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Abstract

We present a method for verifying properties of imperative programs by using techniques based on the specialization
of constraint logic programs (CLP). We consider a class of imperative programs with integer variables and we focus
our attention on safety properties, stating that no error configuration can be reached from any initial configuration.
We introduce a CLP program I that encodes the interpreter of the language and defines a predicate unsafe equivalent
to the negation of the safety property to be verified. Then, we specialize the CLP program I with respect to the
given imperative program and the given initial and error configurations, with the objective of deriving a new CLP
program Isp that either contains the fact unsafe (and in this case the imperative program is proved unsafe) or contains
no clauses with head unsafe (and in this case the imperative program is proved safe). If Isp enjoys neither of these
properties, we iterate the specialization process with the objective of deriving a CLP program where we can prove
unsafety or safety. During the various specializations we may apply different strategies for propagating information
(either propagating forward from an initial configuration to an error configuration, or propagating backward from
an error configuration to an initial configuration) and different operators (such as the widening and the convex hull
operators) for generalizing predicate definitions. Each specialization step is guaranteed to terminate, but due to the
undecidability of program safety, the iterated specialization process may not terminate. By an experimental evaluation
carried out on a significant set of examples taken from the literature, we show that our method improves the precision
of program verification with respect to state-of-the-art software model checkers.
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1. Introduction

Formal verification of software products is gaining more and more attention as a promising methodology for
increasing the reliability and reducing the cost of software production (see [37] for some case studies). In partic-
ular, software model checking has the goal of performing formal software verification by combining and extending
techniques developed in the fields of static program analysis and model checking (see [32] for a recent survey).

In this paper we consider programs acting on integer variables written in a subset of the imperative C Intermediate
Language [38]. Then we address the problem of verifying safety properties, stating that when executing a program,
an error configuration cannot be reached from any initial configuration.

Since for programs that act on integer variables the safety problem is undecidable, many program analysis tech-
niques follow approaches based on abstraction [7], by which the integer data domain is mapped into an abstract
domain so that reachability is preserved, in the sense that if a concrete configuration is reachable, then the corre-
sponding abstract configuration is reachable. By a suitable choice of the abstract domain one can design reachability
algorithms that terminate and, whenever they prove that an abstract error configuration is not reachable from any
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abstract initial configuration, then the program is proved to be safe (see [32] for a general abstract reachability algo-
rithm). Notable abstractions are those based on convex polyhedra [10], that is, conjunctions of linear inequalities (also
called constraints in this paper).

Constraint Logic Programming (CLP) is a very suitable framework for the analysis of imperative programs, be-
cause it provides a very convenient way of representing symbolic program executions and also, by using constraints,
program abstractions (see, for instance, [29, 31, 40, 41]). In the context of CLP-based program analysis, the problem
of verifying imperative programs can be transformed into the problem of analyzing CLP programs by using CLP pro-
gram specialization [40]. By following the approach presented in [40], first the semantics of the language in which the
imperative programs are written is defined in terms of a CLP program I which is the interpreter of that language, and
then I is specialized with respect to: (i) the CLP representation P′ of the input imperative program P, and (ii) the CLP
representation F′ of the safety property F that should be checked. The result of this specialization is a CLP program
Isp that is semantically equivalent to I ∪ P′ ∪ F′. Thus, in order to prove some given properties of the imperative
program P, we can analyze the CLP program Isp by applying, for instance, techniques based on the above mentioned
polyhedral abstractions.

It has also been pointed out that CLP program specialization can be used as a technique for software model
checking on its own [12]. Indeed, by specializing Isp with respect to the constraints characterizing the input values
of P (that is, the precondition of P), in some cases one can derive a new CLP program I′sp whose least model M(I′sp)
can be computed in finite time because I′sp can be represented by a finite (possibly empty) set of constraints. Thus, in
these cases it is possible to verify whether or not P is safe by simply inspecting that model.

However, due to the undecidability of safety, it is impossible to devise a specialization technique that always
terminates and produces a specialized CLP program whose least model can be finitely computed. Thus, the best one
can do is to propose a verification technique based on some heuristics and show that it works well in practice. This
is what we have done in this paper. In particular, we have proposed a method, called the iterated specialization,
that is based on the repeated application of program specialization. By iterated specialization we can produce a
sequence of CLP programs of the form I, Isp, I

1
sp, I

2
sp, . . . Each program specialization step terminates and has the effect

of modifying the structure of the CLP program and explicitly adding new constraints that denote invariants of the
computation. Thus, the effect of the iterated specialization is the propagation of these constraints from one program
version to the next, and since each new iteration starts from the output of the previous one, we can refine program
analysis and possibly increase the level of precision. Iterated specialization terminates at step k, if a lightweight
analysis based on a simple inspection of the CLP program Ik

sp is able to decide safety or unsafety.
In order to validate the heuristics used in our verification method from an experimental point of view, we have im-

plemented a prototype verification system called VeriMAP [15]. We have performed verification tests on a significant
set of over 200 programs taken from various publicly available benchmarks. The precision of our system, that is the
ratio of successfully verified programs over the total number of programs, is about 85 percent. We have also compared
the results we have obtained using the VeriMAP system with the results we have obtained using other state-of-the-art
software model checking systems, such as ARMC [41], HSF(C) [23], and TRACER [30]. These results show that our
verification system has a considerably higher precision.

Let us summarize here the main contributions of our paper.
(i) The adaptation and the integration of various techniques for specializing and transforming constraint logic pro-
grams into the novel iterated specialization method for verifying imperative programs. This adaptation has required:
(i.1) The customization of general purpose unfolding and generalization strategies (such as those in [17, 39]) to the

specific task of specializing the interpreter of the programming language under consideration, as well as the CLP
programs derived from the interpreter in subsequent iterations of the method. In particular, we have adapted to
our context suitable strategies, based on operators often used in static program analysis such as widening and
convex hull [7, 10], for the automatic discovery of loop invariants of the imperative programs to be verified.

(i.2) The customization of general purpose transformations for inverting the order of computation [5], so that iterated
program specialization can exploit in a particularly good way the information present in the initial and in the error
configurations.

(ii) The implementation of our iterated specialization method into a prototype automatic tool [15].
(iii) The experimental evaluation of our proposed method and its comparison with respect to state-of-the-art software
model checkers.
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The paper is organized as follows. In Section 2 we recall some basic definitions on constraint logic programming.
In Section 3 we briefly illustrate our software model checking method for proving program safety by presenting a
simple example. In Section 4 we describe the syntax of our imperative language and the CLP interpreter that defines
its operational semantics. In Section 5 we specify our problem of proving program safety. In Section 6 we describe the
overall strategy of iterated specialization, and also some specific strategies for performing the individual specialization
steps. In Section 7 we report on the experiments we have performed by using our prototype implementation, and we
compare our results with those obtained using ARMC, HSF(C), and TRACER. Finally, in Section 8 we discuss the
related work and we compare our approach with other existing methods for performing software model checking.

2. Preliminaries on Constraint Logic Programming

Let us recall some basic notions and terminology concerning constraint logic programming. For more details the
reader may refer to [27].

We will consider constraint logic programs with linear constraints over the set Z of the integer numbers. If p1 and
p2 are linear polynomials whose variables and coefficients are of type integer then p1=p2, p1≥p2, and p1>p2 are
atomic constraints. A constraint is either true, or false, or an atomic constraint, or a conjunction of constraints. An
atom is an atomic formula of the form p(t1,...,tm), where p is a predicate symbol not in {=,≥, >} and t1,...,tm are
terms. A CLP program is a finite set of clauses of the form A :- c, B, where A is an atom, c is a constraint, and B is a
(possibly empty) conjunction of atoms. We assume that in every clause all integer arguments in its head are distinct
variables. The clause A :- c is called a constrained fact for the predicate occurring in A. If the constraint c is true,
then it is omitted and the constrained fact is called a fact. A CLP program is said to be linear if all its clauses are of
the form A :- c, B, where B consists of at most one atom.

We say that a predicate p depends on a predicate q in a program P if either in P there is a clause of the form
p(...) :- c, B such that q occurs in B, or there exists a predicate r such that p depends on r in P and r depends on q
in P. We say that a predicate p in a linear program P is useless if in P there are constrained facts neither for p nor for
each predicate q on which p depends.

Let TZ denote the set of ground terms built out of the elements of Z and the function symbols in the language of
the CLP program P. A Z-interpretation is an interpretation with universe TZ such that: (i) it assigns to +, *, =,≥, >
the usual meaning in Z, and (ii) it is the Herbrand interpretation for function and predicate symbols different from
+, *, =,≥, >. We can identify a Z-interpretation I with the set of ground atoms (with arguments in TZ) that are true in I.

We write Z |= ϕ if ϕ is true in every Z-interpretation. A constraint c is satisfiable if Z |= ∃(c), where ∃(ϕ) denotes
the existential closure of ϕ. A constraint is unsatisfiable if it is not satisfiable. A constraint c entails a constraint d,
denoted c v d, if Z |= ∀(c → d), where ∀(ϕ) denotes the universal closure of ϕ. We say that a clause of the form
H :- c, B is subsumed by the constrained fact H :- d if cvd.

The semantics of a CLP program P is defined to be the least Z-model of P, denoted M(P), that is, the least
Z-interpretation in which every clause of P is true.

3. An Introductory Example

In this introductory example we will very briefly present our method for performing software model checking via
iterated specialization. Let us consider the following imperative program P:

int x; int y; int n; Program P
`0: while (x < n) { x = x + 1; y = y + 2; }
`1: while (x > 0) { x = x − 1; y = y − 1; }
`h: halt;

We want to show safety of this program with respect to the initial configurations satisfying ϕinit(x, y, n) =def x = 0 ∧
y = 0 ∧ n≥ 0, and the error configurations satisfying ϕerror(x, y, n) =def y< n. That is, we want to show that, starting
from any values of x, y, and n that satisfy ϕinit(x, y, n), for every execution of program P, after executing the command
`h: halt, the new values of x, y, and n do not satisfy ϕerror(x, y, n).

Our verification method starts off by encoding the unsafety property (that is, the negation of the safety property)
as a CLP program I. (i) First we write the CLP clauses defining the predicate tr (short, for transition relation)
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that encodes the interpreter of the imperative language in which the given program P is written. In particular, the
predicate tr defines the transition relation from any given configuration to the next configuration. (ii) Then, we write
the CLP clauses that encode the imperative program P and the formulas ϕinit and ϕerror. (iii) Finally, by using the
predicate tr, we write the CLP clauses that define the predicate unsafe that holds iff there exists an execution of
program P that leads from an initial configuration to an error configuration. Details of all these encoding steps will be
given in the following section.

In order to derive the verification conditions associated with the given program P, we perform a specialization
of the CLP program I, called the removal of the interpreter, that is, we specialize the clauses defining unsafe with
respect to: (i) the clauses that define tr, and (ii) the clauses that encode P. We get the following CLP program Isp:
1. unsafe :- X=0, Y=0, N≥0, new1(X,Y,N).

2. new1(X,Y,N) :- X<N, X1=X+1, Y1=Y+2, new1(X1,Y1,N).

3. new1(X,Y,N) :- X≥N, new2(X1,Y1,N).

4. new2(X,Y,N) :- X>0, X1=X-1, Y1=Y-1, new2(X1,Y1,N).

5. new2(X,Y,N) :- X≤0, Y<N.

where new1 and new2 are predicates that have been automatically introduced by the specialization algorithm, and
correspond to the while-loops at labels `0 and `1, respectively. Unfortunately, it is not possible to check by direct
evaluation whether or not the atom unsafe is a consequence of the above CLP program Isp. Indeed, the evaluation
of the query unsafe using the standard top-down strategy gets into an infinite loop. Tabled evaluation [11] does
not terminate either, as infinitely many tabled atoms are generated. Analogously, bottom-up evaluation is unable to
return an answer, because it has to generate infinitely many facts for new1 and new2 for deriving that unsafe is not a
consequence of the given CLP program Isp.

Our verification method avoids the direct evaluation of the above CLP program Isp, and applies some symbolic
evaluation methods based on program specialization. Indeed, starting from those clauses, we perform a second spe-
cialization, called the propagation of the constraints. This second specialization propagates throughout clauses 1–5
the constraint ‘X=0, Y=0, N≥0’ characterizing the initial configurations. By doing so, we get the following CLP
program I1

sp:
6. unsafe :- X=0, Y=0, N≥0, new3(X,Y,N).

7. new3(X,Y,N) :- X1=X+1, 2*X1=Y+2, X1≥1, X1≤N, Y1=2*X1, new3(X1,Y1,N).

8. new3(X,Y,N) :- X=N, Y=2*N, N≥0, new4(X,Y,N).

9. new4(X,Y,N) :- Y-X=N, X1≥0, X1=X-1, Y1=Y-1, Y1>2*X1, new4(X1,Y1,N).

where new3 and new4 are new predicates introduced by the specialization algorithm. Since in this final program I1
sp

there are no constrained facts, its least model is empty. In particular, no atom with predicate new3 belongs to that
model. We conclude that unsafe does not hold in the least model of program I1

sp. Then, by the correctness of the CLP
encoding (see Theorem 1 in Section 5) and by the correctness of CLP program specialization with respect to the least
model semantics (see Theorem 2 in Section 6) we get, as desired, that the given imperative program P is safe, that is,
no execution of P can lead from an initial configuration to an error configuration.

In the general case it may happen that after the specialization steps we are not able to conclude whether or
not unsafe holds, because the specialized CLP program defines the predicate unsafe by recursive clauses with
constrained facts. (These clauses may also be mutually recursive.) In this case we do not give up and we use the
specialized program I1

sp we have derived as a new initial program for continuing our verification task. Indeed, we
iterate program specialization by propagating the constraints characterizing the error configurations and, if required,
by propagating again the constraints characterizing the initial configurations, and so on. In this way we may be able
to refine our analysis and improve the result of our verification, as shown in Section 7. Clearly, due to undecidability
limitations, it may be the case that we never get to a conclusive result. However, as experimentally shown in Section 7,
our method turns out to be successful in many significant examples.

4. A CLP Interpreter for an Imperative Language

We assume that the programs to be verified are written in an imperative language, subset of the C intermediate
Language [38], manipulating objects of elementary types, such as integers or characters. Here is the syntax of our
language.
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x, y, . . . ∈ Vars (variable identifiers)
f , g, . . . ∈ Functs (function identifiers)
`, `1, . . . ∈ Labs (labels)
const ∈ Z (integer constants, character constants, . . .)
type ∈ Types (int, char, . . .)
uop, bop ∈ Ops (unary and binary operators: +,−,≤, . . .)

prog ::= decl∗ fundef ∗ lab cmd+ (programs)
decl ::= type x (declarations)
fundef ::= type f (decl∗) { decl∗ lab cmd+ } (function definitions)
lab cmd ::= ` : cmd (labelled commands)
cmd ::= x = expr | x = f (expr∗) | return expr | (commands)

| goto ` | if (expr) `1 else `2 | halt

expr ::= const | x | uop expr | expr bop expr (expressions)

For reasons of brevity, we will feel free to say ‘command’, instead of ‘labelled command’. As usual, the superscript +

denotes non-empty finite sequences and the superscript ∗ denotes possibly empty finite sequences. We feel free to
separate the members of the sequences by colons or semicolons. The while commands can be introduced in our
language by considering them as abbreviations of suitable sequences of if-else and goto commands.

We assume that: (i) every label occurs in every program at most once, (ii) the global variables of a program are
those introduced in the declarations of the program, (iii) every variable occurrence is either a global occurrence or a
local occurrence with respect to any given function definition, and (iv) in every program one may statically determine
whether any given variable occurrence is either global or local.

Language restrictions. We assume that in our language: (i) there are no blocks, and thus no nested levels of
locality, (ii) the evaluations of expressions and functions have no side effects, (iii) there are no definitions of recursive
functions, and (iv) there are neither arrays, nor structures, nor pointers. Despite these restrictions, our language retains
its interest because in the class of programs we can write the safety problem is undecidable, and our experiments show
that even in this class the techniques implemented in existing tools are not always satisfactory (see Section 7). �

A program P whose declarations are of the form: type z1; . . . ; type zr, is said to be acting on the global variables
z1, . . . , zr. Without loss of generality, we also assume that the last command of every program is `h :halt and no other
halt command occurs in any given program.

Now we give the operational semantics of our imperative language. Let us first introduce the following functions
and data structures.
(i) A global environment δ : Vars→ Z, which is a function that maps global variables to their integer values.
(ii) A local environment σ : Vars → Z, which is a function that maps function parameters and local variables to their
integer values.
(iii) An activation frame, which is a triple of the form 〈`, y, σ〉, where: (1) ` is the label where to jump after returning
from a function call, (2) y is the variable that stores the value returned by a function call, and (3) σ is the local
environment to be initialized when making a function call.
(iv) A configuration, which is a triple of the form 〈〈c, δ, τ〉〉, where: (1) c is a labelled command, (2) δ is a global
environment, and (3) τ is a list of activation frames. We operate on the list τ of activation frames by the usual
head (hd) and tail (tl) functions and the right-associative list constructor cons (:). The empty list is denoted by [ ].
Given a function identifier f , a variable identifier x, and an integer v, the term update( f , x, v) denotes the function f ′

that is equal to f , except that f ′(x)=v.
For any program P, for any label `, (i) at(`) denotes the command in P with label `, and (ii) nextlab(`) denotes the

label of the command in P that is written immediately after the command with label `. Given a function identifier f ,
firstlab( f ) denotes the label of the first command of the definition of the function f in P. For any expression e, any
global environment δ, and any local environment σ, JeK δσ is the integer value of e. For instance, if x is a global
variable and δ(x)=5, then Jx+1K δσ = 6.

The operational semantics that defines the interpreter of our imperative language, is given by a binary transition
relation between configurations. That relation, denoted =⇒, is defined by the following rules R1–R5. Obviously, no
rule is given for the command halt, because no next configuration is generated when halt is executed.
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(R1). Assignment. Let hd(τ) be the activation frame 〈`′, y, σ〉 and v be the integer JeK δσ.
If x is a global variable: 〈〈` : x=e, δ, τ〉〉 =⇒ 〈〈at(nextlab(`)), update(δ, x, v), τ〉〉
If x is a local variable: 〈〈` : x=e, δ, τ〉〉 =⇒ 〈〈at(nextlab(`)), δ, 〈`′, y, update(σ, x, v)〉 : tl(τ)〉〉
Informally, an assignment updates either the global environment δ or the local environment σ of the topmost activation
frame 〈`′, y, σ〉.
(R2). Function call. Let hd(τ) be the activation frame 〈`′, y, σ〉. Let {x1, . . . , xk} and {y1, . . . , yh} be the set of the
formal parameters and the set of the local variables, respectively, of the definition of the function f .
〈〈` : x= f (e1, . . . , ek), δ, τ〉〉 =⇒ 〈〈at(firstlab( f )), δ, 〈nextlab(`), x, σ〉 :τ〉〉

where σ is a local environment of the form: {〈x1, Je1K δσ〉, . . . , 〈xk, JekK δσ〉, 〈y1, n1〉, . . . , 〈yh, nh〉}, for some values
n1, . . . , nh in Z (indeed, when the local variables y1, . . . , yh are declared, they are not initialized). Note that since the
values of the ni’s are left unspecified, this transition is nondeterministic.

Informally, a function call creates a new activation frame with: (i) the label where to jump after returning from the
call, (ii) the variable where to store the returned value, and (iii) the new local environment.
(R3). Return. Let τ be 〈`′, y, σ〉 : 〈`′′, z, σ′〉 : τ′′ and v be the integer JeK δσ.
If y is a global variable: 〈〈` :return e, δ, τ〉〉 =⇒ 〈〈at(`′), update(δ, y, v), tl(τ)〉〉
If y is a local variable: 〈〈` :return e, δ, τ〉〉 =⇒ 〈〈at(`′), δ, 〈`′′, z, update(σ′, y, v)〉 :τ′′〉〉
Informally, a return command first evaluates the expression e and computes the value v to be returned, then erases
the topmost activation frame 〈`′, y, σ〉, and finally updates either the global environment δ or the local environment σ′

of the new topmost activation frame 〈`′′, z, σ′〉.
(R4). Conditional. Let hd(τ) be the activation frame 〈`′, y, σ〉.
If JeK δσ= true: 〈〈` : if (e) `1 else `2, δ, τ〉〉 =⇒ 〈〈at(`1), δ, τ〉〉
If JeK δσ= false: 〈〈` : if (e) `1 else `2, δ, τ〉〉 =⇒ 〈〈at(`2), δ, τ〉〉
(R5). Jump. 〈〈` :goto `′, δ, τ〉〉 =⇒ 〈〈at(`′), δ, τ〉〉
Given a program P acting on the global variables z1, . . . , zr, we define an initial configuration to be a triple:
〈〈`0 :c0, δinit, [ ]〉〉, where: (i) `0 : c0 is the first command of P, (ii) δinit is the initial global environment of the form:
{〈z1, n1〉, . . . , 〈zr, nr〉}, where n1, . . . , nr are some given integers in Z, and (iii) [ ] is the empty list of activation frames.

The CLP interpreter for our imperative language is given by the following clauses that define the binary predicate
tr encoding the transition relation =⇒ between configurations. We have the clauses for: (i) assignments to global
and local variables (clause 1), (ii) function calls and returns (clauses 2 and 3), (iii) conditionals (clauses 4 and 5),
(iv) jumps (clause 6), and (v) updates of global and local environments (clauses 7 and 8).

1. tr(cf(cmd(L,asgn(X,expr(E))),D,T), cf(cmd(L1,C),D1,T1)) :- loc env(T,S), eval(E,D,S,V),

update(D,T,X,V,D1,T1), nextlab(L,L1), at(L1,C).

2. tr(cf(cmd(L,asgn(X,call(F,Es))),D,T), cf(cmd(FL,C),D,[frame(L1,X,FEnv)|T])) :-

nextlab(L,L1), loc env(T,S), eval list(Es,D,S,Vs),

build funenv(F,Vs,FEnv), firstlab(F,FL), at(FL,C).

3. tr(cf(cmd(L,return(E)),D,[frame(L1,X,S)|T]), cf(cmd(L1,C),D1,T1)) :-

eval(E,D,S,V), update(D,T,X,V,D1,T1), at(L1,C).

4. tr(cf(cmd(L,ite(E,L1,L2)),D,T), cf(cmd(L1,C),D,T)) :- loc env(T,S), beval(E,D,S),

at(L1,C).

5. tr(cf(cmd(L,ite(E,L1,L2)),D,T), cf(cmd(L2,C),D,T)) :- loc env(T,S), beval(not(E),D,S),

at(L2,C).

6. tr(cf(cmd(L,goto(L1)),D,T), cf(cmd(L1,C),D,T)) :- at(L1,C).

7. update(D,T,X,V,D1,T) :- global(X), update global(D,X,V,D1).

8. update(D,T,X,V,D,T1) :- local(X), update local(T,X,V,T1).

The term asgn(X,expr(E)) encodes the assignment of the value of the expression E to the variable X. The term
cmd(L,C) encodes the command C with label L. The predicate loc env(T,S) extracts the local environment S from
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the topmost activation frame of the list T of activation frames. The predicate eval(E,D,S,V) computes the value V of
the expression E in the global environment D and the local environment S. The predicate eval list is the extension
to lists of the predicate eval. The predicate beval(E,D,S) holds if the boolean expression E is true in the global
environment D and the local environment S.

The predicate at(L,C) binds to C the command with label L. The predicate nextlab(L,L1) binds to L1 the
label of the command that is written immediately after the command with label L. The term frame(L,X,S) en-
codes the activation frame made out of the label L, the variable X, and the local environment S. The predicate
firstlab(F,L1) binds to L1 the label of the first command of the definition of the function F. The predicate
build funenv(F,Vs,FEnv) builds the new local environment FEnv where the body of the function F should be
executed, by using the list Vs of the values of the actual parameters of the function call.

The term ite(E,L1,L2) encodes the if-then-else command jumping to either label L1 or label L2, according
the boolean value of the expression E. The term goto(L) encodes the jump to label L. The predicates global(X)
and local(X) hold if X denotes a global or local variable, respectively. The predicate update global(D,X,V,D1)

updates the global environment D by binding the variable X to the value V, thereby constructing a new global environ-
ment D1. Similarly, the predicate update local(T,X,V,T1) updates the local environment of the topmost activation
frame in the list T, thereby constructing a new list T1 of activation frames.

Note that the CLP clauses 1–8 are clauses without constraints in their bodies. However, constraints are used in the
definitions (not presented here) of the predicates eval and beval.

5. The Safety Problem

The problem of verifying the safety of a program P is the problem of checking whether or not, starting from an initial
configuration, the execution of P leads to a so-called error configuration. This problem is formalized by defining an
unsafety triple of the form: {{ϕinit(z1, . . . , zr)}} P {{ϕerror(z1, . . . , zr)}}, where:

(i) P is a program acting on the global variables z1, . . . , zr,
(ii) ϕinit(z1, . . . , zr) is a disjunction of constraints that characterizes the values of the global variables in the initial

configurations, and
(iii) ϕerror(z1, . . . , zr) is a disjunction of constraints that characterizes the values of the global variables in the error

configurations.
We say that a program P is unsafe with respect to a set of initial configurations satisfying ϕinit(z1, . . . , zr) and a set of
error configurations satisfying ϕerror(z1, . . . , zr) or simply, P is unsafe with respect to ϕinit and ϕerror, if there exist two
global environments δinit and δh such that the following conjunction holds:

ϕinit(δinit(z1), . . . , δinit(zr))
∧ 〈〈`0 :c0, δinit, [ ]〉〉 =⇒∗ 〈〈`h :halt, δh, [ ]〉〉
∧ ϕerror(δh(z1), . . . , δh(zr))

where, as already mentioned, `0 : c0 is the first command of P and `h :halt is the last command of P. As usual, =⇒∗

denotes the reflexive, transitive closure of =⇒.
A program is said to be safe with respect to ϕinit and ϕerror if it is not unsafe with respect to ϕinit and ϕerror.
An unsafety triple can be encoded as a CLP program. We show how this encoding can be done through the

following example. The extension to the general case is straightforward.
Let us consider the unsafety triple:

{{ϕinit(x, y, n)}} Increment {{ϕerror(x, y, n)}}
where: (i) ϕinit(x, y, n) is x = 0 ∧ y = 0, (ii) ϕerror(x, y, n) is x> y, and (iii) the program Increment acting on the
global variables x, y, and n, is:

int x ; int y ; int n ; Program Increment
`0: while (x<n) { x = x + 1; y = x + y; }
`h: halt ;

The while command stands for the following sequence of labelled commands of our imperative language:
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`0: if (x<n) `1 else `h ;
`1: x = x + 1 ;
`2: y = x + y ;
`3: goto `0 ;

Then, the program Increment is encoded by the following clauses:
1. at(0,ite(less(int(x),int(n)),1,h)).
2. at(1,asgn(int(x),expr(plus(int(x),int(1))))).
3. at(2,asgn(int(y),expr(plus(int(x),int(y))))).
4. at(3,goto(0)).
5. at(h,halt).
We also consider the following CLP clauses that specify the reachability relation from an initial configuration to an
error configuration:

6. unsafe :- initConf(X), reach(X). CLP Program P1
7. reach(X) :- tr(X,X1), reach(X1).

8. reach(X) :- errorConf(X).
9. initConf(cf(cmd(0,ite(less(int(x),int(n)),1,h)), [[int(x),X],[int(y),Y],[int(n),N]],[ ]))

:- X=0, Y=0.
10. errorConf(cf(cmd(h,halt), [[int(x),X],[int(y),Y],[int(n),N]],[ ])) :- X>Y.
These clauses, together with: (i) the clauses, listed in Section 4 that define the predicate tr, and (ii) the clauses defining
the predicates on which the predicate tr depends (as, for instance, the above clauses 1–5 defining the predicate at),
constitute a CLP program, which we call P1.

We have that clauses 9 and 10 specify the initial and error configurations of the given unsafety triple. In these
two clauses the global environment (that is, the second component of the configuration) has been encoded by the
list [[int(x),X],[int(y),Y],[int(n),N]] that gives the bindings for the program variables x, y, and n, respec-
tively. In the initial configuration (see clause 9) we have the first command of our program, that is, the command
cmd(0,ite(less(int(x),int(n)),1,h)), and the initial list of activation frames, which is the empty list [ ]. In
the error configuration (see clause 10) we have the last command of our program, that is, cmd(h,halt).

The CLP program P1 is said to be the CLP encoding of the unsafety triple {{ϕinit(x, y, n)}} Increment {{ϕerror(x, y, n)}}.
(Note that clauses 6, 7, and 8 are common to the CLP encodings of all unsafety triples.)

The following theorem shows that the encoding of the safety problem into CLP clauses is correct.

Theorem 1. (Correctness of CLP Encoding) Let I be the CLP encoding of any given unsafety triple {{ϕinit}} P {{ϕerror}}.
The program P is safe with respect to ϕinit and ϕerror iff unsafe <M(I).

Proof. In the CLP encoding I, the predicate tr encodes the transition relation =⇒ associated with the given imperative
program P, that is, I |= tr(cf1,cf2) iff cf1 =⇒ cf2, where cf1 and cf2 are terms encoding the configurations
cf1 and cf2, respectively. The predicates initConf and errorConf encode the initial and the error configurations,
respectively, that is, the following Properties (A) and (B) hold.
Property (A): I |= initConf(init-cf) iff init-cf is the term encoding a configuration of the form 〈〈`0 :c0, δinit, [ ]〉〉
such that ϕinit(δinit(z1), . . . , δinit(zr)) holds, and
Property (B): I |= errorConf(error-cf) iff error-cf is the term encoding a configuration of the form
〈〈`h :halt, δh, [ ]〉〉 such that ϕerror(δh(z1), . . . , δh(zr)) holds.

By clauses 7 and 8 of the CLP encoding I and Property (B), for any configuration cf encoded by the term cf, we
have that I |= reach(cf) iff there exists a configuration cfh of the form 〈〈`h :halt, δh, [ ]〉〉 such that ϕerror(δh(z1), . . . ,
δh(zr)) holds and cf =⇒∗ cfh.

Now, by clause 6 of the CLP encoding I and Property (A), we get that I |= unsafe iff there exist configurations
cf0 and cfh such that the following hold:
(i) cf0 is of the form 〈〈`0 :c0, δinit, [ ]〉〉,
(ii) ϕinit(δinit(z1), . . . , δinit(zr)),
(iii) cf0 =⇒∗ cfh,
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(iv) cfh is of the form 〈〈`h :halt, δh, [ ]〉〉, and
(v) ϕerror(δh(z1), . . . , δh(zr)).

Thus, by the definition of unsafety, I |= unsafe iff P is unsafe with respect to ϕinit and ϕerror. The thesis follows
from the fact that I |= unsafe iff unsafe ∈ M(I) [28]. �

Note that, instead of using clauses 6–8, we could have defined the predicate unsafe using the following clauses 6’–8’
that, given the transition relation tr, define the reachability relation in a backward way, from the error configuration
back to the initial configuration:
6’. unsafe :- errorConf(X), reach(X).

7’. reach(X1) :- tr(X,X1), reach(X).

8’. reach(X) :- initConf(X).
As it will be explained in Section 6.5, clauses 6’–8’ are semantically equivalent to clauses 6–8, but they may determine
a different behavior of the verification method. Indeed, the unfolding of clauses 6–8 propagates the information of the
constraints of the initial configuration towards the error configuration, while the unfolding of clauses 6’–8’ propagates
in a backward way the information of the constraints of the error configuration towards the initial configuration.

In our verification method we propagate, by program specialization, in an alternate manner both kinds of con-
straints, those of the initial configuration and those of the error configuration, by applying, between any two special-
izations, the so-called Reverse Transformation (see Section 6.5) that, indeed, reverts the order of the computation [5]
and realizes a transformation similar to the one leading from clauses 6–8 to clauses 6’–8’ (and vice versa).

6. The Verification Method

In order to verify whether or not a given imperative program P is unsafe with respect to ϕinit and ϕerror, by
Theorem 1 we can check whether or not the atom unsafe belongs to M(I), where I is the CLP encoding of the
unsafety triple {{ϕinit}} P {{ϕerror}}. However, there is no algorithm that always terminates and performs that check
because, as already mentioned, safety is undecidable. Indeed, in general, M(I) is an infinite model and its construction
may not terminate, and also the standard top-down evaluation strategy (see, for instance, [27]) may not terminate for
the query unsafe.

As an alternative to the construction of the least model and to the standard query evaluation strategies, in this paper
we introduce our software model checking method. It is based on iterated specialization and, indeed, it performs a
sequence of program specializations. The strategy for constructing this sequence of specializations is presented in
Figure 1.

Input: A CLP program I encoding an unsafety triple {{ϕinit}} P {{ϕerror}}.
Output: if P is safe with respect to ϕinit and ϕerror then ‘safe’ else ‘unsafe’.
Step 1. SpecializeRemove(I, Isp); % removing the interpreter
Step 2. SpecializeProp(Isp, I′); % propagating constraints
Step 3. if SafetyTest(I′) = ‘safe’ then return ‘safe’ % lightweight analysis

if SafetyTest(I′) = ‘unsafe’ then return ‘unsafe’
if SafetyTest(I′) = ‘unknown’ then {Reverse(I′, Isp) ; goto Step 2}

Figure 1: The Iterated Specialization strategy.

The Iterated Specialization strategy takes as input the CLP program I made out of: (i) the CLP facts encoding the
imperative program P, (ii) the clauses for the interpreter tr that encodes the transition relation =⇒, (iii) the clauses
for the predicates unsafe and reach (see clauses 6–8 of Section 5), (iv) the clauses for initConf and errorConf

encoding the formulas ϕinit and ϕerror, respectively.
The Iterated Specialization strategy has the objective of deriving a new CLP program, call it Isp, such that:

(i) unsafe ∈M(I) iff unsafe ∈M(Isp), and (ii) Isp either contains the fact unsafe or contains no clauses with head
unsafe. In the former case the unsafety property encoded by I holds and the given imperative program is unsafe,
while in the latter case the unsafety property does not hold and the given imperative program P is safe.
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The input program I is first specialized by applying the procedure SpecializeRemove, which realizes the removal
of the interpreter (this step is common to other specialization-based techniques for the verification of imperative pro-
grams [12, 40]). In particular, SpecializeRemove unfolds away the relation tr and introduces new predicate definitions
corresponding to (a subset of) the ‘program points’ of the original imperative program. Thus, at the end of this first
specialization we derive a CLP program Isp that defines the predicate unsafe without referring to the predicate tr,
and in this sense we say that this first specialization realizes the removal of the interpreter.

Then, the Iterated Specialization strategy applies the procedure SpecializeProp, which propagates the constraints of
the initial configuration. As shown in the introductory example of Section 3, the constraints of the initial configuration
can be propagated through the program Isp obtained after removing the interpreter, by specializing Isp itself with
respect to ϕinit, thereby deriving a new specialized program I′.

Next, our Iterated Specialization strategy performs a lightweight analysis, called the SafetyTest, to check whether
or not unsafe belongs to M(I′), that is, whether or not P is unsafe. In particular, SafetyTest checks whether I′ can
be transformed into an equivalent program T where one of the following conditions three holds: either (i) the fact
unsafe belongs to T , hence there is a computation leading to an error configuration and the strategy halts reporting
‘unsafe’, or (ii) T has no constrained facts, hence no computation leads to an error configuration and the strategy halts
reporting ‘safe’, or (iii) T contains a clause of the form unsafe :- G, where G is not the empty goal (thus, neither (i)
nor (ii) holds), and hence the strategy proceeds to the subsequent step.

In that subsequent step our strategy propagates the constraints of the error configuration. This is done by: (i) first
applying the Reverse procedure, which, so to say, inverts the flow of computation by interchanging the roles of the
initial configuration and the error configuration, and (ii) then specializing (using again the procedure SpecializeProp)
the ‘reversed’ program with respect to ϕerror.

The strategy iterates the applications of the Reverse and the SpecializeProp procedures until hopefully SafetyTest
succeeds, thereby reporting either ‘safe’ or ‘unsafe’. Obviously, due to the undecidability of safety, the Iterated
Specialization strategy may not terminate. However, we will show that each iteration terminates, and hence we can
refine the analysis and possibly increase the level of precision by starting each new iteration from the CLP program
obtained as output of the previous iteration.

6.1. The Specialize Procedure

The SpecializeRemove and SpecializeProp procedures are two specific versions of the generic Specialize procedure
presented in Figure 2.

Let us assume that the CLP program I taken as input by the Specialize procedure contains j (≥1) clauses that
define the predicate unsafe and they are of the form:

unsafe :- c1(X), A1(X), . . . , unsafe :- c j(X), A j(X)

where c1(X), . . . ,c j(X) are either atoms or constraints, and A1(X), . . . , A j(X) are atoms. (Here and in the rest of
this section by c(X) and A(X) we denote a constraint or an atom, respectively, whose variables are among those
in the tuple X.) For instance, if program I is the CLP program P1 of Section 5, we have that j is 1, c1(X) is the
atom initConf(X), and A1(X) is the atom reach(X).

The Specialize procedure modifies the initial program I by propagating the information present in the constraints
c1(X), . . . , c j(X) that characterize the initial or the error configuration. (The fact that they characterize either an
initial or an error configuration depends on the number of applications of the Reverse procedure.) This propagation of
information is realized by unfolding steps. In particular, by these unfoldings we may discover that the atom unsafe

has a successful derivation, and hence the given imperative program is unsafe. Alternatively, by unfolding we may
add constraints that are inconsistent with the ones occurring in the constrained facts (if any), and by folding we may
derive mutually recursive predicates with no constrained facts, and hence infer that the given imperative program is
safe.

The Specialize procedure makes use of the unfolding, clause removal, definition introduction, and folding trans-
formation rules [16, 17].

Definition 1 (The Unfolding Rule). Given a clause C of the form H :- c,L,A,R, where H and A are atoms, c is a
constraint, and L and R are (possibly empty) conjunctions of atoms, let {Ki :- ci,Bi | i = 1, . . . ,m} be the set of the
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Input: A CLP program I.
Output: A CLP program Isp such that unsafe∈M(I) iff unsafe∈M(Isp).
Initialization:
Isp := ∅; InCls := {unsafe:- c1(X),A1(X), . . . , unsafe:- c j(X),A j(X)}; Defs := ∅;

(α) while in InCls there is a clause C that is not a constrained fact do

Unfolding:
SpC := Unf (C, A, I), where A is the leftmost atom in the body of C;

(α1) while in SpC there is a clause D whose body contains an occurrence of an unfoldable atom A do
SpC := (SpC − {D}) ∪ Unf (D, A, I)

end-while;

Clause Removal:
(α2) while in SpC there are two distinct clauses E1 and E2 such that E1 subsumes E2 do

SpC := SpC − {E2}

end-while;

Definition Introduction:
(α3) while in SpC there is a clause E that is not a constrained fact and cannot be folded using a definition

in Defs do
Defs := Defs ∪ {Gen(E,Defs)}; InCls := InCls ∪ {Gen(E,Defs)};

end-while;

InCls := InCls − {C}; Isp := Isp ∪ SpC;
end-while;

Folding:
(β) while in Isp there is a clause E that can be folded by a clause D in Defs do

Isp := (Isp − {E}) ∪ {F}, where F is derived by folding E using D;
end-while;

Remove from Isp all clauses for predicates on which unsafe does not depend.

Figure 2: The Specialize Procedure.

(renamed apart) clauses in program I such that, for i = 1, . . . ,m, A is unifiable with Ki via the most general unifier ϑi

and (c,ci)ϑi is satisfiable. We define the following function Unf :
Unf (C, A, I) = {(H :- c,ci,L,Bi,R)ϑi | i = 1, . . . ,m}

Each clause in Unf (C, A, I) is said to be derived by unfolding C w.r.t. A using I.

In order to perform unfolding during specialization, we assume that the atoms occurring in bodies of clauses are
annotated as either unfoldable or not unfoldable. This annotation is based on an analysis of program I which ensures
that any sequence of clauses constructed by unfolding w.r.t. unfoldable atoms is finite. We will provide more details
on the annotations used by the SpecializeRemove and SpecializeProp procedures in Sections 6.2 and 6.3, respectively. We
refer to [33] for a survey of techniques for controlling unfolding and guaranteeing this finiteness property.

The Specialize procedure introduces a set Defs of new predicate definitions, that is, a set of clauses of the form
newp(X) :- c(X), A(X), where newp is a predicate symbol not occurring in I and occurring in Defs only once. New
predicate definitions are introduced by using a function Gen, called the generalization operator, which we now define.
The definition of Gen extends to clauses the definition of widening operator on constraints considered in the field of
program analysis [7].

Definition 2 (The Generalization Operator). Let E be a clause of the form H(X) :- e(X,X1), Q(X1), where X and
X1 are tuples of variables, e(X,X1) is a constraint, and Q(X1) is an atom. Let Defs be a set of predicate definitions.
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Then, Gen(E,Defs) is a clause G: newq(X1) :- g(X1), Q(X1), such that: (i) newq is a new predicate symbol, and
(ii) e(X,X1) v g(X1).

For any infinite sequence E1, E2, . . . of clauses, let G1,G2, . . . be a sequence of clauses constructed as follows:
(1) G1 = Gen(E1, ∅), and (2) for every i>0, Gi+1 = Gen(Ei+1, {G1, . . . ,Gi}). We assume that the sequence G1,G2, . . .
stabilizes, that is, there exists an index k such that, for every i> k, Gi is equal, modulo the head predicate name, to a
clause in {G1, . . . ,Gk}.

In Sections 6.2 and 6.3 we will present some specific generalization operators that are used in our experiments of
Section 7. More generalization operators that are used for the specialization of logic programs and constraint logic
programs can be found in [17, 21, 33, 34, 39].

Definition 3 (The Folding Rule). Let Defs be a set of predicate definitions. Let us consider a clause E of the form:
H(X) :- e(X,X1), Q(X1), and a clause D in Defs of the form: newq(X1) :- g(X1), Q(X1) such that e(X,X1) v
g(X1). By folding E using D we derive the clause F: H(X) :- e(X,X1), newq(X1).

Termination and Correctness of Specialization
The correctness of the Specialize procedure with respect to the least model semantics directly follows from the cor-

rectness of the transformation rules that are used [16]. Indeed, the Specialize procedure enforces all the applicability
conditions for the unfolding and folding rules presented in [16].

As mentioned above, the termination of the unfolding phase of the Specialize procedure is guaranteed by a suitable
annotation of the atoms in the body of the clauses. Moreover, when Gen is a generalization operator defined as
indicated in Definition 2, a finite set of new predicates are introduced during the Specialize procedure, and hence that
procedure terminates.

Thus, we have the following result.

Theorem 2. (Termination and Correctness of Specialization) (i) The Specialize procedure terminates. (ii) Let pro-
gram Isp be the output of the Specialize procedure applied to the input program I. Then unsafe ∈ M(I) iff unsafe ∈
M(Isp).

Proof. Point (i). In order to prove the termination of the Specialize procedure we assume that the unfoldable and
not unfoldable annotations guarantee the termination of the unfolding while-loop (α1). Since the clause removal
while-loop (α2), the definition introduction while-loop (α3), and the folding while-loop (β) clearly terminate, we
are left with the task of showing that the first, outermost while-loop (α) terminates, that is, we have to show that the
number of new predicate definitions added to InCls by definition introduction is finite. This finiteness is guaranteed
by the following facts:
(1) all new predicate definitions are introduced by using the generalization operator Gen,
(2) by Definition 2 the set of all new predicate definitions generated by a sequence of applications of Gen is finite,
modulo the head predicate names, and
(3) no two new predicate definitions that are equal modulo the head predicate name are introduced by definition
introduction. Indeed, definition introduction introduces a new predicate definition only if the definitions already
present in Defs cannot be used to fold clause E (see the while-loop (α3)).
Point (ii). Before proving the correctness of the Specialize procedure, let us briefly recall the results for CLP transfor-
mation rules presented in [16, 18]. We refer to the adaptation of the transformation rules to CLP program specialization
considered in [20]. First, we need the following notion.

A transformation sequence is a sequence P0, . . . , Pn of CLP programs constructed from an initial program P0 by
applying the unfolding, clause removal, definition introduction, and folding rules. By Defsi, with 0≤ i≤n, we denote
the set of clauses introduced by the definition introduction rule during the construction of the subsequence P0, . . . , Pi.
In a transformation sequence, program Pi+1 is derived from Pi by applying one of the transformation rules as follows:
(Unfolding) Pi+1 = (Pi − {C}) ∪ Unf (C, A, Pi), where C is a clause in Pi and A is an atom in the body of C;
(Clause Removal) Pi+1 = Pi − {C}, where C is a clause in Pi that is subsumed by a constrained fact in Pi − {C};
(Definition Introduction) Pi+1 = Pi ∪ {newp(X) :- c(X), A(X)}, where newp is a predicate symbol not occurring in
P0, . . . , Pi;
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(Folding) Pi+1 = (Pi − {E}) ∪ {F}, where E is a clause in Pi and F is a clause derived by folding E using a clause D
in Defsi.

The following result is proved in [16, 20].
Theorem (Correctness of the Transformation Rules). Let P0, . . . , Pn be a transformation sequence. Let us assume that
for every i, with 0< i<n−1, if Pi+1 is derived by folding a clause in Pi using a clause D in Defsi, then there exists j,
with 0 < j < n−1, such that: (i) D belongs to P j, and (ii) P j+1 is derived by unfolding D w.r.t. an atom in its body.
Then, for every ground atom A whose predicate occurs in P0, we have that A ∈ M(P0) iff A ∈ M(Pn).

The Specialize procedure constructs a transformation sequence P0, . . . , Pn, such that:
(i) P0 is I, and
(ii) Pn is (I − {unsafe:- c1(X),A1(X), . . . , unsafe:- c j(X),A j(X)})∪ I′, where I′ is the value of Isp at the exit of the
Folding while-loop (β). (Note that, for i = 0, . . . , n−1, Unf (C, A, Pi) = Unf (C, A, P0), for every clause C and atom A.)

The hypothesis of the Theorem of Correctness of the Transformation Rules is fulfilled, as all clauses in Defs are
unfolded. Thus, unsafe ∈ M(I) iff unsafe ∈ M(Pn). The thesis follows from the fact that, by deleting from Pn the
clauses defining predicates on which unsafe does not depend, we get a final program Isp such that unsafe ∈ M(Isp)
iff unsafe ∈ M(Pn). �

6.2. Removal of the interpreter
As already mentioned, the removal of the interpreter is achieved by applying the SpecializeRemove procedure to the

program I that encodes an unsafety triple {{ϕinit}} P {{ϕerror}}. SpecializeRemove is a specific version of the Specialize
procedure where unfoldings and generalizations steps are performed as we will indicate below.

An atom A in the body of a clause C is unfoldable iff one of the following conditions holds:
(i) the predicate of A is different from reach,
(ii) A is of the form reach(cf(cmd(lab,c),d,t)) and c is either asgn(x,expr(e)), or return(e), or halt,
(iii) A is of the form reach(cf(cmd(lab,goto(nextlab)),d,t)) and C has not been derived (in one or more

steps) by unfolding a clause with respect to an atom of the form reach(cf(cmd(lab,goto(nextlab)),d′,t′)).
Note that a reach atom containing a command of the form asgn(x,call(...)) is assumed to be not unfoldable.
Condition (iii) allows unfolding with respect to a reach atom containing a goto command, but prevents infinite
unfolding. Finally, note that a reach atom containing an ite command is not unfoldable, and hence a potential
exponential blow-up due to the unfolding of conditionals is avoided. Indeed, it can easily be shown that the size of the
output program Isp of SpecializeRemove is linear with respect to the size of input program I (and thus, also with respect
to the size of the imperative program P of the triple encoded by I).

The generalization operator Gen used in the SpecializeRemove procedure is defined as follows.
Given a clause E: H(X) :- e(X,X1), Q(X1) and a set Defs of predicate definitions, Gen(E,Defs) is the clause

newq(X1) :- Q(X1), where newq is a new predicate symbol. (With reference to Definition 2, the constraint g(X1) is
true.) This generalization operator guarantees that, as required by Definition 2, the set of new predicate definitions
introduced by using Gen is finite. Indeed, Q(X1) must be of the form reach(cf(cmd(lab,c),d,t)) and there is
a finite number of distinct quadruples (lab,c,d,t), as there is a finite number of distinct (global or local) variable
identifiers and, under our assumption that P does not contain recursive function definitions, the lists of activation
frames generated by unfolding have bounded length.

Let us consider again the unsafety triple {{x = 0 ∧ y = 0)}} Increment {{x> y}} of our running example presented in
Section 5. The first step of the Iterated Specialization strategy consists in applying the SpecializeRemove strategy to the
CLP program P1 encoding the given unsafety triple.

We start off by executing the first while-loop (α), which iterates the Unfolding, Clause Removal, and Definition
Introduction steps.

First execution of the body of the while-loop (α).
Unfolding. By unfolding clause 6 with respect to initConf(X) (which is the leftmost atom in the body of clause 6),
we get:
11. unsafe :- X=0, Y=0, reach(cf(cmd(0,ite(less(int(x),int(n)),1,h)),

[[int(x),X],[int(y),Y],[int(n),N]],[ ])).

No Clause Removal is applicable.
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Definition Introduction. The reach atom in clause 11 is not unfoldable because it contains an ite command. Thus,
we stop unfolding and we introduce the new predicate definition:
12. new1(X,Y,N) :- reach(cf(cmd(0,ite(less(int(x),int(n)),1,h)),

[[int(x),X],[int(y),Y],[int(n),N]],[ ])).

Second execution of the body of the while-loop (α).
Unfolding. Then we unfold clause 12 and we get the two clauses:
13. new1(X,Y,N) :- tr(cf(cmd(0,ite(less(int(x),int(n)),1,h)),

[[int(x),X],[int(y),Y],[int(n),N]],[ ]),X1), reach(X1).

14. new1(X,Y,N) :- errorConf(cf(cmd(0,ite(less(int(x),int(n)),1,h)),
[[int(x),X],[int(y),Y],[int(n),N]],[ ])).

The tr and errorConf atoms in the bodies of clauses 13 and 14, respectively, are unfoldable. Thus, we perform
some more unfolding steps, which can be viewed as mimicking the symbolic evaluation of the if-else command,
and from clause 13 we get the following two clauses:
15. new1(X,Y,N) :- X<N, reach(cf(cmd(1,asgn(int(x),expr(plus(int(x),int(1))))),

[[int(x),X],[int(y),Y],[int(n),N]],[ ])).

16. new1(X,Y,N) :- X≥N, reach(cf(cmd(h,halt),[[int(x),X],[int(y),Y],[int(n),N]],[ ])).
(Note that the test on the condition less(int(x),int(n)) in the command of clause 13 generates the two constraints
X<N and X≥N.) Then, we delete clause 14 because, by unfolding it, we do not get any clause (indeed, the term
cmd(0,...) does not unify with the term cmd(h,...)).

The reach atom in the body of clause 15 is unfoldable, because it contains a command of the form asgn(int(x),

expr(...)). From clause 15, after two unfolding steps, we get:
17. new1(X,Y,N) :- X<N, tr(cf(cmd(1,asgn(int(x),expr(plus(int(x),int(1))))),

[[int(x),X],[int(y),Y],[int(n),N]],[ ]),X1)), reach(X1).
Also the reach atom in the body of clause 16 is unfoldable. After two unfolding steps, we get:
18. new1(X,Y,N) :- X≥N, errorConf(cf(cmd(h,halt),[[int(x),X],[int(y),Y],[int(n),N]],[ ])).
Then, by unfolding clause 17 with respect to the unfoldable atom tr(...) in its body, we get:
19. new1(X,Y,N) :- X<N, X1=X+1, reach(cf(cmd(2,asgn(int(y),expr(plus(int(x),int(y))))),

[[int(x),X1],[int(y),Y],[int(n),N]],[ ])).
Then, by unfolding clause 18 w.r.t. the atom errorConf(...), we get:
20. new1(X,Y,N) :- X≥N, X>Y.
The reach atom in the body of clause 19 is unfoldable. After two unfolding steps, we get:
21. new1(X,Y,N) :- X<N, X1=X+1, tr(cf(cmd(1,asgn(int(y),expr(plus(int(x),int(y))))),

[[int(x),X1],[int(y),Y],[int(n),N]][ ]),X2)), reach(X2).
By unfolding clause 21 we get:
22. new1(X,Y,N) :- X<N, X1=X+1, Y1=X1+Y, reach(cf(cmd(3,goto(0)),

[[int(x),X1],[int(y),Y1],[int(n),N]],[ ])).

The sequence of clauses 11, 15, 19, and 22, which we have obtained by unfolding, mimics the execution of the
sequence of the four commands: (i) `0 : if (x < n) `1 else `h, (ii) `1 : x= x+1, (iii) `2 :y= x+y, and (iv) `3 : goto `0
(note in those clauses the atoms reach(cf(cmd(i,...),...,...)), for i = 0, 1, 2, 3). Indeed, in general, by unfolding
one can perform the symbolic execution of the commands of any given program. The conditions that should hold
so that a particular command cmd(i,...) is executed, are given by the constraints in the clause where the atom
reach(cf(cmd(i,...),...,...)) occurs.

The reach atom in the body of clause 22 is unfoldable, because clause 22 has not been derived from another
clause containing a goto command. From clause 22, after some more unfolding steps, we get:
23. new1(X,Y,N) :- X<N, X1=X+1, Y1=X1+Y, reach(cf(cmd(0,ite(less(int(x),int(n)),1,h)),

[[int(x),X1],[int(y),Y1],[int(n),N]],[ ])).
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The reach atom in the body of clause 23 is not unfoldable, because it contains the ite command. However, clause 23
can be folded using definition 12. Thus, the while-loop (α) terminates without introducing any new definition.

The program Isp we have derived so far is made out of clauses 11, 20, and 23 (see Figure 3, where an arrow from n
to m denotes that clause m has been derived from clause n by unfolding).

12 �
��1

PPPq
13 �

��1

PPPq

14

15 -

16 -

17 -

18 -

19 -

20

21 - 22 - 23

Figure 3: The sequence of unfolding steps starting from clause 12. Clause 14 is deleted by unfolding.

Now, we proceed to the Folding phase. By folding clauses 11 and 23 using definition 12, we get the following final,
specialized program P2:

11.f unsafe :- X=0, Y=0, new1(X,Y,N). CLP Program P2
23.f new1(X,Y,N) :- X<N, X1=X+1, Y1=X1+Y, new1(X1,Y1,N).

20. new1(X,Y,N) :- X≥N, X>Y.
Note that the folding of clause 23 using the definition for predicate new1 has been possible because the execution of
the program goes back to the ite command to which the definition of new1 refers.

6.3. Propagation of constraints

The procedure SpecializeProp specializes the CLP program Isp, obtained after the application of SpecializeRemove, by
propagating the constraints that characterize the initial or the error configuration. (In our running example program Isp

is program P2.) Now we describe how the unfolding and generalization steps are performed during SpecializeProp.
In order to guide the application of the unfolding rule during the application of SpecializeProp, we stipulate that

every atom with a new predicate introduced during a previous application of the Specialize procedure is annotated as
not unfoldable. Thus, we can unfold a clause with respect to an atom with a new predicate only once at the first step of
the Unfolding phase. This choice guarantees the termination of the Unfolding phase (notice that new predicates can
depend on themselves), and also avoids an undesirable, excessive increase of the number of clauses in the specialized
program. Obviously, more sophisticated strategies for guiding unfolding could be applied. For instance, one may
allow unfolding only if it generates at most one clause. This unfolding policy, called determinate unfolding in [22],
does not increase the number of clauses and is useful in most cases. However, as we will show in Section 7, the simple
choice we have made is effective in practice.

The generalization operator adopted during the SpecializeRemove is not adequate for SpecializeProp, as it generalizes
every constraint to true, thereby losing all information about the constraints that characterize the initial and the error
configurations. In order for SpecializeProp to be effective, we need to use a generalization operator that retains suitable
constraints, while guaranteeing the termination of the specialization.

Now we will consider four generalization operators and in Section 7 we will compare them with respect to their
strength for the task of verifying program properties. These generalization operators are based on the widening and
convex hull operators which have been proposed for the static analysis of programs [7, 10] and also applied to the
specialization of constraint logic programs (see, for instance, [21, 39]). These generalization operators have been
extensively studied in the above cited papers.

Let us briefly recall the notions that are needed to understand the specific operators we have used in our experi-
ments whose results have been reported in Section 7.

Let R denote the set (and the structure) of the real numbers. We now define the projection, the widening, and the
convex hull operators on the reals R. Those operators on the reals have more efficient implementations than those on
the integers Z (where, moreover, projection is not always defined). As shown in [20] the use of operators defined on
reals for specializing CLP programs on integers preserves correctness, although it may, at least in principle, decrease
precision. Let vR denote the entailment relation on the reals R. Clearly, if cvR d then cv d.
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The projection of a constraint c(X,Y) onto the tuple Y of variables is a constraint cp(Y) such that R |= ∀Y(cp(Y)↔

∃X c(X,Y)). We have that c(X,Y)vR cp(Y), and hence c(X,Y)v cp(Y).
Let c be a constraint that we assume to have rewritten as a conjunction of inequalities (if c is not already in this

form). The widening of c with respect to the constraint d is the conjunction of all atomic constraints of c that are
entailed by d [10]. If w is the widening of c with respect to d, then cv w and dv w.

The convex hull of two constraints c and d is the least (w.r.t. the vR ordering) constraint h such that cvR h and
dvR h. Thus, we also have that cv h and dv h. The convex hull operator is often used for improving the precision of
widening-based static analysis and specialization [10, 39].

We say that a definition newp(X) :- c(X), Q(X) is more general than a definition newq(X) :- d(X), Q(X) if
d(X)v c(X).

Let us first present two monovariant generalization operators each of which, during the construction of Defs, for
any given atom Q(X) to be folded, introduces a new definition of the form newp(X) :- c(X), Q(X), which is more
general than any other definition in Defs with the atom Q(X) in its body. Thus, when using these generalization
operators, the definitions in Defs whose body contains the atom Q(X) are linearly ordered with respect to the ‘more
general’ relation.
• Monovariant Generalization with Widening. This operator is denoted GenM . Let E be a clause of the form
H(X) :- e(X,X1), Q(X1) and Defs be a set of predicate definitions. Then,
(µ1) if in Defs there is no clause in whose body the atom is (a variant of) Q(X1), then GenM(E,Defs) is defined as the
clause newp(X1) :- ep(X1), Q(X1), and
(µ2) if in Defs there is a definition D of the form newq(X1) :- d(X1), Q(X1) and D is the most general such definition
in Defs, then GenM(E,Defs) is the clause newp(X1) :- w(X1), Q(X1), where w(X1) is the widening of d(X1) with
respect to ep(X1).

Note that at any given time the last definition of the form: newp(X1) :- c(X1), Q(X1) that has been introduced
in Defs is the most general one having the atom Q(X1) in its body.
•Monovariant Generalization with Widening and Convex Hull. This operator, denoted GenMH, alternates the compu-
tation of convex hull and widening. Formally, GenMH(E,Defs) is defined like GenM(E,Defs), except that in Case (µ2)
above, if D has been derived by projection or widening, then GenMH(E,Defs) is newp(X1) :- ch(X1), Q(X1), where
ch(X1) is the convex hull of d(X1) and ep(X1).

Other generalization operators can be defined by computing any fixed number of consecutive convex hulls before
applying widening.

Now we present two polyvariant generalization operators, which may introduce several distinct, specialized defini-
tions (with different constraints) for each atom. Polyvariant operators allow, in principle, more precision with respect
to monovariant operators, but they may cause the introduction of too many new predicates, and hence an increase of
both the size of the specialized program and the time needed for verification. We will consider this issue in Section 7
when we discuss the experiments we have performed.

For these polyvariant generalization operators, we have to consider Defs as a tree of definitions (rather than simply
a set of definitions), where definition D is a child of definition C if D is introduced to fold a clause derived by
unfolding C. We define the ancestor relation on Defs as the reflexive, transitive closure of the child relation.

When we use a polyvariant generalization operator, for any given atom Q(X), the definitions in Defs whose bodies
contain Q(X) are not necessarily linearly ordered with respect to the ‘more general’ relation. However, the definitions
whose bodies contain Q(X) and belong to the same path of the definition tree Defs are linearly ordered, and the last
definition introduced is more general than all its ancestors.
• Polyvariant Generalization with Widening. This operator is denoted GenP. Let E be a clause of the form
H(X) :- e(X,X1), Q(X1) and Defs be a tree of predicate definitions. Suppose that E has been derived by unfold-
ing a definition C. Then,
(π1) if in Defs there is no ancestor of C in whose body the atom is (a variant of) Q(X1), then GenP(E,Defs) is the
clause newp(X1) :- ep(X1), Q(X1), and
(π2) if C has a most recent ancestor D in Defs of the form newq(X1) :- d(X1), Q(X1), then GenP(E,Defs) is the
clause newp(X1) :- w(X1), Q(X1), where w(X1) is the widening of d(X1) with respect to ep(X1).
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• Polyvariant Generalization with Widening and Convex Hull. This operator, denoted GenPH alternates the compu-
tation of convex hull and widening. Formally, GenPH(E,Defs) is defined like GenP(E,Defs), except that Case (π2)
above is modified as follows:
(π2PH) if C has a most recent ancestor D in Defs of the form newq(X1) :- d(X1), Q(X1) that has been derived
by projection or widening, then GenPH(E,Defs) is the clause newp(X1) :- ch(X1), Q(X1), where ch(X1) is the
convex hull of d(X1) and ep(X1), else GenPH(E,Defs) is the clause newp(X1) :- w(X1), Q(X1), where w(X1) is
the widening of d(X1) with respect to ep(X1).

Now we show that all four operators introduced above are indeed generalization operators in the sense of Defini-
tion 2, and hence they guarantee the correctness and termination of SpecializeProp. The proof of this fact is similar to
the one presented in [21] for similar generalization operators. (Note, however, that in [21] the CLP program given as
input to the specialization procedure encodes the satisfaction relation for the Computational Tree Logic.)

Proposition 1. The operators GenM , GenMH , GenP, and GenPH are generalization operators.

Proof. By Definition 2, we have to show that, for each operator Gen in the set {GenM , GenMH , GenP, and GenPH},
the following two properties hold.
Property (P1): for every clause E of the form: H(X) :- e(X,X1), Q(X1), for every clause newp(X1) :- g(X1),

Q(X1) obtained by applying the operator Gen to E and some set Defs of definitions, we have that e(X,X1) v g(X1),
and
Property (P2): for every infinite sequence E1, E2, . . . of clauses, for every infinite sequence G1,G2, . . . of clauses
constructed as follows: (1) G1 = Gen(E1, ∅), and (2) for every i > 0, Gi+1 = Gen(Ei+1, {G1, . . . ,Gi}), there exists an
index k such that, for every i>k, Gi is equal, modulo the head predicate name, to a clause in {G1, . . . ,Gk}.
(GenM is a generalization operator)
– Let us prove that Property (P1) holds for GenM . If g(X1) is ep(X1) (see case (µ1) above), then e(X,X1) v ep(X1)

because ep(X1) is the projection of e(X,X1) onto X1. If g(X1) is w(X1) (see case (µ2) above), then e(X,X1) v

w(X1) because w(X1) is the widening of d(X1) with respect to ep(X1), and hence ep(X1) v w(X1).
– Let us prove that Property (P2) holds for GenM . This property is a straightforward consequence of the following
two facts.
(i) Each new definition introduced by GenM is a clause of the form newp(X1) :- g(X1), Q(X1), where Q(X1) is a
function-free atom whose predicate symbol occurs in the input program I. (Indeed, Q(X1) is function-free because the
input program I is generated by either the procedure SpecializeRemove that removes, by folding, all function symbols
occurring in the atoms of its input program, or the procedure SpecializeProp that does not introduce any function
symbol.) Thus, we have that Case (µ1) can occur a finite number of times only.
(ii) If g(X1) is the widening of d(X1) with respect to ep(X1), and g(X1) is different from d(X1), then the set of
atomic constraints of g(X1) is a proper subset of the atomic constraints of d(X1), and hence Case (µ2) will eventually
generate new predicate definitions whose body is equal to the body of previously generated definitions.

(GenMH is a generalization operator)
The proof is similar to that for GenM .
– In order to prove that Property (P1) holds for GenMH , we use the fact that e(X,X1) v ch(X1). Indeed, e(X,X1) v
ep(X1), and ep(X1) v ch(X1) (because ch(X1) is the convex hull of d(X1) and ep(X1)).
– In order to show that Property (P2) holds for GenMH , it is enough to note that Property (P2) is preserved if one
interleaves the projection operator and widening operator with an application of the convex hull operator, and hence
the proof already done for GenM readily extends to GenMH .

(GenP and GenPH are generalization operators)
The proof is a straightforward extension of the proof for GenM and GenMH , respectively. In particular, in order to
show that Property (P2) holds for GenP and GenPH , it suffices to use the following fact. Suppose that G1,G2, . . . is an
infinite sequence of predicate definitions. Let T be an infinite tree of definitions such that:
(i) if G occurs in G1,G2, . . . , then G occurs in T ,
(ii) if A is an ancestor of B in T , then A precedes B in G1,G2, . . . (that is, G1,G2, . . . is a linear order consistent with
the ancestor relation in T ),
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(iii) T is finitely branching, and
(iv) every branch in T stabilizes.
Then G1,G2, . . . stabilizes. �

Different strategies can be adopted for applying the folding rule during the Folding phase. These folding strate-
gies depend on the generalization operator that is used for introducing new definitions. In the case where we use a
monovariant operator (either GenM or GenMH), we fold every clause of the form H(X) :- e(X,X1), Q(X1) using the
most general definition of the form newq(X1) :- g(X1), Q(X1) occurring in the set Defs obtained at the end of the
execution of the while-loop (α). We call this strategy the most general folding strategy. In the case where we use a
polyvariant operator (that is, GenP or GenPH), we fold each clause E using the definition computed by applying the
generalization operator to E. We call this strategy the immediate folding strategy.

Now let us continue the presentation of our running example which refers to the unsafety triple {{x = 0 ∧ y = 0)}}
Increment {{x> y}}. We perform our second program specialization starting from the CLP program P2, consisting of
the clauses 11.f, 23.f, and 20 we have derived by removing the interpreter. This second specialization propagates the
constraint ‘X=0, Y=0’ characterizing the initial configuration that occurs in clause 11.f.

We apply the SpecializeProp strategy with the GenP generalization operator. We start off by executing the while-
loop (α) that repeats the Unfolding, Clause Removal, and Definition Introduction steps.

First execution of the body of the while-loop (α).
Unfolding. We unfold clause 11.f with respect to the atom new1(X,Y,N) and we get:
24. unsafe :- X1=1, Y1=1, N>0, new1(X1,Y1,N).
(Note that new1(X,Y,N) is also unifiable with the head of clause 20, but the constraint ‘X=0,Y=0,X≥N,X>Y’ is
unsatisfiable.) No Clause Removal can be applied.
Definition Introduction. Clause 24 cannot be folded, and hence we define the following new predicate:
25. new2(X,Y,N) :- X=1, Y=1, N>0, new1(X,Y,N).
Thus, the set Defs of new predicate definitions consists of clause 25 only.

Second execution of the body of the while-loop (α).
Unfolding. Now we unfold the last definition which has been introduced, that is, clause 25, and we get:
26. new2(X,Y,N) :- X=1, Y=1, X1=2, Y1=3, N>1, new1(X1,Y1,N).
Definition Introduction. Clause 26 cannot be folded by using any definition in Defs. Thus, we apply the general-
ization operator GenP. This operator matches the constraint appearing in the body of clause 26 against the constraint
appearing in the body of clause 25, which is the only clause in Defs. First, the constraint in clause 25 is rewritten as
a conjunction c of inequalities: X≥1,X≤1,Y≥1,Y≤1,N>0. Then the variables of clause 26 are renamed so that the
atom in its body is identical to the atom in the body of clause 25, as follows:
27. new2(Xr,Yr,Nr) :- Xr=1, Yr=1, X=2, Y=3, N>1, new1(X,Y,N).

Then the generalization operator GenP computes the projection of the constraint appearing in clause 27 onto the
variables of the atom new1(X,Y,N), which is the constraint d: X=2,Y=3,N>1. The widening of c with respect to d

is the constraint ‘X≥1,Y≥1,N>0’ obtained by taking the atomic constraints of c that are entailed by d. Thus, GenP

introduces the following new predicate definition:
28. new3(X,Y,N) :- X≥1, Y≥1, N>0, new1(X,Y,N).
which is added to Defs.

Third execution of the body of the while-loop (α).
Unfolding. We unfold clause 28 and we get:
29. new3(X,Y,N) :- X≥1, Y≥1, X<N, X1=X+1, Y1=X1+Y, new1(X1,Y1,N).

30. new3(X,Y,N) :- X≥N, X>Y, Y≥1, N>0.

Clause 29 can be folded using clause 28 in Defs. Thus, the while-loop (α) terminates without introducing any new
definition.
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Folding. Now we fold clause 24 using definition 25 and clauses 26 and 29 using definition 28. We get the following
final program P3:

24.f unsafe :- X1=1, Y1=1, N>0, new2(X1,Y1,N). CLP Program P3
26.f new2(X,Y,N) :- X=1, Y=1, N>1, X1=2, Y1=3, new3(X1,Y1,N).

29.f new3(X,Y,N) :- X≥1, Y≥1, X<N, X1=X+1, Y1=X1+Y, new3(X1,Y1,N).

30. new3(X,Y,N) :- X≥N, X>Y, Y≥1, N>0.

The application of SpecializeProp has propagated the constraints defining the initial configuration. For instance, the
constrained fact of P3 (see clause 30) has the constraint ‘X≥N, X>Y, Y≥1, N>0’, while the constrained fact in P2 has
the constraint ‘X≥N, X>Y’ only (see clause 20). However, in program P3 the presence of a constrained fact does not
allow us to conclude that P3 has an empty least model, and hence at this point we are not yet able to show the safety
of our program Increment.

6.4. Lightweight Safety Analysis
The procedure SafetyTest (see Figure 4) analyzes the CLP program I′ derived by specializing Isp (in our running

example program I′ is program P3, and program Isp is program P2), and tries to determine whether or not unsafe
belongs to M(I′).

The analysis performed by SafetyTest is lightweight in the sense that, unlike the Iterated Specialization strategy,
it always terminates, possibly returning the answer ‘unknown’.

Note that the output program I′ of SpecializeProp is a linear program. The SafetyTest procedure transforms I′ into
a new, linear CLP program T by using two auxiliary functions: (1) the UnfoldCfacts function, which takes a linear
CLP program T1 and applies as long as possible the following transformation: T1 := (T1 − {C}) ∪ Unf (C, A,T1),
where C is any clause in T1 and A is an atom in the body of C whose definition consists of a set of constrained facts,
and (2) the Remove function, which takes a linear CLP program T2 and removes every clause C that satisfies one of
the following two conditions: either (i) the head predicate of C is useless in T2, or (ii) C is subsumed by a clause in T2
distinct from C.

The SafetyTest procedure iterates the application of the function UnfoldCfacts followed by Remove until a fixpoint,
say T , is reached.

Now we prove that SafetyTest constructs the fixpoint program T in a finite number of steps. Moreover, T is
equivalent to I′ with respect to the least model semantics, and hence unsafe ∈ M(I′) iff unsafe ∈ M(T ).

Theorem 3 (Termination and Correctness of SafetyTest). Let I′ be a linear CLP program defining the predicate
unsafe. Then,
(i) SafetyTest terminates for the input program I′ returning the output ‘safe’ or ‘unsafe’ or ‘unknown’, and
(ii) If SafetyTest(I′) = ‘safe’, then unsafe < M(I′).
(iii) If SafetyTest(I′) = ‘unsafe’, then unsafe ∈ M(I′).

Proof. (i) SafetyTest constructs a fixpoint of the function λT.Remove(UnfoldCfacts(T )) in a finite number of steps, as
we now show. For a CLP program P, let pn(P) denote the number of distinct predicate symbols that occur in the body
of a clause in P, and let cn(P) denote the number of clauses in P. Then, the following facts hold:
(1) either P = UnfoldCfacts(P) or pn(P) > pn(UnfoldCfacts(P)),
(2) pn(P) ≥ pn(Remove(P)),
(3) either P = Remove(P) or cn(P) > cn(Remove(P)).
Thus, 〈pn(P), cn(P)〉 ≥lex 〈pn(Remove(UnfoldCfacts(P))), cn(Remove(UnfoldCfacts(P)))〉, where ≥lex is the lexico-
graphic ordering on pairs of integers. Since >lex is well-founded, SafetyTest eventually generates a program T
such that 〈pn(T ), cn(T )〉 = 〈pn(Remove(UnfoldCfacts(T ))), cn(Remove(UnfoldCfacts(T )))〉, and hence, by (1) and
(3), T = Remove(UnfoldCfacts(T )).
(ii) No application of the folding rule is performed by SafetyTest, and hence the condition for the correctness of the
transformation rules mentioned in the proof of Theorem 2 is trivially satisfied. Thus, unsafe ∈ M(I′) iff unsafe ∈

M(T ). If SafetyTest(I′) = ‘safe’, then no clause in T has head predicate unsafe, and then unsafe < M(T ). Hence,
unsafe < M(I′).
(iii) If SafetyTest(I′) = ‘unsafe’, then the fact unsafe belongs to T , and unsafe ∈ M(T ). Since at Point (ii) we have
shown that unsafe ∈ M(I′) iff unsafe ∈ M(T ), we conclude that unsafe ∈ M(I′). �
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Input: A linear CLP program I′ defining the predicate unsafe.
Output: Either ‘safe’ (implying unsafe < M(I′)), or ‘unsafe’ (implying unsafe ∈ M(I′)), or ‘unknown’.

T := I′;
while T , Remove(UnfoldCfacts(T )) do

T := Remove(UnfoldCfacts(T ));
end-while;

if the fact unsafe belongs to T then ‘unsafe’
else if no clause in T has head predicate unsafe then ‘safe’ else ‘unknown’

Figure 4: The SafetyTest Procedure.

In our running example, program P3 is the CLP program obtained by applying the procedure SpecializeProp. Now
program P3 consists of clauses 24.f, 26.f, 29.f, and 30 and SafetyTest(P3) returns ‘unknown’. Indeed, (i) in program P3
no predicate is defined by constrained facts only, and hence UnfoldCfacts has no effect, (ii) in P3 no predicate is useless
and no clause is subsumed by any other, and hence also Remove leaves P3 unchanged, and (iii) in P3 there is a clause
for unsafe which is not a fact.

6.5. The Reverse Transformation

The Reverse procedure implements a transformation that reverses the flow of computation: the top-down evalu-
ation (that is, the evaluation from the head to the body of a clause) of the transformed program corresponds to the
bottom-up evaluation (that is, the evaluation from the body to the head) of the given program. In particular, if the
Reverse procedure is applied to a program that checks the reachability of the error configurations by exploring the
transitions in a forward way starting from the initial configurations, then the transformed program checks reachability
of the initial configurations by exploring the transitions in a backward way starting from the error configurations.
Symmetrically, from a program that checks reachability by a backward exploration of the transitions, Reverse derives
a program that checks reachability by a forward exploration of the transitions.

Let us consider a linear CLP program Q of the form:
unsafe :- a1(X), p1(X).

· · ·

unsafe :- ak(X), pk(X).

q1(X) :- t1(X,X1), r1(X1).

· · ·

qm(X) :- tm(X,X1), rm(X1).

s1(X) :- b1(X).

· · ·

sn(X) :- bn(X).

where: (i) a1(X), . . . , ak(X), t1(X,X1), . . . , tm(X,X1), b1(X), . . . , bn(X) are constraints, and (ii) p1, . . . , pk, q1, . . . , qm,
r1, . . . , rm, and s1, . . . , sn are possibly non-distinct predicate symbols.

The Reverse procedure transforms program Q in two steps as follows.
Step 1. Program Q is transformed into a program S of the following form (round parentheses make a single argument
out of a tuple of arguments so that, for instance, (p1,X) is a single argument of the predicate a):
s1. unsafe :- a(U), r1(U).

s2. r1(U) :- trans(U,V), r1(V).

s3. r1(U) :- b(U).

a((p1,X)) :- a1(X).

· · ·

a((pk,X)) :- ak(X).

trans((q1,X),(r1,X1)) :- t1(X,X1).

· · ·

trans((qm,X),(rm,X1)) :- tm(X,X1).
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b((s1,X)) :- b1(X).

· · ·

b((sn,X)) :- bn(X).

Step 2. Then program S is transformed into a program Qrev by replacing the first three clauses s1–s3 of S by the
following ones:
r1. unsafe :- b(U), r2(U).

r2. r2(V) :- trans(U,V), r2(U).

r3. r2(U) :- a(U).

The correctness of the transformation of Q into Qrev is shown by the following result.

Theorem 4. Let Qrev be the program derived from program Q by the Reverse procedure. Then unsafe ∈ M(Q) iff
unsafe∈M(Qrev).

Proof. (Step 1.) By unfolding clauses s1, s2, and s3 of program S with respect to a(U), trans(U,V), and b(U),
respectively, we get the following CLP program Q′:

unsafe :- a1(X), r1((p1,X)).

· · ·

unsafe :- ak(X), r1((pk,X)).

r1((q1,X)) :- t1(X,X1), r1((r1,X1)).

· · ·

r1((qm,X)) :- tm(X,X1), r1((rm,X1)).

r1((s1,X)) :- b1(X).

· · ·

r1((sn,X)) :- bn(X).

By the correctness of the unfolding rule (see the theorem stating the correctness of the transformation rules in the
proof of Theorem 2), we get that unsafe∈M(S ) iff unsafe∈M(Q′).

Then, by rewriting all atoms in Q′ of the form r1((pred,Z)) into pred(Z), we get back Q. (The occurrences of
predicate symbols in the arguments of a, trans, and b should be considered as individual constants.) The correctness
of this rewriting is straightforward, as it is based on the syntactic isomorphism between Q and Q′. A formal proof of
correctness can be made by observing that the above rewriting can also realized by introducing predicate definitions
of the form pred(Z) :- r1((pred,Z)), and then applying the unfolding and folding rules. Thus, unsafe∈M(Q′) iff
unsafe∈M(Q).

(Step 2.) The transformation of S into Qrev (and the opposite transformation) can be viewed as a special case of the
grammar-related transformation studied in [5]. We refer to that paper for a proof of correctness. Thus, we have that
unsafe∈M(S ) iff unsafe∈M(Qrev), and we get the thesis. �

The predicates a, trans, and b are assumed to be unfoldable in the subsequent application of the SpecializeProp
procedure.

Now let us continue our running example.
The program P3 derived by the SpecializeProp procedure at the end of Section 6.3 can be transformed, as indicated

at Steps 1 and 2 of the Reverse procedure, into the following CLP program P3rev:

r1. unsafe :- b(U), r2(U). CLP Program P3rev

r2. r2(V) :- trans(U,V), r2(U).

r3. r2(U) :- a(U).

s4. a((new2,X1,Y1,N)) :- N>0, X1=1, Y1=1.
s5. trans((new2,X,Y,N),(new3,X1,Y1,N)) :- X=1, Y=1, N>1, X1=2, Y1=3.
s6. trans((new3,X,Y,N),(new3,X1,Y1,N)) :- X≥1, Y≥1, X<N, X1=X+1, Y1=X1+Y.
s7. b((new3,X,Y,N)) :- Y≥1, N>0, X≥N, X>Y.
The idea behind program reversal is best understood by considering the reachability relation in the (possibly infinite)
transition graph whose transitions are defined by the (instances of) clauses s5 and s6. The program S consisting of
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clauses s1–s7 obtained at the end of Step 1, checks the reachability of a configuration c2 satisfying b(U) from a
configuration c1 satisfying a(U), by moving forward from c1 to c2. Program P3rev, obtained from S by replacing
s1–s3 with r1–r3, checks the reachability of c2 from c1, by moving backward from c2 to c1. Thus, in the case
where a(U) and b(U) are predicates that characterize the initial and error configurations, respectively, by the reversal
transformation we derive a program that checks the reachability of the initial configurations by moving backward
from the error configurations. In particular, in the body of the clause for unsafe in P3rev the constraint b(U) contains,
among others, the constraint X>Y characterizing the error configuration (see clause s7) and, by specializing P3rev, we
will propagate the constraint of the error configuration.

Now let us specialize the CLP program P3rev by applying again SpecializeProp. We start off from the first while-
loop (α) of that procedure.
First execution of the body of the while-loop (α).
Unfolding. We unfold the clause for unsafe (that is, clause r1) with respect to the leftmost atom b(U) and we get:
31. unsafe :- Y≥1, N>0, X≥N, X>Y, r2((new3,X,Y,N)).

Definition Introduction. In order to fold clause 31 we introduce the definition:
32. new4(X,Y,N) :- Y≥1, N>0, X≥N, X>Y, r2((new3,X,Y,N)).
Second execution of the body of the while-loop (α).
Unfolding. Then, we unfold clause 32 and we get:
33. new4(X,Y,N) :- Y≥1, N>0, X≥N, X>Y, a((new3,X,Y,N)).
34. new4(X1,Y1,N) :- Y1≥1, N>0, X1≥N, X1>Y1, trans(U,(new3,X1,Y1,N)), r2(U).
By unfolding, clause 33 is deleted because the head of clause s4 is not unifiable with a((new3,X,Y,N)). By unfolding
clause 34 with respect to trans(U,(new3,X1,Y1,N)), also this clause is deleted because unsatisfiable constraints
are derived. Thus, no new definition is introduced, and the while-loop (α) terminates.
Folding. By folding clause 31 using definition 32 we get:

31.f unsafe :- Y≥1, N>0, X≥N, X>Y, new4(X,Y,N). CLP Program P4

and the final, specialized CLP program P4 consists of clause 31.f only.
Now we apply the SafetyTest procedure to program P4. This procedure detects that unsafe is a useless predicate

and returns the answer ‘safe’. Then, the Iterated Specialization terminates by reporting that the given imperative
program Increment is safe.

Thus, in this example we have seen that by iterating the specializations which propagate the constraints occurring
in the initial configuration and in the error configuration, we have been able to show safety of the given program. The
effectiveness of iterated specialization is confirmed by the experiments we have performed on various examples taken
from the literature, as reported in Section 7.

6.6. Soundness of the Software Model Checking method

Finally, we get the following soundness result for the Iterated Specialization method.

Theorem 5. (Soundness of the Software Model Checking method) Let I be the CLP encoding of the unsafety triple
{{ϕinit}} P {{ϕerror}}. If the Iterated Specialization strategy terminates for the input program I and returns ‘safe’, then P
is safe with respect to ϕinit and ϕerror. If the strategy terminates and returns ‘unsafe’, then P is unsafe with respect to
ϕinit and ϕerror.

Proof. The Iterated Specialization strategy terminates for the input program I and returns ‘safe’ (respectively, ‘un-
safe’) if and only if there exists n such that:

SpecializeRemove(I, Isp); SpecializeProp(Isp, I1);
Reverse(I1, I1

sp); SpecializeProp(I1
sp, I

2);
· · ·

Reverse(In−1, In−1
sp ); SpecializeProp(In−1

sp , In);
and SafetyTest(In) = ‘safe’ (respectively, SafetyTest(In) = ‘unsafe’).
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Then, by Theorem 3,
unsafe < M(In) (respectively, unsafe ∈ M(In))

if and only if (by Theorems 2 and 4)
unsafe < M(I) (respectively, unsafe ∈ M(I))

if and only if (by Theorem 1)
P is safe (respectively, unsafe) with respect to ϕinit and ϕerror. �

7. Experimental Evaluation

We have performed an experimental evaluation of our software model checking method on several benchmark
programs taken from the literature. The results of our experiments show that our approach is competitive with state-
of-the-art software model checkers.

The benchmark set used in our experiments consists of 216 safety verification problems of C programs (179 of
which are safe, and the remaining 37 are unsafe). Most problems have been taken from the benchmark sets of
other tools used in software model checking, like DAGGER [25] (21 problems), TRACER [30] (66 problems) and
InvGen [26] (68 problems), and from the TACAS 2013 Software Verification Competition [2] (52 problems). The size
of the input programs ranges from a dozen to about five hundred lines of code.

The verification problems came in different source formats (and, in particular, they used different methods for
specifying the initial and error configurations), and thus they could not be directly used by other software model
checkers. We automatically converted all problems from their original format to a common, intermediate format, and
then from the intermediate format to the format accepted by each tool we have considered in our experiments. We
have put great care and effort in writing these conversion programs to ensure maximum compatibility. Nonetheless,
some software model checkers failed to run on some seemingly harmless verification problems. The source code of
all the verification problems we have considered and detailed reports about the verification results are available at
http://map.uniroma2.it/VeriMAP/scp/.

We have realized the VeriMAP software model checker [15] that implements our verification method. VeriMAP
is based on MAP, a system for the transformation of constraint logic programs, that is written in SICStus Prolog and
operates on constraints over the rationals by using the clpqr library.

Our software model checker consists of three modules.
(i) A front-end module, C2CLP, based on the C Intermediate Language (CIL) and its associated tools [38], which
encodes a C program together with the initial and error configurations, into a set of CLP facts. These facts, together
with the clauses for the predicates tr, unsafe, and reach (and the predicates they depend upon), are used during the
first program specialization which removes the interpreter.
(ii) A module for CLP program transformation, that indeed removes the interpreter and applies the Iterated Special-
ization strategy.
(iii) A module that implements the SafetyTest procedure.

Our software model checker VeriMAP has been configured to execute the following program transformation se-
quence:

SpecializeRemove; SpecializeProp; SafetyTest;
(
Reverse; SpecializeProp; SafetyTest

)
∗

where, as usual, a∗ denotes a finite sequence of a’s. Thus, VeriMAP executes: (i) a first program specialization
consisting of an application of the SpecializeRemove procedure that performs the removal of the interpreter, and (ii) a
sequence of applications of the SpecializeProp procedure (from now on called iterations) that performs the propagation
of the constraints of the initial and the error configurations. After the removal of the interpreter, the first application of
SpecializeProp propagates the constraints of the initial configuration. This corresponds to a forward propagation along
the graph of configurations associated with the reachability relation tr (see Section 4), while the propagation of the
constraints of the error configuration corresponds to a backward propagation along the graph of configurations. The
SpecializeProp procedure has been executed by using the four generalization operators presented in Section 6: (i) GenM,
which is a monovariant generalization with widening only, (ii) GenMH, which is a monovariant generalization with
widening and convex hull, (iii) GenP, which is a polyvariant generalization with widening only, and (iv) GenPH, which
is polyvariant generalization with widening and convex hull.
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We have also tested the following three state-of-the-art CLP-based software model checkers for C programs:
(i) ARMC [41], (ii) HSF(C) [23], and (iii) TRACER [30]. ARMC and HSF(C) are based on the Counter-Example
Guided Abstraction Refinement technique (CEGAR) [6, 32, 44], while TRACER uses a technique based on approxi-
mated preconditions and approximated postconditions. We have compared the performance of those software model
checkers with the performance of VeriMAP on our benchmark programs.

All experiments have been performed on an Intel Core Duo E7300 2.66Ghz processor with 4GB of memory under
the GNU Linux operating system Ubuntu 12.10 (64 bit) (kernel version 3.2.0-27). A timeout limit of five minutes has
been set for all model checkers.

In Table 1 we summarize the verification results obtained by the four software verification tools we have con-
sidered. In the column labelled by VeriMAP (GenPH) we have reported the results obtained by using the VeriMAP
system that implements our Iterated Specialization method with the generalization operator GenPH. In the remaining
columns we have reported the results obtained, respectively, by ARMC, HSF(C), and TRACER using the strongest
postcondition (SPost) and the weakest precondition (WPre) options.

VeriMAP (GenPH) ARMC HSF(C) TRACER
SPost WPre

1 correct answers 185 138 159 91 103
2 safe problems 154 112 137 74 85
3 unsafe problems 31 26 22 17 18
4 incorrect answers 0 9 5 13 14
5 false alarms 0 8 3 13 14
6 missed bugs 0 1 2 0 0
7 errors 0 18 0 20 22
8 timed-out problems 31 51 52 92 77
9 total score 339 (0) 210 (-40) 268 (-28) 113 (-52) 132 (-56)

10 total time 10717.34 15788.21 15770.33 27757.46 23259.19
11 average time 57.93 114.41 99.18 305.03 225.82

Table 1: Verification results using VeriMAP, ARMC, HSF(C) and TRACER. For each column the sum of the values of lines 1, 4, 7, and 8 is 216,
which is the total number of the verification problems we have considered. The timeout limit is five minutes. Times are in seconds.

Line 1 reports the total number of correct answers of which those for safe problems and unsafe problems are
indicated in line 2 and 3, respectively. Line 4 reports the number of verification tasks that ended with an incorrect
answer. These verification tasks refer to safe programs that have been proved unsafe (false alarms, at line 5), and
unsafe programs that have been proved safe (missed bugs, at line 6). Line 7 reports the number of verification tasks
that aborted due to some errors (because of insufficient memory or inability of parsing). Line 8 reports the number of
verification tasks that did not provide an answer within the timeout limit of five minutes.

The total score obtained by each tool using the score function of the TACAS 2013 Software Verification Compe-
tition [2], is reported at line 9 and will be used in Figure 5. The score function assigns to every program p the integer
score(p) determined as follows: (i) 2, if p is safe and has been correctly verified, (ii) 1, if p is unsafe and has been
correctly verified, (iii) − 4, if a false alarm has been generated, and (iv) − 8, if a bug has been missed. Programs that
caused errors or timed out do not contribute to the total score.

At line 9 we have indicated between round parentheses the negative component of the score due to false alarms
and missed bugs. Line 10 reports the total CPU time, in seconds, taken to run the whole set of verification tasks: it
includes the time taken to produce the (correct or incorrect) answers and the time spent on tasks that timed out (we
did not include the negligible time taken for tasks that aborted due to errors). Line 11 reports the average time needed
to produce a correct answer, which is obtained by dividing the total time (line 10) by the number of correct answers
(line 1).

On the set of verification problems we have considered, the VeriMAP system provided correct answers to 185
problems out of 216. It is followed by HSF(C) (159 correct answers), ARMC (138), TRACER(WPre) (103), and
TRACER(SPost) (91). Moreover, VeriMAP produced no errors and no incorrect answers, while the other tools gener-
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ate from 5 to 14 incorrect answers. Thus, VeriMAP exhibits the best precision, which is defined as the ratio between
the number of correct answers and the number of verification problems.

The total time taken by VeriMAP is smaller than the time taken by any of the other tools we have considered.
This result is somewhat surprising, if one considers the generality of our approach and the fact that our system has
not been specifically optimized for software model checking. This good performance of VeriMAP is due to: (i) the
small number of tasks that timed out, and (ii) the fact that VeriMAP takes very little time on most programs, while it
takes much more time on a few, complex programs (depicted in Figure 5). In particular, VeriMAP is able to produce
169 answers taking at most 5 seconds each, and this is indeed a good performance if we compare it with HSF(C) (154
answers), ARMC (122), TRACER(SPost) (88) and TRACER(WPre) (101).

In order to ease the comparison of the performance of the software model checkers we have considered, we adopt
a visualization technique using score-based quantile functions (see Figure 5), similar to that used by the TACAS 2013
Software Verification competition [2]. By using this technique, the performance of each tool is represented by a
quantile function, which is a set of pairs (x, y) computed from the following set of pairs:

V = { (p, t) | the correct answer for the (safe or unsafe) program p is produced in t seconds }.
Given the set V , for each pair (p,T )∈V we produce a pair (x, y) computed as follows:

(i) x = XS +
∑

(p, t)∈V ∧ t≤T score(p), where XS , called the x-shift, is the sum of all the negative scores due to
incorrect answers (x is called the accumulated score), and

(ii) y = YS + T , where YS , called the y-shift, is a number of seconds equal to the number of timed-out problems.
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Figure 5: Score-based quantile functions for TRACER(SPost), TRACER(WPre), ARMC, HSF(C), and VeriMAP(GenPH). Markers are placed
along the lines of the functions, from left to right, every 10 programs that produce correct answers, starting from the program whose verification
took the minimum time.

Quantile functions are discrete monotone functions, but for reasons of simplicity, in Figure 5 we depicted them as
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continuous lines. The line of a quantile function for a generic verification tool should be interpreted as follows:
(i) the x coordinate of the k-th leftmost point of the line, is the sum of the score of the fastest k correctly verified
programs plus the (non-positive) x-shift, and measures the reliability of the tool,
(ii) the y coordinate of the k-th leftmost point of the line, is the verification time taken for the k-th fastest correctly
verified program plus the (non-negative) y-shift, and measures the inability of the tool of providing an answer (either
a correct or an incorrect one),
(iii) the span of the line along the x-axis, called the x-width, measures the precision of the tool, and
(iv) the span of the line along the y-axis, called the y-width, is the difference of verification time between the slowest
and the fastest correctly verified program.

Moreover, along each line of the quantile functions of Figure 5 we have put a marker every ten answers. In partic-
ular, for n≥1, the n-th marker, on the left-to–right order, denotes the point (x, y) corresponding to the (10 n)-th fastest
correct answer that has been produced.

Informally, for the line of a quantile function we have that: good results move the line to the right (because of lower
total negative score XS ), stretch it horizontally (because of higher positive accumulated score), move it towards the
x-axis (because of fewer timed-out problems and a better time performance), and compress it vertically (because of a
lower difference between worst-case and best-case time performance). We observe that the line of the quantile function
for VeriMAP(GenPH) starts with a positive x-value (indeed, VeriMAP provides no incorrect answers and XS = 0), is
the widest one (indeed, VeriMAP has the highest positive accumulated score, due to its highest precision among the
tools we have considered), and is the lowest one (indeed, VeriMAP(GenPH) has the smallest numbers of timed-out
problems). The height of the line for VeriMAP(GenPH) increases only towards the right end (at an accumulated score
value of 300) after having produced 162 correct answers, and this number is greater than the number of all the correct
answers produced by any of the other tools we have considered.

In Table 2 we report the results obtained by running the VeriMAP system with the four generalization operators
presented in Section 6.

Each column is labelled by the name of the associated generalization operator. Line 1 reports the total number
of correct answers. Lines 2 and 3 report the number of correct answers for safe and unsafe problems, respectively.
Line 4 reports the number of verification tasks that timed out. As already mentioned, the VeriMAP system has
produced neither incorrect answers nor errors. Line 5 reports the total time, including the time spent on tasks that
timed out, taken to run the whole set of verification tasks. Line 6 reports the average time needed to produce a correct
answer, that is, the total time (line 5) divided by the number of correct answers (line 1). Line 7 reports the total correct
answer time, that is the total time taken for producing the correct answers, excluding the time spent on tasks that
timed out. Lines 7.1–7.4 report the percentages of the total correct answer time taken to run the C2CLP module, the
SpecializeRemove procedure, the SpecializeProp procedure, and the SafetyTest procedure, respectively. Line 8 reports the
average correct answer time, that is, the total correct answer time (line 7) divided by the number of correct answers
(line 1). Line 9 reports the maximum number of iterations of the Iterated Specialization strategy that were needed, after
the removal of the interpreter, for verifying the safety property of interest on the individual programs. Line 10 reports
the total number of predicate definitions introduced by the SpecializeProp procedure during the various iterations.

The data presented in Table 2 show that polyvariance always gives better precision than monovariance. Indeed,
the polyvariant generalization operator with convex hull GenPH achieves the best precision (it provides the correct
answer for 85.65% of 216 programs of our benchmark), followed by the polyvariant generalization operator without
convex hull GenP (73.61%). (For this reason in Table 1 we have compared the other verification systems against
VeriMAP (GenPH).) As already mentioned, polyvariant generalization may introduce more than one definition for
each program point, which means that the Specialize procedure yields a more precise abstraction of the program to be
verified and, consequently, it may increase the effectiveness of the safety test. The increase of precision obtained by
using polyvariant operators rather than monovariant ones is particularly evident when proving unsafe programs (the
precision is increased of about 100%, from 15 to 29–31).

On the other hand, monovariant operators enjoy the best trade-off between precision and average correct answer
time. For example, when considering the average correct answer time, the GenM operator, despite the significant loss
of precision (about 20%, from 159 to 128) with respect to its polyvariant counterpart GenP, is about 2.4 times faster
(3.25 seconds versus 7.88 seconds), when we consider the average correct answer time.

The good performance of monovariant operators is also justified by the much smaller number of definitions (about
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VeriMAP generalization operators

GenM GenMH GenP GenPH

1 correct answers 128 147 159 185
2 safe problems 113 132 130 154
3 unsafe problems 15 15 29 31
4 timed-out problems 88 69 57 31
5 total time 26816.64 21362.93 18353.11 10717.34
6 average time 209.51 145.33 115.43 57.93
7 total correct answer time 416.64 662.93 1253.11 1417.34
7.1 C2CLP 2.27% 1.63% 0.96% 0.98%
7.2 SpecializeRemove 6.81% 4.74% 4.44% 4.06%
7.3 SpecializeProp 90.33% 93.16% 42.77% 44.68%
7.4 SafetyTest 0.59% 0.46% 51.83% 50.27%
8 average correct answer time 3.25 4.51 7.88 7.66
9 max number of iterations 4 7 10 7
10 number of definitions 5623 6248 54977 58226

Table 2: Verification results using the VeriMAP system with different generalization operators. The sum of the values of lines 1 and 4 is 216, which
is the number of the verification problems we have considered. The timeout limit is five minutes. Times are in seconds.

one tenth) introduced by the SpecializeProp procedure with respect to those introduced in the case of polyvariant
operators.

Also the size of the programs produced by monovariant operators is much smaller with respect to those produced
by polyvariant operators. (The size of the final programs obtained by specialization is not reported in Table 2, but it
is approximately proportional to the number of definitions.) This also explains why the impact on the total correct
answer time of the SafetyTest analysis is much lower for monovariant operators (less than 1%) than for polyvariant
operators (about 50%).

The weight of the two preliminary phases (translation from C into CLP and removal of the interpreter) on the
overall verification process is very limited. The execution times for the C2CLP module are very low (about 50
milliseconds per program) and have a low impact on the total correct answer time (at most 2.27%, as reported on
line 7.1). The time taken by SpecializeRemove for removing the interpreter ranges from a few tenths of milliseconds to
about four seconds, for the most complex programs, and its impact on the total correct answer time is between 4%
and 7% (see line 7.2).

In the set of problems we have considered, the higher average correct answer time of polyvariant operators does
not prevent them from being more precise than monovariant operators. Indeed, by using polyvariant operators we get
fewer timed-out problems with respect to those obtained by using monovariant operators, and thus for the verifications
that use polyvariant operators we also get smaller total times and average times (which take into account the number
of timed-out problems).

We also observe that generalization operators using convex hull always give greater precision than their counter-
parts that do not use convex hull. This confirms the effectiveness of the convex hull operator, which may help infer
relations among program variables, and may ease the discovery of useful program invariants.

Some of the programs are verified by the VeriMAP system during the first iteration after the removal of the
interpreter by propagating the constraints of the initial configuration only. Nonetheless, as indicated in Figure 6, which
shows the precision achieved by the VeriMAP generalization operators during the first ten iterations, our approach of
iterating program specialization is effective and determines a significant increase of the number of correct answers
(for GenP that number increases from 74 to 159). Moreover, we have that the verification process is able to prove
programs by performing up to 7 or 10 iterations when using the more precise generalization operators GenPH or GenP,
respectively.

The highest increase of precision is given by the second iteration and, although most correct answers are provided
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Figure 6: Cumulative precision achieved by the VeriMAP generalization operators during the first ten iterations.

within the fourth iteration, all generalization operators (except for the monovariant operator GenM) keep increasing
their precision from the fifth iteration onwards, providing up to 6 additional correct answers each.

The iteration of specialization is more beneficial when using polyvariant generalization operators where the in-
crease of the number of answers reaches 115%, while the increase for monovariant generalization operators is at
most 52%. For example, at the first iteration GenP can prove less properties than GenMH, but it outperforms the
monovariant operator with convex hull by recovering precision when iterating the specialization.

The increase of precision due to the iteration of program specialization is also higher for generalization operators
that do not use the convex hull operator (GenM and GenP), compared to their counterparts that use convex hull (GenMH

and GenPH).
We would also like to point out that the use of convex hull is very useful during the first iterations. Indeed, the

generalization operators using convex hull can verify 104 programs at the first iteration, while operators not using
convex hull can verify 74 programs only. In this case the choice of using a polyvariant vs. monovariant generalization
operator has no effect on the number of verified programs at the first iteration.

Finally, we note that the sets of programs with correct answers by using different operators are not always compa-
rable. Indeed, the total number of different programs with correct answers by using any of the generalization operators
we have considered is 190, while the programs for which a single operator produced a correct answer is at most 185.
Moreover, there are programs that can be verified by operators with lower precision but that cannot be verified by
operators with higher precision, within the considered timeout limit. For example, in our experiments the least precise
operator GenM was able to prove four programs for which the most precise operator GenPH timed out.

This confirms that different generalization operators can give, in general, different results in terms of precision
and performance. If we do not consider time limitations, generalization operators having higher precision should
be preferred over less precise ones, because they may offer more opportunities to discover the invariants that are
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useful for proving the properties of interest. In some cases, however, the use of more precise generalization operators
determines the introduction of more definition clauses, each requiring an additional iteration of the while-loop (α)
of the Specialize Procedure, thereby slowing down the verification process and possibly preventing the termination
within the considered timeout limit. In practice, the choice of the generalization operator to be used for any given
verification problem at hand, can be made according to some heuristics that may be provided on the basis of the above
mentioned trade-off between precision and efficiency.

8. Related Work and Conclusions

The software model checking technique proposed in this paper is an extension of the technique for the verification
of simple imperative programs presented in [12]. The main improvements and novelties introduced in this work are
the following: (i) we have considered a significant fragment of the C Intermediate Language [38], (ii) we have defined
a general verification framework in which specialization of constraint logic programs is iteratively applied with the
objective of using in a more effective way the information dispersed throughout the program to be verified (and, in
particular, the information associated with the constraints in the initial configurations and the error configurations),
and (iii) we have performed an extensive experimental evaluation on a large set of examples (over 200) taken from
different sources, and we have shown that our approach, despite its generality, is effective and efficient in practice.
The use of iterated specialization avoids the least model construction performed after program specialization by the
technique presented in [12].

The fragment of the programming language we have considered has several limitations. In particular, we have
assumed that: (i) all variables have integer type, (ii) neither arrays nor structured data nor pointers are present, and
(iii) there are no definitions of recursive functions. However, the approach we have proposed here is very general and
we believe that it can be followed also in the case of much richer programming languages. Indeed, an application of
our approach to programs with arrays appears in [14].

The use of constraint-based techniques for program verification has recently received a renewed attention [4, 43],
and in particular, constraints turn out to be very suitable for expressing both the symbolic executions of imperative
programs and their execution invariants. As an evidence of the expressive power of constraints we want to point out
that Constrained Horn Clauses (which basically are Constraint Logic Programs) have been recently proposed in [4]
as a common intermediate language for exchanging program properties between software verifiers. In the same line of
work, [24] presents a method for the automatic synthesis of software verification tools that use rules for reachability
and termination proofs written in a formalism similar to Horn clauses.

Our work is related to that of [4, 43], because we also use Horn clauses and constraints, and we also propose a
general approach to program verification. In particular, the technique we have presented in this paper can be seen as an
application of a general verification method based on CLP and program transformation. In that general method CLP
is used for specifying: (i) the programming language under consideration and its semantics, and (ii) the logic used for
expressing the properties of interest and its proof rules, and CLP program transformation is used as a general-purpose
engine for analysis. By modifying the clauses that specify the interpreter of the language in which the programs to be
verified are written, one can encode, in an agile way, the semantics of different languages either logic, or functional,
or concurrent ones. Also the class of the properties to be verified, which in this paper is restricted to reachability
properties, can be extended to those specified by more expressive logics, such as the Computational Tree Logic used
in [21] for the verification of infinite state reactive systems.

The use of program specialization for the verification of properties of imperative programs is not novel. It has
been considered, for instance, in [40]. In that paper a CLP interpreter for the operational semantics of a simple
imperative language is specialized with respect to the input program to be verified. Then, a static analyzer for CLP
programs is applied to the residual program for computing invariants (that is, overapproximations of the behavior) of
the input imperative program. These invariants are used in the proof of the properties of interest. Unlike [40], our
verification method does not perform any static analysis phase separated from the specialization phase and, instead,
we discover program invariants during the specialization process by applying suitable generalization operators. These
operators are defined in terms of operators and relations on constraints such as widening and convex hull [7, 10, 21].
As in [40], we also use program specialization to perform the so-called removal of the interpreter, but in addition,
in this paper we repeatedly use specialization for propagating the information about the constraints that occur in the
initial configurations and in the error configurations.
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The specialization of logic programs and constraint logic programs has also been considered in various techniques
for the verification of infinite state reactive systems [19, 21, 35]. By using these techniques one may verify properties
of Kripke structures, instead of properties of imperative programs as we did in this paper. In [35] the authors do
not make use of constraints, which are a key ingredient of the technique we present here. In [19, 21, 35] program
specialization is followed by the computation of the least model of the specialized program, or the computation of an
overapproximation of the least model via abstract interpretation. In this paper we have replaced the phase in which
the least model (or an over approximation of it) is computed, by a phase in which program specialization is iterated.

A popular technique for program verification is the Counter-Example Guided Abstraction Refinement (CEGAR) [6,
32, 44], which is used by many software model checkers such as BLAST [3], DAGGER [25], and SLAM [1]. In the
CEGAR technique, given a program P and a safety property to be verified, one automatically constructs an abstract
model of P which is used to check whether or not an abstract error configuration is reachable from an abstract initial
configuration. If no abstract error configuration can be reached, then P satisfies the given safety property, otherwise
a counterexample, that is, a sequence of configurations leading to an abstract error configuration, is generated and
then analyzed. If the counterexample corresponds to a concrete computation of P, then the program is proved unsafe,
otherwise the abstraction needs to be refined because it was too coarse, and a new cycle of the verification process is
started by using that refined abstraction to get a new abstraction of the program P, in the hope of a successful proof.

Our approach can be regarded as complementary to the approaches based on CEGAR. Indeed, we begin by making
no abstraction at all, and if the specialization process is deemed to diverge, then we perform some generalization
steps which play a similar role to that of abstraction. (Note, however, that unlike abstraction program specialization
preserves program equivalence.) There are various generalization operators that we can apply for that purpose and
by varying those operators we can tune the specialization process in the hope of making it more effective for the
proofs of the properties of interest. Moreover, since our specialization-based method preserves the semantics of the
original specification, we can apply a sequence of specializations, thereby refining the analysis in successive steps
and, hopefully, improving the level of precision.

In the field of static program analysis the idea of performing backward and forward semantic analyses has been
proposed in [8]. These analyses have been combined (see, for instance, [9]) to devise a fixpoint-guided abstraction
refinement algorithm which has been proved to be at least as powerful as the CEGAR algorithm where the refinement
is performed by applying a backward analysis. An enhanced version of the algorithm presented in [9], which improves
the abstract state space exploration and makes use of disjunctive abstract domains, has been proposed in [42]. In the
present paper we have shown that also in our approach the idea of iterating program analysis and traversing the graph
of the configurations both in the forward and backward manner can be fruitfully exploited, once we have reduced the
program analysis task to a program transformation task.

As future work, we would like to develop, within the general framework based on CLP transformation, verification
techniques that support other language features, including recursive function calls, concurrency, and more complex
data types, such as data structures and pointers. This will also allow us to enlarge the set of examples used in the
experimental evaluation by considering real-world programs. At the same time, we would like to extend our approach
to the proof of more complex properties that, for instance, depend on the content of the data structures (such as the
values of the elements of arrays or lists). As already mentioned, a step forward in this direction has been done in the
case of programs manipulating arrays [14]. The most relevant ingredient needed to handle array programs is a new
transformation rule that allows us to manipulate arrays via predicates which represent array operations and satisfy
suitable axioms [36]. We think that by a similar approach one may be able to deal also with different, more complex
data structures.

In the future we also wish to develop, within our specialization approach, some techniques that guarantee a form of
progression of the analysis similar to the one achieved by the CEGAR approach, whereby a spurious counterexample,
once discarded by a suitable abstraction, does not occur again in successive refinements.

Another interesting direction to explore is the application of our method to termination proofs of imperative
programs.

Finally, since program specialization produces an equivalent program (with respect to the validity of the property
of interest), we can also investigate the use of program specialization as a preprocessing step before using other
software model checkers with the aim of improving their precision and efficiency.
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