
Università di Pisa

Dipartimento di Informatica

Technical Report: TR-02-06

Optimality in

goal-dependent Analysis of

Sharing

Gianluca Amato1 Francesca Scozzari2

May 9, 2002

ADDRESS: Corso Italia 40, 56125 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

Optimality in goal-dependent Analysis of

Sharing

Gianluca Amato1 and Francesca Scozzari2

1 Dipartimento di Matematica e Informatica, Università di Udine.
2 Dipartimento di Informatica, Università di Pisa.
amato@dimi.uniud.it, scozzari@di.unipi.it

Abstract. We cope with the problem of correctness and optimality for
logic programs analysis by abstract interpretation. We refine the goal-
dependent framework appeared in [7] by fixing a result of correctness and
introducing two specialized operators for forward and backward unifica-
tion. We provide the best correct abstractions of the concrete operators
in the case of set-sharing analysis. We show that the precision of the
overall analysis is strictly improved and that, in some cases, we gain
precision w.r.t. more complex domains involving linearity and freeness
information.

1 Introduction

In the field of static analysis by abstract interpretation [10, 11], the most inter-
esting (and studied) properties for logic programs are arguably groundness and
sharing. Groundness analysis aims at discovering ground variables in the answer
substitutions, while the goal of (set) sharing analysis is to detect sets of variables
which share a common variable. While the results on groundness analysis seem
to converge toward the domain Pos [19, 9, 1] which is commonly recognized as
the optimal domain for detecting groundness property, the same did not happen
for the sharing property. The problem of finding a “good” domain for shar-
ing analysis is still open. Among the various proposals, we find new domains for
more efficient and/or more precise analyses [2, 15], combinations of domains (e.g.
including freeness and/or linearity information [14, 22]) , and many techniques
for improving the abstract operators used in the analysis [17, 14]. The common
starting point of most of these proposals is the domain Sharing by Langen [18,
16], slightly modified in [7] where all the abstract operators are proved to be
correct and optimal.

Actually, the proof of correctness of the abstract unification operator in [7]
has a flaw and we give a counterexample in this paper. When an abstract opera-
tor is not correct w.r.t. to the concrete operator, the common solution is to design
a new correct (and possibly optimal) abstract operator. But, as we show with
many examples, we think that incorrectness is mainly due to a non-standard
definition of the concrete unification operator. In fact, such an operator does
not perform the necessary renamings in order to avoid variable clashes, which is

common to almost any semantics for logic programs. Following this intuition, we
propose to modify the concrete semantics, by using a more “intuitive” concrete
unification, which performs the necessary renamings, and define the correspond-
ing optimal abstract unification operator.

Once the correctness of the framework has been asserted, we can cope with
the problem of precision. The choice of the authors of using a unique unification
operator for performing both forward and backward unification leads to a signif-
icant loss of precision. The forward unification computes the entry substitution
by unifying the calling substitution with the head of the clauses. The backward
unification computes the success substitution from the calling substitution, the
exit substitution and the head of the clauses. It is immediate to verify that the
forward unification can be computed as a backward unification with an empty
exit substitution. But, at the abstract level, this stratagem leads to a loss of
precision. Therefore we define a specialized operator which is able to exploit
the particular characteristics of the forward unification. We also prove that this
operator is correct and optimal w.r.t. the concrete one.

Futhermore, we propose a different backward concrete unification which
makes use of the matching operation instead of the standard unification. This
choice is not new and has been already suggested in [14, 17]. We show that us-
ing a matching operator leads to a significant augment of precision already at
the concrete level. We design a backward abstract unification operator which is
correct and optimal w.r.t. the new concrete operator, which leads to a strictly
more precise analysis. Finally, we compare our results with other techniques for
improving precision and efficiency of sharing analysis.

2 Notations

Given a set A, let ℘(A) be the set of subsets of A and ℘f (A) be the set of
finite subsets of A. Given two posets A and B, we denote by A→B the space
of monotonic functions from A to B ordered pointwise. When an order is not
specified, we assume the least informative order (x ≤ y ⇐⇒ x = y). Given
A,C complete lattices, a Galois Insertion [10] 〈α, γ〉 : C ⇌ A is given by a pair
of maps α : C→A, γ : A→C such that α(c) ≤ a ⇐⇒ c ≤ γ(a). We say that
an abstract operator fα : A→A is correct w.r.t. a concrete operator f : C→C
when α ◦ f ≤A fα ◦ α and it is optimal when α ◦ f = fα ◦ α. In this case fα is
called the best correct approximation of f .

Let V be a countable set of variables and Term be the set of terms built from
V. Given a term t, by vars(t) we denote the set of variables occurring in t and
with uvars(t) the subset of vars(t) whose elements only appear once in t. We will
abuse notation and apply vars and uvars to any syntactic object with the obvious
meaning (e.g. , uvars(t(x, y) = t(y, z)) = {x, y, z}). With ǫ we denote the empty
substitution, while {x1/t1, . . . , xn/tn} denotes a substitution θ with θ(xi) = ti 6=
xi. We denote by vars(θ) the set dom(θ) ∪ range(θ) and, given U ∈ ℘f (V), we
denote by θ|U the substitution such that θ|U (x) = θ(x) if x ∈ U and θ|U (x) = x
otherwise. Given θ1 and θ2 two substitutions with disjoint domains, we denote

2

by θ1 ⊎ θ2 the substitution θ such that the domain dom(θ) = dom(θ1)∪dom(θ2)
and θ(x) = θi(x) if x ∈ dom(θi), for i ∈ {1, 2}. The application of a substitution
θ to a term t is denoted by tθ or θ(t). Given two substitutions θ and δ, their
composition, denoted by θ ◦ δ is given by (θ ◦ δ)(x) = θ(δ(x)). Instantiation
induces a preorder on substitutions: θ is more general than δ, denoted by δ ≤ θ,
if there exists σ such that σ ◦ θ = δ. The set of idempotent substitutions is
denoted by Subst , while Ren denotes the set of all the renamings (i.e. invertible
substitutions). Any idempotent substitution σ is an mgu (most general unifier)
of the corresponding set of equations Eq(σ) = {x = θ(x) | x ∈ dom(σ)}. In the
following, we will abuse the notation and denote by mgu(σ1, . . . , σn), when it
exists, the substitution mgu(Eq(σ1) ∪ . . . ∪ Eq(σn)).

3 Correctness in the Cortesi-Filè Framework

Cortesi and Filè define in [7] an abstract domain for recovering sharing informa-
tion based upon a variant of the domain Sharing by Jacobs and Langen [16] and
give a set of optimal abstract operators. However, the proof has a flaw, namely
the fact that the abstract unification USh is not correct w.r.t. the concrete one
URs . To show why this happens, and since this will be useful in the rest of the
paper, let us briefly recall the definitions of the concrete domain and operators
used in [7].

3.1 Concrete Domain and Operations

The concrete domain is Rsub = (℘(Subst)×℘f (V))∪{⊤Rs,⊥Rs}. Rsub is partially
ordered as follows: ⊤Rs is the top element, ⊥Rs is the bottom element and
〈Σ1, U1〉 ⊑Rs 〈Σ2, U2〉 if and only if U1 = U2 and Σ1 ⊆ Σ2. Rsub is a complete
lattice w.r.t. ⊑Rs. The least upper bound of Rsub is denoted by ⊔Rs. The concrete
projection πRs : Rsub× ℘f (V)→ Rsub is defined as follows:

πRs(⊤Rs, U2) = ⊤Rs πRs(⊥Rs, U2) = ⊥Rs

πRs(〈Σ1, U1〉, U2) = 〈Σ1, U1 ∩ U2〉

The concrete unification is URs : Rsub× Rsub× Subst→ Rsub such that:

URs(⊥Rs, ξ, δ) =URs(ξ,⊥Rs, δ) = ⊥Rs

URs(ξ,⊤Rs, δ) =URs(⊤Rs, ξ, δ) = ⊤Rs if ξ 6= ⊥Rs

URs([Σ1, U1], [Σ2, U2], δ) =[{mgu(σ1, σ2, δ) | σ1 ∈ Σ1, σ2 ∈ Σ2,

vars(σ1) ∩ vars(σ2) = ∅}, U1 ∪ U2]

Although it is well defined for all the values of the domain, the use of
URs([Σ1, U1], [Σ2, U2], δ) is restricted only to those input values such that U1 ∩
U2 = ∅ and vars(δ) ⊆ U1 ∪ U2, since this is the only use in the semantics. Also,
the corresponding operator in the abstract domain will only be defined under
these conditions.

3

✬

✫

✩

✪

– the closure under union (or star union) ·∗ : ℘(℘f (V))→℘(℘f (V))

A
∗ =

{

⋃

T | ∅ 6= T ⊆ A
}

– the extraction of relevant components rel : ℘(℘f (V))× ℘f (V)→℘(℘f (V)):

rel(A, V) = {T ∈ A | T ∩ V 6= ∅}

– the binary union bin : ℘(℘f (V))× ℘(℘f (V))→℘(℘f (V)):

bin(A,B) = {T1 ∪ T2 | T1 ∈ A, T2 ∈ B}

Fig. 1. Auxiliary operators

3.2 Abstract Domain and Operations

Now let us briefly recall the definition of the abstract domain Sharing [16, 7]:

Sharing = {[A,U] | A ⊆ ℘(U), (A 6= ∅ ⇒ ∅ ∈ A), U ∈ ℘f (V)} ∪ {⊤Sh ,⊥Sh} .

The abstraction function αSh : Rsub→ Sharing is defined as follows:

αSh(⊥Rs) =⊥Sh αSh(⊤Rs) =⊤Sh

αSh([Σ,U]) =[{occ(σ, y) ∩ U | y ∈ V, σ ∈ Σ}, U]

where occ(σ, y) = {z ∈ V | y ∈ vars(σ(z))}. We call sharing group an element of
℘f (V). To ease the notation, often we will write a sharing group as the sequence
of its elements in any order (e.g. xyz represents {x, y, z}). The abstract operators
do behave exactly as the concrete ones on ⊤Sh and ⊥Sh , while the other cases
are the following:

[A1, U1] ⊔
Sh

[A2, U2] =

{

[A1 ∪A2, U2] if U1 = U2

⊤Sh otherwise

πSh([A,U], V) =[{B ∩ V | B ∈ A}, V ∩ U]

USh([A1, U1], [A2, U2], δ) =[uSh(A1 ∪A2, δ), U1 ∩ U2]

uSh(A, ǫ) =A

uSh(A, {x/t} ⊎ θ) =uSh(A \ (rel(A, {x}) ∪ rel(A, vars(t)))

∪ bin(rel(A, {x})∗, rel(A, vars(t))∗), θ).

where uSh : ℘(℘f (V))× Subst → ℘(℘f (V)) is defined by induction, by using the
auxiliary operators in Fig. 1.

3.3 Problems in Correctness

In an object [Σ,U] ∈ Rsub, all the variables which do appear in Σ and not in
U are thought as they were existentially quantified. This means that it does not

4

matter what these variables really are, but only their relationships with other
variables in the same substitution. The same idea also applies to ex-equations
[20] and the domain ESubst in [16]. It is possible to formalize this idea by defining
a preorder � over Rsub such that:

[Σ,U] � [Σ′, U] ⇐⇒ ∀θ ∈ Σ.∃θ′ ∈ Σ′, ρ ∈ Ren.∀x ∈ U.θ(x) = ρ(θ′(x)) (1)

and the corresponding equivalence relation ∼. All the elements in an equivalence
class modulo ∼ are essentially the same object as long as the actual name of
existential variables is ignored.

Proposition 1. ∼ is a congruence w.r.t. πRs and ⊔Rs, while αSh assume the

same value over all the elements of the same equivalence class.

However, the same does not happen with URs , since the concrete operator used
for unification does not perform any renaming. Actually, URs only checks that
σ1 and σ2 do not have variables in common, without considering their sets of
variables of reference U1 and U2; namely it checks that vars(σ1)∩ vars(σ2) = ∅.
This unification can lead to counterintuitive results. For instance, consider the
following concrete unification:

URs([{{x/y}}, {x}], [{ǫ}, {y}], ǫ) = [{{x/y}}, {x, y}] (2)

Being vars(ǫ) = ∅, the concrete unification operator allows us to unify {x/y}
with ǫ without renaming the variable y, which is not a variable of interest in the
first element but it is treated as it was. On the contrary,

URs([{{x/z}}, {x}], [{ǫ}, {y}], ǫ) = [{{x/z}}, {x, y}] (3)

and [{{x/y}}, {x, y}] 6∼ [{{x/z}}, {x, y}], and this also causes the incorrectness
of USh . Actually, consider the equation 2. If we compute:

αSh([{{x/y}}, {x}]) = [{x}, {x}]
αSh([{ǫ}, {y}] = [{y}, {y}]

(4)

by using the abstract unification operator USh we have:

USh(αSh([{{x/y}}, {x}]), αSh([{ǫ}, {y}]), ǫ)
= USh([{x}, {x}], [{y}, {y}], ǫ) = [{x, y}, {x, y}] .

(5)

This is not a correct approximation of the concrete result, since

αSh([{{x/y}}, {x, y}]) = [{xy}, {x, y}] 6⊑Sh [{x, y}, {x, y}] . (6)

This counterexample proves that the abstract unification operator is not correct
w.r.t. the concrete unification. Note, however, that:

αSh([{{x/z}}, {x, y}]) = [{x, y}, {x, y}]). (7)

5

For the curious reader, if we look at the proof of Theorem 6.3 in [7] it appears
that the problem is in the base case of the inductive reasoning. Here, it is stated
that given [A1, U1] and [A2, U2] in Sharing with U1 ∩U2 = ∅, σi ∈ γSh([Ai, Ui])
for i ∈ {1, 2} with vars(σ1) ∩ vars(σ2) = ∅, then [{ρ0}, U0] ∈ γSh([R0, U0])
where ρ0 = σ1 ∪σ2, U0 = U1 ∪U2 and R0 = A1 ∪A2. However, the substitutions
σ1 = {x/y} ∈ γSh([{x}, {x}]) and σ2 = ǫ ∈ γSh [{y}, {y}] of the previous example
make the statement false.

3.4 Toward a Result of Correctness

In the previous section we have shown that the abstract unification operator
USh proposed in [7] is not correct w.r.t. the concrete one URs . Of course, it
would be possible to design a correct and optimal abstract unification for URs ,
but we strongly believe that the real anomaly is in the choice of the concrete
operator. Any meaningful semantics for logic programs should perform some
kind of renaming in order to avoid variables clashes such as that in Eq. (2).

There are several ways to approach the problem. We could define a new
concrete operator U∗

Rs
enforcing a stronger applicability condition in such a way

to ensure correctness and optimality of USh w.r.t. U∗

Rs
. A natural choice would

be the following one.

U∗

Rs([Σ1, U1], [Σ2, U2], δ) = [{mgu(σ1, σ2, δ) | σ1 ∈ Σ1, σ2 ∈ Σ2,

(U1 ∪ vars(σ1)) ∩ (U2 ∪ vars(σ2)) = ∅}, U1 ∪ U2] (8)

This operator differs from the previous one since the original condition vars(σ1)∩
vars(σ2) = ∅ is replaced by the stronger condition (U1 ∪ vars(σ1)) ∩ (U2 ∪
vars(σ2)) = ∅ which chooses σ1 – resp. σ2 – renamed apart from U2 – resp.
U1 – and each other. Actually, if we replace URs with U∗

Rs
in the Theorem 6.3

of [7], the base case works, and therefore [7] correctly proves that USh is correct
and optimal w.r.t. U∗

Rs
. However, this causes another problem. It holds that:

U∗

Rs([{x/z}, {x}], [{y/z}, {y}], ǫ) = ∅ (9)

but the intuitive result which comes from the unification between ex-equations
would be [{x/z1, y/z2}, {x, y}] where z1 6= z2. So we must be sure that we have
enough variants in Σ1 and Σ2 for each substitution and this probably requires
some change to the other operators and to the semantics of the language.

In order to solve this problem, we could just perform a renaming before
doing the unification, instead of choosing substitutions which are renamed apart.
Actually, in [9] the authors recognize that “in a typical semantic construction,
renaming is performed” and in [8] actually define a more complex unification
with renamings. However, the corresponding abstract operators are given only
for groundness analysis. The concrete unification U′

Rs
: Rsub× Rsub× Atoms×

Atoms→ Rsub defined in [8] is the following:

U′

Rs([Σ1, U1], [Σ2, U2], A1, A2) =

= URs([ρ1(Σ1), ρ1(U1)], [ρ2(Σ2), U2],mgu(ρ1(A1) = A2))
(10)

6

where (ρ1, ρ2) = Apart(U2) provided vars(A1) ⊆ U1 and vars(A2) ⊆ U2, ⊥Rs

otherwise. We still need to define Apart . Given U2 ∈ ℘f (V), take a partition
{V1, V2} of V such that V1 and V2 are infinite and U2 ⊆ V2. Then Apart(U2) =
(ρ1, ρ2) where ρ1 : V →V1 and ρ2 : V →V2 are bijections such that, for each
x ∈ U2, ρ2(x) = x. We apply such bijections to syntactic objects as if they
were substitutions. The definition of U′

Rs
allows us to extend the Prop. 1 to the

unification operator.

Proposition 2. ∼ is a congruence for U′

Rs
.

We can now define the abstract unification U′

Sh
corresponding to U′

Rs
as follows:

U′

Sh([S1, U1], [S2, U2], A1, A2)

= USh([ρ1(S1), ρ1(U1)], [S2, U2],mgu(ρ1(A1) = A2)) (11)

where (ρ1, ρ2) = Apart(U2) provided vars(A1) ⊆ U1 and vars(A2) ⊆ U2, ⊥Sh

otherwise. It is easy to show that:

U′

Rs([Σ1, U1], [Σ2, U2], A1, A2)

= U∗

Rs([ρ1(Σ1), ρ1(U1)], [ρ2(Σ2), U2],mgu(ρ1(A1) = A2))
(12)

Since USh is correct and optimal w.r.t. U∗

Rs
, it turns out that U′

Sh
is the best

correct operator induced by the concrete unification U′

Rs
, as shown by the next

theorem.

Theorem 1. U′

Sh
is correct and optimal w.r.t. U′

Rs
.

This result fixes the correctness problem in the framework of [7]. The follow-
ing sections will be devoted to examine several improvements concerning the
precision of the resulting semantics.

4 Forward and Backward Unification

When we design domains and operators for developing static analyses, we need
to be sure that the concrete operators are powerful enough to allow the definition
of the semantics of the programming language we are interested in. In the case
of logic programming, this semantics will be some sensible abstraction of the
SLD-derivations [6], such as computed answers. We think that the operators
πRs,⊔Rs and URs do not allow for the definition of such a semantics without
using some additional operator which performs renamings. On the contrary, a
semantics using πRs,⊔Rs and U′

Rs
has been defined in [8]. We will briefly recall

the relevant definitions.

4.1 Semantics

Let Atoms, Clauses, Body and Progs be the syntactic categories for atoms, clauses,
bodies and programs respectively. The semantics is parametric with respect to
a complete lattice X . A denotation is an element in the set of monotonic maps:

Den = Atoms→X →X . (13)

7

✬

✫

✩

✪

PJP K = lfpλd.

(

⊔

cl∈P

CJclKd

)

CJH ← BKdAx = πX (UX (x′
, x,H,A), x)

where x
′ = BJBKd(πX (UX (x, idJH ← BK, A,H), idJH ← BK))

BJλKdx = x

BJA : BKdx = BJBKd(dAx)

Fig. 2. Semantic functions.

We have the following semantic functions:

P : Progs→Den

C : Clauses→Den→Den

B : Body→Den→X →X

whose definitions are given in Fig. 2 by means of the following operators:

UX : X × X × Atoms× Atoms→X

πX : X × X →X

idX : Clauses→X

The instantiation of X to Rsub is obtained by defining

UX = U′

Rs

πX (〈Σ1, U1〉, 〈Σ2, U2〉) = πRs([Σ1, U1], U2)

idX (cl) = [{ǫ}, vars(cl)]

while for X = Sharing we replace U′

Rs
and πRs with U′

Sh
and πSh and we define

idX (cl) = αSh([{ǫ}, vars(cl)]) = [{{x} | x ∈ vars(cl)}, vars(cl)].
It is routine to check that all the semantic functions are continuous, the least

fixpoint in the definition of P does exist and the abstract semantics over Sharing
is correct w.r.t. the concrete one over Rsub, assuming the standard lifting [10]
of the Galois connection 〈αSh , γSh〉 to 〈α′

Sh , γ
′

Sh〉 : Atoms→ Rsub→ Rsub ⇌

Atoms→ Sharing→ Sharing.

4.2 Forward Unification

The concrete unification U′

Rs
is used in two different contexts:

– as a forward unification to compute the collecting entry substitution

πRs(U
′

Rs
(x, idJH ← BK, A,H), idJH ← BK) from the collecting call sub-

stitution x;

8

– as a backward unification to compute the collecting answer substitution

πRs(U
′

Rs
(x′, x,H,A), x) from the collecting exit substitution x′.

Although U′

Sh
is optimal w.r.t. U′

Rs
, this is not the case for a specialized version

of U′

Rs
, as used in in the forward unification, where the second argument is

always of the form [{ǫ}, vars(H ← B)]. Therefore, a specialized version of U′

Sh

could improve the precision of the analysis.

Example 1. Assume, without loss of generality, that (ρ1, ρ2) = Apart(U2) and
ρ1 restricted to {x, y, z} is the identity. Then,

U′

Sh([{xy, yz}, {x, y, z}], idShJp(u, v, w)← λK, p(x, y, z), p(u, v, w)) =

[{xyuv, yzvw, xyzuvw}, {x, y, z, u, v, w}] . (14)

However, since we know that u, v and w are free in idRsJp(u, v, w) ← λK, fol-
lowing [14] when considering the binding y/v in uSh we can avoid to compute
the star unions, obtaining the smaller result [{xyuv, yzvw}, {x, y, z, u, v, w}]. If
we now compute the projection on the variables {u, v, w} we obtain the entry
substitution [{uv, vw, uvw}, {u, v, w}] in the first case and [{uv, vw}, {u, v, w}] in
the latter, with an obvious gain of precision.

Example 2. Let us consider the following unification.

U′

Sh([{xy, xz}, {x, y, z}], idShJp(t(u, v), h, k)←K, p(x, y, z), p(t(u, v), h, k)) =

[bin({xyh, xzk, xyzhk}, {u, v, uv}), {x, y, z, h, k, u}] . (15)

Here, considering that the term t(u, v) is linear and independent from x, fol-
lowing [14] we can avoid to compute the star union over {xy, xz}, obtaining
[{bin({xyh, xzk}, {u, v, uv}), {x, y, z, h, k, u}]. If we project on {h, k, u, v} we ob-
tain bin({h, k}, {u, v, uv}) against bin({h, k, hk}, {u, v, uv}). With the new im-
provement, we are able to prove the independence of h from k.

These examples show that when computing forward abstract unification as a
specialized version of the abstract unification, there is a loss of precision. In fact,
such a forward abstract unification operator is not optimal. We now show that
it is possible to design an optimal operator for forward unification which is able
to exploit the information of linearity and freeness coming from the fact that the
second argument is always of the form [{ǫ}, vars(H ← B)]. Note that we are not
proposing of embedding freeness and linearity information inside the domain,
but only to use all the information coming from the syntax of clauses.

4.3 The Refined Forward Unification

Our first step is to change the definition of the semantic function for clauses in
the following way:

CJH ← BKdAx = πX (UX (x′, x,H,A), x)

where x′ = BJBKd(πX (Uf
X
(x,H ← B,A,H), idJH ← BK))

(16)

9

by using a new operator Uf
X

: X × Clauses × Atoms × Atoms → X . For the

concrete semantics, we instantiate Uf
X

with U′f
Rs

defined as:

U′f
Rs([Σ,U], cl , A1, A2) = U′

Rs([Σ,U], idRsJclK, A1, A2) , (17)

so that nothing changes. However when we move to the abstract domain Sharing,

directly abstracting U′f
Rs

gives more precise results that abstracting U′

Rs
in U′

Sh

and composing it with idSh .
Reasoning according to this rule, we could think that a better approximation

could be reached by abstracting πRs(U
′f
Rs
(x,H ← B,A,H), idJH ← BK) as

a whole. However, since πRs is complete [7], this does not happen. Studying
the direct abstraction of this composition would still be useful to find a direct
implementation which is more efficient than computing U′f

Rs
(x,H ← B,A,H)

and projecting later. We do not consider this problem here.
Following the approach of [16, 7], we first define an operator Uf

Sh
which does

not perform renamings.

Definition 1. We define the forward abstract unification without renamings

Uf
Sh

: Sharing× ℘f (V)× Subst→ Sharing as:

Uf
Sh
([S1, U1], U2, θ) = [uf

Sh
(S1 ∪ {{x} | x ∈ U2}, U2, θ), U1 ∪ U2]

where uf
Sh

: ℘(℘f (V))× ℘f (V)→ ℘(℘f (V)) is defined as:

uf
Sh
(S,U, ǫ) = S

uf
Sh
(S,U, {x/t} ⊎ δ) = uf

Sh
((S \ (rel(S, t) ∪ rel(S, x)))∪

bin(rel(S, x), rel(S, t)), U \ {x}, δ)

if x ∈ U

uf
Sh
(S,U, {x/t} ⊎ δ) = uf

Sh
((S \ (rel(S, t) ∪ rel(S, x)))∪

bin(rel(S, x), rel(S, Y)∗)∪

bin(rel(S, x)∗, rel(S,Z)∗)∪

bin(bin(rel(S, x)∗, rel(S,Z)∗), rel(S, Y)∗),

U \ vars({x/t}), δ)

if x /∈ U , Y = uvars(t) ∩ U , Z = vars(t) \ Y .

provided U1 ∩ U2 = ∅ and vars(θ) ⊆ U1 ∪ U2. For all the other cases, the result

of Uf
Sh

is ⊥Sh .

We can now define the forward abstract unification with renamings U′f
Sh

:
Sharing× Clauses× Atoms× Atoms→ Sharing as follows:

U′f
Sh([S1, U1], cl , A1, A2) = Uf

Sh
([ρ1(S1), ρ1(U1)], vars(cl),mgu(ρ1(A1) = A2))

(18)

10

where (ρ1, ρ2) = Apart(vars(cl)) provided vars(A1) ⊆ U1 and vars(A2) ⊆
vars(cl), ⊥Sh otherwise.

Using U′f
Sh

instead of U′

Sh
gives the improvements in precision we have

discussed in the Examples 1 and 2. Moreover, it is not possible to do better
then U′f

Sh
if we want to remain correct over all the conditions, as the following

theorem proves.

Theorem 2. U′f
Sh

is correct and optimal w.r.t. U′f
Rs
.

The proof of this theorem is influenced by the proof of the analogous theorem
for USh and U∗

Rs
which can be found in [7].

SinceUf
Sh

generates less sharing groups thenUSh and since checking whether
a variable is in U is easy, we can expect an improvement in the efficiency of the
analysis by replacingUSh withUf

Sh
in the computation of the entry substitution.

If computing Y and Z at each step of uf
Sh

seems difficult, it is always possible
to precompute these values once for all before the actual analysis begins, since
they depend from the syntax of the program alone. Moreover, in the definition of
uf
Sh
, when x ∈ U we can replace rel(S, x) with {{x}}, since θ is an idempotent

substitution and x /∈ U1. Finally, from the result of optimality, it immediately
follows that U′f

Sh
yields the same result, regardless of the choice of the mgu, and

the result of the algorithm for computing uf
Sh

is independent from the ordering
of the bindings.

It is worth noting that this operator introduces some new optimizations
which, up to our knowledge, are not used even in more complex domains for
sharing analysis which include linearity and freeness information. The next ex-
ample shows one of these possible optimizations.

Example 3. Let us consider the following unification.

U′

Sh([{xw, xz, yw, yz}, {x, y, w, z}], idShJp(f(u, h), f(u, k), s, t)←K,

p(x, y, w, z), p(f(u, h), f(u, k), s, t)) . (19)

By applying the optimizations suggested from the unification algorithm in pres-
ence of linearity and freeness information [14], we obtain either

bin({yws, yzt}∗, ({k} ∪ bin({xws, xzt}, {u, uh}))∗) ∪ {xwsh, xzth}

or

bin({xws, xzt}∗, ({h} ∪ bin({yws, yzt}, {u, uk}))∗) ∪ {ywsk, yztk}

respectively taking into account the binding x/f(u, h) before or after the binding
y/f(u, k). When we project over {u, h, k, s, t}, we obtain either the sharing group
stk or sth.

The difference between the two computations is due to the fact that when we
consider the first of the two bindings, assume it is x/f(u, h), the term f(u, h) is
linear and independent from x. However, when the second binding is considered,

11

this does not hold anymore, since we are not sure that u is linear and independent
from y. However, we know that k is free and independent from y, and this is
enough to apply a new optimization. In fact, k can share with more than one
sharing group related to y only if k shares with u. Therefore, we obtain

{ywsk, yztk} ∪ bin({yws, yzt}∗,bin({xws, xzt}, {u, uh})∗)

∪ bin(bin({yws, yzt}∗,bin({xws, xzt}, {u, uh})∗), {k}) ∪ {xwsh, xzth} (20)

and when we project over {u, h, k, s, t}, both the sharing groups sth and stk do
not appear. The result does not change by permuting the order of the bindings.

4.4 Matching and Backward Unification

In this section we study some optimizations for the computation of the exit
substitution. When we compute U∗

Rs
(x′, x, δ), we essentially unify all pairs σ′

and σ, elements of x′ and x, with δ. However, we could consider only the pairs
in which σ′ is an instance of mgu(σ, δ) w.r.t. the variable of interest of x′. If this
does not hold, then σ′ cannot be a success substitution corresponding to the
calling substitution σ, and therefore we are unifying two objects which pertain
to different computational paths, with an obvious loss of precision, already at the
concrete level. This problem has been pointed out in [20, Section 5.5]. Following
this idea, we define a new operator for concrete backward unification given as:

Ub
Rs([Σ1, U1], [Σ2, U2], δ) = [{mgu(σ1, σ2, δ) | σ1 ∈ Σ1, σ2 ∈ Σ2,

(vars(σ1)∪U1)∩(vars(σ2)∪U2) = ∅, ∃θ. σ2 ≤ (θ◦mgu(σ1, δ))|U2
}, U1∪U2] .

We also define the version with renamings U′b
Rs as it has been done for U′

Rs
. It

turns out that ∼ is a congruence for U′

Rs
. We instantiate UX with U′b

Rs in the
semantic definition of Eq. (16).

The idea of using a refined operator for computing the exit substitution is not
new. For example both [14], working in the operational framework of [4], and [17]
in a denotational framework similar to ours, propose an abstract operator which
is correct w.r.t. Ub

Rs
. Also [22] use a refined operator for backward unification.

However, both their operators are not optimal and quite inaccurate. We now
want to define the optimal abstract operator U′b

Sh corresponding to U′b
Rs. This

is accomplished by composing the forward unification operator Uf
Sh

with a new
auxiliary operation matchSh .

Definition 2. Given [S1, U1], [S2, U2] ∈ Sharing with U2 ⊆ U1, we define

matchSh([S1, U1], [S2, U2]) = [S′

1 ∪ {X ∈ (S′′

1)
∗ | X ∩ U2 ∈ S2} , U1]

where S′

1 = {B ∈ S1 | B ∩ U2 = ∅} and S′′

1 = S1 \ S
′

1, and

Ub
Sh([S1, U1], [S2, U2], δ) = matchSh(U

f
Sh
([S1, U1], U2, δ), [S2, U2]) .

12

As before, U′b
Sh is obtained from Ub

Sh
by introducing the necessary renamings.

Example 4. Let U1 = {x, y, z}, U2 = {u, v, w}, δ = {x/u, y/v, z/w}, Σ1 =
{{y/t(x, z, z)}, {y/t(x, x, z)}}, Σ2 = {{v/t(u,w,w)}, {v/t(u, u, w}}. If we com-
pute [Σ,U1 ∪ U2] = U′

Rs
([Σ1, U1], [Σ2, U2], δ), assuming (ρ1, ρ2) = Apart(U2)

such that ρ1|U1
= ǫ, we obtain θ = {y/t(x, x, x), z/x, u/x, v/t(x, x, x), w/x} ∈ Σ.

Given [S1, U1] = αSh([Σ1, U1]), [S2, U2] = αSh([Σ2, U2]), S1 = {xy, yz} and
S2 = {uv, vw}, we obtain [S,U1∪U2] = U′

Sh
([S1, U1], [S2, U2], δ) and xyzuvw ∈ S.

However, note that θ is obtained by unifying σ1 = {y/t(x, z, z)} with σ2 =
{v/t(u, u, w)}, and that σ2(v) = t(u, u, w) is not an instance of (mgu(σ1, δ))(v) =
t(x, z, z). Therefore, σ1 and σ2 do pertain to different computational path. If we

compute [Σ′, U1 ∪ U2] = U′b
Rs([Σ1, U1], [Σ2, U2], δ) we obtain

Σ′ = {{y/t(x, z, z), u/x, v/t(x, z, z), w/z}, {y/t(x, x, z), u/x, v/t(x, x, z), w/z}}

which does not contain θ. In the abstract domain, we have

U′b
Sh([S1, U1], [S2, U2], δ) = [{xyuv, yzvw}, U1 ∪ U2] .

Now, after the unification we know that x and z are independent. On the con-
trary, the operators defined in [17] and [14] cannot establish this property.

Theorem 3. U′b
Sh is correct and optimal w.r.t. U′b

Rs.

It is now easy to give an example of a program which can be analyzed with a
better precision w.r.t. the original framework in [7].

Example 5. Actually, the example is trivial and consists of a program with just
one clause p(u,v,w) ←. Consider the goal p(x, y, z) with calling substitution
{xy, yz}. Using our abstract operators, we obtain the entry substitution {uv, vw}
(see Example 1) and the success substitution {xy, yz} (see Example 4). Therefore

we prove that x and z are independent. Note that if we replace either U′b
Sh or

U′f
Sh

with U′

Sh
, then the success substitution will contain the sharing group xyz.

5 Related Works

We consider here other improvements to the standard analyses based on Sharing

and their relationships with our proposal. It turns out that our idea of specialized
operators for forward and backward unification is orthogonal to most of other
proposals for improving precision and/or efficiency of the analysis. Furthermore,

the definition of Uf
Sh

sheds new light on the abstract unification in the presence
of freeness and linearity information.

Forward/Backward Unification and PSD. Although the usual goal of
sharing analyses is to discover the pairs of variables which may possibly share,
Sharing is a domain that keeps track of set-sharing information. In [2] the
authors propose a new domain, called PSD, which is the complete shell [13] of

13

pair sharing w.r.t. Sharing. They recognize that, in an abstract object [S,U],
some sharing groups in S may be redundant, since they do not provide any
information as far as pair sharing is concerned. Given S ∈ ℘(℘f (V)) and B ∈
℘f (V), B is redundant for S when B ×B =

⋃

{B′ ×B′ | B′ ∈ S,B′ (B}. Now,
although our forward unification is more precise than the standard unification,
it can be the case that they have the same precision in PSD. This would mean
that Uf

Sh
([S1, U1], U2, δ) and USh([S1, U1], [{{x} | x ∈ U2}, U2], δ) only differ

for redundant sharing groups. However, this is not the case, and Examples 1,
2 and 3 give improvements which are still significant in PSD. The same holds
for backward unification in Example 4. It would be interesting to examine more
in details the behavior of our unification operators in the domain PSD, since it
is not clear whether it is still complete w.r.t. pair-sharing when our specialized
operators are used.

Domains with Freeness and Linearity. Although the use of freeness and
linearity information has been pursued in several papers (e.g. [21, 14]), optimal
operators for these domains have never been developed. Actually, the standard
mgu in SFL [22, 14, 3], when unifying with a binding {x/t} where neither x nor

t are linear, does compute all the star unions. In uf
Sh
, however, we apply an

optimization which is able to avoid some sharing groups (see e.g. Example 3).
This optimization could be integrated in a domain which explicitly contains
freeness and linearity information. Actually [3] includes some optimizations for
the standard abstract unification of SFL which are similar to ours, in the case
of a binding {x/t} with x linear. In addition, [23, 15] propose to remove the
check for independence between x and t. We think it should be possible to
devise an optimal abstract unification for an enhanced domain including linearity
information, by combining these improvements with our results.

Another Optimality Proof. In [5] the authors provide an alternative ap-
proach to the analysis of sharing by using set logic programs and ACI1 uni-
fication. They define abstract operators which are proved to be correct and
optimal, and examine the relationship between set substitutions and Sharing,
proving that they are essentially isomorphic. However, they do not extend this
correspondence to the abstract operators, so that a proof of optimality of U′

Sh

w.r.t. U′

Rs
starting from their results should be feasible but it is not immedi-

ate. Moreover, since they provide a goal-independent analysis, they do not have
different operators for forward and backward unification.

6 Conclusions

We think that three are the major contributions of this paper.

– We provide a result of optimality for the abstract unification in Sharing,
which corrects the one presented in [7].

– We propose a refined framework with specialized operators for forward and
backward unification. We provide the corresponding abstract operators for
sharing analysis which are proved to be correct and optimal. The obtained
analysis is shown to be strictly more precise than the original one.

14

– We suggest a new idea for treating freeness and linearity information which
can also be used in more powerful domains such as SFL.

To the best of our knowledge, this is the first work which optimizes the abstract
forward unification for sharing analysis by using a specialized operator. Actu-
ally, in [20] the concrete unify operator is essentially our Uf

Rs
, but the abstract

operator is given only for groundness analysis, where specializing the forward
unification gives no gain in precision. In other works about goal-dependent anal-
ysis, such as [21, 14], the algorithm used for computing the entry substitution is
simply the standard unification.

This is also the first work where a specialized backward unification opera-
tor is proved to be optimal, although matching has been used in several papers
[14, 17, 22] to improve backward unification. To the best of our knowledge, all
the abstract operators proposed so far for Sharing were not optimal. Match-
ing, however, does not remove some imprecisions of goal-dependent versus goal-
independent analysis which have been pointed out in [12].

As a future work, we think that our results could be easily generalized for
designing optimal unification operators for a domain including linearity informa-
tion. Moreover, the problem of efficiently implementing the backward unification
could be addressed.

References

1. T. Armstrong, K. Marriott, P. Schachte, and H. Søndergaard. Boolean func-
tions for dependency analysis: Algebraic properties and efficient representation.
In B. Le Charlier, editor, Proc. Static Analysis Symposium, SAS’94, volume 864
of Lecture Notes in Computer Science, pages 266–280. Springer-Verlag, 1994.

2. R. Bagnara, P. Hill, and E. Zaffanella. Set-sharing is redundant for pair-sharing.
Theoretical Computer Science, 2002. To appear.

3. R. Bagnara, E. Zaffanella, and P. M. Hill. Enhanced sharing analysis techniques: A
comprehensive evaluation. In M. Gabbrielli and F. Pfenning, editors, Proceedings
of the 2nd International ACM SIGPLAN Conference on Principles and Practice
of Declarative Programming, pages 103–114, Montreal, Canada, 2000. ACM Press.

4. M. Bruynooghe. A practical framework for the abstract interpretation of logic
programs. Journal of Logic Programming, 10(1/2/3&4):91–124, 1991.

5. M. Codish, V. Lagoon, and F. Bueno. An algebraic approach to sharing analysis
of logic programs. In Static Analysis Symposium, pages 68–82, 1997.

6. M. Comini, G. Levi, and M. C. Meo. A theory of observables for logic programs.
Information and Computation, 169, 2001.

7. A. Cortesi and G. Filè. Sharing is optimal. Journal of Logic Programming,
38(3):371–386, 1999.

8. A. Cortesi, G. Filè, and W. W. Winsborough. Optimal groundness analysis us-
ing propositional formulas. Technical Report 94/11, Department of Mathematics,
University of Padova, 1994.

9. A. Cortesi, G. Filé, and W. W. Winsborough. Optimal groundness analysis using
propositional logic. Journal of Logic Programming, 27(2):137–167, 1996.

10. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Proc. Sixth ACM Symp. Principles of Programming Languages (POPL ’79), pages
269–282, New York, 1979. ACM Press.

15

11. P. Cousot and R. Cousot. Abstract Interpretation and Applications to Logic Pro-
grams. Journal of Logic Programming, 13(2 & 3):103–179, 1992.

12. M. G. de La Banda, K. Marriott, P. Stuckey, and H. Søndergaard. Differential
methods in logic program analysis. Journal of Logic Programming, 37(1):1–37,
Apr. 1998.

13. R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations com-
plete. Journal of the ACM, 47(2):361–416, 2000. ISSN 1084-6654.

14. W. Hans and S. Winkler. Aliasing and groundness analysis of logic programs
through abstract interpretation and its safety. Technical Report 92–27, Technical
University of Aachen (RWTH Aachen), 1992.

15. J. Howe and A. King. Three Optimisations for Sharing. Technical Report 11-01,
Computing Laboratory, University of Kent at Canterbury, August 2001. To appear
in Theory and Practice of Logic Programming.

16. D. Jacobs and A. Langen. Static Analysis of Logic Programs for Independent AND
Parallelism. Journal of Logic Programming, 13(2 & 3):291–314, 1992.

17. A. King and M. Longley. Abstract matching can improve on abstract unification.
Technical Report 4-95*, University of Kent, Computing Laboratory, University of
Kent, Canterbury, UK, March 1995.

18. A. Langen. Static Analysis for Independent And-parallelism in Logic Programs.
PhD thesis, University of Southern California, Los Angeles, California, 1990.

19. K. Marriott and H. Søndergaard. Abstract Interpretation of Logic Programs: the
Denotational Approach. In A. Bossi, editor, Proc. Fifth Italian Conference on
Logic Programming, pages 399–425, 1990.

20. K. Marriott, H. Søndergaard, and N. D. Jones. Denotational abstract interpreta-
tion of logic programs. ACM Transactions on Programming Languages and Sys-
tems, 16(3):607–648, May 1994.

21. K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing and
Freeness of Program Variables through Abstract Interpretation. In K. Furukawa,
editor, Proceedings of the 8th International Conference on Logic Programming,
pages 49–63, Paris, 1991. The MIT Press.

22. K. Muthukumar and M. V. Hermenegildo. Compile-time derivation of vari-
able dependency using abstract interpretation. Journal of Logic Programming,
13(2&3):315–347, 1992.

23. E. Zaffanella. Correctness, Precision and Efficiency in the Sharing Analysis of Real
Logic Languages. PhD thesis, School of Computing, University of Leeds, Leeds,
U.K., 2001. Available at http://www.cs.unipr.it/ zaffanella/.

16

