
Deriving numerical abstract domains via

Principal Component Analysis

Gianluca Amato, Maurizio Parton, and Francesca Scozzari

Università di Chieti-Pescara – Dipartimento di Scienze

Abstract. We propose a new technique for developing ad-hoc numerical
abstract domains by means of statistical analysis. We apply Principal
Component Analysis to partial execution traces of programs, to find out
a “best basis” in the vector space of program variables. This basis may
be used to specialize numerical abstract domains, in order to enhance
the precision of the analysis. As an example, we apply our technique to
interval analysis of simple imperative programs.

1 Introduction

Numerical abstract domains are widely used to prove properties of program
variables such as “all the array indexes are contained within the correct bounds”
or “division by zero cannot happen”. Moreover, numerical properties may help
other kind of analyses, such as termination analyses [6], timing analyses [15],
shape analyses [5], string cleanness analyses [10] and so on. Many numerical
abstract domains strive to trade the accuracy of convex polyhedra [9] for higher
speed (for instance, see the Octagon domain in [21]).

The precision of the analyses may often be improved with the use of special-
purpose abstract domains, such as the domains for the analysis of digital filters
[11], or the arithmetic-geometric progression abstract domain [12]. This idea may
be pushed further by devising domains not just for a class of applications, but
for a single program. For example, if we know the general form of the while-loop
invariants which occur in a program, domains able to express these invariants
should reach a higher precision than others.

In this paper we describe a family of ad-hoc domains and provide a fully
automatic mechanism which, starting from an approximation of the concrete
semantics of a program, selects the best domain in the family.

Consider the program in Figure 1, where the parameter x is the input and
y is a local variable, and its partial execution trace for the input x = 10 which
stops after 5 iterations of the while statement. Collecting the values for the
variables x and y at different program points (after each assignment), we obtain
the table in Figure 2. If we abstract this set of values using the box domain [7]
of Cartesian product of intervals, we get the shaded area in Figure 3, given by

{

5 ≤ x ≤ 10

−10 ≤ y ≤ −5

xyline = function(x)

{

assume(x>=0)

y=-x

while(x>y) {

x= x-1

y= y+1

}

}

Fig. 1. The example
program xyline.

x y

10 −10
9 −10
9 −9
8 −9
8 −8
7 −8
7 −7
6 −7
6 −6
5 −6
5 −5

Fig. 2. A partial ex-
ecution trace of the
example program.

//

OO

•

• •

• •

• •

• •

• •

x

y

Fig. 3. Representation of
the partial execution trace
and relative box abstraction.

The key point is that the abstraction in the box domain depends on the coor-
dinate system we choose to draw the boxes. With the standard choice of (x, y)
as coordinate system, the box in Figure 3 is a very rough approximation of the
partial trace, but we can improve the precision by conveniently changing the
axes. For instance, consider a different coordinate system whose axes x′, y′ are
clockwise rotated by 30 degrees. The abstraction in this “rotated box domain”
is depicted in Figure 4. The two boxes in Figure 4 are incomparable as sets of
points, nonetheless the rotated box seems to fit better: for example, it has a
smaller area. The question is how to find a “best rotation”.

//

OO

•

• •

• •

• •

• •

• •

x

y

x
′

y
′

&&

FF

Fig. 4. Abstraction with boxes ro-
tated by 30 degrees

//

OO

•

• •

• •

• •

• •

• •

x

y

x
′′

y
′′

��

??

Fig. 5. Abstraction with boxes ro-
tated by 45 degrees

To this aim, we use a statistical tool called Principal Component Analysis
(PCA). The intuitive idea of PCA is to choose the axes maximizing the variance
of the collected values. More explicitly, PCA finds a new orthonormal coordinate
system such that the variance of the projection of the data points on the first axis
is the maximum among all possible directions, the variance of the projection of
the data points on the second axis is the maximum among all possible directions
which are orthogonal to the first axis, and so on. In our example, the greatest
variance is obtained by projecting the data points along the line y = −x. An
orthogonal coordinate system (x′, y′) with the first axis corresponding to this

2

line may be obtained by a 45 degree clockwise rotation. The abstraction with
respect to the box domain in (x′′, y′′) is depicted in Figure 5, and in the original
coordinates it is given by:

{

10 ≤ x− y ≤ 20

−1 ≤ x+ y ≤ 0

It is worth noting that the while invariant in our example is x+y = 0, x−y ≥
0, and it may be expressed only in the domain of 45 degree rotated boxes. This
suggests that, using rotated boxes as abstract objects, an abstract interpreta-
tion based analyzer could infer this invariant. More generally, our intuition says
that, if we consider well-known numerical abstract domains and adapt them to
work with non-standard coordinate systems, we can improve the precision of the
analysis without much degradation of performance. In this paper we develop the
theoretical foundation and the implementation to validate this intuition, using
the box domain as a case study. In Section 6, we will show that our analysis
actually infers the invariant x+ y = 0, x− y ≥ 0.

The paper is structured as follows. Section 2 introduces some notations. Sec-
tion 3 presents the abstract domains of parallelotopes, i.e. boxes w.r.t. non-
standard coordinate systems, while Section 4 gives the abstract operators. Sec-
tion 5 introduces PCA, used to automatically derive the “best coordinate sys-
tem”. Section 6 presents the prototype implementation we have developed in the
R programming language [22], and shows some experimental results. Finally, in
Section 8 we discuss ideas on future work.

2 Notations

Linear algebra. We denote by R̄ the ordered field of real numbers extended
with +∞ and −∞. Addition and multiplication are extended to R̄ in the obvious
way, with the exception that 0 times ±∞ is 0. We use boldface for elements v

of R̄n. Given u,v ∈ R̄
n, and a relation ⊲⊳ ∈ {<,>,≤,≥,=}, we write u ⊲⊳ v if

and only if ui ⊲⊳ vi for each i ∈ {1, . . . , n}. We denote by · the dot product on

R̄
n, namely, u · v def

= u1v1 + · · ·+ unvn.
If A = (aij) is a matrix, we denote by AT its transpose. If A is invertible,

A−1 denotes its inverse, and GL(n) is the group of n × n invertible matrices.
The identity matrix in GL(n) is denoted by In, and any A ∈ GL(n) such that
AAT = In is called an orthogonal matrix. Clearly, any 1 × n-matrix can be
viewed as a vector: in particular, we denote by ai∗ (respectively a∗j) the vector
given by the i-th row (respectively the j-th column) of any n × n-matrix A. If
A is orthogonal, then the vectors ai∗ are orthonormal (they have length 1 and
are orthogonal), and thus are linearly independent. The same holds for vectors
a∗j . The standard orthonormal basis of Rn is denoted by {e1, . . . , en}.

Abstract Interpretation. (See [8] for details). Given complete lattices (C,≤C)
and (A,≤A), respectively called the concrete domain and the abstract domain,

3

a Galois connection is a pair (α, γ) of monotone maps α : C → A, γ : A → C

such that αγ ≤A idA and γα ≥C idC . If αγ = idA, then (α, γ) is called a
Galois insertion. Given a monotone map f : C → C, the map f̃ : A → A is a
correct approximation of f if αf ≤ f̃α. The best correct approximation of f is
the smallest correct approximation fα of f . It is well-known that fα = αfγ.

Boxes. A set B ⊆ R
n is called a (closed) box if there are bounds m,M ∈ R̄

n

such that
B = {x ∈ R

n | m ≤ x ≤ M} .

We denote such a box with 〈m,M〉. Boxes are used to abstract subsets of Rn.
If Box is the set of all the boxes, a Galois insertion (αB, γB) : ℘(Rn) ⇋ Box may
be defined by letting αB(C) be the smallest box enclosing C and γB(B) = B.

Given two boxes 〈m,M〉, 〈m′,M ′〉 ∈ Box, we will use the following notation
for the standard box operations (see [7]):

– The abstract union operation 〈m,M〉 ∪B 〈m′,M ′〉 yields the smallest box
containing both 〈m,M〉 and 〈m′,M ′〉;

– The abstract intersection operation 〈m,M〉∩B〈m′,M ′〉 computes the great-
est box contained in both 〈m,M〉 and 〈m′,M ′〉;

– assignB(i,a, b) : Box → Box corresponds to the (linear) assignment “xi =
a ·x+b”, where x is a vector of n variables, i ∈ {1, . . . n}, a ∈ R

n and b ∈ R.
It is the best correct abstraction of the concrete operation assign(i,a, b) :
℘(Rn) → ℘(Rn) defined as the pointwise extension of:

assign(i,a, b)(x)
def
= y where yj =

{

xj if j 6= i ,

(a · x) + b if j = i .

– testB(a, b, ⊲⊳) : Box → Box corresponds to the then-branch of the if-statement
“if (a · x ⊲⊳ b)”, where ⊲⊳∈ {<,>,≤,≥,=, 6=}. It is the best correct ab-
straction of the concrete operation test(a, b, ⊲⊳) : ℘(Rn) → ℘(Rn) defined
as:

test(a, b, ⊲⊳)(C) def
= C ∩ {x ∈ R

n | a · x ⊲⊳ b} .

The abstract operation testB(a, b, ⊲⊳)(〈m,M〉) computes the smallest box
which contains the intersection of 〈m,M〉 and the set of points {x ∈ R

n |
a · x ⊲⊳ b}.

3 The Parallelotope Domains

Every choice of A ∈ GL(n) gives new coordinates in R
n, and boxes with respect

to this transformed coordinates are called parallelotopes. Thus, a parallelotope
is a box whose edges are parallel to the axes in the new coordinate system.
Remark that we are not restricting to orthogonal change of basis. This means
that we consider any invertible linear transformation, such as rotation, reflec-
tion, stretching, compression, shear or any combination of these. The aim of the
change of coordinate system is to fit the original data with a higher precision
than with standard boxes.

4

Example 1. Consider the set C = {(u,−u) | u ≥ 0} ⊆ R
2 corresponding to the

while invariant x+y = 0, x−y ≥ 0 of program in Figure 1. If we directly abstract
C in the box domain, we get αB(C) = 〈(0,−∞), (+∞, 0)〉, and γB(αB(C)) =
R

+ × R
−, with a sensible loss of precision. Let us consider a clockwise rotation

of 45 degrees, centered on the origin, of the standard coordinate system. The
matrix

A =

[

cos(−π
4) − sin(−π

4)
sin(−π

4) cos(−π
4)

]

=

[

1√
2

1√
2

− 1√
2

1√
2

]

transforms rotated coordinates into standard coordinates.
We want to abstract C with boxes on the rotated coordinate system. To

this aim, we first compute the rotated coordinates of the points in C, and then
compute the smallest enclosing box. Since the rotated coordinates are given by
A−1(x, y)T , we obtain:

αB(A−1C) = αB({A−1v | v ∈ C})

= αB

({[

1√
2
− 1√

2
1√
2

1√
2

]

[

u

−u

]

| u ∈ R
+

})

= αB

({[

u
√
2

0

]

| u ∈ R
+

})

= 〈(0, 0), (+∞, 0)〉 .

The axes in the rotated coordinate system are, respectively, the lines y = −x and
y = x in the standard coordinate system. It means that the box 〈(0, 0), (+∞, 0)〉
computed above may be represented algebraically in the standard coordinate
system as

{

0 ≤ x+ y ≤ 0

0 ≤ x− y ≤ +∞

More in general, using the matrix A, we may represent all the parallelotopes of
the form

{

m1 ≤ x+ y ≤ M1

m2 ≤ x− y ≤ M2

Thus, we have transformed a non-relational analysis into a relational one,
where the form of the relationships is given by the matrix A. If we concretize the
box by applying γB and using the matrix A to convert the result to the standard
coordinate system, we obtain AγBαB(A−1C) = C. Thus, we get a much better
precision than using standard boxes. We stress out that we need to choose A

cleverly, on the base of the specific data set, otherwise we may loose precision: for
example, if D = {(u, 0) | u ∈ R}, then γB(αB(D)) = D but AγBαB(A−1D) = R

2.
It is worth noting that, if we prefer not to deal with irrational numbers, we

may choose the transformation matrix

A′ =
√
2 A =

[

1 1
−1 1

]

5

This corresponds to a 45 degree clockwise rotation followed by a scaling by
√
2

in all directions.

In order to define the abstract domains of parallelotopes, we use the same
complete lattice Box we used for the box domain, but equipped with a different
abstraction function, and different abstract operations.

Definition 1 (The Parallelotope Domains). Given A ∈ GL(n), we define
the maps γA : Box → ℘(Rn) and αA : ℘(Rn) → Box as

γA(〈m,M〉) def
= AγB(〈m,M〉) ,

αA(C) def
= αB(A−1C) .

Using the above definition, it is easy to check that (αA, γA) is a Galois inser-
tion. Intuitively, the abstraction αA first projects the points into the new coor-
dinate system, then computes the standard box abstraction. The concretization
map γA performs the opposite process. Remark that, as a particular case, we
have αIn = αB and γIn = γB.

4 Abstract operations on parallelotopes

In this section we illustrate the main abstract operations on the Parallelotope
domains. We show that, in most cases, the abstract operators can be easily re-
covered by the corresponding operators on boxes. In all the operations, we ignore
the computational cost of computing the inverse of the matrix A. If A is orthog-
onal, the cost may be considered constant since A−1 = AT and we do not need
to compute the transpose: it is enough to consider specific algorithms which per-
forms transposition “on the fly” when needed. If A is not orthogonal, the inverse
may be computed with standard algorithms which have complexities between
quadratic and cubic. However, A−1 needs to be computed only once for the en-
tire execution of the abstract interpretation procedure, hence its computational
cost is much less relevant then the cost of the abstract operations.

4.1 Union and intersection

Given B1, B2 ∈ Box, the best correct approximation of the concrete union is:

B1 ∪A B2
def
= αA(γA(B1) ∪ γA(B2)) .

By replacing αA and γA with their definitions, A and A−1 cancel out and we
have that ∪A is the same as ∪B. The same holds for intersection.

Proposition 1 (Union and intersection). Given B1, B2 ∈ Box, we have that:

B1 ∪A B2 = B1 ∪B B2 B1 ∩A B2 = B1 ∩B B2

The computational complexity of both operations is O(n).

6

4.2 Assignment

The abstract operation assignA(i,a, b) corresponds to the (linear) assignment
“xi = a·x+b”, where x is a vector of n variables, i ∈ {1, . . . n}, a ∈ R

n and b ∈ R.
We look for a constructive characterization of the best correct approximation,
defined as:

assignA(i,a, b)
def
= αA assign(i,a, b) γA .

Let us note that the concrete operation may be rewritten using matrix algebra
as assign(i,a, b)(x) = Zi,ax+ bei where

Zi,a = I + ei · a′ with a′j =

{

aj if j 6= i,

ai − 1 if j = i.

This allows us to prove the following:

Theorem 1 (Assignment). Given 〈m,M〉 ∈ Box, we have that

assignA(i,a, b)(〈m,M〉) = 〈m′ +A−1bei,M ′ +A−1bei〉
where

m′ = inf
x∈〈m,M〉

(HTei) · x M ′ = sup
x∈〈m,M〉

(HTei) · x ,

and H = A−1Zi,aA. The complexity is O(n2).

Proof (Sketch). We may rewrite the abstract operator as:

αA(assign(i,a, b)(γA(〈m,M〉)))
= αB(A−1assign(i,a, b)(AγB(〈m,M〉))
= αB(A−1Zi,aA 〈m,M〉+A−1bei) .

Let H = A−1Zi,aA and H 〈m,M〉 = 〈m′,M ′〉. For each i ∈ {1, . . . , n}, m′
i =

infx∈〈m,M〉(Hx) ·ei = infx∈〈m,M〉(H
Tei) ·x. Since HTei is the transpose of the

i-th row of H, we may compute infx∈〈m,M〉(H
Tei) ·x using interval arithmetic.

4.3 Test

We want to find a constructive characterization of the best correct approximation
testA(a, b,≤) defined as:

testA(a, b,≤)
def
= αA test(a, b,≤) γA .

Given 〈m,M〉 ∈ Box, we have that

αA(test(a, b,≤)(γA(〈m,M〉)))
= αB(A−1test(a, b,≤)(A γB(〈m,M〉)))
= αB(A−1((A γB(〈m,M〉)) ∩ {x ∈ R

n | a · x ≤ b}))
= αB(γB(〈m,M〉) ∩ {A−1x ∈ R

n | a · x ≤ b})
= αB(γB(〈m,M〉) ∩ {x ∈ R

n | (ATa) · x ≤ b})
= αB(test(a, b,≤)(γB(〈m,M〉))) .

7

Hence, the abstract operator testA(a, b,≤) can be easily computed by using the
standard abstract operator on boxes, as testA(a, b,≤) = testB(ATa, b,≤).

Proposition 2 (Test). We have that

testA(a, b,≤) = testB(ATa, b,≤) .

The computational complexity is O(n2).

The complexity of the algorithm to compute testB(a, b,≤) is O(n). Thus, the
complexity of computing testA(a, b,≤) is O(n2), since we need to add the com-
plexity for computing ATa. However, the latter might be computed only once
in the analysis, and then memorized, in order to be reused every time we find
such a conditional.

It is easy to see that, in the general case, the abstract counterpart of the
operation test(a, b, ⊲⊳) corresponding to the then-branch of the if-statement “if
(a · x ⊲⊳ b)”, where a ∈ R

n, b ∈ R and ⊲⊳∈ {<,>,≤,≥,=, 6=}, can be easily
recovered by the corresponding operator on boxes. The same holds for the else-
branch of the if-statement. For instance, the else-branch of “if (a · x ≤ b)” is
exactly the then-branch of “if (a · x > b)”.

4.4 On the implementation of abstract operators

Correctness of the abstract operators in actual implementations strictly depends
on the exactness of matrix operations. The easiest way to ensure correctness
is to use rational arithmetic. Alternatively, we could estimate the error of the
floating point implementations of these operations, and use rounding to correctly
approximate the abstract operators on real numbers, following the approach in
[20].

Note that, although we have presented our domain as an abstraction of
℘(Rn), we may apply the same construction to build an abstraction of ℘(Zn),
in order to analyze programs with integer variables. In this case, whenever A is
an integer matrix, we may perform almost all the computations on integers. In
fact, observe that A−1 is an integer matrix divided by an integer number d ∈ Z.
Since all the operations involved in assignA are linear, d may be factored out and
only applied at the end, before rounding the intervals to integer bounds.

5 Principal component analysis

Principal component analysis (PCA) is a standard technique in statistical analy-
sis which transforms a number of possibly correlated variables into uncorrelated
variables called principal components, ordered by the most to the least impor-
tant. Consider an n × m data matrix D on the field of real numbers. Each
row may be though of as a different instance of a statistical population, while
columns are attributes (see, for instance, the 11 × 2 matrix in Figure 2). Con-
sider a vector v ∈ R

m, which expresses a linear combination of the attributes of

8

the population. The projection of the n rows of the matrix D onto the vector
v is given by Dv. Among the different choices of v, we are interested in the
ones which maximize the (sample) variance of Dv. We recall that the variance
of a vector u ∈ R

m is σ2
u
= 1

m

∑m

i=1(ui − ū)2 where ū is the (empirical) mean
of u, i.e. ū = 1

m

∑m

i=1 ui. Any unit vector which maximizes the variance may
be chosen as the first principal component. This represents the axis which best
explains the variability of data. The search for the second principal component
is similar, looking for vectors v′ which are orthonormal to the first principal
component and maximize the variance of Dv′. In turn, the third principal com-
ponent should be orthonormal to the first twos, with maximal variance, and so
on.

From a mathematical point of view, principal component analysis finds an
orthogonal matrix that transforms the data to a new coordinate system. The
columns (called principal components) are ordered according to the variability
of the data that they are able to express. It turns out that the columns are
the eigenvectors of the covariance matrix of D, i.e. an n× n symmetric matrix
Q such that qij is the (sample) covariance of di∗ and dj∗. We recall that the
covariance of two vectors v,w ∈ R

m is σvw = 1
m

∑m
i=1(vi − v̄)(wi − w̄). The

columns are ordered according to the corresponding eigenvalues. However, prin-
cipal components are generally computed using singular value decomposition for
a greater accuracy.

Example 2. Consider the partial execution trace in Figure 2 as data matrix D.
If we perform the PCA on D, we get the principal components (1√

2
,− 1√

2
) and

(1√
2
, 1√

2
), corresponding to the change of basis matrix

A =

[

1√
2

1√
2

− 1√
2

1√
2

]

given in Example 1.

5.1 Orthogonal Simple Component Analysis

It is worth noting that small changes in the data cause small changes in the
principal components which, however, may cause a big loss in precision. This
depends on the interactions between the PCA and the parallelotope abstraction
function: If D is an unbounded set of points (in R

n), the bounds (in R̄) of the
minimum enclosing box of D are not continuous w.r.t. the change of basis matrix.

Example 3. We consider the 10× 2 matrix obtained removing the last line from
the table in Figure 2. If we perform the PCA, we get the change of basis matrix

S =

[

s1 s2
−s2 s1

]

=

√

1
2 + 1

2
√
257

√

1
2 − 1

2
√
257

−
√

1
2 − 1

2
√
257

√

1
2 + 1

2
√
257

9

//

OO

?

?

?

?

?

?

?

?

?

?

?

?

@@

Fig. 6. Bad precision with PCA

corresponding to a clockwise rotation of about 43 degrees. The principal com-
ponents are not very different from the previous ones, but now we are not able
to represent parallelotopes bounded by constraints on x + y and x − y. There-
fore, the invariant x + y = 0, x − y ≥ 0 cannot be represented directly. Since
the difference between the first principal component and the axis x + y = 0 is
unbounded, it is abstracted into −∞ ≤ s2x+ s1y ≤ 0 and 0 ≤ s1x− s2y ≤ +∞,
which is the shaded area in Figure 6. This cause a serious loss of accuracy.

In order to overcome the difficulties outlined above, we need a way of “stabi-
lizing” the result of the PCA, so that it is less sensible to small changes in the
data. There are two possible approaches to this problem: we may remove outliers
(i.e., points which are very “different” from the others) by the execution trace
before computing the PCA, or refine the result of the PCA. In this paper, we
follow the second approach, since we prefer to maintain the whole set of original
data. Our idea is that, in many cases, we expect that optimal parallelotopes
which abstracts program states should contain only linear constraints with inte-
ger coefficients. This is obvious for programs with integer variables only (such as
Example 1), or when we are interested in properties described by integer values
(such as bounds of arrays, division by 0, etc. . .). Therefore, we would like to
minimally change the result of the PCA (the matrix A) in such a way that A−1

is an integer matrix. Of course, the new matrix is not going to be the matrix
with principal components anymore, but in this way we compensate for possible
deviations of the principal components with respect to the “optimal” vectors.

There are several procedures in the statistic literature for simplifying the
result of the PCA, in order to obtain integer matrices. In this paper we follow
the approach of the orthogonal simple component analysis, introduced in [1]. The
authors define a simplification procedure which transforms the result A of the
PCA in an integer matrix B such that the columns of B are orthogonal and the
angle between any column of A and the corresponding column of B is less then a
specified threshold θ. Note that, in the general case, matrix B is not orthogonal
because the columns of B are orthogonal but not orthonormal (i.e., their length
is not one). This is not a problem since our domains of parallelotopes do not
require matrices to be orthogonal. Note that, although B−1 may contain non-
integer elements, each row is exactly an integer vector multiplied by a rational.
Hence, it expresses integer constraints.

10

6 Implementation

In order to investigate on the feasibility of the ideas introduced above, we have
developed a prototypical implementation for the intra-procedural analyses of a
simple imperative language. The analyses may be performed with either the
standard domain of boxes, the domains of parallelotopes, or with their com-
bination. In order to collect the partial execution traces, the program under
analysis is automatically augmented for recording the values of the variables at
every program point. The implementation automatically recovers partial execu-
tion traces starting from the input values (which may be randomly generated
or provided by the user), computes the orthogonal simple components, and per-
forms static analysis with the three domains. Program equations are solved with
a recursive chaotic iteration strategy on the weak topological ordering induced
by the program structure (see [4]). The analyzer uses the standard widening
[9] which extrapolates unstable bounds to infinity and the standard narrowing
which improves infinite bounds only.

The prototype has been written in R [22], a language and environment for
statistical computing. R is a functional language with call-by-value semantics,
powerful meta-programming features, vectors as primitive data types and a huge
library of built-in statistical functions. The benefits we got using R for devel-
oping our application were many. For example, thanks to the powerful meta-
programming features, it was easy to augment programs with instructions which
record the partial execution traces, and there was no need to implement a parser
for the static analyzer. Actually, code can be manipulated programmatically in
R, as in Lisp. Moreover, the vast library of statistical functions allowed us to
implement easily the PCA (just a function call was sufficient) and the simplifi-
cation procedure for obtaining the orthogonal simple components. Correctness
of abstract operators was ensured using rational arithmetic.

The main drawback of R, at least for our application, is speed. Since it
only supports call-by-value semantics, manipulating complex data structures
may require several internal copy operations. For a prototype, this was deemed
less important then fast coding. However, this means that we cannot compare
the effective speed of the Parallelotope domains with the speed of octagons or
polyhedra, because all the standard implementations of the latter domains, in
libraries such as APRON [18] or PPL [2], are in C or C++.

6.1 Optimizing the Parallelotope domains

Using the Parallelotope domains, we have occasionally experimented some prob-
lems in the bootstrap phase of the analysis. Consider the sample program start1

in Figure 7. If we perform the analyses with the standard box domain, we may
easily infer that, at the end of the function, both the variables x and y assume
the value 10. However, using the Parallelotope domain with the axes clockwise
rotated by 45 degrees, the analysis starts with the abstract state which covers the
entire R2. The assignment x = 10 has no effect: since there are no bounds on the
possible values for y, then nothing may be said about x+y and x−y, even if we

11

start1 = function()

{

x=10

y=x

}

start2 = function(x)

{

y=10

x=y

}

cousot78 = function()

{

i=2

j=0

while (TRUE) {

if (i*i==4)

i=i+4

else {

j=j+1

i=i+2

} } }

Fig. 7. Example programs

know the value of x. Therefore, after the second assignment, we only know that
x− y = 0, loosing precision with respect to the standard box analysis, although
x = y = 10 may be expressed in the rotated domain as x+ y = 20, x− y = 0.

The problem arises from the fact that assignments are naturally biased to-
wards the standard axes, since the left hand side is always a variable. At the
beginning of the analysis, when the abstract state does not contain any con-
straint, all constant assignments are lost, and this is generally unfavorable to
the precision of the analysis. For this reason, our analyzer initializes all the local
variables to zero, as done in many programming languages. Unfortunately, this
does not always solve the problem, due to the presence of input parameters.
Consider the program start2 in Figure 7. In this case, we assume that y = 0 at
the beginning of the function, but we cannot assume that x = 0, since this is a
parameter. However, our parallelotope (the 45 degree clockwise rotated boxes)
cannot express the fact that y = 0. Hence the abstract state at the beginning
of the function is the full space R

2, and the result at the end of the function
is again x − y = 0. From the point of view of precision, an optimal solution to
this kind of problems would be to use the reduced product of the box domain
and Parallelotope domains. However, this may severely degrade performance. A
good trade-off could be to perform both analysis in parallel: at the end of each
abstract operations, we use the information which comes from one of the two
domains to refine the other, and vice versa. Given a box and a parallelotope, a
satisfactory and computationally affordable solution is to compute the smallest
parallelotope which contains the box, and then the intersection between the two
parallelotopes. The symmetric process can be used to refine the box. We have
adopted this solution in our analyzer (see [11, 12] for a similar approach).

6.2 Experimental Evaluation

We applied the analyzer to different toy programs we collected from the lit-
erature. Although an exhaustive comparison of the speed and precision of the
domains of parallelotopes with other domains is outside the scope of this paper,
we present here some preliminary results. We considered the following programs:

12

program Box Parallelotope combined Octagon

bsearch

1 ≤ lwb ≤ 100
1 ≤ upb ≤ 100
0 ≤ m ≤ 100

(−99 ≤ upb − lwb)
(−100 ≤ m − lwb)

0 ≤ upb − lwb as box+ptope
as box+ptope+
−99 ≤ m − lwb

bsearch* as above
0 ≤ upb − lwb

−101 ≤ −upb − lwb + 2m ≤ 50.5
(−50.5 ≤ m − lwb ≤ 74.75)

as box+ptope as above

xyline
−x + y ≤ 0
x + y = 0

as ptope as ptope

bsort

1 ≤ b ≤ +∞
0 ≤ j ≤ +∞
0 ≤ t ≤ +∞

as box

1 ≤ b ≤ 100
0 ≤ j ≤ 100
0 ≤ t ≤ 99
b + j ≤ 199
b + t ≤ 198
0 ≤ j − t
0 ≤ b − t

bsort* as above 1 ≤ b

1 ≤ b ≤ 100
0 ≤ j ≤ 100,
0 ≤ t ≤ 99
0 ≤ j − t

as above

cousot78
2 ≤ i
0 ≤ j

2 ≤ i + j
−i + j ≤ −2

as box+ptope as box+ptope

cousot78
† as above −∞ ≤ −i + 2j ≤ −2 as box+ptope as box+ptope

Fig. 8. Results of the analyses for several programs and domains. Constraints in paren-
theses are not part of the result of the analyses, but may be inferred from them.

bsearch: binary search over 100-element arrays, as appeared in [7]; xyline: the
example program in Figure 1; bsort: bubblesort over 100-element arrays, which
is the first example program in [9]; cousot78: the program in Figure 7, which is
an instance of a skeletal program in [9].

All programs have at least one loop. For each program, we show the abstract
state inferred by the analyzer at the beginning of the loop. Since bsort has
two nested loops, we only show the abstract state for the outer one. In order to
compare our results to the Octagon domain [21], we have used the Interproc ana-
lyzer [17, 18], enabling the option for guided analysis (see [13]). This has required
converting the sample programs from the R syntax to the syntax supported by
Interproc. For the parallelotope and combined domains, we have used a change
of basis matrix determined by orthogonal simple component analysis with an
accuracy threshold of cos π

4 . The only exception is cousot78†, where we have
used an accuracy of 0.98. For bsort and bsearch we have shown two different
results: the first one is for a standard analyses, while in the second one we have
instructed the tracer and analyzer not to consider the variables k and tmp re-
spectively. The variable k is the key for the binary search, while tmp is just a
temporary variable used to swap two elements of an array. Both are either com-
pared with array elements or assigned to/from array elements, but our analyzer
does not deal with arrays at all, nor does Interproc. Removing these variables by
the analysis helps the PCA procedure. This suggests a possible improvement, not
implemented yet, which is to automatically remove from the partial execution
traces those variables which are assigned to/from array elements, or compared
with them.

13

The results show that, in most cases, the domains of parallelotopes gives in-
teresting properties, which cannot be inferred by the corresponding results of the
box domain. In the bsort∗ case, the domain of parallelotopes does not yield any-
thing interesting, but its combination with standard boxes does: the combined
domains is able to prove (like Octagon) that all accesses to arrays are correct. In
most of the cases, Octagon was able to obtain more precise abstract states than
ours, but the theoretical complexity of its operations is greater. However, in the
bsearch* case we were able to obtain a property which cannot be represented
in Octagon, and cannot be inferred by the corresponding results. A practical
comparison of speed is not possible at the moment, since our implementation in
R is definitively slower than the APRON [18] library used in Interproc.

7 Related work

The idea of parametrizing analyses for a single program, or a class of programs,
has been pursued in a few papers. The analysis for digital filters proposed in
[11] is an example of domains developed for a specific class of applications. The
same holds for the domain of arithmetic-geometric progressions [12], used to
determine restrictions on the value of variables, as a function of the program
execution time.

In our paper, we extend this idea and propose parametric domains which
may be specialized for a single program. The same approach can be found in the
domain of symbolic intervals [23], which depend on a total ordering of variables
in the program, and most importantly, in the domain of template polyhedra
[24], that is, domains of fixed form polyhedra. For each program, the authors fix
a matrix A and consider all the polyhedra of type Ax ≤ b. The choice of the
matrix is what differentiates template polyhedra from other domains, where the
matrix is fixed for all programs (such as intervals or Octagon) or varies freely
(such as polyhedra.)

However, in all these papers, the choice of the parameters is performed using
a syntactic inspection of the program. To the best of our knowledge, the present
work is the first attempt of inferring parameters on the base of partial execution
traces. Moreover, we try to be as conservative as possible, and reuse the operators
of the original abstract domains, instead of devising completely new operators.

There are also parametrization strategies applicable to almost all numeric
domains. For example, the accuracy of widening operators can be enhanced
through the adoption of intermediate thresholds [3], from a simple syntactic
analysis of the program (e.g., maximum size of arrays, constants declared in
the program). Moreover, the complexity of relational analyses can be reduced
by using packing, which partitions the set of all program variables into groups,
performs relational analyses within the partitions and non-relational analyses
between the partitions [3]. These strategies are orthogonal to our approach, and
can be applied to our domains as well.

A different approach which exploits execution traces can be found in [16]. The
authors collect (probabilistic) execution traces, in order to directly derive linear

14

relationships between program variables, which hold with a given probability.
On the contrary, in our approach we use the information gathered from partial
execution traces as an input for a subsequent static analysis.

8 Conclusions and Future Work

We have presented a new technique for shaping numerical abstract domains
to single programs, by applying a “best” linear transformation to the space of
variable values. One of the main advantages of this technique is the ability to
transform non-relational analysis into relational ones, by choosing the abstract
domain which best fits for a single program. Moreover, this idea may be imme-
diately applied to any numerical abstract domain which is not closed by linear
transformations, such as octagons [21], bounded differences [19], simple congru-
ences [14]. It suffices to give specialized algorithms for the assignment operation.

We have realized a prototypical analyzer and, as an application, we have fully
developed our technique for the interval domain. The experimental evaluation
seems promising, but also shows that there is still space for many improvements.
We may choose specific program points where values are collected, such as a loop
entry point, in order to better focus the statistical analysis and we may use tech-
niques of code coverage, as in software testing, to improve the quality of execution
traces. Moreover, we may partition the set of values we apply PCA to. One idea
could be to partition the set of program variables into groups (variables used for
array indexes, variables for temporary storage, etc...) which are expected not to
be correlated, and perform PCA separately on each group (an idea similar to
packing [3]). In addition, we may partition the program code itself (for example
around loops), perform a different PCA on each partition, and change the ab-
stract domain appropriately when crossing partitions. In the extreme, we could
choose different parameters for each program point, like Sankaranarayanan et
al. [24] do for template polyhedra.

The use of linear transformations also suggests to combine PCA with differ-
ent approaches. We may infer the axes in the new coordinate system from both
the semantics and the syntax of the program. The analysis could vastly bene-
fit from the ability to express constraints occurring in the linear expressions of
the program, especially in loop guards and array accesses. However, the syntac-
tic approach alone is not recommended, since not all the interesting invariants
appear as expressions in the source code. For example, the cousot78 program
does not contain the expressions i+j, j-i or 2*j-i: nonetheless, the analysis
was able to prove invariants on these constraints (see Figure 8). To overcome
this limitation, we may use the probabilistic invariants found by the analysis in
[16] instead of using the syntax of the program.

Finally, writing the implementation in R has been useful for rapid prototyp-
ing, but porting the code to a faster programming language, possibly within the
framework of well known libraries such as APRON [18] or PPL [2], would make it
available to a wider community, while improving performance.

15

References

1. K. Anaya-Izquierdo, F. Critchley, and K. Vines. Orthogonal simple compo-
nent analysis. Technical Report 08/11, The Open University, 2008. Available
from http://statistics.open.ac.uk/TechnicalReports/spca final.pdf. Last
accessed 2010/03/26.

2. R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Science of Computer Programming, 72(1–2):3–21, 2008.

3. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. A static analyzer for large safety-critical software. In Proceedings
of the ACM SIGPLAN 2003 Conference on Programming Language Design and
Implementation (PLDI’03), pages 196–207, San Diego, California, USA, June 7–
14 2003. ACM Press.

4. F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In D. Bjørner,
M. Broy, and I. V. Pottosin, editors, Formal Methods in Programming and Their
Applications, International Conference Academgorodok, Novosibirsk, Russia June
28 July 2, 1993 Proceedings, volume 735 of Lecture Notes in Computer Science,
pages 128–141. Springer, Berlin Heidelberg, 1993.

5. B.-Y. E. Chang and X. Rival. Relational inductive shape analysis. In Principles Of
Programming Languages, POPL’08, volume 43 of SIGPLAN Not., pages 247–260.
ACM, New York, NY, USA, 2008.

6. M. A. Colóon and H. B. Sipma. Synthesis of linear ranking functions. In T. Mar-
garia and W. Yi, editors, Tools and Algorithms for the Construction and Analysis
of Systems, 7th International Conference, TACAS 2001 Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2001 Genova,
Italy, April 2–6, 2001 Proceedings, volume 2031 of Lecture Notes in Computer
Science, pages 67–81. Springer, Berlin Heidelberg, 2001.

7. P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
In Proceedings of the Second International Symposium on Programming, pages 106–
130, Paris, France, 1976. Dunod.

8. P. Cousot and R. Cousot. Abstract interpretation and applications to logic pro-
grams. The Journal of Logic Programming, 13(2–3):103–179, July 1992.

9. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In POPL ’78: Proceedings of the 5th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, pages 84–97, New
York, NY, USA, Jan. 1978. ACM Press.

10. N. Dor, M. Rodeh, and M. Sagiv. Cleanness checking of string manipulations
in C programs via integer analysis. In P. Cousot, editor, Static Analysis, 8th
International Symposium, SAS 2001 Paris, France, July 16–18, 2001 Proceedings,
volume 2126 of Lecture Notes in Computer Science, pages 194–212. Springer, Berlin
Heidelberg, 2001.

11. J. Feret. Static analysis of digital filters. In Schmidt [25], pages 33–48.
12. J. Feret. The arithmetic-geometric progression abstract domain. In R. Cousot, ed-

itor, Verification, Model Checking, and Abstract Interpretation – 6th International
Conference, VMCAI 2005, Paris, France, January 17-19, 2005. Proceedings, vol-
ume 3385 of Lecture Notes in Computer Science, pages 42–58. Springer, 2005.

13. D. Gopan and T. Reps. Guided static analysis. In H. R. N. G. Filé, editor, Static
Analysis, 14th International Symposium, SAS 2007, Kongens Lyngby, Denmark,
August 22-24, 2007., volume 4634 of Lecture Notes in Computer Science, pages
349–365. Springer, Berlin Heidelberg, 2007.

16

14. P. Granger. Static analysis of arithmetical congruences. Internatinal Journal of
Computer Mathematics, 32, 1989.

15. B. S. Gulavani and S. Gulwani. A numerical abstract domain based on expression
abstraction and max operator with application in timing analysis. In A. Gupta
and S. Malik, editors, Computer Aided Verification, 20th International Confer-
ence, CAV 2008 Princeton, NJ, USA, July 7–14, 2008 Proceedings, volume 5123
of Lecture Notes in Computer Science, pages 370–384. Springer, Berlin Heidelberg,
2008.

16. S. Gulwani and G. C. Necula. Precise interprocedural analysis using random in-
terpretation. In Principles Of Programming Languages, POPL’05, volume 40 of
SIGPLAN Not., pages 324–337. ACM, New York, NY, USA, 2005.

17. B. Jeannet. Interproc Analyzer for Recursive Programs with Numerical Vari-
ables. INRIA. Software and documentation are available at the follow-
ing URL: http://pop-art.inrialpes.fr/interproc/interprocweb.cgi. Last ac-
cessed: 2010-06-11.

18. B. Jeannet and A. Miné. APRON: A library of numerical abstract domains for
static analysis. In A. Bouajjani and O. Maler, editors, Computer Aided Verification,
21st International Conference, CAV 2009, Grenoble, France, June 26 – July 2,
2009. Proceedings, volume 5643 of Lecture Notes in Computer Science, pages 661–
667. Springer, Berlin Heidelberg, 2009.

19. A. Miné. A new numerical abstract domain based on difference-bound matrices. In
O. Danvy and A. Filinski, editors, Programs as Data Objects, Second Symposium,
PADO2001 Aarhus, Denmark, May 2123, 2001 Proceeding, volume 2053 of Lecture
Notes in Computer Science, pages 155–172. Springer, Berlin Heidelberg, 2001.

20. A. Minè. Relational abstract domains for the detection of floating-point run-time
errors. In Schmidt [25], pages 3–17.

21. A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computation,
19(1):31–100, Mar. 2006.

22. R Development Core Team. R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria, 2009.

23. S. Sankaranarayanan, F. Ivančić, and A. Gupta. Program analysis using symbolic
ranges. In H. R. N. G. Filé, editor, Static Analysis, 14th International Symposium,
SAS 2007, Kongens Lyngby, Denmark, August 22-24, 2007., volume 4634 of Lecture
Notes in Computer Science, pages 366–383. Springer, Berlin Heidelberg, 2007.

24. S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Scalable analysis of linear
systems using mathematical programming. In R. Cousot, editor, Proc. of Veri-
fication, Model Checking and Abstract Interpretation (VMCAI), volume 3385 of
Lecture Notes in Computer Science, pages 21–47, Paris, France, January 2005.
Springer Verlag.

25. D. Schmidt, editor. Programming Languages and Systems, 13th European Sympo-
sium on Programming, ESOP 2004, Held as Part of the Joint European Confer-
ences on Theory and Practice of Software, ETAPS 2004, Barcelona, Spain, March
29 - April 2, 2004. Proceedings, volume 2986 of Lecture Notes in Computer Science.
Springer, Berlin Heidelberg, 2004.

17

