Analisi di Raggruppamento

Gianluca Amato

Corso di Laurea Specialistica in Economia Informatica Università "G. D'Annunzio" di Chieti-Pescara anno accademico 2005-2006 ultimo aggiornamento: 12/05/06

Cosa è l'analisi di raggruppamento?

Cosa è la analisi di raggruppamento?

- Un gruppo (cluster) è una collezione di istanze tali che:
 - le istanze dello stesso cluster sono simili tra loro
 - alta somiglianza intra-classe
 - le istanze di cluster diversi sono dissimili
 - bassa somiglianza inter-classe
- Analisi di raggruppamento (cluster analysis)
 - il processo di raggruppamento delle istanze in cluster.
 - si tratta di apprendimento non supervisionato
 - le istanze di addestramento non hanno una classe nota a priori
 - la qualità di una analisi di raggruppamento dipenderà
 - dal parametro scelto per misurare la somiglianza inter e intra-classe
 - dall'algoritmo utilizzato per l'implementazione dell'analisi.

Applicazioni dell'analisi di raggruppamento

- Varie possibilità di utilizzo:
 - come analisi stand-alone,
 - come processo preliminare ad altre analisi di dati
 - ad esempio, assegnare una etichetta ad ognuno, e poi utilizzare un algoritmo di classificazione.
 - come componente integrato di algoritmi per altri tipi di analisi:
 - ad esempio le regole associative quantitative "basate sulla distanza" (che non abbiamo visto, ma che si basano su algortimi di raggruppamento)
 - nella fase di pre-elaborazione dati
 - eliminazione degli outlier
 - riduzione della numerosità

Esempi di analisi di raggruppamento

- Marketing. Aiuta gli esperti di marketing a individuare gruppi distinti tra i propri clienti, sulla base delle abitudini di acquisto (la cosiddetta analisi di segmentazione)
- Assicurazioni. Identifica gruppi di assicurati con notevoli richieste di rimborso.
- Studi sui terremoti. Gli epicentri dei terremoti dovrebbero essere agglomerati lungo le faglie continentali.
- Motori di ricerca. I risultati di un motore di ricerca possono essere sottoposti ad analisi di raggruppamento in modo da mettere in un unico gruppo le risposte tra loro simili
 - quindi presentare meno alternative all'utente

Distanza tra istanze

Strutture Dati

• Gli algoritmi di raggruppamento usano di solito rappresentare i dati in uno di questi due modi:

- Matrice dati

- \mathbf{x}_{ij} = attributo *i* della istanza *j*
- Tipica visione relazionale

- Matrice delle distanze

- d(i,j)=distanza tra l'istanza i e l'istanza j
- d(j,i)=d(i,j) per cui si rappresenta solo metà matrice.

$$\begin{vmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ \vdots & \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \dots & 0 \end{vmatrix}$$

Distanze e tipi di dati

- d(i,j) misura la "dissimilarità" o "distanza" tra le istanze $i \in j$.
- La definizione di *d* cambia molto a seconda del tipo di dato degli attributi
 - Intervallo
 - Nominali (e in particolare binari)
 - Ordinali
- ... e ovviamente si possono avere situazioni in cui attributi diversi hanno tipo diverso!

Dati di tipo intervallo e normalizzazione

- Il primo passo per definire una misura di distanza su dati di tipo intervallo, è normalizzare i dati.
- Quasi sempre, si vuole che i vari attributi pesino in maniera uguale.
 - Esempio : una serie di istanze che rappresentano città
 - Attributi: temperatura media (gradi centigradi) e popolazione (numero di abitanti)
 - Il range di valori della popolazione è molto più ampio, ma si vuole che questo attributi non conti proporzionalmente di più
- Ci sono vari modi per normalizzare i dati.

Normalizzazione (1)

- Zero-score normalization
 - Per ogni attributo f, calcolo la media m_f delle x_{if}

$$m_f = \frac{1}{n}(x_{1f} + x_{2f} + \dots + x_{nf})$$

Calcolo lo scarto assoluto medio

$$s_f = \frac{1}{n} |x_{1f} - m_f| + |x_{2f} - m_f| + \dots + |x_{nf} - m_f|$$

– Ottengo il valore z_{if} normalizzato come

$$z_{if} = \frac{x_{if} - m_f}{s_f}$$

- In alternativa,
 - $-s_f$ = squarto quadratico medio
 - più sensibile ad outliers

Normalizzazione (2)

Mix-man normalization

$$v_{if} = \frac{x_{if} - \min_{i} x_{if}}{\max_{f} x_{if} - \min_{f} x_{if}}$$

- ancora più sensibile ad outliers
- Si vuole sempre normalizzare?
 - non sempre..
 - ...e anche quando si vuole normalizzare, può essere desiderabile dare a un attributo peso maggiore che a un altro.

Distanza su dati di tipo intervallo

Distanza di Manhattan

$$d_m(i, j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{ip} - x_{jp}|$$

Distanza euclidea

$$d_e(i,j) = \sqrt{(x_{il} - x_{jl})^2 + (x_{i2} - x_{j2})^2 + \dots + (x_{ip} - x_{jp})^2}$$

- Comunque si definisca una distanze, è bene che abbia alcune proprietà generali:
 - $-d(i,j) \ge 0$
 - d(i,i) = 0
 - d(i,j) = d(j,i) (simmetria)
 - d(i,j) ≤ d(i,k) + d(k,j) (disuguaglianza triangolare)

Distanza su dati di tipo binario (1)

- Per calcolare la distanza tra l'istanza i e j, sia data la seguente tabella di contingenza
 - In riga h, colonna k sta il numero di attributi per cui l'istanza i ha valore h e l'istanza j ha valore k

		Object j		
		1	0	
Object i	1	a	b	
	0	c	d	

Distanza su dati di tipo binario (2)

- Attributi simmetrici
 - quando valori positivi e negativi contano allo stesso modo
- Attributi asimmetrici
 - quando valori positivi sono più importanti di valori negativi
 - ad esempio il risultato di un test su una malattia
- Indice di Russel-Sao (simple matching coefficient) per attributi simmetrici

$$d(i,j) = \frac{b+c}{a+b+c+d}$$

• Indice di Jaccard per attributi asimmetrici

$$d(i,j) = \frac{b+c}{a+b+c}$$

Distanza su dati di tipo binario (3)

• Esempio

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender è un attributo simmetrico, gli altri sono asimmetrici.
- Supponiamo di calcolare la distanza solo sulla base degli attributi asimmetrici
 - Se Y e P equivalgono a 1 e N equivale a 0, abbiamo

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$
$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$
$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

Distanza su dati di tipo nominale

- Una semplice estensione del caso binario
 - l'attributo può assumere più di due valori.
- Metodo 1: matching semplice
 - m: numero di attributi che corrispondono
 - p: numero totale di attributi
- distanza: $d(i, j) = \frac{p-m}{p}$ Metodo 2 : trasformazione in attributi binari
 - Si trasforma una variabile nominale con N valori possibili in una serie di N variabili binarie asimmetriche.
 - La variabili binaria numero i è a 1 se la variabile nominale corrispondente assume il valore i, altrimenti è a 0.

Distanza su dati di tipo ordinale

- Una variabile nominale in cui è presente un ordine tra i valori
- Può essere trattata come un variabile di tipo intervallo
 - Si rimpiazza x_{if} con la sua posizione posizione r_{if} nella relazione di ordinamento.
 - I possibili valori di r_{if} vanno da 1 a M_f , il numero di possibili valori di x_{if}
 - Si normalizza r_{if} con il metodo min-max ottenendo

$$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$

 Si calcola la distanza con i metodi visti per gli attributi di tipo intervallo.

Distanza su valori di tipo misto

- In generale una istanza può contenere valori di vario tipo.
- La dissimilarità tra due istanze è allora ottenuta combinando i metodi visti prima
 - Non esiste un metodo che vada sempre bene per effettuare la combinazione
 - In generale, non appena si ha più di un attributo ci sono varie possibili scelte, riguardanti il peso che ogni attributo può avere nel calcolo complessivo della dissimilarità
 - Il tutto è fondamentalmente un processo soggettivo.

Classificazione degli algoritmi di raggruppamento

Principali approcci al clustering (1)

- Algoritmi di partizionamento: dati un insieme di n istanze e un numero k, divide le istanze in k partizioni.
 - Usa tecniche di rilocazione iterativa per spostare le istanze da una partizione all'altra allo scopo di migliorare la qualità dei cluster.
- Algoritmi gerarchici: crea una decomposizione gerarchica dell'insieme di tutte le istanza.
 - Simile agli alberi zoologici
 - Si dividono in agglomerativi (se partono da cluster piccoli che fondono tra di loro) o scissori (se partono da un unico grosso cluster che dividono in sotto-cluster).
- Algoritmi basati sulla densità: piuttosto che utilizzare la distanza tra oggetti, usano il concetto di densità.
 - Partono da un cluster minimale lo espandono purché la densità (numero di istanze) nelle vicinanze ecceda una specifica soglia.

Principali approcci al clustering (2)

- Algoritmi basati su griglie: prima di iniziare, discretizzano i valori di input in un numero finito di celle che costituiscono una struttura a griglia. Le operazioni successive operano solo su questa griglia.
 - molto veloci
- Algoritmi basati su modelli: ipotizzano l'esistenza di un modello per ognuno dei cluster e trovano la miglior disposizione dei cluster che soddisfi il modello.
- Molti algoritmi "reali" integrano più di uno schema base.

Metodi basati sulle partizioni

Metodi basati sulle partizioni

- Date n istanze e un numero k, partiziona le istanze in k insiemi.
 - Obiettivo: massimizzare la qualità del raggruppamento
 - Qualità definita di solito in base alle distanze inter- e intra-cluster.
- Soluzione ottimale: può essere ottenuta enumerando tutte le possibili partizioni.. non è praticabile.
- Soluzione euristica: basata sulla ricerca di minimi locali.
 - Usa tecniche di rilocazione iterativa per spostare le istanze da una partizione all'altra allo scopo di migliorare la qualità dei cluster.
 - Di solito, un punto viene scelto come "centro di gravità" di un cluster, e le varie misure di similarità vengono riferite a questo punto.
 - Due sono i metodi più famosi
 - *k*-means (MacQueen 67)
 - *k*-medoids (Kaufman & Rousseeuw'87)

Metodo k-means

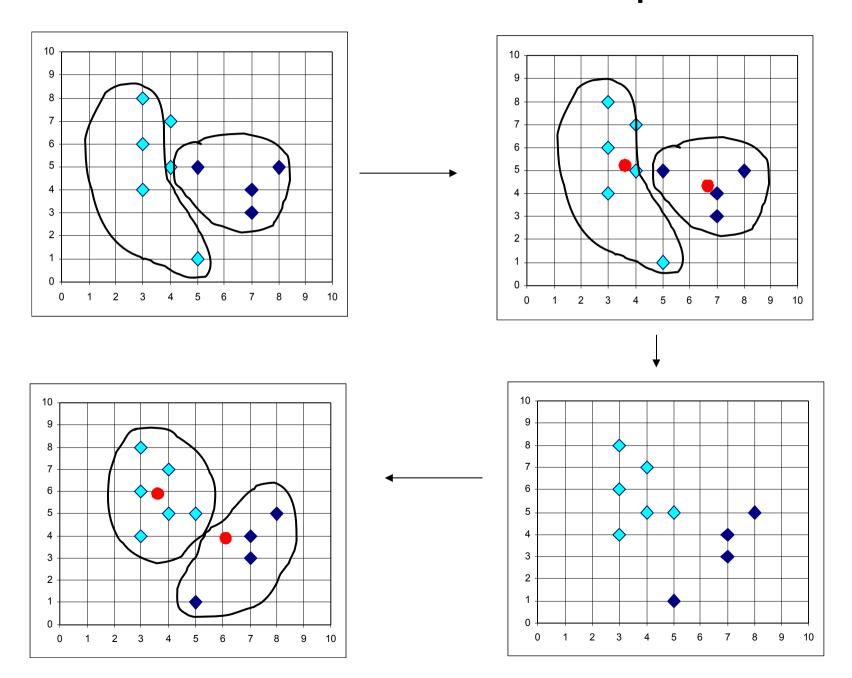
- Il metodo k-means adotta come centro di gravità di un cluster il suo punto medio.
- Si tenta di minimizzare l'errore quadratico:

$$Err = \sum_{i=1}^{k} \sum_{p \in C_i} d_e(p, m_i)^2$$

dove m_i è il punto medio del cluster C_i .

- In effetti l'errore non viene mai calcolato esplicitamente, ma l'algoritmo procede come segue:
 - Scegli k oggetti come centri dei vari cluster
 - come avviene la scelta? varie alternative sono state proposte
 - Ripeti
 - Assegna ogni oggetto al cluster il cui centro è più vicino
 - Ricalcola i nuovi centri dei cluster
 - Finché non c'è nessun cambiamento

Metodo k-means : esempio



Pregi e difetti del metodo k-means

Pregi

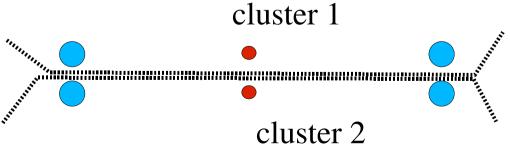
- Relativamente efficiente: O(tnk) dove t è il numero di iterazioni. Di solito t e k sono molto minori di n, per cui la complessità si può considerare O(n)
- Spesso termina in un ottimo locale. L'ottimo globale si può rincorrere con tecniche standard come annealing simulato o algoritmi genetici.

• Difetti

- Applicabile solo se è possibile definire il centro. Non adatto per dati di tipo categoriale.
- Necessità di specificare k in anticipo.
- Molto sensibile a rumore e ad outliers
- Non adatto per cluster con forme non convesse.

Esempio di ottimo locale in k-means

- I cerchi blu sono le istanze da raggruppare, i cerchi rossi i punti iniziali dei due cluster.
 - le istanze sono ai 4 vertici di un rettangolo, con un lato corso e uno lungo
 - i centri iniziali sono i punti medi dei due lati lunghi
 - la suddivisione ottimale sarebbero costituite da un gruppo con i punti a sinistra e uno con i punti a destra
 - la soluzione iniziale è un ottimo locale, quindi l'algoritmo termina con un gruppo con i punti in basso, uno con i punti in alto.



Metodo k-medoids (1)

- Usa come centro di gravità di un cluster l'istanza "più centrale" del cluster stesso.
 - riduce l'effetto degli outliers
 - funziona anche con dati categoriali
- Dato k, l'algoritmo consta dei seguenti passi
 - Scegli k oggetti come medoidi iniziali
 - Ripeti
 - Assegna ogni oggetto al cluster il cui medoide è più vicino
 - Considera di sostituire ognuno dei medoidi con un non-medoide. Effettua la sostituzione se questa migliora la qualità del cluster, altrimenti lascia invariato.
 - Finché non c'è nessun cambiamento

Metodo k-medoids (2)

Come qualità del cluster si adotta spesso l'errore assoluto

$$- Err = \sum_{i=1}^{k} \sum_{p \in C_i} d(p, m_i)$$

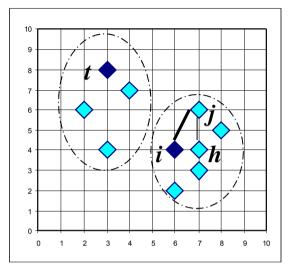
- C_i cluster i-esimo
- m_i medoide rappresentativo per C_i
- d è una opportuna distanza
- Se l'istanza i è un medoide che viene sostituito col medoide h, l'errore cambia. La variazione dell'errore è

$$T_{ih} = \sum_{j=1}^{n} C_{jih}$$

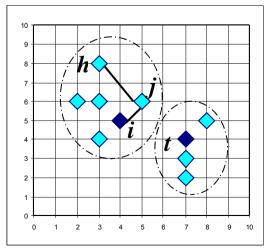
dove n è il numero di istanze è C_{jih} la componente dell'errore relativo alla istanza j

Metodo k-medoids (3)

1° caso: j passa dal medoide i ad h 2° caso: j era e rimane assegnato

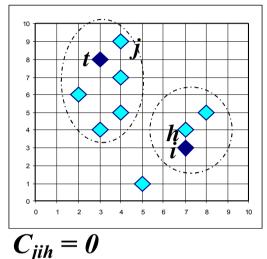


 $C_{jih} = d(j, h) - d(j, i)$ 3° caso: j passa dal medoide i a t≠h

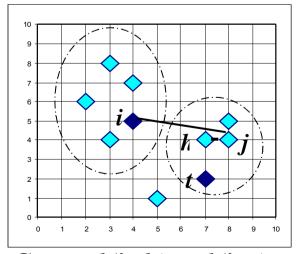


$$C_{jih} = d(j, t) - d(j, i)$$

2° caso: j era e rimane assegnato ad un altro medoide



4° caso: j passa dal medoide t≠i ad h



$$C_{jih} = d(j, h) - d(j, t)$$

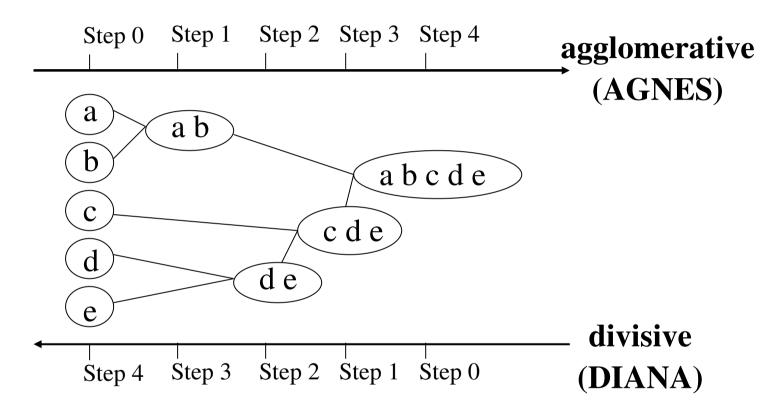
Algoritmi "veri"

- Il primo algoritmo a sfruttare l'idea dei medoidi fu PAM (Partitioning Around Medoids) pubblicato in (Kaufman & Rousseeuw'87)
 - ad ogni iterazione, vengono esaminate tutte le possibili coppie costituite da un vecchio medoide e un non-medoide
 - a causa della sua natura sistematica, PAM non è scalabile
- Algoritmi successivi
 - Basati sull'idea di campionare uno o più sottoinsiemi dall'insieme di tutte le istanze
 - CLARA (Kaufmann & Rousseeuw, 1990)
 - CLARA = Clustering LARge Applications
 - CLARANS (Ng & Han, 1994)
 - CLARANS = Clustering Large Applications based upon RANdomized Search

Metodi gerarchici

Il metodo gerarchico

• Raggruppa i dati in un albero di cluster.



- Due approcci:
 - agglomerativi (partono da cluster piccoli che fondono tra di loro)
 - scissori (partono da un unico cluster che dividono in sottocluster)

Distanza tra cluster

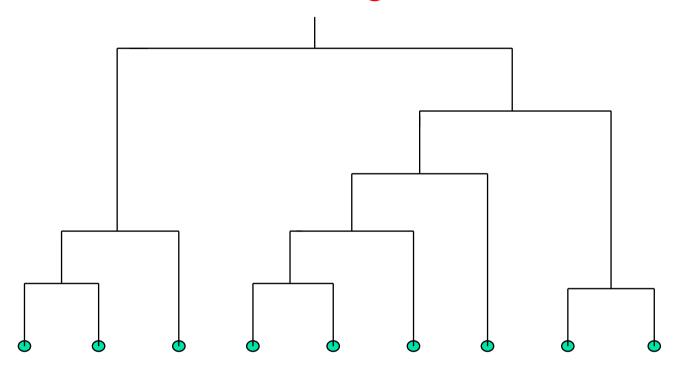
- Serve una nozione di distanza tra cluster, analoga a quella di distanza tra istanze.
- Siano C_i , C_j cluster, m_i punto medio del cluster C_i e n_i numero di oggetti del cluster C_i . Definiamo varie distanze:
 - distanza minima: $d_{min}(C_i, C_j) = min_{x \in C_i, x' \in C_j} d(x, x')$
 - distanza massima: $d_{max}(C_i, C_j) = max_{x \in C_i, x' \in C_j} d(x, x')$
 - distanza media: $d_{avg}(C_i, C_j) = \frac{1}{n_i n_j} \sum_{x \in C_i} \sum_{x' \in C_j} d(x, x')$
- Anche la distanza dei centroidi, che però necessita pure della matrice dati:
 - distanza dei centroidi: $d_{mean}(C_i, C_j) = d(m_i, m_j)$

Schema di un metodo agglomerativo

- Inizializzazione: tutte le n istanze rappresentano un cluster
- Ripeti n-1 volte:
 - Selezione: vengono selezionate le istanze più vicine rispetto alla misura di distanza preferita
 - Aggiornamento: si aggiorna il numero dei cluster tramite l'unione, in un unico cluster, dei due selezionati. Nella matrice delle distanze si sostituiscono le righe e colonne relative ai due cluster con una nuova riga e colonna relativa al nuovo cluster.
- La procedura si arresta quando tutti gli elementi appartengono ad un unico cluster.
- Algoritmo AGNES (agglomerative nesting)
 - introdotto in Kaufmann and Rousseeuw (1990)
 - implementato nei software statistici come S-plus ed R
 - usa la distanza minima

Dendogramma

• Il risultato di AGNES è un dendogramma:



- Le foglie sono le istanze, i nodi interni i vari cluster.
- Una partizione dell'insieme delle istanze in cluster disgiunti è ottenibile tagliando il dendogramma ad un determinato livello e considerando le componenti connesse.

Un algoritmo scissorio: DIANA

- DIANA: divisive analysis
- Introdotto in Kaufmann and Rousseeuw (1990)
- Implementato in prodotti statistici come S-plus ed R
- Ordine inverso rispetto ad AGNES
 - si parte con tutte le istanze in un unico cluster
 - ad ogni passo si divide un cluster
 - ci si ferma quando tutti le istanze stanno in un cluster da sole.

Pregi e difetti dei metodi gerarchici

• Pregi

- non c'è la necessità di specificare k, il numero di partizioni

• Difetti

- non è scalabile. La complessità è almeno $O(n^2)$.
 - Ad esempio, in AGNES, ad ogni passo si richiede di confrontare le distanze tra tutte le coppie di cluster.
- la qualità dei raggruppamenti soffre del fatto che, una volta effettuata una divisione o un raggruppamento, non è possibile disfarla.

Soluzioni

- integrazione dei metodi gerarchici con metodi basati su istanze.
 - BIRCH, CURE, ROCK, Chameleon

BIRCH e Clustering Features (1)

- Birch: Balanced Iterative Reducing and Clustering using Hierarchies, by Zhang, Ramakrishnan, Livny (SIGMOD'96)
- Si basa sul concetto di clustering feature (CF) e di clustering feature tree (CF tree)
 - un CF è una rappresentazione compatta di un insieme di punti che costituiscono un sotto-cluster
 - CF=(N, **LS**, SS) dove
 - N = numero di punti nel sotto-cluster
 - $LS = \sum_{i=1}^{N} X_i$
 - -LS/N è il punto centrale del cluster
 - $SS = \sum_{i=1}^{N} X_i^2$
 - è la somma dei quadrati modulo dei punti componenti il cluster
 - sono i momenti di ordine 0, 1 e 2 del sotto-cluster

BIRCH e Clustering Features (2)

- Ad esempio,
 - date le istanze in $S=\{(3,4)(2,6)(4,5)(4,7)(3,8)\}$
 - otteniamo CF=(5,(16,30),242)
- I CF possono essere usati al posto dei dati corrispondenti, e da essi è possibile definire alcune distanze tra cluster.
- Siano (N₁,LS₁,SS₁) ed (N₂, LS₂,SS₂) i CF di due cluster:
 - la distanza dei centroidi è semplicemente il modulo di $LS_2 LS_1$
 - la distanza Euclidea media non è calcolabile direttamente, ma lo è la radice della distanza quadratica media:

$$d(C_i, C_j) = \sqrt{\frac{1}{n_i n_j} \sum_{x \in C_i} \sum_{x' \in C_j} d_e(x, x')^2}$$

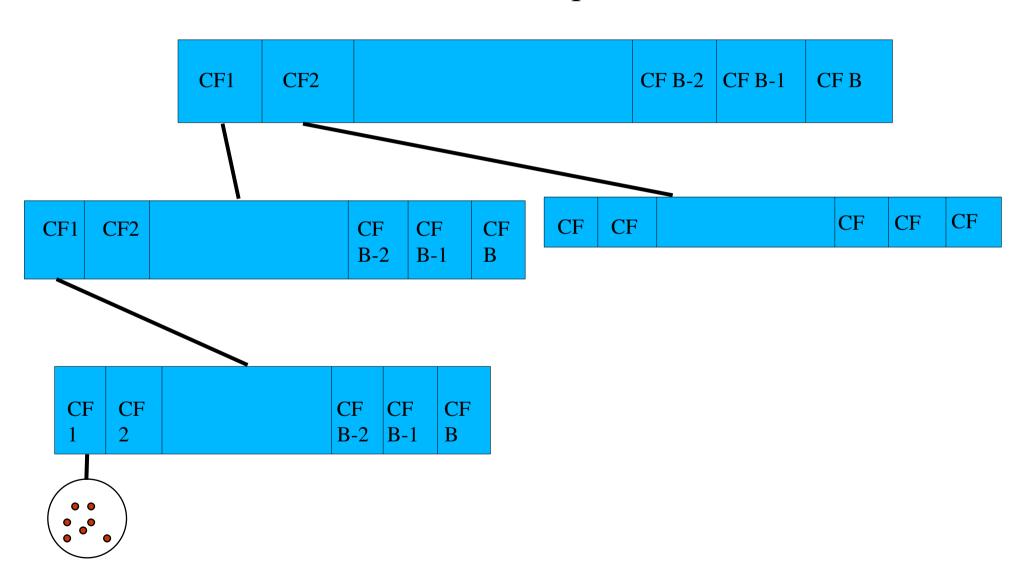
Distanza quadratica media

Mostriamo che la distanza quadratica media tra due cluster C₁ e
C₂ è definibile a partire da due CF: (N₁,LS₁,SS₁) e (N₂,LS₂,SS₂).

$$\begin{split} \sum_{i_{1} \in C_{1}} \sum_{i_{2} \in C_{2}} d_{e} (i_{1,} i_{2})^{2} &= \sum_{i_{1} \in C_{1}} \sum_{i_{2} \in C_{2}} \left\langle \boldsymbol{X}_{i_{1}} - \boldsymbol{X}_{i_{2}}, \boldsymbol{X}_{i_{1}} - \boldsymbol{X}_{i_{2}} \right\rangle \\ &= \sum_{i_{1} \in C_{1}} \sum_{i_{2} \in C_{2}} \left\langle \boldsymbol{X}_{i_{1}}, \boldsymbol{X}_{i_{1}} \right\rangle + \left\langle \boldsymbol{X}_{i_{2}}, \boldsymbol{X}_{i_{2}} \right\rangle - 2 \left\langle \boldsymbol{X}_{i_{1}}, \boldsymbol{X}_{i_{2}} \right\rangle \\ &= N_{2} \cdot SS_{1} + N_{1} \cdot SS_{2} - 2 \sum_{i_{1} \in C_{1}} \sum_{i_{2} \in C_{2}} \left\langle \boldsymbol{X}_{i_{1}}, \boldsymbol{X}_{i_{2}} \right\rangle \\ &= N_{2} \cdot SS_{1} + N_{1} \cdot SS_{2} - 2 \left\langle \boldsymbol{LS}_{1,} \boldsymbol{LS}_{2} \right\rangle \end{split}$$

CF tree (1)

• Un CF tree è un albero bilanciato per la memorizzazione di CF



CF tree (2)

- I CF nelle foglie rappresentano dei cluster formati da un certo numero di istanze
- I CF a livello più alto rappresentano dei cluster formati da tutti i CF figli
 - o, meglio, da tutte le istanze associate ai CF figli
- Un CF Tree è caratterizzato da due parametri
 - B: fattore di diramazione (branching factor)
 - il numero massimo di figli per ogni nodo
 - T: soglia (threshold)
 - il massimo diametro dei sotto-cluster memorizzati al livello delle foglie

$$\operatorname{diam}(C) = \sqrt{\frac{\sum_{i \in C} \sum_{j \in C} d_e(i, j)^2}{N(N-1)}} = \sqrt{\frac{2N \cdot SS^2 - 2\langle \mathbf{LS}, \mathbf{LS} \rangle}{N(N-1)}}$$

Funzionamento di BIRCH

- È diviso in due fasi
 - fase 1: BIRCH scandisce il database per costruire un CF-tree iniziale
 - può essere visto come una compressione dei dati che tenta di preservare i raggruppamenti presenti al loro interno
 - fase 2: BIRCH applica un algoritmo di raggruppamento qualsiasi (tipicamente basato sulle partizioni) alle foglie del CF-tree

Creazione dell'albero iniziale

- Notare che la costruzione dell'albero della fase 1 avviene con una sola scansione dei dati:
 - ogni istanza viene aggiunta nel nodo foglia più vicino
 - le modifiche apportate al CF foglia si ripercuotono fino alla radice
 - se il diametro del nodo foglia supera T, esso viene scisso in due nodi
 - questo può portare alla scissione di nodi al livello superiore
 - se a un certo punto la memoria non basta più a contenere il CFtree, la soglia T viene aumentata e si ricostruisce il CF-tree con la nuova soglia
 - partendo dai nodi foglia e senza riscandire il database

Vantaggi e svantaggi

• Vantaggi:

- efficiente, ha complessita O(n) ed è altamente scalabile, in quanto fa una sola scansione del database

• Svantaggi:

- tratta solo dati numerici (per poter definire i CF)
- è molto sensibile all'ordine con cui vengono scandite le istanze nel database
- non si adatta bene a cluster che non siano di natura sferica
 - visto che usa il concetto di raggio e diametro per raggruppare gli elementi

Metodi basati sulla densità

Principi dei metodi basati sulla densità (1)

- Piuttosto che basarsi sul concetto di distanza si basano sul concetto di densità
 - un cluster è una zona densa di istanze nello spazio dei dati, separato dagli altri cluster da zone povere di istanze.
- Molti metodi basati sulle densità si basano su due parametri:
 - ε e MinPts.
- Alcune definizioni:
 - ε-intorno di un oggetto: l'insieme nello spazio dei dati che sta in un cerchio di raggio ε centrato nella istanza;
 - se l'ε-intorno di una oggetto contiene un numero di altri oggetti maggiore di *MinPts*, l'oggetto è chiamo "core object".

Principi dei metodi basati sulla densità (2)

- un oggetto p è direttamente raggiungibile da q se
 - p sta nell'e-intorno di q
 - q è un core object

- ..., p_n con
 - $p_1 = p, p_n = q$
 - p_{i+1} è direttamente ragg. da p_i

DBSCAN

- Introdotto in Ester et al. (KDD 1999)
- Un cluster è un insieme di oggetti connessi massimale
 - ovvero è un insieme connesso tale che non esiste un insieme connesso più grande
- Algoritmo:
 - genera un cluster per ogni punto p che è un core object
 - iterativamente, per ogni cluster C, considera i punti che sono direttamente raggiungibili da uno dei punti di C
 - inserisci questi punti nel cluster C
 - eventualmente fondi insieme due cluster
- Complessità: $O(n \log n)$ usando opportuni indici.

Algoritmi basati su modelli

Algoritmi basati su modelli

- Questo tipo di algoritmi assumono un modello matematico (quasi sempre di natura statistica) dell'insieme dei dati, e determinano il raggruppamento che migliora la verosimiglianza dei dati
- Due approcci interessanti
 - conceptual clustering
 - una forma di raggruppamento nella quale non sono vengono divise le istanze in gruppi, ma per ogni gruppo viene prodotta una descrizione delle caratteristiche rilevanti
 - è quindi una specie di integrazione tra algoritmi di raggruppamento e caratterizzazione
 - nel decidere i gruppi, si tiene conto della semplicità e generalità della sua descrizione
 - COBWEB (l'algoritmo da studiare per l'esame) ricade in questa categoria.
 - mixture model

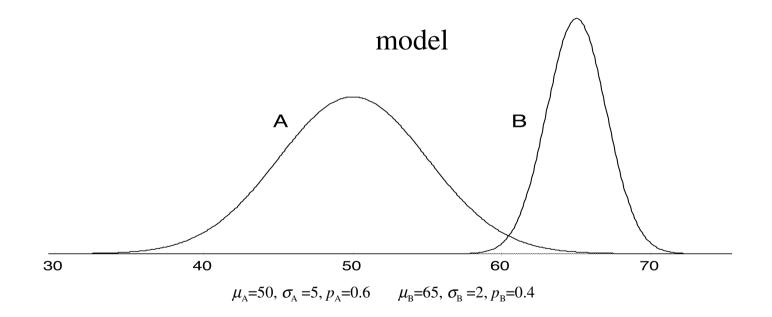
Mixture model (1)

- Una mistura è un insieme di *k* distribuzioni di probabilità, che rappresentano *k* cluster.
 - ogni distribuzione ci da la probabilità che una determinata istanza abbia un determinato insieme di valori per gli attributi, se fosse noto che tale istanza appartiene a quella distribuzione.
 - ogni istanza appartiene ad un unico cluster, ma non è noto a priori quale.
 - le k distribuzioni non sono equiprobabili, ma c'è una distribuzione di probabilità che riflette la relativa popolazione.
- Il più semplice modello di questo tipo si ha quando c'è un solo attributo numerico e varie distribuzioni di probabilità gaussiane.

Mixture model (2)

data

A	51	В	62	В	64	A	48	A	39	A	51
A	43	A	47	A	51	В	64	В	62	A	48
В	62	A	52	A	52	A	51	В	64	В	64
В	64	В	64	В	62	В	63	A	52	A	42
A	45	A	51	A	49	A	43	В	63	A	48
A	42	В	65	A	48	В	65	В	64	A	41
A	46	A	48	В	62	В	66	A	48		
A	45	A	49	A	43	В	65	В	64		
A	45	A	46	A	40	A	46	A	48		



Mixture model (3)

- Dato l'insieme di tutte le istanze e un numero specificato di distribuzioni, il problema di raggruppamento consiste nello
 - stimare i parametri (media e scarto quadratico medio) di ogni distribuzione;
 - associare ogni istanza ad una determinata distribuzione.
- Come si fa?
- Se conoscessimo il cluster a cui appartiene ogni istanza:
 - si determinano media, s.q.m. e prob. a priorio al solito modo

$$\mu_{A} = \frac{\sum_{i=1}^{n_{A}} x_{i}^{A}}{n_{A}} \qquad \sigma^{2} = \frac{\sum_{i=1}^{n_{A}} (x_{i}^{A} - \mu)^{2}}{n_{A}} \qquad p_{A} = n_{A}/n$$

dove x_i^A è il valore dell'attributo x per l'i-esima istanza del cluster A, n_A il numero di istanze di A ed n il numero di istanze totali.

Mixture model (4)

- Se conoscessimo i parametri delle distribuzioni e le loro probabilità a priori
 - data una istanza x, si ha

$$P[A|x] = \frac{P[x|A] \cdot P[A]}{P[x]}$$

 sostituendo le probabilità su insiemi continui con la densità di probabilità, ed eliminando il denominatore, si ottiene la verosimiglianza che x appartenga ad A

$$\frac{1}{\sqrt{2\pi}\sigma_A}e^{\frac{-(x-\mu_A)^2}{2\sigma_A^2}}p_A$$

dove μ_A e σ_A sono i parametri della distribuzione A, e p_A la sua probabilità a priori.

Algoritmo EM (1)

- Noi non conosciamo né l'uno né l'altro
 - adoperiamo una procedura simile all'algoritmo *k*-means:
 - partiamo con una stima iniziale dei parametri delle distribuzioni
 - li utilizziamo per determinare l'assegnamento delle istanze ai cluster
 - utilizziamo l'assegnamento per ricalcolare i parametri delle distribuzioni
 - iteriamo il procedimento
 - però, le assegnazioni ai cluster non sono secche
 - per ogni istanza i c'è una distribuzione di probabilità sui cluster
 - $-\ w_{_{i}}{^{A}}$ è la probabilità che l'istanza i appartenga al cluster A
 - le w_i giocano il ruolo di pesi nel determinare i parametri delle distrib.

$$\mu_{A} = \frac{\sum_{i=1}^{n} w_{i}^{A} x_{i}}{\sum_{i=1}^{n} w_{i}^{A}} \qquad \sigma_{A}^{2} = \frac{\sum_{i=1}^{n} w_{i}^{A} (x_{i} - \mu)^{2}}{\sum_{i=1}^{n} w_{i}^{A}} \qquad p_{A} = \frac{1}{n} \sum_{i=1}^{n} w_{i}^{A}$$

Algoritmo EM (2)

- Questo algoritmo si chiama EM (Expectation Maximization)
 - Expectation è la fase di calcolo dei wesi w
 - che sono le aspettative sull'appartenenza delle istanze ai cluster
 - Maximization è la fase di stima dei parametri delle distribuzioni
 - fase che massimizza la verosimiglianza totale dell'insieme di dati
- La verosimiglianza totale è data da

$$\prod_{i=1}^{n} \sum_{C=1}^{k} \frac{1}{\sqrt{2\pi}\sigma_{C}} e^{\frac{-(x-\mu_{C})^{2}}{2\sigma_{C}^{2}}} p_{C}$$

e aumenta ad ogni passo dell'algoritmo

Algoritmo EM (3)

- L'algoritmo EM converge sicuramente a un massimo locale
 - può non coincidere col massimo globale
- La convergenza è con un numero infinito di passi: quando fermarsi?
 - la verosimiglianza cresce velocemente nei primi passi, poi sempre più lentamente
 - fermarsi quando la crescita nella verosimiglianza è sotto una certa soglia

Generalizzazione di EM

- Alcuni modi in cui generalizzare l'algoritmo EM
 - istanze con più di un attributo
 - distribuzioni gaussiane multivariate
 - vari tipi di distribuzioni per i vari cluster
 - gaussiane, uniformi, esponenziali, etc..
 - trattamento di attributi nominali

Clustering: frontiere di ricerca

- Scalabilità
- Abilità di gestire tipi differenti di attributi
- Identificazione di cluster con forma arbitraria
- Minime conoscenze del dominio per determinare i parametri di input.
- Capacità di gestire rumore e outliers
- Insensibilità all'ordine delle istanze
- Trattamento di dati ad alta dimensionalità
- Capacità di incorporare vincoli definiti dall'utente
- Interpretabilità dei risultati

Ricerca di outlier

Cosa è un outlier?

- Outlier: una istanza che è completamente differente dal restante insieme di dati o con esso inconsistente.
- Origine degli outlier:
 - errori
 - inerente variabilità dei dati
 - situazioni anomale (ad esempio tentativi di frode)
- La maggior parte dei metodi di datamining tentano di minimizzare l'influenza degli outlier o di eliminarla.
- Tuttavia, talvolta ci interessa proprio individuare gli outlier! Si parla di outlier mining.
 - riconoscimento di frodi telefoniche;
 - riconoscimento di attacchi ad un sistema informatico;
 - riconoscimento di comportamento anomali a farmaci.

Outlier Mining

- Problema: date *n* istanze e il numero *k*, determinare le *k* istanze più dissimili dalle altre.
 - definire cosa si intender per dissimile
 - progettare un algoritmo efficiente per determinare gli elementi dissimili.
- In alcuni casi stabilire cosa è "strano" è difficile
 - nelle serie temporali, un abbassamento improvviso delle vendite a marzo potrebbe sembrare strano, mentre magari è solo il risultato di trend di tipo stagionale.
- Si può usare un metodo di visualizzazione grafica per evidenziare gli outlier, e lasciare il compito all'uomo?
 - solo per dati con poche dimensioni e con attributi prevalentemente numerici

Metodi statistici

- Si assume che i dati siano generati secondo una certa distribuzione di probabilità.
- Si sviluppa un test per validare questa ipotesi
 - si tratta di calcolare qualche statistica dell'insieme di dati e di confrontare questa statistica con i vari oggetti
 - ad esempio, si può considerare outlier qualunque oggetto che dista più di 3 volte lo scarto quadratico medio dalla media.
 - esempi di test famosi: test t di Student, test del χ^2 , etc..

Svantaggi

- la maggior parte dei test riguardano un singolo attributo, mentre nei casi tipici del data mining un outlier è riconoscibile solo guardando molti attributi contemporaneamente.
- è necessario avere una idea della distribuzione dei dati

Metodi basati sulle distanze

- Un oggetto o in un insieme di dati S è un outlier basato sulle distanze con parametri p e d se almeno p% degli oggetti in S è più lontano di d da o.
- Generalizza i metodi statistici
 - non è necessario conoscere il tipo di distribuzione
 - adatto per analisi multi-dimensionale
- Richiede di settare i parametri p e d
 - trovare i parametri giusti può richiedere vari tentativi

Riferimenti bibliografici

Bibliografia

- Jaiwei Han, Micheline Kamber. *Data Mining: Concepts and Techniques*. Morgan Kaufmann
 - capitolo 8
- Ian H. Witten, Eibe Frank. *Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations.*Morgan Kaufmann.
 - sezione 6.6