
Uniform proofs and

fixpoint semantics of sequent calculi

Gianluca Amato

Abstract

We propose a generalization of the Miller’s definition of abstract logic

programming language. The new definition keeps in account the fact that

computing in logic languages is a process of searching for proofs that gives

a result: it can be a correct answer, a call pattern, a resultant, according to

the observable we are interested in. In the meanwhile, we provide a fixpoint

semantics for sequent calculi and we show that our generalization of complete-

ness of uniform proofs corresponds to particular compositionality properties

of the semantics. Hereditarily Harrop formulas are used trough the paper as

a working example.

Keywords: logic programming, compositionality, uniform proofs, sequent

calculi, hereditarily Harrop formulas

1 Introduction

One of the greatest benefits of logic programming, as presented in [11] and [1], is
that it is based upon the notion of executable specifications. The text of a logic
program is endowed with both an operational (algorithmic) interpretation and an
independent mathematical meaning which agree each other in several ways.

An operational interpretation (the realm of programming languages) is needed if
we really want to write programs that can be executed, while a clear mathematical
meaning (the realm of logic) simplifies the work of the programmer, who can focus
himself on “what to do” rather then “how to do it”. The problem is that operational
expressiveness (intended as the capability of directing the flow of execution of a
program) tends to obscure the declarative meaning. Research in logic programming
strives to find a good balance between these opposite needs.

Uniform proofs [12, 14] have widely been accepted as the main tool to distinguish
between logic programming languages and logic tout-court. Logic programming lan-
guages are essentially defined as fragments of a broader logic, designed in such a way
that uniform proofs are complete among all the cut-free proofs. Miller argues that an
evaluation in logic programming is the search for simple, cut-free, sequent proofs.
According to this idea, completeness of uniform proofs gives a strong operation
flavour to the language. The search for proofs becomes goal-directed, i.e. logical

Gianluca Amato is with Dipartimento di Informatica, Università degli Studi di Pisa. E-mail:

amato@di.unipi.it

1

2 APPIA-GULP-PRODE’99

connectives in goals are decomposed independently from the program. This is not
enough to say that a logic language can be efficiently implemented, but it is a first
requirement which must be satisfied.

The idea that evaluation is the same as search for proof seems a bit too restrictive.
A number of papers (such as [2] and [4]) have shown that, to better understand the
nature of logic programming, we need to consider the fact that the evaluation of a
goal gives a result. This can be an answer substitution, a resultant, a call pattern,
according to the observable we are interested in. Uniform proofs, on the contrary,
are only tailored to the simplest of these observables, i.e. the existence of a proof.

Moreover, the notion of uniform proof is deeply related to the operational se-
mantics. However, one of the main properties of standard logic programming is the
existence of three different styles of semantics (operational, declarative and fixpoint)
which give the same denotation, i.e. the least Herbrand model. In particular, the
fixpoint semantics is a cornerstone in the definition of hierarchies of semantics for
logic programs [4], based on abstract interpretation [6]. As discussed in [7], the
fixpoint semantics can be viewed as a bottom-up variant of the classical top-down
operational semantics. It seems natural, in force of that, to look for a fixpoint
reformulation of the property of completeness of uniform proofs.

We start by providing a declarative and fixpoint semantics for sequent calculi.
Given a logic language and a set of inference rules, these semantics are parametric
w.r.t. to a pre-interpretation, which is essentially a choice of semantic domains and
intended meanings for the inference rules. When a pre-interpretation is given, we
have fixed a particular property of proofs (observable) we want to focus our attention
on. Regardless of the chosen observable, the two semantics are proved to give the
same denotation.

Then, we introduce the topic of compositionality. We give the basic definitions
for a sort of general theory of compositional semantics for sequent calculi. Inside
this framework, it is possible to treat classical problems, like and-compositionality
of correct answers, and other issues more concerned with proof theory.

At last, uniform proofs are introduced, as proofs that do not use some of the
inference rules. It is proved that, if we restrict the inference rules of a logic in
such a way that all proofs are uniform, we obtain a fixpoint semantics with some
of the compositional properties we have introduced before. When a logic and its
restriced variant have the same semantics, we say that the logic is an abstract logic
programming language. Since semantics is parametric w.r.t. pre-interpretations,
the property of being an abstract logic programming language depends from the
chosen observable.

Throughout the paper, we use hereditarily Harrop formulas as a concrete example
of the properties that we first introduce in abstract terms.

2 Preliminaries

Logics can be presented in several different ways: we will stick to a Gentzen-like
proof-theoretic formulation. Let us fix two languages D and G. We call clauses the
elements of D and goals the elements of G. If Γ and ∆ are two sequences of clauses
and goals respectively, Γ → ∆ is a sequent. If ∆ is a sequence of length one, we

Uniform proofs and fixpoint semantics of sequent calculi 3

have an intuitionistic sequent.
A proof schema is a rooted ordered tree with sequents as nodes. Given a proof

schema P , we call hyp(P) (hypotheses) the sequence of leaves of P taken from a
pre-order visit of P . We call th(P) (theorem) the root of P . We denote a proof
schema P , with hyp(P) = S1, . . . , Sn and th(P) = S, by

P : S1, . . . , Sn ⊢ S (2.1)

Note that a schema of height zero (when the root is also the only hypothesis) and
a schema of height one with no hypotheses are different. If S is a sequent, a proof
schema of S with height zero is the empty proof schema for S, and is denoted by ǫS.

An inference rule is just a proof schema of height one. A proof schema P , which
is obtained by gluing together the empty proof schemas and the inference rules in
a given set R, is called proof. We write P : S1, . . . , Sn ⊢R S to stress the fact that
P is indeed a proof. If we omit P from the previous notation, we only mean that
there is a proof of S from S1, . . . , Sn. We say that a sequent S is provable if there is
a proof of S with no hypotheses. Finally, we call logic a triple (D,G,R).

2.1 Hereditarily Harrop formulas

We instantiate the previous definitions for first-order hereditarily Harrop formulas
[9]. This language is a powerful extension of Horn clauses, which has been proposed
as a mean for embedding modularity and abstraction in logic programming. It will
be the working example used throughout this paper to illustrate the definitions and
properties that we introduce from an abstract perspective. Here and in the following,
whenever we work on hereditarily Harrop formulas, we only consider intuitionistic
sequents.

Given a set A of first-order atomic formulas, clauses and goals of the language
are recursively defined as follows

D := true | A | D1 ∨D2 | G ⊃ D | ∀x.D

G := true | A | G1 ∨G2 | G1 ∧G2 | ∃x.G | D ⊃ G | ∀x.G.

Figure 1 shows the inference rules, which are a subset of those for first order intu-
itionistic logic. We make the assumption that there are no two different bindings
for the same variable in a formula (i.e. ∃x.p(x) ∧ ∃x.t(x) is not a formula of the
language). In this way, we do not lose generality, yet we can use variable names
to uniquely identify a binding. This will appear to be really handy when we will
talk about correct answers. Given a sequence x1, . . . , xn of variables, we often write
∃~x.G as a short form for ∃x1∃x2. . . . ∃xn.G.

3 Semantics for sequent-based logics

As we mentioned before, we are interested not only in the operational flavour of
proof theory but also in the declarative and fixpoint one. Therefore, we give a
general concept of semantics.

4 APPIA-GULP-PRODE’99

Γ1, B,Γ2, C → D

Γ1, C,Γ2, B → D
interchange

Γ1, B,B → C

Γ1, B → C
contraction

Γ, B → B
id

Γ → true
trueR

Γ → B

Γ → B ∨ C
∨R1

Γ → B

Γ → C ∨ B
∨R2

Γ → B[t/x]

Γ → ∃x.B
∃R

Γ, B1, B2 → C

Γ, B1 ∧ B2 → C
∧ L

Γ → B Γ → C

Γ → B ∧ C
∧R

Γ → B Γ, C → E

Γ, B ⊃ C → E
⊃ L

Γ, B → C

Γ → B ⊃ C
⊃ R

Γ, B[t/x] → C

Γ, ∀x.B → C
∀L

Γ → B[y/x]

Γ → ∀x.B
∀R

provided that

y in not free in the lower sequent of the rule (∀R)
B is an atomic formula in the rule id

Figure 1: Inference rules for hereditarily Harrop formulas

Uniform proofs and fixpoint semantics of sequent calculi 5

Given a logic (D,G,R), a pre-interpretation I is a choice of a cpo of denotations
I(Γ → ∆) for each sequent, an element I(ǫS) ∈ I(S) for each S and a continuos
function I(r) for each inference rule r, where if hyp(r) = S1, . . . , Sn and th(r) = S,

I(r) = I(S1)× · · · × I(Sn) → I(S) (3.1)

Given a pre-interpreted logic (D,G,R, I), an interpretation is a choice of an ele-
ment JSK ∈ I(S) for each sequent S. The set of interpretations is a cpo with the
straightforward induced pointwise ordering. An intepretation is a model when, for
each inference rule

r : S1, . . . , Sn ⊢ S ∈ R (3.2)

the following relation holds

I(ǫS) ⊔ I(r)(JS1K, . . . , JSnK) ≤ JSK (3.3)

This notion of pre-interpretation gives us a great flexibility. By a careful choice
of I, it is possible to define a lot of different concrete semantics. For example, let
I(S) be the powerset of proof schemas of S, I(r) be the function which glues proof
schemas together by using the inference rule r and I(ǫS) = {ǫS}. Any interpretation
built upon I is called syntactical interpretation. If we choose JSK to be the set of
proofs of S, we obtain a model that corresponds to the Heyting semantics of logic.

As another example, if I(S) is the set {false, true} with false < true, I(r) is the
logical “and” of the input truth values, I(ǫS) = false and JSK is true if and only if S
is provable, then we obtain another model, the semantics of provability, which can
be viewed as an abstraction of the Heyting one.

Moreover, both the Heyting semantics and the semantics of provability are the
least models in their respective cpos. In general, we call declarative semantics the
least model of a pre-interpreted logic.

Note, however, that the Heyting semantics is generally given compositionally
w.r.t. the goals. Here, on the contrary, we have a “flat” definition. In the following
sections we will try to characterize the conditions which must be satisfied in order
to give a compositional reformulation of interpretations.

3.1 Correct answer semantics

We want to give a look to our running example and discuss a typical case of semantics
widely used in the logic programming area.

In the case of Horn clauses and derived languages, correct answers are perhaps
the most important observable of derivations. Real logic language interpreters, such
as PROLOG, give correct answers as results for a query. Moreover, correct answers
have been proved to be “and compositional” and “instance compositional” [2], thus
providing a strong semantic framework for program analysis and diagnosis [5].

Given a sequent S = Γ → ∃~x.G, where the top level connective of G is not an
existential quantifier, a (possible) answer for S is a substitution for the variables in
~x. A correct answer is a possible answer θ such that Γ → Gθ has a proof with no
hypotheses.

A pre-interpretation I for correct answers can be defined as follows.

6 APPIA-GULP-PRODE’99

• I(Γ → G) is the powerset of all the possible answers for G. When G has no top
level existential quantifier, the only possible answer is the empty substitution.
Hence I(Γ → G) has only two elements, which can be viewed as logical values
representing the existence of a proof (with no hypotheses) for the sequent.

• For all the inference rules r (with the exception of ∃R) I(r) is the logical and
of the input values (with the usual assumptions that 0-adic and is true and
1-ary and is the identity function). If one of the input domains has more than
two elements, the empty set is viewed as false and all the remaining elements
are viewed as true.

• I(∃R) maps an answer θ for B[t/x] to the answer θ ∪ {t/x} for ∃x.B, for each
element of the input set.

• I(ǫS) = ∅.

The logic of hereditarily Harrop formulas with the pre-interpretation I is denoted
by Hc.

It is easy to show that if we take the interpretation J K, such that JΓ → GK is the
set of correct answers for Γ → G, then J K is a model (actually, it is the least one).
We will refer to J K as the correct answer semantics.

3.2 Fixpoint construction

Given a pre-interpretation for the set R of inference rules, we can build a corre-
sponding model, by using a successive approximation operator similar to the TP

of logic programs. The new operator TR takes interpretations to interpretations,
according to the following definition

TR(J K)(S) = I(ǫS) ⊔
⊔

r:S1,...,Sn⊢S∈R

I(r)(JS1K, . . . , JSnK). (3.4)

We can prove that all the results which hold for the TP operator, apply to TR as well
(see the proofs in appendix A). In particular (see theorem A.1) an interpretation
J K is a model iff it is a prefixpoint of TR. Moreover (theorem A.2) TR is continuos,
hence TR ↑ ω is its least fixpoint. We call TR ↑ ω the fixpoint semantics of a given
pre-interpreted logic. Since the least fixpoint of a continuos operator is also the
least prefixpoint, TR is the least model of the logic, hence fixpoint and declarative
semantics coincide.

4 Compositionality

We want now to prove that the existence of a compositional semantics for a pre-
interpreted logic is somewhat related (although not equivalent) to the completeness
of uniform proofs. First of all, we must clarify what we mean in general by compo-
sitionality in our setting.

We have defined an intepretation as a mapping from sequents S to denotations
in I(S). Assume S1 = Γ → G1 and S2 = Γ → G2. Given a “partial” interpretation,

Uniform proofs and fixpoint semantics of sequent calculi 7

which defines JS1K and JS2K only, we would like to automatically derive JΓ → G1 ∧
G2K. In general, there are several kinds of sequents Γ → ∆, whose semantics we
want to derive from other sequents S1, . . . , Sn with different antecedents and/or
consequents.

A decomposition rule is defined exactly like an inference rule. However, it is used
to specify the kind of decompositions we want to focus our attention on. Given a pre-
interpreted logic and a set of decomposition rules, a decomposition interpretation I
maps each decomposition rule r : S1, . . . , Sn ⊢ S to a continuos function I(r), defined
as if r were an inference rule. A logic with decompositions is a pre-interpreted logic
together with a set of decompositions and a decomposition interpretation. A sequent
S is decomposable when there is a decomposition rule rooted at S.

An important case is when the decomposition rules are a subset of the inference
rules and the decomposition interpretation is the appropriate restriction of the pre-
interpretation (logic with inference driven decompositions). Moreover, a logic has
full inference driven decompositions when, for each decomposable S, all the inference
rules rooted at S are decomposition rules.

Given a logic L with decompositions K, an interpretation J K is compositional if,
for each decomposable S

JSK = I(ǫS) ⊔
⊔

r:S1,...,Ss⊢S∈K

I(r)(JS1K, . . . JSnK)

= TK(J K)(S)

(4.1)

If L has full inference driven decompositions, (4.1) holds if J K is its least model (see
theorem A.3). In general, a logic with such a property (compositionality of the least
model) is said to be compositional.

Assume now we know J K only for the non-decomposable sequents, and assume
also we know it to be compositional. This is not enough to be able to reconstruct
the full interpretation. The problem is that the set of equations derived from (4.1)
do not always uniquely define J K for the decomposable sequents.

A set of decomposition rules K induces a reflexive and transitive relation on
sequents ≤K. Just set S ′ ≤K S if there exists a decomposition rule rooted at S
and with S ′ as one of its hypotheses, and take the appropriate closure. A set K
of decompositions rules is consistent when ≤K is a well-founded ordering. If this is
the case, the equations in (4.1) are a good inductive definition for the decomposable
sequents.

If L has consistent decompositions and is compositional, we can build the full least
model, by just knowing its restriction to the non-decomposable sequents. In general,
given an interpretation J K, we denote by p(J K) its restriction to non-decomposable
sequents. Moreover, if J K is a partial interpretation, and the logic has consistent
decompositions, we denote by c(J K) its completion, i.e. the full compositional in-
tepretation derived from (4.1). In formulas

c(J K)(S) =

{

S if S is not decomposable

TK(c(J K))(S) if S is decomposable
(4.2)

In a compositional logic with consistent decompositions, we have J K = c(p(J K)) if
J K is the fixpoint semantics.

8 APPIA-GULP-PRODE’99

Another question is whether, in a such a logic, it is possible to define the least
model by a successive approximation operator over the cpo of compositional inter-
pretations (see theorem A.4 for a proof that compositional interpretations really
form a cpo). We define the new T c

R operator as follows

T c
R(J K)(S) = c(p(TR(J K))(S) (4.3)

Given J K′ = T c
R(J K), equation (4.3) means that JSK′ = TR(J K)(S) if S is not

decomposable. For a decomposable S, JSK′ is derived from p(JSK′) by using equations
(4.1). If T c

R ↑ ω = TR ↑ ω, we say that the fixpoint semantics of L is compositionally
definable.

We can prove (see theorem A.5) that, given a logic with consistent and full
inference driven decomposition rules L, its fixpoint semantics is compositionally
definable.

Coming back to our working example, a rather important point in logic program-
ming is the and-compositionality of goals. In the standard setting, a semantics J K
for a logic language is and-compositional when, given goals G1 and G2 and a pro-
gram P , there exists a semantic operator ⊙, such that JG1∧G2KP = JG1KP ⊙ JG2KP .
In our framework, this corresponds to establish a semantic function I(∧c) and a set
K of decomposition rules as instances of the following schema

∧c :
Γ → ∃~x.G1 Γ → ∃~y.G2

Γ → ∃~z.G1 ∧G2

, (4.4)

where ~z is the concatenation of ~x and ~y. It is obvious that such a K is consistent.
The difficult step is finding (if it exists) the definition of I(∧c), such that Hc is
compositional.

5 Uniform proofs

Let us consider now the relationship betweem uniform proofs and compositionality.
First of all, a uniform proof is just a proof that does not use some of the inference
rules. For example, in the hereditarily Harrop case, a uniform proof does not contain
any instance of the following schema:

Γ, B1, B2 → C1 ∧ C2

Γ, B1 ∧ B2 → C1 ∧ C2

(5.1)

Hence, given a logic (D,G,R), we can obtain a uniformed logic (D,G,RO) just by
choosing the rightRO ⊆ R. The idea of eliminating inference rules, however, is much
broader than the classical concept of uniform proofs. It can be applied in several
different ways that have nothing to do with the enforcing of right introduction rules
for composite goals.

Let us restrict our attention to logics with intuitionistic sequents only and with a
distinguished language A ⊆ G. We call atomic goals the elements of A. An inference
rule on intuitionistic sequents

Γ1 → G1 · · · Γn → Gn

Γ → G
(5.2)

Uniform proofs and fixpoint semantics of sequent calculi 9

is a right introduction rule when all the Gi’s are proper substrings of G and G is not
atomic. If r is an inference rule rooted at S, such that it is not a right introduction
rule and there exists a right introduction rule for S, it is said to be hidden. A
uniform proof is a proof that does not use any hidden rule. A logic is uniform when
all its proofs are uniform (i.e., there are no hidden rules). Given a logic (D,G,R),
the uniformed logic (D,G,RO) is obtained by taking RO to be R minus the hidden
rules. (D,G,RO) is uniform.

A uniform logic can be provided with full and consistent inference driven de-
compositions. Just let K be the set of right introduction rules (theorem A.6). We
have already proved that, under such hypotheses, a logic is compositional and has a
compositionally definable fixpoint semantics. Hence, we can say that the semantic
counterpart of uniformity is compositionality.

In the case of hereditarily Harrop formulas, with the obvious choice of atomic
formulas, the right introduction rules, according to our definition, are exactly the
instances of trueR, ∧R, ∨R, ∃R and ∀R, as we expected. However, this is not a
uniform logic, since there exist hidden rules (for example, all the rules derived from
(5.1)).

5.1 Abstract logic languages

Which is the relationship between the semantics of a logic and the semantics of the
corresponding uniformed logic? In the Miller’s definition of abstract logic language,
a sequent S is provable iff it is provable by uniform proofs. In our general setting,
a pre-interpreted logic L is an abstract logic programming language when it has the
same least model of the uniformed variant LO. Our definition corresponds with
Miller’s when we consider the pre-interpretation of provability.

It is well known [12] that, for the hereditarily Harrop formulas, a sequent is
provable iff it has a uniform proof. Therefore, the logic Hp (hereditarily Harrop
formulas with the pre-interpretation of provability) is an abstract logic language.
On the contrary, if we consider the syntactical pre-interpretation, this property does
not hold anymore. In general, a logic under the syntactical pre-interpretation is an
abstract logic language iff it is a uniform logic. Otherwise, the set of uniform proofs
for some sequent is a proper subset of the set of all the proofs. As a consequence,
the least models in the normal and uniform variant are different.

In summary, given a logic L, our notion of abstract logic language corresponds
to Miller’s definition under pre-interpretation of provability, and to uniformity of
logic under the syntactical pre-interpretations. These two cases can be viewed as
the extreme points of a broad set of possible semantics for logics.

In the case of hereditarily Harrop formulas we have seen a third example of pre-
interpretation, namely correct answers. It is interesting to know whether Hc is an
abstract logic language or not. If this is the case, it is possible to use uniform proofs
not only for proving derivability of a sequent but also to compute its correct answers.

Theorem 5.1 Hc is an abstract logic language.

Proof. We know that the least model of Hc is an interpretation J K, such that JSK
is the set of correct answers for S. The same is true for the uniformed variant

10 APPIA-GULP-PRODE’99

(Hc)O, with the corresponding induced notion of correct answers. The problem is
to establish whether the two logics have the same correct answers.

Remember that θ is a correct answer for S = Γ → ∃~xG in (Hc)O iff Γ → Gθ has
a proof. Since Hp is an abstract logic language, Γ → Gθ has a proof iff Γ → Gθ has
a proof in Hc, i.e. iff θ is a correct answer for S in Hc.

Since uniform logics are compositional, and abstract logic language have the same
fixpoint semantics of an uniform logic, abstract logic languages are compositional,
too. Also, they have compositionally definable fixpoint semantics. In summary, they
seem to share the same compositional properties of uniform logics.

6 Conclusions and future works

In this paper we presented a fixpoint and declarative semantics for sequent calculi,
parametric w.r.t. a chosen observable. The aim was filling the gap between semantic
methods used in Horn clause logic programming and the proof theoretic approach
typical in various extensions to logic program languages [10, 8]. Actually, our se-
mantic framework is general enough to be adapted with small effort to any kind of
tree-based calculi.

We used the fixpoint semantics to give a new definition of abstract logic pro-
gramming. Miller’s definition corresponds to ours, under the pre-interpretation of
provability. It is shown that hereditarily Harrop formulas make an abstract logic
language not only in the old sense, but also under the observables of correct answers.

The major drawback of our approach is perhaps the way in which the observables
are built. The definition of a pre-interpretation is a quite arbitrary process, especially
for what concerns the inference rules. A possible solution could be sticking to the
syntactical pre-interpretation and deriving all the other observables by resorting to
the theory of abstract interpretation [6]. This idea is currently under investigation.

Moreover, it would be interesting to know how the general metodology instanti-
ates to other concrete observables, such as resultants [3], or other languages, such
as Lolli [10] and Forum [13].

References

[1] K. R. Apt. Introduction to Logic Programming. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B: Formal Models and Se-
mantics, pages 495–574. Elsevier and The MIT Press, 1990.

[2] A. Bossi, M. Gabbrielli, G. Levi, and M. Martelli. The s-semantics approach:
Theory and applications. Journal of Logic Programming, 19–20:149–197, 1994.

[3] A. Bossi, M. Gabbrielli, G. Levi, and M. C. Meo. An OR-compositional Seman-
tics for Logic Programs. In J.-M. Jacquet, editor, Constructing Logic Programs,
pages 215–240. John Wiley & Sons Ltd, 1993.

[4] M. Comini, G. Levi, and M. C. Meo. A theory of observables for logic programs.
Information and Computation, 1999. To appear.

Uniform proofs and fixpoint semantics of sequent calculi 11

[5] M. Comini, G. Levi, and G. Vitiello. Declarative diagnosis revisited. In J. Lloyd,
editor, Proceedings of the 1995 Int’l Symposium on Logic Programming, pages
275–287. The MIT Press, 1995.

[6] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints.
In Proc. Fourth ACM Symp. Principles of Programming Languages, pages 238–
252, 1977.

[7] S. Finkelstein, P. Freyd, and J. Lipton. A new framework for declarative pro-
gramming. To appear in Theoretical Computer Science, 2000.

[8] L. Giordano and A. Martelli. Structuring logic programs: a modal approach.
Journal of Logic Programming, 21 (2):59–94, 1994.

[9] R. Harrop. Concerning formulas of the types A → B ∨ C, A → (Ex)B(x) in
intuitionistic formal systems. Journal of Symbolic Logic, pages 27–32, 1960.

[10] J.S. Hodas and D. Miller. Logic programming in a fragment of intuitionistic
linear logic. Journal of Information and Computation, 110(2):327–365, May
1994.

[11] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987. Second
edition.

[12] D. Miller. A Logical Analysis of Modules in Logic Programming. Journal of
Logic Programming, 6:79–108, 1989.

[13] D. Miller. FORUM: a multiple-conclusion specification logic. Theoretical Com-
puter Science, 165(1):201–232, 1996.

[14] D. Miller, F. Pfenning, G. Nadathur, and A. Scedrov. Uniform proofs as a
foundation for Logic Programming. Annals of Pure and Applied Logic, 51:125–
157, 1991.

A Proofs

Theorem A.1 An interpretation J K is a model iff it is a pre-fixpoint of TR.

Proof. Given a sequent S,

JSK ≥ TR(J K)(S)

⇐⇒ JSK ≥ I(ǫS) ⊔
⊔

r:S1,...,Sn⊢S∈R

I(r)(JS1K, . . . , JSnK)

⇐⇒ JSK ≥ I(ǫS) ⊔ I(r)(JS1K, . . . , JSnK)

for each r : S1, . . . , Sn ⊢ S ∈ R

(A.1)

Since this holds for every S, the result follows trivially.

Theorem A.2 The TR operator is continuos.

12 APPIA-GULP-PRODE’99

Proof. Assume we have a chain (J Ki)i∈N of interpretations. If we call J Kω the upper
limit of the chain, it follows:

TR(J Kω)(S) = I(ǫS) ⊔
⊔

r:S1,...,Sn⊢S∈R

I(r)(JS1K
ω, . . . , JSnK

ω)

= I(ǫS) ⊔
⊔

r:S1,...,Sn⊢S∈R

(

⊔

i∈N

I(r)(JS1K
i, . . . , JSnK

i)
)

[since I(r) is continuous for each r]

=
⊔

i∈N

(

I(ǫs)
⊔

r:S1,...,Sn⊢S∈R

I(r)(JS1K
i, . . . , JSnK

i)
)

=
⊔

i∈N

TR(J Ki)(S)

(A.2)

and this proves the theorem.

Theorem A.3 A logic L with full inference driven decompositions is compositional.

Proof. We just need to prove that the least model of L is compositional. If R is
the set of inference rules and J K is the least model, we know that TR(J K) = J K.
Therefore, for each decomposable S

JSK = TR(J K)(S)

= I(ǫS) ⊔
⊔

r:S1,...,Sn⊢S∈R

I(r)(JS1K, . . . , JS1K)

= I(ǫS) ⊔
⊔

r:S1,...,Sn⊢S∈K

I(r)(JS1K, . . . , JS1K)

(A.3)

since all the inference rules rooted at S are decomposition rules.

Theorem A.4 If L is a compositional logic with consistent decompositions, the
compositional interpretations for L form a cpo under the same order relation of
interpretations.

Proof. First of all, we note that every compositional interpretation is the image,
through c ◦ p, of an interpretation. Moreover, c ◦ p is a continuos function, hence
maps cpo to cpo. As a result, compositional interpretations are a cpo.

In particular, the least compositional interpretation J Kc
⊥
is defined as

J Kc⊥ = c(p(J K⊥)) (A.4)

where J K⊥ is the bottom of the cpo of the interpretations. The lowest upper bound
⊔c for a chain J Kc1, . . . , J Kcn, . . . is

⊔c

i∈NJ Kci = c(p(
⊔

i∈NJ Kci)) (A.5)

Theorem A.5 If L is a logic with full and consistent inference driven decomposi-
tions, its fixpoint semantics is compositionally definable.

Uniform proofs and fixpoint semantics of sequent calculi 13

Proof. Consider the ordering ≤K where K is the set of decomposition rules of L.
Since K is consistent, ≤K has no infinite descending chains. We now prove by
transfinite induction on ≤K that, for each sequent S and for each interpretation J K
such that TR(J K) ≥ J K, it is

TR(J K)(S) ≤ T c
R(J K)(S) ≤ T ω

R(J K)(S) (A.6)

The property trivially holds for non-decomposable sequents, since in this case T c
R(J K)(S) =

TR(J K)(S). Assuming that the property holds for all the sequents smaller than S,
we prove it for S.

T c
R(J K)(S) = c(p(TR(J K)))(S)

= TR(T
c
R(J K))(S)

(A.7)

In the last formula, T c
R(J K) is only evaluated on sequents smaller than S, hence, by

inductive hypothesis

T c
R(J K)(S) ≤ TR(T

ω
R(J K))(S)

= T ω
R(J K)(S)

(A.8)

since TR is continuous. On the other side,

T c
R(J K)(S) ≥ T 2

R(J K) ≥ TR(J K) (A.9)

Now, it is easy to prove, by induction on i, that T c
R ↑ i ≤ TR ↑ ω, hence

T c
R ↑ ω ≤ TR ↑ ω. For i = 0, T c

R ↑ 0 is the least compositional interpretation. Since
L is compositional, TR ↑ ω is compositional, too. Therefore, it is T c

R ↑ 0 ≤ TR ↑ ω.
In the inductive step

T c
R ↑ i ≤ TR ↑ ω ⇒ T c

R ↑ (i+ 1) ≤ T c
R(TR ↑ ω) (A.10)

Since we just proved that

T c
R(TR ↑ ω) ≤ T ω

R(TR ↑ ω) = TR ↑ ω, (A.11)

this concludes the proof.
For what concerns the opposite disequality, we prove by induction on i that

T c
R ↑ i ≥ TR ↑ i. Again, for i = 0 the proof is trivial, since TR ↑ i is the bottom of

the cpo of the interpretations. If the propery holds for i, it is

T c
R ↑ (i+ 1) ≥ T c

R(TR ↑ i) ≥ TR ↑ (i+ 1) (A.12)

In summary, we have TR ↑ ω ≤ T c
R ↑ ω ≤ TR ↑ ω. It is straightforward to conclude

that TR ↑ ω = T c
R ↑ ω.

Theorem A.6 Given a uniform pre-interpreted logic L, there is an induced uniform
logic with full and consistent inference driven decompositions, obtained by just taking
K to be the set of the right introduction rules.

14 APPIA-GULP-PRODE’99

Proof. We start by proving fullness of the inference rules. If S is decomposable,
there is a decomposition rule r rooted at S. Thanks to the choice of K, r is a right
introduction rule. Since L is uniform, all the inference rules rooted at S are right
introduct rules, hence they are in K. It trivially follows that L has full inference
driven decompositions.

We prove now the consistency of K. First of all, ≤K is an order relation, since it
enjoys the anti-simmetric property. Given two sequents S = Γ → G and S ′ = Γ′ →
G′, if S < S ′ and S ′ < S there are two right introduction rules r and r′

r :
· · · Γ → G · · ·

Γ′ → G′
r′ :

· · · Γ′ → G′ · · ·

Γ → G
(A.13)

such that G is proper substring of G′ and G′ is a proper substring of G. This is
trivially an absurd, hence the anti-simmetric property holds.

Now, consider an infinite descending chain S0 >K S1 >K> . . . of sequents, where
Si = Γi → Gi. If li is the length of Gi, we have an induced descending chain
l0 > l1 > This is an absurd, since natural numbers are well founded, hence
≤K has no infinite descendic chains either. As a result, ≤K is a well founded order
relation.

