints (see rules RR1
and WR1). ®NSTRAINT REPLACEMENT also performs, whenever possible, case reasoning on te arr
indexes (see clausés) and(3) of rule WR3).

This transformation phase works as follows. We select aseldan the set/(C') of the clauses
obtained by unfolding, and we replace it by the clause(sainbd by applyingas long as possibléhe
following rules RR1-WR3, which are based on axioms A1-A3&dtin 3.

LetH :- k,G be a clause where = (c,read(A, I,U), read(4, J,V)), c is a constraint, and is a con-
junction of atoms.
(RR1) If kyz C (I=1J) thenreplacek by (c, U=V, read(A,I,U)).
(RR2) If kyz [Z (I#J)andkyz C (U#V) then add tok the constraintI # J.
LetH:- k,G be a clause where = (c,write(A,I,U,B),read(B,J,V)), c is a constraint, and is a
conjunction of atoms.
(WR1) If kyz C (I=J) then replacek by (c, U=V, write(A,I,U,B)).
(WR2) If kyz C (I#J) then replacek by (c, write(A,I,U,B), read(4,J,V)).
(WR3)If xyzZ I=Jandk,z [Z I#J then replaceH : - k,G by the two clauses:
() H:-c,I=J,U=V, write(A,I,U,B), G
and (8) H:-c, I#J, write(A,I,U,B), read(A,J,V), G

The replacement process, which in general is nondetertiginis confluent and terminating, as stated in
the following theorem.

Theorem 5.1. (Soundness, Termination, and Confluence of Constraint Replany
(1. Soundnegs Each rule among RR1, RR2, WR1, WR2, and WR3 is a sound afiplicaf the con-
straint replacement rule. Indeed,
(i) if H:-co,Gis replaced b¥ : - c4, G, by using a rule among RR1, RR2, WR1, WR2, then
A EV(co > cy),and
(i) if H:-co,Gis replaced by : - c¢4,G andH : - co, G, by using WR3, themd |= V(¢ > ¢4 v cy).
(2. Terminatior) Let D be a clause obtained after thevEDLDING phase of the/CTransf strategy.
Then, the execution of the@NSTRAINT REPLACEMENT phase orD terminates.
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(3. Confluence The rules RR1, RR2, WR1, WR2, and WR3 are confluent, modulovelgnce of
integer constraints.

Proof:
(1.Soundnegs(i). The proof proceeds by cases on the rule used. Suppatt thk, G is replaced by
H:-k;,G by using RR1, wherg is of the form(c,read(A,I,U),read(A,J,V)), kiz C (I=1J) holds,
andk; is of the form(c,U = V, read(A, J,V)). From axiom Al of Section 3, we derive:

A= V(c,read(A,I,U),read(A,J,V) <> c,U = V,read(4,J,V)).
Similarly, the soundness of the application of rules RR2, MV&hd WR3 is derived by using (the con-
trapositive of) axiom A1, axiom A2, and axiom A3, respedijve
(1. Soundnegq(ii). Suppose thall : - k,G is replaced by : - k;,G andH : - k,,G, by using WR3. Thei
is the constrainfc, write(A,I,U,B), read(B,J,V)), k is the constrainfc, I=J, U=V, write(A,I,U,B)),
andk, is the constraintc, I#J, write(A, I,U,B), read(A, J,V)). By case split, we get:

A= V((c,write(A,I,U,B),read(B,J,V)) <> ((c,I=J,write(A, I,U,B),read(B,J,V))

v (c,I#J,write(A,I,U,B),read(B,J,V))).

By using A3, we get:

A EV((c,write(A,I,U,B),read(B,J,V)) <> ((c,I=J,U=V,write(A,I,U,B),read(B,J,V))

v (¢, I#J,write(A,I,U,B),read(B,J, V), read(4,J,V))).

Since we have thal = V(I=J,U=V,write(A,I,U,B) — read(B,J,V)), and we also have that
AEV(I#J,write(A,I,U,B), read(A, J,V) — read(B, J,V)), we get:

A= V((c,write(A,I,U,B),read(B,J,V)) <> ((c,I=J,U=V,write(4,I,U,B))

v (c,I#J,write(A,I,U,B),read(A,J,V))).

(2. Terminatior) Let us define a relation, denoted on the sewars(D) of the variables occurring in
clauseD as follows:A < B iff the constraintirite(A, I, U,B) occurs inD. The constraintrite(A, I,U,B)
denotes that the result of a write operation on atréya new arrayg, and hence is a variable not oc-
curring as the fourth argument of any otherite constraint. Thus, the transitive closuke™ of <
is irreflexive, and sincears(D) is a finite set,<" is a well-founded ordering omars(D). Note also
that for every claus®’ derived fromD during the @NSTRAINT REPLACEMENT phase, we have that
vars(D’) =varg(D).

Let us introduce the following measures for every claise the setS of clauses with variables
invars(D):
(1) pn(E), which is the number afead constraints in the body of,
(2) - (E), which is the sum, for all constraints of the fotraad(B, _, ) in the body ofE, of the number

of variablesA in vars D) such thatA <+ B,
(3) pp(E), which is the number of pairgI, J) of integer variables irvars(D) such thatc iZ (I#£J),

wherec is the constraint in the body &, and

B 7(E) =aef (pn(E), pr(E), pp(E)).

Now the termination of the GNSTRAINT REPLACEMENT phase is a consequence of the fact that if
clauseF is obtained from clausg' by applying any of the rules ifRR1, RR2, WR1, WR2, WRR then
T(E) <ier T(F), Where<,, is the lexicographic ordering on triples of natural numifeesall that<;.,

is a well-founded ordering). Indeed, the following factdcho

(i) when applying rules RR1, WR1, and WR3), the measurg,, decreases and no other rule application
increases it,
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(i) when applying rule WR2, the measusig¢ decreases and no other rule application increases it @indee
if clause E; is derived from clausd’; by replacing a constraintead(B, J, V) by the new constraint
read(A, J, V) with A< B, thenu,(E;) < u.(E2)), and

(i) when applying rules RR2 and WR8), the measurg., decreases and no other rule application
increases it.

(3. Confluencg In order to prove the confluence of the rewriting rules RRR2RWR1, WR2, and
WR3, since the constraint replacement is terminating (@@t 2), by the Newman Theorem [28] it is
enough to provéocal confluencgthat is, it is enough to prove the following property: fokr@dhusesC
and all setsS1 and S2 of clauses, if{ C'} can be rewritterin one stepinto the setS1 and alsoin one

stepinto the setS2, then (i).S1 can be rewritten, in zero or more steps, into a set,{§ay1,...,C1,},
of clauses, (ii)S2 can be rewritten, in zero or more steps, into a set,{$a%,...,C2,}, of clauses,
and (iii) for k=1, ...,n, clauseC1, andC2y, after variable renaming, are of the fotin: - i1, c,G

andH : - i2, c, G, respectively, wherei1 andi2 are integer constraints, is an array constraing is a
conjunction of atoms, and = i1 <> i2.

Now we consider the various cases for the one step rewritingghat follows, for reason of concise-
ness we will write the prefix ‘1-’, instead of ‘one step’, antlen writing constraints, we allow ourselves
to silently apply equivalences that holdZn

¢ (CaseRR1-RR1). Let us consider the constraint (c,read(A,I,U), read(4, J, V), read(A,K,W))
such thak,z C (I=J) andk|z C (J=K).

The constraink 1-rewrites by RR1 intakl = (c¢,U=V,read(A, I,U), read(A,K,W)), andk also
1-rewrites by RR1 int&x2 = (¢, V=W, read(A, I,U),read(A, J,V)).

Now we have thak1 can be 1-rewritten by RR1 intl’ = (c,U=V,U=W,read(A, I,U)), andk2
can be 1-rewritten by RR1 ink2’ = (c,U=V,V=W, read(A, I,U)).

SinceZ = (U=V,U=W) < (U=V,V=W), we get local confluence.

e (CaseRR1-RR2). Let us consider the constraint (c,read(A,I,U),read(A,J,V)), such that
kizC(I=J)andk|zlZ(I#J)andk,zC (U#V). Thus, in particularc zC (I=J) andc|zC (U#V).

The constraink 1-rewrites by RR1 int&1 = (c,U=V, read(A, I,U)), andk also 1-rewrites by RR2
intok2 = (¢, I#J,read(A, I,U),read(4, J,V)). Now, sincec,z C (I=1J), k2 1-rewrites by RR1 into
k2' = (c,I1#J,U=V,read(A,I,U)). Moreover, since|zC (U#£V) andc|z C (I=7J), we have that
Z k= (c1z,U=V) « false, andZ |= (clz,I1#J,U=V) <> false. Thus, we get local confluence.
¢ (CaseRR1-WR1). Letus consider the constraint (c, read(A,I,U), read(A,J,V), write(Ao,I,U,A)),
such thak,z C (I=1J).

The constraink 1-rewrites by RR1 intk1l; = (¢, U=V, read(A,I,U), write(Ao,I,U,A)), andk
also 1-rewrites by WR1 inte2; = (c,U=V, read(A, I,U), write(Ao, I,U,A)). Sincekl; andk2; are
syntactically equal, we get local confluence.

The constraink may also 1-rewrite by WR1 inte2, = (c,read(A, J,V),write(Ao, I,U,A)). Now,
k1, is 1-rewritten by WR1 intdc,U=V,write(A, I,U,A)) andk2, is 1-rewritten by WR1 into the
same constraintc, U=V, write(Ao, I, U, 4)), and thus we get local confluence also in this case.

The constraintk also 1-rewrites by RR1 int&l, = (c, U=V, read(A, J,V), write(Ao, I,U,4)).
Now, since the constraintsl,, k24, andk2, can all be 1-rewritten by RW1 into a constraint of the form
(c,U=V,write(Ao,I,U,A)), we get local confluence.

e (CaseRR1-WR2) andCaseRR1-WR3). These cases are impossible because: (i) itib@ctise that
kiz C(I=J)andk,z C(I+#J)hold,and (i) itis notthe case thiatz C (I=J) andk,z Z (I=J) hold.
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Now we have to consider all other cases of the 1-rewritingsmthe first rule is not RR1. The proofs of
all these cases are similar to ones shown above, and we leawetd the reader.

Here we only show the following cases.

e (CaseRR2-WR1). Letus consider the constraint (d, read(A,I,U), read(A,J,V), write(Ao,I,U,A)),
whered|z [Z (I#J)andd,z C (U#V) anddiz C (I=1J).

The constraink 1-rewrites by RR2 int&k1 = (k, I#J). The constraink also 1-rewrites by WR1
into k2; = (d,U=V, read(A,I,U), write(Ao,I,U,A)). Now, sinced,z C (I=1J), k1 1l-rewrites by
RR1intokl’ = (d,I1#J,U=V,read(A,I,U), write(Ao,I,U,A)). Moreover, sincel|z C (I=J) and
dlz C (U#V), we have thaZZ = (d1z,1#J,U=V) <> false, andZ = (d,z,U=V) <« false. Thus,
we get local confluence.

The constraink also 1-rewrites by WR1 int&2, = (d,U=U,read(A, J,V), write(Ao, I,U, 4)).
This constraint by WR1 is 1-rewritten inf@, U=V, U=U, write(Ay, I,U,A)). Now k1’ is 1-rewritten
by WR1 into (d,I1#J,U=V,U=U,write(Ao,I,U,A)). Sinced,zC (U#V) andd|z C (I=1J), we
have thatZ |= (d1z,U=V,U=U) < false andZ = (d.z,1#J,U=V,U=U) < false. Thus, we get
local confluence.

e (CaseWR1-WR1). (Case of overlapping redexes write). Let us consider the constraiikt=
(c,write(A,I,U,B),read(B,J,V),read(B,K,W)), wherec,z C (I=1J) andc|z C (I=K).

The constraink 1-rewrites by WR1 int&1 = (¢,U=V,write(4A,I,U,B),read(B,K,W)). Also the
constraintk also 1-rewrites by WR1 inte2 = (c,U=W, write(A, I,U,B), read(B, J,V)).

Now k1 can be 1-rewritten by WR1 intal’ = (c,U=V,U=W,write(4,I,U,B)) andk2 can be
1-rewritten by WR1 int&?2' = (c,U=W,U=V,write(A, I,U, B)). By commutativity of constraints if,
we get local confluence.

e (CaseWR1-WR1). (Case of overlapping redexes osnd). Let us consider the constrait=
(c,write(A,I,U,B),read(B,J,V),write(A,K,W,B)), wherec,zC (I=J) andc,z C (K=J). This
case is impossible because there arewwite (A,K,W,B) constraints with the same fourth argument.
e (CaseWR3-WR3). (Case of overlapping redexes write). Let us consider the constraikt=
(c,write(A,I,U,B), read(B,J,V),read(B,K,W)),wherec,zlZ (I=J) andcizZ (I#J) andc|zZ (I=K)
andc|zZ (I#K).

By considering the constraifit, write(A, I,U,B),read(B, J,V)), k 1-rewrites by WR3 into the two
constraints:

ki1, = (c,I=J,U=V,write(A, I,U,B),read(B,K,W))

klg = (c,I#J,write(A,I,U,B),read(A,J,V),read(B,K,W)).
By considering the constrairft, write(A, I,U,B),read(B,K,W)), k also 1-rewrites by WR3 into the
two constraints:

k2, = (c,I=K,U=W,write(A,I,U,B),read(B,J,V))

k23 = (c,I#K,write(A,I,U,B),read(A,K,W),read(B, J,V)).
Fromk1, andkig, sincec|z [Z (I=K) andc|z [Z (I#K), we get by 1-rewritings by WR3 the follow-
ing constraints:

klge = (¢, I=J,1=K, U=V, U=W,write(A,I,U,B))

kl,s = (c,I=J,I1#K U=V,write(4,I,U,B),read(A K,W))

kig, = (¢, I#J,I=K U=W,write(4,I,U,B),read(A,J,V))

kigs = (c,I#J,I1#K,write(A,I,U,B), read(A,J,V),read(A,K,W)).
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Fromk2, andk2g, sincec|z IZ (I=J) andc|z IZ (I#J), we get by 1-rewritings by WR3 the follow-
ing constraints:

kK240 = (¢, 1=K, I=J,U=W,U=V,write(A, I,U,B))

k2,3 = (¢,I=K,I1#J,U=W,write(4,I,U,B),read(4,J,V))

k23, = (c,I#K,I=J,U=V,write(A,I,U,B), read(A,K,W))

k253 = (¢, I#K,I#J,write(A,I,U,B), read(4,K, W), read(A, J,V)).
Now let us consider the paikl,q., k2.,) Of constraints. We have thall = kl,n1Z < k2,412
Actually, k1., andk2,, are syntactically equal, modulo commutativity of conjumet The same holds
for the other pairs of constraint§k1,s,k2s,), (k1ga,k2,5), and(kigg, k235). Thus, we get local
confluence.
(CaseWR3-WR3). (Case of overlapping redexes x#ad). As for the case WR1-WR1, this case is
impossible. O

Let us continue our verification of ti&eqlnitprogram by performing the @VSTRAINT REPLACE-
MENT transformation phase. First, we simplify clause 8 by rapta¢he integer constraint in its body
with an equivalent one. We get:
8r.incorrect :- K=J+1, J>0,K<H, G=H—1, N=H+1, Z=W+1, U>V,

read(A, J,U), read(A,K, V), read(B,G,W), write(B,H,Z,A), p(H,N,B).
SinceJ #H is entailed by the constraint in clause 8r, we apply rule WR2\&e replaceread(A, J,U),
write(B,H,Z,A) by ‘read(B, J,U),write(B,H,Z,A)". We get:
8r.lincorrect:- K=J+1,J>0,K<H,G=H—1, N=H+1, Z=W+1,U>V,

read(B, J,U), read(A,K, V), read(B,G,W), write(B,H,Z,A), p(H,N,B).
Then, since neithex =H nor K=£H is entailed by the constraint in clause 8r.1, we apply rule3/¢Rd
we obtain the following two clauses (we have underlined thastraints involved in this replacement):
8r.2incorrect:- K=J+1, J>0, K<H,G=H—1, N=H+1, Z=W+1,U>V,

K=H,Z=V, read(B, J,U), read(B,G,W), write(B,H,Z,A), p(H,N,B).
8r.3incorrect :- K=J+1,J>0, K<H,G=H—1, N=H+1, Z=W+1,U>V,

K#H, read(B, J,U), read(B,X, V), read(B,G,W), write(B,H,Z,A), p(H,N,B).
Finally, sinceJ=G is entailed by the constraint in clause 8r.2 (indeee; J+1,G=H—1,K=H), we
apply rule RR1 to clause 8r.2 and we replace the constraid (B, G, W) by the constrainy =U, thereby
deriving the unsatisfiable constraint=U,Z=W+1,Z=V,U>V". Thus, clause 8r.2 is removed by the
subsequent CAUSE REMOVAL phase. From clause 8r.3, by rewriting<H, K £ H' as K<H-—1', we
get:
9.incorrect :- K=J+1,J>0,K<H—1,G=H—1, N=H+1, Z=W+1, U>V,

read(B, J,U), read(B,X,V), read(B,G,W), write(B,H,Z,A), p(H,N,B).

5.3. Definition and Folding

The DEFINITION & FOLDING phase introduces new predicate definitions by suitablergbrations of
the constraints. Generalization guarantees the termmmafiVCTransf In particular, by using the Gen-
eralization Algorithm presented in Figure 2, we enforce ititeoduction of afinite set Defs of new
predicate definitions such that all clauses derived by applunfolding, constraint replacement, and
clause removal to the clauseshefscan be folded by using clauses in the Befsitself.
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Unfortunately, in some cases our generalization technigag introduce an overly general new
predicate definition whose unfolding may generate comstthfacts, thereby preventing us to prove that
incorrect ¢ M (P), even if the given array manipulating program is correciorimally, this case may
happen when the new predicate provides a too coarse ovexapgation of the set of configurations that
are reachable in a backward way from the error configuratimueed, this overapproximation includes
initial configurations (because the predicate has comgttafiacts), which are not actually reachable from
the error configurations (because the program is corredarl®, due to the undecidability of program
correctness, no generalization technique can guaranteegion and, at the same time, the derivation
of a program without constrained facts wheneuetorrect ¢ M (P).

The DeFINITION & FOLDING phase works as follows. Leét'l in R(C) be a clause of the form
H:-c, p(X).In order to reason about the predicate definitions intreduc previous steps MCTransf
we structure the sddefsas a tree of clauses, where clausés the parent of claus® if B has been
introduced for folding a clause iR(A). If in Defsthere is (a variant of) a claude: newp (X) :-d, p(X)
such thatvars(d) C vars(c) andc C 4, then we foldC'1 using D. Otherwise, we introduce a clause
of the formnewp (X) : - gen, p(X) where: (i)newp is a predicate symbol occurring neither in the initial
program nor inDefs and (ii) gen is a constraint such thatars(gen) C vars(c) andc C gen. The
constraintgen is called ageneralizationof the constraint.

Many different generalizations of constraints can be ddfiie Figure 2, we propose a Generaliza-
tion Algorithm for computing one such generalization. Taigorithm is parametric with respect to the
operators that is used for generalizing linear constraintsis a binary operator such that, for any two
integer constraints; andi,, we havevars(i; ©1i,) C varg(ip) andip C i;©1i,. Wereferto [9, 17, 43]
for the definition of generalization operators for lineanstaints based owideningandconvex hull

Let us make some remarks on the Generalization Algorithep $is justified by the fact thatrite
constraints are redundant after the application oféld-over-writeconstraint replacements RW1-RWa3.
After Step 1 we havears(i;,ry) C vars(c) andiy, rwy C iq,ry.

At Step 2 we compute the projectidn of i, in the rationalsQ (and hencei; C i, holds in the
domain of the integers), because linear constraints arelosed under projection in the domain of the
integers. We have thaars(is, ry) C varg(is,ry) andiy, ry C ig, ry.

At Step 3 the deletion of constraints of the fotraad(A, I,V), whereA does not occur irX, is
motivated by the fact that can be treated as an existentially quantified variable,Zndead(A, I,V)
holds for allT andVv. The deletion of constraints of the foraead (A, I,V), wherev does not occur
in i,, is motivated by the fact that can be treated as an existentially quantified variable @nde vy
constructioni, ensures that the indekis within bounds, we have thar. read(A, I,V) holds for allA
andI. Thus, at the end of Steps 2~&rs(is, ry) C vars(is, ry) andis, ry C iy, s,

Step 4 computes a generalizatigiof the integer constraint, if an ancestor clause ihefscontains
a subconjunctionry of the read constraintr,. We will show in the next section that this condition
guarantees the termination of tMCTransf strategy. If the condition of thé-then-elseholds, then
vars(gen) = vars(g,ro) C varg(is, rp) andis, ry C g,ro = gen. If the condition of thdf-then-else
does not hold, thepgen is i,, ro, and hencears(gen) = vars(is, ry). Thus, after Step 4jars(gen) C
vars(c) andc C gen.

All generalization operators used at Step 4 guarantee the termination and soundn&sSToansf
but they may have an influence on the number of transformatieps needed to terminate, and also
on the success of the verification (recall thNdETransf may terminate without proving or disproving
correctness). The comparison among the various gendiatizgperators we have considered, has been
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Input (i) A clauseC, (ii) a clause inR(C) of the formH : - c, p(X), and (iii) a treeDefsof predicate
definitions.
Output A constraintgen which is ageneralizationof the constraint.

Let c be of the formi{, rw;, wherei, is an integer constraint and is a conjunction otead andwrite
constraints. Without loss of generality, we assume thab@lrrences of integers iread constraints
of c are distinct variables not occurringI(this condition can always be fulfilled by adding extra irgeg
equalities).

1. Delete allwrite constraints fronrw,, hence deriving;.

2. Compute the projectiofy, (in the rationalsQ) of the constraint.; ontovars(r;) U {X}. (Recall that
the projection inQ of a constraink(Y, Z) onto the tupley of variables is a constraint, (Y) such that
Q EVY(cp(Y) < 32Z2c(Y,2)).)

3. Delete fromr; all read(A, I, V) constraints such that either i)does not occur iX, or (ii) V does
not occur ini,, thereby deriving a new value fay . If at least oneread has been deleted during this
step, then go to Step 2.

4. Leti,, ry be the constraint obtained after the possibly repeatediéres of Steps 2—3.

If in Defsthere is an ancestor (defined as the reflexive, transitisictoof the parent relation) 6t
of the formH, :- i, ro, p(X) such thatrq, p(X) is a subconjunction af,, p(X),
thenlet g beiy © i,. Define the constrairgen asg, ro;
elsedefine the constrairgen asi,, r».

Figure 2. The Generalization Algorithm.

done on an experimental basis and the results of that cosapeare reported in Section 6.

Let us continue our program verification example by perfognistarting from clause 9, thedbi-
NITION & FOLDING phase of the/CTransfstrategy. In order to fold clause 9, we will introduce a new
predicate definition by applying the Generalization Algfum. We start off by renaming the variables
occurring in clause 9. This renaming has the objective opbfging the matching process of Step 4 of
the Generalization Algorithm. We get the following clause:
or.incorrect :- K=J41,J>0,K<I—1,G=I—1, N=I+1, Z=W+1, U>V,

read(A, J,U), read(A,K,V), read(A,G,W), write(A, I,Z,A1), p(I,N,A).
Now, we delete therrite constraint (Step 1) and we project the integer constrai®tsp( 2), thereby
deletingZz=w+1. We get a constraint where the varialeccurs inread(A, G, W) only. Thus, after
deleting the constraintead (A, G, W) (Step 3) and by applying projection again (this step resolthe
deletion ofc=1—1), we derive the constraint:

K=J+1,J>0,K<I—1, N=I+1, U>V, read(A,J,U), read(4,K,V).

Finally, we apply Step 4 of the Generalization Algorithm gl using the convex hull operator, we com-
pute a generalization of the integer constraiet J+1, J>0, J<N—2, N<I, U>V occurring in the
body of clause 5, and the constraint J+1, J>0, K<I—1, N=I+1, U>V obtained after Steps 1-3.
We get the following new predicate definition:
10.newl(I,N,A) :-K=J+1,J>0, J<N-2, J<I—-2 N<I+1,U>V,

read(A, J,U), read(A,K,V), p(I,N,A).
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By folding clause 9r using clause 10, we get:
11.incorrect :- K=J+1,J>0,K<I—1,G=I—1, N=I+1, Z=W+1, U>V,
read(A, J,U), read(A,K,V), read(A,G,W), write(A, I,Z,A1), newl(I,N,A).

5.4. Termination and Soundness of th& CTransf Transformation Strategy

The following theorem, together with Theorem 4.1, ensunes our verification method, consisting of
two stepsvCGenandVCTransf terminates and is sound.

Theorem 5.2. (Termination and Soundness of VCTran@f The VCTransfstrategy terminates.
(i) Let programT be the output of th&/CTransf strategy applied on the input prograi®C'. Then,
incorrect e M (VC) iff incorrecte M(T).

Proof:

() The VCTransfstrategy is parametric with respect to the generalizatiogratoro on integer con-
straints used in the Generalization Algorithm. We assuraegthas a property ensuring that only finite
chains of generalizations of any given integer constraantlme generated by applying the operator. This
assumption is formalized by the following property:

(F)if (go,g1,...) is an infinite sequence of integer constraints and, fomallo, there exist an index

j<mand an integer constraiatsuch thag, = g; © i,

then there exisk,n such thak <n andg, C gx.

The already mentioned generalization operators presem{&d17, 43] satisfy property (F).

Let us first note that the NFOLDING, CONSTRAINT REPLACEMENT, CLAUSE REMOVAL, and DEF-
INITION & FOLDING phases terminate. In particular, constraint satisfighéitd entailment are decid-
able for the class of quantifier-free array constraints veecansidering, and hence can be checked by
a terminating solver (note that completeness of the sok/eérot necessary for the termination of the
VCTransfstrategy), and each sequence of constraint replacememisétes (see Theorem 5.1).

Next we note that the while-loop of théCTransfstrategy terminates if and only if the set of new
predicate definitions that, during the execution of thetetyg is introduced by executions of th&BINI-
TION & FOLDING phase is finite. Indeed, each new predicate definition iscttdeDefsand processed
in one execution of the body of the while-loop.

Let us now prove that the set of new predicate definitions itefin
By construction, each predicate definition is of the faremp(X) : - i, r, p(X), where: (1)i is an integer
constraint, (2)r is a conjunction of array constraints of the formad (A, I,V), whereA is a variable in
X and the variableg andV occur ini only (see Step 1 of the Generalization Algorithm), andd(®)) is
a predicate occurring ivC'.

The proof proceeds by contradiction. Let assume that thefsetw predicate definitions is infinite, and
hence there exists an infinite sequefbg, D1, . . .) of clauses iDefssuch that, foi >0, D; is the parent
of D;1. Since theelsebranch of thdf-then-elseof Step 4 of the Generalization Algorithm can only be
applied a finite number of consecutive times during the cangon of the sequencé)y, Dy, ...), we
can extract from that sequence an infinite subsequenceusfadaf the form:

( newpo(X) :- go,To,p(X), newpi(X):-g1,ro,p(X), mnewpa(X):-go,ro,p(X), ... )
where, fom=1,2,..., g,=g; © i, for somej <m and integer constrairit By Property (F) we get that
there exisk,n such thakk <n andg, C g. Thus, we have reached a contradiction. Indeed, according
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to the DEFINITION & FOLDING phase, the claus®,: newp,(X) : - gn, ro,p(X) should have not been
introduced because Defsthere is a claus®y: newpy(X) : - gk, ro, p(X) such thatg, T gx, and any
clause that can be folded usihg, could have been folded using.

Thus, the set of new predicate definitions is finite andv@dransfstrategy terminates.
(ii) Each transformation step in tRéCTransfstrategy is a sound application of the rules presented in
Section 3. In particular, by Theorem 5.1, each constrajplacement in the GNSTRAINT REPLACE-
MENT phase is a sound application of the constraint replacenuémt KMoreover, every clause defining
a new predicate introduced during th&®NITION & FOLDING phase is unfolded once during the exe-
cution of the strategy. Thus, the soundness of the stratélyrespect to the leasd-model semantics
follows from Theorem 3.1. O

Let us now conclude the verification of ti8eqlnitprogram. TheVCTransf strategy proceeds by
performing a second iteration of the body of the while-loggdusdnDefsis not empty (indeed, at this
point clause 10 belongs toDefg.

UNFOLDING. By unfolding clause 10 we get the following clause:
12.new1(I,N,A) :-K=J+1,J>0, J<N—-2, J<I-2 N<I+1,U>V,
1<H, H<N—1, G=H—1, I=H+1, Z=W+1,
read(A, J,U), read(A,K,V), read(B,G,W), write(B,H,Z,A), p(H,N,B).
CONSTRAINT REPLACEMENT. Then, by simplifying the integer constraints and applyiotes RR1,
WR2, and WR3, from clause 12 we get the following clause:

13.newl(I,N,A) :- K=J+1, I=H+1, Z=W+1, G=H—1, N<H+2,

K<H—1,K>1, N>H+1, U>V,

read(B, J,U), read(B,K,V), read(B,G,W), write(B,H,Z,A), p(H,N,B).
DEFINITION & FOLDING. In order to fold clause 13 we introduce the following clausbose body is
derived by computing the widening [7, 9] of the integer caaists in the ancestor clause 10 with respect
to the integer constraints in (a renamed version of) cla@s@ekall that the widening of a constraiat
with respect to a constraigtis the conjunction of all atomic constraints ©that are entailed by):

14.new2(I,N,A) :- K=J+1, J>0, J<I-2, J<N—-2, U>V,
read(A, J,U), read(A,K,V), p(I,N,A).
By folding clause 13 using clause 14, we get:
15.new1(I,N,A) :-K=J+1,I=H+1,Z=W+1,G=H—1,N<H+2 K<H-1,K>1, N>H+1,U>V,
read(B, J,U), read(B,K,V), read(B,G,W), write(B,H,Z,A), new2(H,N,B).
Now we perform the third iteration of the body of the whileoof the strategy starting from the newly
introduced definition, that is, clause 14. After some exeastof the LNFOLDING and GONSTRAINT
REPLACEMENT phases, followed by a finaldt DING phase, from clause 14 we get:
16.new2(I,N,A) :-K=J+1, I=H+1, Z=W+1, G=H—1, K<H—1, K>1, N>H+1, U>V,
read(B, J,U), read(B,K,V), read(B,G,W), write(B,H,Z,A), new2(H,N,B).
The transformed program is made out of clauses 11, 15, an8ih6e this program has no constrained

facts, by executing the Bu1oVAL OF USELESSCLAUSES phase, we derive the empty progrdmand
we conclude thatncorrect ¢ M (T') and the Hoare tripl€ ;i } Seqlnit {—¢error } 1S valid.
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6. Experimental Evaluation

We have performed an experimental evaluation of our methadlenchmark set consisting of programs
manipulating arrays. In order to evaluate our method, we iraplemented the transformation strategies
VCGenand VCTransfof Sections 4 and 5, respectively, as modules of the VeriMéfevare model
checker [11]. The VeriMAP tool consists of: (i) a front-enddule, based on a custom implementation
of the C Intermediate Language (CIL) visitor pattern [42high translates a C program, together with its
precondition and postcondition, into a set of CLP(Arrayt$aand (ii) a back-end module, implemented
in Prolog, for CLP(Array) program transformation that gextes the verification conditions and applies
the VCTransfstrategy. The back-end also includes a solver for quantiterformulas of the theory of
arrays that checks satisfiability and entailment for armystraints by using the rules RR1-WR3 (see
Section 5.2) and the solver for linear equalities and inktips over the rationals provided by tlkepq
library of SICStus Prolog.

We have compared our results with those obtained by the-atdbe-art verifiers BosTER[3] and
SMACK+Corral [26] (SMACK, for short). The results of our exfiments, summarized in Tables 2
and 3, show that our approach is quite effective and effidieptactice.

Now we briefly discuss the programs, mostly taken from tregdiure [2, 5, 8, 13, 25, 36, 49], that
have been considered in our experimental evaluation. Tires@ode of these programs can be found in
http://map.uniroma2.it/smc/arrays/. Every program verification experiment we have performed,
consisted in checking the validity of a triple of the foftmue} prog {— vernor }, Whereprog and— verror
are given in Table 1. The validity check was done by usingeeitferiMAP, or BOOSTER or SMACK.

Table 1. Array programs and postconditions. The artaysandc are assumed to have dimension

Preconditionitrue Postcondition to be verified: error

Example:prog

1. bubblesort-inner Ve (0<i<n A 0<k<j A j=n—i—1) — alk]<a[j]
2. bubblesort Vi, j. (0<i< jaj<n) — ali] <alj]
3.insertionsort-inner | Vk. (0<i<naj+1<k<i) — alk]>z

4. selectionsort-inner | Vk. (0<i<k<n) — alk]>ali]

5. copy Vi. (0<i<n) — ali] =b[{]

6. copy-partial Vi. (0<i<k<n) — ali] = b[i]

7. copy-reverse Vi. (0<i<n) — ali]=bn—i—1]

8. difference Vi. (0<i<n) — c[i]= a[i]—b[i]

9. sum Vi. (0<i<n) — c[i]=ali]+b]i]

10. find-first-non-null-1 | (0<p<n) — a[p]#0

11.find-first-non-null-2 | (0<p<n) — (alp] # 0 A (Vi. (0<i<p) — ali]=0))
12.find (0<p<n) —>a[p]*T

13. init-constant Vi. (0<i<n) — ali]=

14. init-partial-zero Vi. (0<i<k<n) — ali ]

15. init-backward-zero | Vi. (0<i<n) — a[i|=0

16. init-non-constant Vi. (0<i<n) — ali|=2i+d

17. init-sequence Vi. (1<i<n) = ali|=ali—1]+1

18. max Vi. (0<i<n) — m>ali]

19. partition
20. rearrange-in-situ

Vi. (0<i<j) — b[i]>0) a (Vi. (0<i<k) — c[i]<0)
Vk. (0<k <i) = alk] > 0) A (Vk. (j<k<n) — alk] <0)

|
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Programsbubblesort-inner insertionsort-inney and selectionsort-innerare the inner loops of the
standard textbook versions of those sorting algorithmegiRimbubblesortis the bubblesort algorithm
of the benchmark suite of ®0STER Programscopy and copy-partial perform the element-wise copy
of the entire input array or a portion of it, respectively.o§iamcopy-reversecopies the input array
in reverse order, by making use of a temporary extra copygramosdifferenceand sumperform the
element-wise difference and sum, respectively, of two tirgstays. Programfnd-first-non-null-land
find-first-non-null-2both return the positiop of the first non-zero element of the input array by using
two different algorithms. Prograrfind returns the positiop of the first occurrence of a given value
in the input array. Prograrmit-constantinitializes to the integerl all elements of the input array.
Programinit-partial-zeroinitializes to0 a portion of the input array (the initialization starts frone first
element). Prograrmit-backward-zerdnitializes to0 the entire input array (the initialization starts from
the last element). Progranisit-non-constantand init-sequencenitialize the input array using values
that depend on the element position or the preceding elemespectively. Programmaxcomputes the
maximum element of the input array. Prograartition copies the non-negative and negative elements
of the input array into two distinct arrays. Prograearrange-in-sity rearranges the elements of the
input array, so that all negative elements are placed taghe of the non-negative ones.

In order to verify the above programs, we have appliedM@dransfstrategy using different gener-
alization operators for linear constraints. In particul@nen computing new predicate definitions using
the Generalization Algorithm, we have considered @exny operator, which performs widening, and
the Gercpw operator, which in the same generalization step perforngening and convex hull. We
have also combined these operators wittlebay mechanism, thereby obtainingenyp and Gercpwo,
respectively. Th&enyp operator applies th&eny operator and the convex hull operator in an alternate
way, andGercywp does the same f@Bercyw. The interested reader may refer to [12, 17] for details on
these operators.

In Table 2 we report the results of our experimental evabmatbtained by using the VeriMAP
tool with the four generalization operators mentioned abawd the BOSTERtool. All programs are
assumed to manipulate arrays of unknown dimengsiofhe SMACK tool has not been considered in
this evaluation because it can only deal with arrays of kndimmension. For each program that has been
proved correct, we report the time (in seconds) taken tdytre postcondition of interest. In Table 2 the
entry ‘unknownmeans that the tool terminates without being able to praovdsprove the postcondition,
while the entry timeout means that the tool did not provide an answer within 300 sdsoAt the bottom
of Table 2 we also report: (i) therecision that is, the ratiaVe/ P, whereN¢ is the number of programs
proved correct (that is, those programs for which the anssvetifferent from unknownand ‘timeout)
and P is the total number of verification problem® & 20, in our case), (ii) theotal time T, that is,
the time taken for proving thé/ programs correct, and (iii) theverage timethat is,7/N¢c. These
experiments have been performed on an Intel Core Duo E78@8@G2z processor with 4GB of memory
under the GNU Linux operating system.

The data presented in Table 2 show that the delayed versiding generalization operators we have
considered have almost the same time performance and atHeasame precision of their non-delayed
counterparts. In particular, by using tBeny operator, which is based on widening alone, our method is
able to prove only 6 programs out of 20. Notably, the use ofiflay mechanism i@enyp determines a
significant increase of precision with respec@eny. Alternatively, precision can be increased by using
the operator&erncpw andGercpwp, Which use also convex hull. These results confirm the effmogss
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Table 2. Verification results using VeriMAP with differengigeralization operators andBSTER Arrays have
unknown dimension. Times are in secon@mple) denotes a program of the decidable clamleﬁ [2]. The
timeoutoccurs after 300 secondsiriknowndenotes termination within thimeoutwithout a proof or a disproof.

VeriMAP
Example:prog BOOSTER
Geny | Gemyp | Gerew | Gercrwo

1. bubblesort-inner 0.67 0.85 0.70 0.88 0.01
2. bubblesort unknown | unknown| unknown| unknown 0.67
3.insertionsort-inner 0.30 0.32 0.53 0.55 unknown
4. selectionsort-inner | unknown 1.34 1.16 1.38 0.15
5. copy unknown 0.30 0.42 0.37 |(simple) 0.01
6. copy-partial unknown 0.33 0.42 0.34 |(simple) 0.02
7.copy-reverse unknown 0.36 0.68 0.63 [(simple) 0.03
8. difference unknown 0.61 1.22 1.08 |(simple) 0.02
9.sum unknown 0.65 1.30 1.13 |(simple) 0.01
10. find-first-non-null-1 0.14 0.15 0.18 0.17 0.06
11.find-first-non-null-2 0.22 0.24 0.24 0.25 0.45
12.find 0.33 0.49 0.58 0.53 0.08
13.init-constant unknown 0.15 0.20 0.19 |(simple) 0.01
14.init-partial-zero unknown 0.13 0.21 0.16 |(simple) 0.02
15. init-backward-zero | unknown 0.11 0.24 0.21 timeout
16. init-non-constant unknown 0.16 0.40 0.35 [(simple) 0.02
17.init-sequence unknown 0.63 0.93 0.85 [(simple) 0.72
18.max unknown 0.30 0.30 0.34 0.08
19. partition 0.49 0.53 0.56 0.55 0.12
20.rearrange-in-situ unknown | unknown 0.79 0.86 0.23
precision 0.30 0.90 0.95 0.95 0.90

total time 2.15 7.65 11.06 10.82 2.04

average time 0.36 0.42 0.58 0.57 0.15

of the convex hull operator which may help inferring relascamong program variables, and may ease
the discovery of useful program invariants, while causingor benchmark set) only a slight increase
of the verification time.

The last column of Table 2 reports the results obtained byguBoOSTER A distinctive feature
of that tool is that it usekop accelerationtechniques, which allow the replacement of loops belong-
ing to decidable classes [2] with suitable formulas. Foiséhdecidable classesoBSTER generates
proof obligations which can then be discharged by using apbete SMT solver. If the program under
consideration falls outside those decidable classes®ERfirst runs a bounded model checking mod-
ule and then, if necessary, it runs multiple parallel insésnof themcmT model checking engine [21],
which also uses loop acceleration techniques togetherlagthabstraction with interpolant®r arrays.
In Table 2 we have marked witfsimple) the programs that BoSTERrecognizes as belonging to the
decidable class osﬁmplej programs [2] for which loop acceleration performs very well

In our experiments we found thatt®STERIs very effective at verifying the programs in our bench-
mark set. In some cases, it is able to prove properties ofranog) containing two nested loops, like the
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bubblesortprogram, which VeriMAP has been unable to prove using theigdization operators consid-
ered in this paper. However, in some examples the applitabild effectiveness of the loop acceleration
techniques turn out to be quite sensitive to small changt®inode. For instance, we have considered 5
variants of thanit-backward-zeroprogram [8] (see line 15 of Table 2), andbBsTERfails to verify 2
of these variants not falling into the classg'nrfnpleff1 programs. VeriMAP can successfully verify all
these variants. Similarly, a variant of thebblesortprogram where the innermost loop moves smaller
elements towards the beginning of the array (instead of ngavigger elements towards the end), could
not be proved correct by @OSTER

We have also performed an additional experimental evalnatn the same set of problems, but using
arrays of known dimension. In particular, we have considl@reays of dimension =10, 25, 50.

Table 3. \Verification results using VeriMAP,d»STER and SMACK. Arrays have dimension= 10, 25, 50.
Times are in seconds. Thieneoutoccurs after 300 secondsuriknown denotes termination within thémeout
without a proof or a disproof.

VeriMAP BOOSTER SMACK
Example:prog
nle‘ ’TL:25| n=>50 n:lO‘ n:25‘ n=>50 n:10| 71,:25| n=>50
1. bubblesort-inner 2.85 2.97 2.85 8.35 10.59 9.28| 255.99 timeout timeouf]
2. bubblesort timeout| timeout| timeout 0.66 0.71 0.76|timeout| timeout] timeouf]

3. insertionsort-inner 1.70 1.69 1.65| unknown unknown unknowr]  2.71 2.60 2.93
4. selectionsort-inner 3.29] 3.27] 3.26 0.18 0.15 0.16| timeout| timeout timeout|

5. copy 1.02| 1.01f 1.00 0.01 0.03 0.01| 18.83/timeout timeout
6. copy-partial 1.01f 1.07] 1.06 0.03 0.02 0.03| 3.87| 41.83|timeout
7.copy-reverse 1.68 179 1.81 0.04 0.03 0.02| 18.09|timeout timeout
8. difference 238 242 246 0.03 0.03 0.02| 25.15/timeout timeout
9.sum 2.66] 259 2.62 0.03 0.03 0.03| 15.49|timeout timeout

10.find-first-non-null-1  0.81] 0.75| 0.78 0.10 0.11 0.10] 2.29| 2.17/ 2.28
11.find-first-non-null-2  1.19 1.14 1.15 0.41 0.23 0.37| 11.44| 149.96 timeout]

12.find 1.48/ 151 1.46 0.12 0.12 0.13] 2.36] 1.68 1.81
13. init-constant 0.66/ 0.59 0.61 0.02 0.01 0.03] 5.42] 26.07| 164.80
14.init-partial-zero 0.58/ 0.55/ 0.58 0.02 0.02 0.02] 2.99] 8.99] 87.17

15. init-backward-zero 0.59] 0.58] 0.59 0.14 0.31 1.62| 9.37| 28.39| 160.87
16. init-non-constant 0.99 0.97] 0.95 0.02 0.01 0.04| 6.52| 26.71| 124.74

17.init-sequence 191 198 1.90 0.73 0.74 0.73| 51.23|timeout timeout
18. max 1.04) 1.06] 1.07 0.11 0.11 0.15 16.74/timeout timeout
19. partition 2.09] 2.05 2.19| timeout timeout timeout timeout timeouftimeout]
20.rearrange-in-situ 2.19] 221 216 0.27 0.61 0.54| timeout| timeout] timeout

precision 0.95 0.95 0.95 0.90 0.90 0.90] 0.80] 0.45 0.35

total time 30.120 30.20 30.15 11.27] 13.86] 14.04| 448.49 288.4 544.6
average time 159 1.59] 1.59 0.63 0.77 0.78] 28.03] 32.04 77.80

In Table 3 we report the results obtained by running VeriMAgthg theGencywp generalization
operator, BOSTER and SMACK. These experiments have been performed on arQdate i5-2467M
1.60GHz processor with 4GB of memory under the GNU Linux apeg system. The performance
of VeriMAP does not depend on the actual dimensions of thatiaprays. The verification times are
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slighty higher than the corresponding times, shown in Téhlebtained for programs with arrays of
unknown dimension. This difference of performance is gattle to the differences of the experimental
environments. The performance obBSTERIs also generally not sensitive to variations of the array
dimension, except for thiait-backward-zergrogram, which it was not able to prove when using arrays
of unknown dimension. We also note that for two programs thefigation times are much higher
than those shown in Table 2, namddybblesort-innerand partition (which always runs out of time).
This behavior is possibly due to the fact thab@sTER as already mentioned, makes use of a bounded
model checking module before invokimeMT. The SMACK tool, contrary to VeriMAP and BOSTER
belongs to the family oboundedsoftware verifiers. It guarantees the absence of bugs bpéxglthe
state space up to a certain depth. SMACK first translates tMMLintermediate representation (IR)
of the program to the Boogie intermediate verification laagg[37], and then it uses Corral [35] as a
reachability modulo theories solver. As expected, SMAC¥eis sensitive to the dimensions of the input
arrays, except for a few problems, namalgertionsort-inney find-first-non-null-1 andfind, for which
it does not need to reach the so called recursion bound. Mereeven for small arrays of dimension
n = 10, the verification times are considerably higher than thegented by the other two tools. This
explains the high number of problems for which it runs outimiet

Thus, we may conclude that our transformation-based apprtmathe verification of programs that
manipulate arrays of known or unknown dimension, is quitegetitive, regarding both precision and
time performance, with respect to state-of-the-art saftwaerification methods.

7. Related Work and Conclusions

We have presented a verification method for imperative amgrthat manipulate integer arrays, based on
an encoding of the verification task into a CLP program withstraints that represent array operations.
Our method makes use of an automated strategy that guidespftieation of semantics preserving
transformation rules, including unfolding, folding, anohstraint replacement. The verification method
presented in this paper is an extension of the one introduncd®], where programs manipulate integer
variables only.

The idea of encoding imperative programs into CLP programnsdasoning about their properties
was presented in various papers [18, 31, 44], where it is shibat through CLP programs one can
express in a simple manner both (i) the symbolic executidrtheimperative programs, and (ii) the
invariants that hold during these executions. The pedwyliaf our work here is that we use Cljjfogram
transformationgo prove properties, rather than symbolic execution oicstatalysis.

The verification method for proving properties of array npaitating programs we have presented
in this paper, is related to several other methods that ustaab interpretation and theorem proving
techniques.

Among the papers that use abstract interpretations fomfinitivariants of programs that manipu-
late arrays, we first mention [25]. In that paper, which kaiilgbon [22], invariants are discovered by
partitioning the arrays into symbolic slices and assauiptin abstract variable with each slice. A sim-
ilar approach is taken in [8], where a scalable, parame@rabstract interpretation framework for the
automatic analysis of array programs is introduced. In 8¢9,a predicate abstraction for inferring uni-
versally quantified properties of array elements is prestrdnd in [24] the authors present a similar
technique that uses template-based quantified abstracidem
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The methods based on abstract interpretation construciaggeoximations of the behaviour of the
programs, that is, invariants implied by program exec&iorhese methods have the advantage of being
quite efficient because they fix in advance a set of asseniuse the invariants are searched for, but
for the same reason, they may lack flexibility as the abstnachould be re-designed when the program
verification fails.

Also theorem proving techniques have been used for: (iJodlExing invariants of the executions
of programs that manipulate arrays, and (ii) proving théfieation conditions generated from the pro-
grams to be verified. In particular, in [2, 6] satisfiabiliteaision procedures for decidable fragments
of the theory of arrays are presented. Those fragments gressive enough to prove properties such
as sortedness of arrays. In [32, 33, 40] the authors presemg techniques based on theorem proving
which may generate array invariants. In [49] a backwardhabitity analysis based on predicate abstrac-
tion and abstraction refinement is used for verifying agsestthat are universally quantified over array
indexes. Finally, in [2, 36] some techniques based on Satiify Modulo Theories (SMT) have been
presented for the generation and the verification of unallsrguantified properties over array variables.

The approaches based on theorem proving and SMT are moreldlexith respect to those based
on abstract interpretation, because no set of abstradidinged in advance, and the suitable assertions
needed by the proof are generated on the fly, during the \aidit process itself. In particular, the
techniques presented in [2] and related papers on decisimegures for the theory of arrays [20], have
been integrated in BosTER[3]: a tool for verifying C-like programs handling arraysattwe have used
in our experimental evaluation. It exploits acceleratieahniques to compute in an exact way the set
of reachable states of programs with loops, provided thagelprograms belong to a restricted class of
programs, calledimplefj programs [2]. Indeed, for programs belonging to that cliagmmputes in one
step, the set of the reachable states for which abstrabtead approaches require several refinement
steps. However, since acceleration is based on templaisesdnsitive to the syntactic presentation of
the input programs, and thus the applicability of the teghaimay have some limitations.

Although the approach based on CLP program transformaliares many ideas and techniques with
the approaches based on abstract interpretation and aetbti@orem proving, we believe that it has
some distinctive features that can make it quite appealindeed, this paper and previous works [10,
17, 44] show that one can construct a uniform framework wibeth the generation of verification
conditions and the construction of their proofs can be vibag instances of program transformation.
The transformation-based approach is also parametricreggbect to the imperative language in which
the programs to be verified are written, because intergreted proof systems can easily be written in
CLP, and verification conditions can automatically be gateat by program specialization (which is a
particular instance of program transformation).

Moreover, optimizing transformations considered in theréiture [45] can be applied to improve
the efficiency of the verification task. Note also that transfations can be composed together so to
derive powerful verification methods in a modular way. Intjgaitar, in [12] it is shown that théeration
of program specialization combined with suitable conatrpropagations can significantly improve the
precision of our program verification method.

Finally, we would like to mention that there are tools, sushtee SMACK verifier [26], which au-
tomatically verify array manipulating programs by usingibded model checking techniques. Bounded
model checkers explore the state space up-to a given boundrbifing the control flow graph a fixed
number of times only. Therefore, once provided with a slgtddmund, these tools may prove the cor-
rectness of programs that manipulate arraylsnoiwnsize. In contrast, the verification method presented
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in this paper and implemented in VeriMAP, as well as the tegles implemented in BOSTER are able
to deal with arrays ofinknownsize.

As a future work we plan to extend our approach to the progthatsbesides arrays, also manipulate
dynamic data structuresuch as lists or heaps. This extension will be done by loofang suitable set
of constraint replacement laws that axiomatize those tstres. For some specific theories we could also
apply the constraint replacement rule by exploiting theiltsobtained by external theorem provers or
SMT solvers.
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