Analisi dei dati ed estrazione della conoscenza

Esercizi

Gianluca Amato

14 aprile 2005

- 1. Definire le seguenti funzionalità di un sistema di data mining: caratterizzazione, discriminazione, associazione.
- 2. Supponi che un data warehouse consista di tre dimensioni *ora*, *dottore* e *paziente*, e di due misure *conteggio* e *tariffa* dove *tariffa* è l'ammontare che il dottore richiede al paziente per una visita.
 - enumera tre tipi di schemi che sono comuni per modellare un data warehouse:
 - disegna uno schema per il presente data warehouse, scegliendo uno dei tre tipi al punto precedente;
 - partendo dal cuboide base giorno, dottore, paziente, quali operazioni OLAP devono essere eseguite per ottenere l'elenco dei proventi ottenuti da ogni dottore nell'anno 2000?
 - per ottenere lo stesso risultato, scrivi una query SQL assumendo che il dato memorizzato in un database relazionale secondo il seguente schema:
 - proventi (giorno, mese, anno, dottore, ospedale, paziente, contatore, tariffa) .
- 3. Con riferimento al calcolo delle misure in un data cube:
 - enumera tre tipi di misure, sulla base del tipo di funzioni aggregate usate per il calcolo del data cube;
 - per un data cube con tre dimensioni tempo, luogo e prodotto, a quale categoria appartiene la misura varianza?

 Suggerimento: la formula per il calcolo della varianza è $\frac{1}{n} \sum_{i=1}^{n} (x_i)^2 \bar{x_i}^2$ dove $\bar{x_i}$ è la media degli x_i .
- 4. Supponi che i dati per una analisi includono l'attributo *età*. I valori per questo attributo presenti nelle istanze, ordinati in ordine crescente, sono: 13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30, 33, 33, 35, 35, 36, 40, 45, 46, 52, 70.

- usare la tecnica di *equidepth binning* con profondità (depth) uguale a 3 per *ammorbidire* i dati in input.
- che altri metodi si possono usare in alternativa all'equidepth binning?
- 5. Usando gli stessi dati dell'esercizio precedente, mostra degli esempi di campioni estratti usando una di queste due tecniche: campionamento stratificato senza rimpiazzo, campionamento semplice con rimpiazzo. Usare campioni di dimensione 5 e gli strati $et\grave{a} \leq 20, \ 21 \leq et\grave{a} \leq 40$ e $et\grave{a} \geq 41$.
- 6. Supponete che la seguente tabella venga derivata da una procedura di attribute-oriented induction.

classe	luogonascita	conteggio
	Canada	180
Programmatore	altro	120
	Canada	20
DBA	altro	80

- Trasforma la tabella in una crosstab, mostrando i t-weight e i d-weight corrispondenti.
- Scrivere una regola descrittiva quantitativa per la classe Programmatore.
- 7. Si considerino gli stessi dati per l'attributo età dell'esercizio n. 4.
 - qual è la media dei dati? quale la mediana?
 - qual è la moda (o quali sono le mode) ?
 - qual è il midrange?
 - quali sono il primo quartile e il terzo quartile?
 - dai il cosiddetto five number summary per i dati
 - disegna un boxplot per i dati
- 8. Un database ha 4 transazioni. Siano $min_sup = 60\%$ e $min_conf = 80\%$.

TID	data	items
T100	15/10/1999	$\{K,A,D,B\}$
T200	15/10/1999	$\{D,A,C,E,B\}$
T300	19/10/1999	$\{C,A,B,E\}$
T400	22/10/1999	$\{B,A,D\}$

- Trova tutti gli itemset frequenti usando l'algoritmo Apriori. Mostrare chiaramente gli effetti dei passi Join e Prune dell'algoritmo.
- Elencare tutte le regole associative forti, e i rispettivi valori di supporto e confidenza, che rispettino la seguente meta-regola:

 $\forall x \in transactions, buys(x, item_1) \land buys(x, item_2) \Rightarrow buys(x, item_3)[s, c]$ dove $item_i$ è una variabile rappresentante oggetti (item).

9. La seguente tabella di contingenza riassume le transazioni di un supermercato, dove *hotdogs* si riferisce alle transazioni contenenti hot dog e *hotdogs* si riferisce alle transazioni che non contengono hot dog (analogamente per *hamburgers* e *hamburgers*.

	hot dogs	$\overline{hotdogs}$	\sum_{righe}
hamburgers	2000	500	2500
$\overline{hamburgers}$	1000	1500	2500
$\sum_{colonne}$	3000	2000	5000

- Considera la regola associativa "hotdogs \Rightarrow hamburgers". Data le soglie di supporto minimo del 25% e confidenza minima del 50%, si tratta di una regola forte?
- In base ai dati forniti, *hotdogs* è indipendente da *hamburgers*? Se no, che tipo di *correlazione* c'è tra di essi?
- 10. (difficile) Il prezzo degli oggetto in un negozio è sempre positivo o nullo. Il direttore del negozio è interessato solo a determinare le regole del tipo "un oggetto gratuito spinge all'acquisto di almeno 200 euro di merci in totale", in cui l'obiettivo è determinare quali sono gli oggetti in questione. Spiegare come determinare velocemente questi oggetti.