
On collecting semantics for program analysis

Gianluca Amato∗, Maria Chiara Meo∗, Francesca Scozzari∗

Università di Chieti–Pescara, Pescara, Italy

Abstract

Reasoning on a complex system in the abstract interpretation theory starts with
a formal description of the system behaviour specified by a collecting semantics.
We take the common point of view that a collecting semantics is a very precise
semantics from which other abstractions may be derived. We elaborate on both
the concepts of precision and derivability, and introduce a notion of adequacy
which tell us when a collecting semantics is a good choice for a given family of
abstractions. We instantiate this approach to the case of first-order functional
programs by considering three common collecting semantics and some abstract
properties of functions. We study their relative precision and give a construc-
tive characterization of the classes of abstractions which are adequate for the
collecting semantics.

Keywords: abstract interpretation, static analysis, collecting semantics,
Galois connection

1. Introduction

Abstract interpretation, introduced by Cousot and Cousot (1977, 1979), is
a framework for approximating the behavior of systems. It has been used both
for developing static analysis, verification methods and for studying relations
among semantics at different levels of abstraction. The main point of abstract
interpretation is to replace the formal semantics of a system with an abstract
semantics computed over a domain of abstract objects, which describe the prop-
erties of the system we are interested in.

Given a system e, we assume that its semantics JeK is an element of a set
C of concrete properties, called the concrete domain. In most cases we only
need to know some abstract properties of the semantics of a system. Examples
of abstract properties are: the program terminates for all the input values or
the program output is a value in the interval [0, 42]. Given a set A of abstract

∗Corresponding authors.
Email addresses: gianluca.amato@unich.it (Gianluca Amato),

mariachiara.meo@unich.it (Maria Chiara Meo), francesca.scozzari@unich.it (Francesca
Scozzari)

Preprint submitted to Elsevier February 23, 2020

properties (abstract domain) we are interested in, each concrete property in C
may enjoy several abstract properties in A. The relationship between concrete
and abstract properties may be formalized in many different ways, but one of
the most common approaches consists in fixing an approximation ordering ≤A
on the set of abstract properties A, such that a1 ≤A a2 when a1 is a stronger
property than a2, and defining an abstraction function αA : C → A which maps
every concrete property to the strongest (smallest) abstract property it enjoys.
This is what is presented in Cousot and Cousot (1992) under the “existence of
a best abstract approximation assumption”.

An abstract interpretation problem consists in answering whether the se-
mantics JeK of a system e enjoys a given property a. In theory, this can be
verified by computing the strongest abstract property enjoyed by the system e,
which is αA(JeK), and checking that it enjoys the property a we are interested
in, that is αA(JeK) ≤A a. In practice, since JeK is not generally computable, the
standard approach to solve this problem is to design an approximate abstract
semantics JeKA ∈ A such that αA(JeK) ≤A JeKA and show that JeKA ≤A a. In
most cases, JeKA is not designed starting from JeK, but from a so-called collecting
semantics.

According to Cousot and Cousot (1992), the term collecting semantics may
be used to mean either “an instrumented version of the standard semantics in
order to gather information about programs executions” or “a version of the
standard semantics reduced to essentials in order to ignore irrelevant details
about program execution”. In this paper, we consider only the second meaning
of the term, i.e., we view a collecting semantics as an abstraction of the standard
semantics.

One might ask which are the properties that an abstract interpretation enjoys
which entitle the abstraction to be called a collecting semantics. It is common
to find in the literature the statement that the collecting semantics is a very
precise abstraction from which all the other analyses may be derived. Here we
want to elaborate and formalize this statement. In particular, we discuss what
is the right concept of precision of abstractions to be used in this context, and
what is behind the statement that an analysis may be derived from another.

In the context of first-order functional programs, we consider collecting se-
mantics commonly used in static analysis of programs which first appeared in
Cousot and Cousot (1994). We introduce three collecting semantics CS1, CS2

and CS3 and discuss the relative precision among them, showing that CS2 is
a suitable collecting semantics for all properties, while CS1 and CS3 are only
suitable for some properties of functions. We define a category of abstract inter-
pretations and their morphisms based on the notion of Galois connection, discuss
the role of initial objects and constructively characterize a class of abstractions
for which the collecting semantics are initial, i.e., are well suited as collecting se-
mantics. Moreover, we show how common abstractions of functional properties,
such as strictness, totality, convergence, divergence and monotonicity, relate to
the collecting semantics.

2

1.1. Plan of the paper

In Section 2 we explore the concept of precision of abstraction, show some
examples of abstraction for properties of functions and discuss how they can
be compared starting from the above notion of precision. Section 3 introduces
the two collecting semantics CS1 and CS2. We compare the precision of the
collecting semantics and formally state their relationships. In Section 4 we
define the categorical framework of abstract interpretations and discuss the
role of initial objects. Section 5 extends this characterization to an additional
collecting semantics CS3 and shows how it relates to the semantics in Section 3.
In Section 6 we discuss what happens when using different formalizations of
abstract interpretation and suggest some future work. All the proofs are in the
appendix.

The article is an extended and revised version of Amato et al. (2018). The
most prominent change is a complete overhaul of the motivations of this work
and the reasons which led to our choice for the precision ordering. However,
there are many other changes: we have included more examples of abstrac-
tions (totality, convergence, divergence, involution, idempotence, monotonicity,
boundness), studied a new collecting semantics (CS3) and significantly expanded
the intuitive explanations. Moreover, both the appendix with the proofs and
the section on related work are new.

2. Precision, derivability and collecting semantics

In the following, we fix a set C of concrete properties. The standard se-
mantics JeK of a system e is an element of C. The concrete domain C may
be endowed with additional structure which allows to derive the semantics of a
system through structural induction on the description of the system and least
fixpoint computations. However, the way JeK is defined is going to play only a
marginal role in our discussion.

Definition 1 (Abstract Interpretation). An abstract interpretation for a
set C is a pair (A,αA) where the set A is partially ordered by ≤A and αA
is a map C → A. If c ∈ C, a ∈ A and αA(c) ≤A a we say that a is a correct
approximation of c. With an abuse of notation, we will sometimes identify an
abstract interpretation (A,αA) with its abstract domain A.

Often C is endowed with a partial ordering (called computational ordering)
which is used in fixpoint computations. Computational ordering and approxi-
mation ordering may be unrelated, hence we do not require the map αA in an
abstract interpretation to be monotone.

2.1. Abstractions and Galois connections

It is worth noting that the abstraction map in our definition of abstraction
is not required to be part of a Galois connection. Many abstractions are more
naturally formalized in term of abstraction functions only. As a very elementary

3

example, consider the classical “rule of sign” for checking the correctness of the
sign of the product xy of two integer numbers, which exploits the fact that the
sign of the multiplication xy can be recovered from the sign of x and the sign
of y. If we formalize this rule as an abstract interpretation, we may choose Z
as the concrete domain, Sign = {pos,neg , zero} as the abstract domain, and
αS : Z→ Sign as:

αS(x) =


pos if x > 0;

neg if x < 0;

zero if x = 0.

Note that for Sign we use the flat ordering: a is a correct abstraction of x
iff a is exactly αS(x).

In this case αS is not part of a Galois connection. Actually, αS is not even
monotone if we use the standard ordering for Z. We may turn the rule of sign
into a Galois connection if, for example, we take C = P(Z) as the concrete
domain, A = P(Sign) as the abstract domain and α : C → A defined as the
pointwise extension of αS , i.e., α(X) = {αS(x) | x ∈ X}, where both A and C
are ordered by subset inclusion. In this case γ(X) = {x ∈ Z | αS(x) ∈ X} is
the right adjoint of α.

All the abstractions we show in this paper can be turned into Galois con-
nections only if we change the concrete domain. This actually means selecting
a collecting semantics among several possible choices, and it is the main topic
of the paper. Only rarely the standard semantics of a programming language
directly forms a Galois connection with their common abstractions. A notable
example is the TP like semantics for goal-independent semantic of logic pro-
gramming (Comini et al., 2001).

2.2. Examples of abstractions

We take as applicative setting the abstract interpretation of functional pro-
grams. For easiness of presentation, we consider a simple case where the con-
crete domain C is the set D⊥ → D⊥ of unary functions from a base domain
D⊥ to itself, and assume that D⊥ has a distinguished value ⊥ which represents
non-terminating computations. Depending on the concrete domain, ⊥ may also
encode run-time errors. All the results presented are independent from its con-
crete meaning. Some of the results which follow depend on the fact that D⊥ has
at least an element different from ⊥. The case when D⊥ = {⊥} is a singleton is
trivial and will not be considered.

Example 2 (A simple program). Consider a simple setting where the D =
N is the set of natural numbers. Then, the program

l et rec prog n = i f (n = 2) then prog (n) else n

has the following semantics:

JprogK = λn.

{
⊥ if n = 2 or n = ⊥;

n otherwise.

4

An example of a simple and useful abstraction is strictness. We say that a
function f : D⊥ → D⊥ is strict if f(⊥) = ⊥. Strictness analysis is used to prove
that a function f either diverges or needs its arguments. The next definition
formalizes strictness analysis as an abstract interpretation.

Definition 3 (Strictness). The strictness abstract interpretation (Mycroft,
1980) is Str = ({str ≤ >}, αstr) where

αstr (f) =

{
str if f(⊥) = ⊥,

> otherwise.

Another common abstraction for D⊥ → D⊥ is constancy. Constancy cap-
tures the fact that a function f : D⊥ → D⊥ either diverges or ignores its
arguments, i.e., f(x) = f(⊥) for any x ∈ D⊥.

Definition 4 (Constancy). The constancy abstract interpretation (Wadler
and Hughes, 1987) is Const = ({const ≤ >}, αconst) where

αconst(f) =

{
const if ∀x ∈ D⊥, f(x) = f(⊥),

> otherwise.

Consider the program prog defined in Example 2. Since prog uses its argu-
ment and does not always diverge, we have αstr (JprogK) = str and αconst(JprogK) =
>.

Other examples of simple and useful abstractions are totality, convergence,
divergence (Cousot and Cousot, 1994), involution and idempotence (de Kruijf
and Sankaralingam, 2013). We say that a function f : D⊥ → D⊥ is convergent
if, for any x ∈ D⊥, f(x) 6= ⊥, and it is divergent if, for any x ∈ D⊥, f(x) = ⊥.
We say that a function f is idempotent if f ◦ f = f , where ◦ is the standard
function composition operator. Moreover f is an involution if f ◦ f = id.

Definition 5 (Totality). The totality abstract interpretation is Tot = ({tot ≤
>}, αtot) where

αtot(f) =

{
tot if ∀x ∈ D, f(x) 6= ⊥
> otherwise.

Definition 6 (Convergence). The convergence abstract interpretation is Conv =
({conv ≤ >}, αconv) where

αconv (f) =

{
conv if ∀x ∈ D⊥, f(x) 6= ⊥
> otherwise.

Definition 7 (Divergence). The divergence abstract interpretation is Div =
({div ≤ >}, αdiv) where

αdiv (f) =

{
div if ∀x ∈ D⊥, f(x) = ⊥
> otherwise.

5

Definition 8 (Involution). The involution abstract interpretation is Inv =
({inv ≤ >}, αinv) where

αinv (f) =

{
inv if ∀x ∈ D⊥, f(f(x)) = x

> otherwise.

Definition 9 (Idempotence). The idempotence abstract interpretation is Ide =
({ide ≤ >}, αide) where

αide(f) =

{
ide if ∀x ∈ D⊥, f(f(x)) = f(x)

> otherwise.

If we consider the program prog defined in Example 2, we have that αide(JprogK) =
ide since prog describes an idempotent function. However, αtot(JprogK) =
αconv (JprogK) = αdiv (JprogK) = αinv (JprogK) = > since JprogK(2) = ⊥, JprogK(1) =
1 and JprogK(JprogK(2)) = ⊥ 6= 2.

Finally, consider the monotonicity and boundness properties. Assume D⊥
is partially ordered by v. We say that a function f : D⊥ → D⊥ is monotone if
∀x, y ∈ D⊥, x v y implies f(x) v f(y). Moreover f : D⊥ → D⊥ is bounded if
there exists d ∈ D⊥ such that ∀x ∈ D⊥, f(x) v d.

Definition 10 (Monotonicity). The monotonicity abstract interpretation is
Mon = ({mon ≤ >}, αmon) where

αmon(f) =

{
mon if ∀x, y ∈ D⊥, x v y implies f(x) v f(y)

> otherwise.

Definition 11 (Boundness). The boundness abstract interpretation is Bou =
({bou ≤ >}, αbou) where

αbou(f) =

{
bou if ∃d ∈ D⊥,∀x ∈ D⊥, f(x) v d
> otherwise.

Let us consider the program prog defined in Example 2, where v is the
standard order relation “less than or equal to” extended in such a way that
⊥ v 0. We have that αmon(JprogK) = > since JprogK(1) = 1 6v ⊥ = JprogK(2).
Moreover, it is easy to check that αbou(JprogK) = >.

2.3. Comparing abstract interpretations

In order to compare different abstract interpretations, we need to define a
notion of relative precision1 among them. Of course, one might say that there is

1We use the term relative precision to indicate that we deal with precision among abstract
domains, since in some work precision refers to completeness properties of an abstract domain,
see for instance Cousot and Cousot (1979); Giacobazzi et al. (2000); Amato and Scozzari
(2011).

6

already a standard notion of relative precision, which is the existence of a Galois
connection among the abstract domains. We agree that Galois connections are
quite convenient for comparing abstractions, but we do not think that this choice
should go unquestioned, and we want to provide more elaborate arguments in
favor of this approach. This is because in our setting abstract interpretations
are defined through the use of abstraction functions only, and there should be
a good reason for introducing Galois connections.

As a first, näıf approach, we may say that, given two abstract interpretations
(A,αA) and (B,αB) for a concrete domain C, we have that (A,αA) is more
precise than (B,αB) when all the properties computed by αB may be recovered
from the properties computed by αA, that is when αB factors through αA, i.e.,
there is a map α : A→ B such that αB = α ◦ αA.

However, this definition of precision is too weak for many purposes. Most of
the time, we are not able to compute the abstraction of the concrete semantics
αA(JeK) but only an over-approximation of the real value through an abstract
semantics JeKA ≥A αA(JeK). In this case, knowing JeKA does not say anything
about αB(JeK), since we have not required α to be monotone.

Example 12. We say that a function f : D⊥ → D⊥ is defined constant if there
is d ∈ D such that ∀x ∈ D⊥, f(x) = d. Consider the abstract interpretation
(A,αA) such that A = {defcon <A defconstr <A >} and

αA(f) =


defcon if f is defined constant

defconstr if f is strict

> otherwise

Note that, although αA(f) = defconstr exactly when f is strict, the value
defconstr does not represent the property of being strict but the property of
being strict or defined constant.

We may define α : A → Str such that α = {defcon 7→ >, defconstr 7→
str ,> 7→ >}, and we have α ◦ αA = αstr . However, α is not monotone: if we
have a program e and we know that JeKA = defconstr ≥ αA(JeK), we cannot
conclude that str ≥ αstr (JeK), i.e., that JeK is strict.

If we also require monotonicity of α in the definition of precision, things
go better. In this case, if we know that JeKA ≥A αA(JeK), then we also know
α(JeKA) ≥B αB(JeK), hence an approximate result for the abstract interpretation
A gives an approximate result for the abstract interpretation B.

Definition 13 (Relative α-precision). Given abstract interpretations (A,αA)
and (B,αB) over the domain C, we say that A is more α-precise than B when
there is a monotone map α : A→ B such that α ◦ αA = αB .

It turns out that the trivial abstraction (C, id) with the flat ordering on C is
the most α-precise abstraction. Actually, if (A,αA) is an abstraction, in order
to show that C is more α-precise than A it is enough to choose α = αA, which
is monotone since the ordering of C is flat.

7

2.4. Relative precision and verification

Relative α-precision is still not satisfactory in all the contexts. If abstract
interpretation were used for analysis only, it might be a good choice. However,
abstract interpretation is also used for verification. In this case, we do not really
want to compute αA(JeK). On the contrary, we fix a property a ∈ A and want
to decide whether αA(JeK) ≤A a.

Definition 14 (Abstract interpretation problem). Let C be a concrete do-
main and e be a system whose concrete semantics is JeK ∈ C. Given an abstract
interpretation (A,α) for C and an abstract property a ∈ A, an abstract inter-
pretation problem consists in deciding whether

α(JeK) ≤A a .

According to this new perspective, if we have abstract interpretations A and
B, we might say that A is more precise than B when each abstract interpretation
problem over the domain B may be transformed into an equivalent abstract
interpretation problem over the domain A. In this way, if we hypothetically
have an oracle for verifying properties over A, we can use it to verify properties
over B. We may formalize this point of view as follows.

Definition 15 (Relative γ-precision). Given two abstract interpretations (A,αA)
and (B,αB) over the domain C, we say that A is more γ-precise than B when
there is γ : B → A such that, for each c ∈ C and b ∈ B,

αB(c) ≤B b ⇐⇒ αA(c) ≤A γ(b) .

We show with a couple of examples that the two variants of relative precision
are different from one another.

Example 16. Consider the abstract interpretation A = D⊥∪{>} with d <A >
for each d ∈ D⊥. The idea is that > stands for the trivial property enjoyed by
every function, while d ∈ D⊥ is the property of being constantly equal to d. In
other words:

αA(f) =

{
d if ∀x ∈ D⊥, f(x) = d,

> otherwise

There is a monotone map α : A→ Const given by

α(a) =

{
const if a 6= >,
> if a = >.

and αconst = α◦αA. Therefore, A is more α-precise than const . However, there
is no direct way to decide whether a map f is constant by having a verifier for the
abstract interpretation problems in A. Actually to check whether αconst(f) ≤A
const , we would need to solve a possibly infinite number of problems αA(f) ≤ d
for each d ∈ D⊥. Therefore, A is not more γ-precise than Const.

8

Example 17. Consider the domain (A,αA) given by

>

str defcon other
αA(f) =


str if f is strict

defcon if f is defined constant

other otherwise

and (B,αB) which is defined in exactly the same way but without the > element.
Note that αA never returns >. Then, A is more γ-precise than B: we just define
γ : B → A as the injection of A in B. However, there is no monotone map
α : A→ B such that αB = α ◦ αA since there is no way to map > consistently.

Although in the general case the two concepts of precision are different, there
are several ways in which they may collapse. This happens, for example, when
αA is surjective.

Proposition 18. If αA is surjective, and A is more γ-precise than B, then A
is more α-precise than B and there is a Galois connection 〈α, γ〉 : A� B such
that α ◦ αA = αB.

Note that while the trivial abstraction (C, id) is the most α-precise abstract
interpretation, the same is not true when considering γ-precision.

Example 19. The trivial abstraction is not more γ-precise than Str. This
would amount to the existence of a function γ : Str→ C such that αstr (f) = str
iff f = γ(str). In other word, this would be possible only if there were an unique
strict function, which is obviously not true.

In the general case, the fact that (A,αA) is more α-precise and γ-precise
than (B,αB) does not imply that 〈α, γ〉 is a Galois connection, as shown by the
following example.

Example 20. Let A = ({str , other ,>},≤A) with str <A other <A >. Given a
function f : D⊥ → D⊥, we define:

αA(f) =

{
str if f is strict,

> otherwise.

Let B = ({str ,>},≤B) with str and αB(f) = αA(f) for each f : D⊥ →
D⊥. Let α : A → B be the map {str → str , other → str ,> → >} while
γ : B → A is the identity map.

We have that (A,αA) is more α-precise than (B,αB), since α is monotone
and α is the identity on the image of αA. Moreover, (A,αA) is more γ-precise
than (B,αB). Actually, ≤B and ≤A do coincide on B, hence, for all b ∈ B we
have that

αB(f) ≤B b ⇐⇒ αB(f) ≤A b ⇐⇒ αA(f) ≤A γ(b) .

However α and γ do not form a Galois connection, since α(other) ≤ str but
other 6≤ γ(str).

9

2.5. Derivability among semantics

In the intuitive definition of collecting semantics, one of the requirements is
that the other abstractions may be derived from it. What does it mean that an
abstraction (B,αB) may be derived from (A,αA)? It seems unavoidable that
each sensible definition of “may be derived from A” means that A is more α-
precise than B. In the hypothetical case that we are able to compute everything
without losing information, we want that going through the collecting semantics
instead of the standard semantics does not loose information.

However, derivable also means that if we have an (approximate) constructive
definition of an abstract semantics JeKA ≥A αA(JeK), this may be used as a guide
for a constructive definition of an abstract semantics JeKB ≥B αB(JeK).

A common case is when JeK = Fωe (⊥C) for some map Fe : C → C and
the abstract semantics in A is built by simulating in the abstract domain the
progression of the concrete iterates. It means that there is a map FA,e : A→ A
such that F iA,e(αA(⊥C)) ≥A αA(F ie(⊥C)) and there is an abstract join qA :
℘(A)→ A which is a correct approximation of the least upperbound of C, i.e.,
if ai ≥A αA(ci) for each i < ω, then qAai ≥A αA(

⊔
i ci). The abstract semantics

on A is defined as JeKA = qA{F iA,e(αA(⊥C)) | i < ω}.
In this situation, if A is both more α-precise and γ-precise than B, we

may define an abstract semantics JeKB as qB{F iB,e(αB(⊥C)) | i < ω} where
FB,e = α ◦ FA,e ◦ γ and qB(X) = α(qA{γ(x) | x ∈ X}). It is possible to prove
that JeKB ≥B αB(JeK).

The cornerstone of the correctness proof is the following proposition. We
show the proof here since we think it is important to follow the remaining part
of this section.

Proposition 21. Let (A,αA) and (B,αB) be abstractions such that A is both
more α-precise and γ-precise than B. If FA,e : A → A preserves correctness
of abstractions, i.e., for any a ∈ A, c ∈ C, a ≥A αA(c) implies FA,e(a) ≥A
αA(Fe(c)), then FB,e = α ◦ FA,e ◦ γ also preserves correctness of abstractions.

Proof. Given b ∈ B and c ∈ C, assume b ≥B αB(c). Since A is more γ-precise
than B, we have

γ(b) ≥A αA(c) .

By correctness of FA,e, it holds that

FA,e(γ(b)) ≥A αA(Fe(c))

and by composing with the monotone map α, we have

FB,e(b) ≥B αB(Fe(c)) .

Although this result is similar to known results on correctness of abstract
operators, it is essential in this proof that we track the behavior of the concrete
iterates. Therefore, we have three semantics involved: the concrete one and
two abstract ones. This is because the two definitions of relative precision are

10

essentially blind on how A and B are related on elements which are not an
abstraction of concrete values. If we want to work more freely without having
to continuously refer to the concrete semantics, we may require that α and γ
form a Galois connection. This is actually not very far from what we already
have, as shown in Proposition 18.

Definition 22 (Relative precision). Given (A,αA) and (B,αB) two abstract
interpretations over the domain C, we say that A is more precise than B when
there is a Galois connection 〈α, γ〉 : A� B such that αB = α ◦ αA.

This is essentially the same definition of precision given in Cousot and Cousot
(1977), with the additional requirement that α should respect the abstraction
maps αA and αB which have been given beforehand. Note that we use the term
“relative” precision since in some papers the term precision is used to mean
α-completeness, which is a different concept (Giacobazzi et al., 2000).

Clearly, relative precision is stronger than both α-precision and γ-precision.
When we have a Galois connection, correctness of the abstract semantics A
w.r.t. the abstract semantics B may be rephrased without involving concrete
semantics, as in the next well known result.

Proposition 23. Given FA : A → A monotone, if A is more precise than B
through the Galois connection 〈α, γ〉, then FB = α ◦ FA ◦ γ is correct, i.e., if
b ≥B α(a), then FB(b) ≥B α(FA(a)).

In the following, we use the definition of relative precision based on Galois
connections. Please note that if we only have an abstraction (A,αA) and a
Galois connection 〈α, γ〉 : A � B, then we may define an abstraction over B
as (B,α ◦ αA) such that A is more precise than B. However, we are taking a
different point of view where abstractions are defined directly from the concrete
semantics, so that condition αB = α ◦ αA should be included explicitly.

2.6. Collecting semantics

The conclusion from the previous sections is that if we want to compare dif-
ferent abstract interpretations, the notion of relative precision based on Galois
connection conjugates in a simple way different aspects relative to precision (α-
and γ-precision) with aspects relative to derivability between abstract seman-
tics. The latter is particularly important when one of the two semantics we
are considering is a collecting semantics, since its main purpose is guiding the
design of an abstract semantics.

When we want to design an abstract semantics, we can either take the con-
crete semantics as the reference, and use a relatively poor mathematical frame-
work, or use the collecting semantics as the reference, and derive the abstract
semantics using the Galois connection framework.

Given a family of abstractions F , a question which arises is which is the
“best” collecting semantics for the abstractions in F . Obviously, we require the
collecting semantics to be more precise than all the abstractions in F . However,
we might require something more. In the general case, if A is more precise than

11

B, there are several Galois connections 〈α, γ〉 : A � B such that α ◦ αA = αB .
If (S, αS) is a collecting semantics for a family F , it would be better to have a
unique Galois connection from S to each abstraction in F .

Definition 24 (Adequate collecting semantics). Given a domain C and a
family F of abstractions, an abstraction (S, αS) is a collecting semantics ade-
quate for F when, for each abstraction (A,αA) ∈ F , there is a unique Galois
connection 〈α, γ〉 : S � A such that α ◦ αS = αA.

In the rest of the paper, we analyze some common collecting semantics and
abstractions for the case of first-order functional languages, we study their rel-
ative precision, and we characterize the class of abstractions for which the col-
lecting semantics are adequate.

3. Collecting semantics for functional programs

3.1. Collecting semantics

We define two abstract interpretations CS1 and CS2 which are commonly
used as collecting semantics for the concrete domain D⊥ → D⊥.

Definition 25 (Collecting Semantics CS1). We define the abstract inter-
pretation CS1 on D⊥ → D⊥ as:

CS1 = (P(D⊥)
∪−→ P(D⊥), αCS1)

where P(D⊥)
∪−→ P(D⊥) is the set of complete join-morphisms2 ordered point-

wise,
αCS1(f) = λX ∈ P(D⊥).f(X)

and f(X) is the image of f through X.

Note that, differently from the definition in Cousot and Cousot (1994), CS1

is restricted to maps P(D⊥)
∪−→ P(D⊥) which are complete join-morphisms,

otherwise there would be multiple abstract objects which approximate exactly
the same set of concrete functions. This will be important when proving the
adequacy of the CS1 semantics. A different solution could be to change CS1 to
D⊥ → P(D⊥).

Example 26. The restriction to join-morphisms is required since the approx-

imation of any function f : D⊥ → D⊥ in a function φ : P(D⊥)
∪−→ P(D⊥)

2A function φ is a complete join morphism when φ(∪i∈IXi) = ∪i∈Iφ(Xi) for any index
set I.

12

is actually completely characterized from the behavior of φ on singletons. For
instance, given d ∈ D, consider the following functions φ0 and φ1:

φ0 = λX.

{
∅ if X = ∅,
{⊥} otherwise.

φ1 = λX.


∅ if X = ∅,
{⊥} if |X| = 1,

D⊥ otherwise.

Both φ0 and φ1 approximates only a single function, namely the function which
diverges for any input, but φ0, which is a complete join-morphisms, seems to be
a cleaner choice.

Definition 27 (Collecting Semantics CS2). We define the abstract inter-
pretation CS2 on D⊥ → D⊥ as:

CS2 = (P(D⊥ → D⊥), αCS2)

where P(D⊥ → D⊥) is ordered by standard subset inclusion and

αCS2(f) = {f} .

3.2. Strictness and collecting semantics

Consider the relation between αCS1 and αstr . First of all, note that it is
possible to recover αstr (JeK) from αCS1

(JeK), since it holds that αstr = α1str ◦
αCS1

where α1str : CS1 → Str is defined as:

α1str (φ) =

{
str if φ({⊥}) ⊆ {⊥}
> otherwise.

for each φ : P(D⊥)
∪−→ P(D⊥). Therefore CS1 is more α-precise than strict-

ness. Moreover, consider the problem αstr (JeK) ≤ str . It is immediate to show
that this is equivalent to αCS1(JeK)({⊥}) ⊆ {⊥}. In turn, this is equivalent to
αCS1(JeK) ≤ φstr by defining

φstr = λX.


∅ if X = ∅,
{⊥} if X = {⊥},
D⊥ otherwise.

This happens because the functions correctly approximated by φstr are exactly
all the strict functions. The problem αstr (JeK) ≤ > is always true, and it is
equivalent to αCS1

(JeK) ≤ >CS1
where >CS1

(X) = D⊥ for any non empty X.
Therefore, each strictness problem may be reduced to a problem on the collecting
semantics CS1. If we define γ1str : Str→ CS1 as:

γ1str (str) =λX ∈ P(D⊥).


∅ if X = ∅
{⊥} if X = {⊥}
D⊥ otherwise

γ1str (>) =λX ∈ P(D⊥).

{
∅ if X = ∅,
D⊥ otherwise

13

we have that CS1 is more γ-precise than Str and 〈α1str , γ1str 〉 is a Galois
connection.

Note that the same holds for the collecting semantics CS2. Actually, CS2 is
more α-precise than Str by taking

α(F) =

{
str if ∀f ∈ F, f(⊥) = ⊥
> otherwise.

Moreover αstr (JeK) ≤ str is equivalent to αCS2
(JeK) ⊆ Fstr where Fstr = {f |

αstr (f) = str}. This make CS2 more γ-precise than Str by defining γ : CS2 →
Str such that γ(str) = Fstr and γ(>) = D⊥ → D⊥.

Analogously to the strictness property, it is easy to show that also the con-
vergence, divergence and totality properties may be reduced to a problem on
the collecting semantics CS1 by defining

φconv = λX.

{
∅ if X = ∅,
D otherwise.

φdiv = λX.

{
∅ if X = ∅,
{⊥} otherwise.

φtot = λX.


∅ if X = ∅,
D⊥ if ⊥ ∈ X,

D otherwise.

The analogous result for CS2 is immediate.

3.3. Constancy and collecting semantics

Not all the abstract interpretation problems may be reduced to problems
in a given collecting semantics. Consider the problem αconst(JeK) ≤ const .
It may be easily reduced to a problem in CS2, by αCS2

(JeK) ⊆ Fconst where
Fconst = {f | αconst(f) = const}, however it cannot be reduced to a problem
in CS1. We must be careful to understand what this means. It is still possible
to recover αconst(f) from αCS1

(f): actually, αconst = α1const ◦ αCS1
where

α1const : CS1 → Const is defined as

α1const(φ) =

{
const if ∀x ∈ D⊥. φ({x}) ∩ φ({⊥}) 6= ∅,
> otherwise.

Therefore, CS1 is more α-precise than Const. However, there is no element in
CS1 which corresponds to the set of all the constant functions. Actually, if f is
an unknown constant function, we have that f(x) might be potentially equal to

any value x ∈ D⊥. Therefore, the only abstract object φ ∈ P(D⊥)
∪−→ P(D⊥)

which is a correct approximation for all the constant functions is the greatest
element

λX.

{
∅ if X = ∅,
D⊥ otherwise.

14

Unfortunately, this is a correct approximation for all the functions, not only the
constant ones. More in general, CS1 cannot express any constraint relating the
results of a function for different inputs (it is a so-called non-relational domain).

Hence, there is no φconst such that αconst(f) ≤ const is equivalent to αCS1
(f) ≤

φconst , i.e., CS1 is not more γ-precise than Const. Therefore, the collecting
semantics CS1 is not well suited to analyze the constancy property.

3.4. Involution, idempotence, monotonicity and collecting semantics

Analogously to the constancy property, if we consider the involution property
and the problem αinv (JeK) ≤ inv , we have that it may be reduced to a problem
in CS2, by αCS2

(JeK) ⊆ Finv where Finv = {f | αinv (f) = inv}. However,
as for the previous case, it cannot be reduced to a problem in CS1, even if
αinv = α1inv ◦ αCS1 where α1inv : CS1 → Inv is defined as

α1inv (φ) =

{
inv if ∀x ∈ D⊥. φ(φ({x})) ⊇ {x},
> otherwise.

In fact, since there is no element in CS1 which corresponds to the set of all the
involutions, there is no φinv such that αinv (f) ≤ inv is equivalent to αCS1

(f) ≤
φinv . The same holds for Ide, Mon and Bou.

Therefore, the collecting semantics CS1 is not well suited to analyze the
involution, idempotence, monotonicity and boundness properties.

3.5. Relationships among collecting semantics

We now explore how the two collecting semantics relate to each other. We
notice that both αCS1

and αCS2
factor through the other. Actually, αCS2

=
α12 ◦ αCS1

where α12 : CS1 → CS2 is given by

α12(φ) = {f : D⊥ → D⊥ | ∀x ∈ D⊥, f(x) ∈ φ({x})} ,

for each φ ∈ P(D⊥)
∪−→ P(D⊥), while αCS1 = α21 ◦ αCS2 with α21 : CS2 → CS1

given by

α21(F) = λX ∈ P(D⊥).
⋃
{f(X) | f ∈ F}

for each F ∈ P(D⊥ → D⊥). This contrasts with the standard consideration
that CS2 is more precise than CS1 and not vice versa. However, the different
precision between the two is apparent when we note that, for each φ ∈ CS1, we
have

αCS1
(JeK) ≤ φ ⇐⇒ αCS2

(JeK) ⊆ α12(φ) .

However, the converse is not true: given F ∈ CS2, in the general case there is
no φF ∈ CS1 such that

αCS2
(JeK) ⊆ F ⇐⇒ αCS1

(JeK) ≤ φF . (1)

Therefore CS2 is more γ-precise than CS1 but not vice versa.

15

Example 28 (CS1 is not more γ-precise than CS2). Let F = {λx.⊥, λx.a}
for a given a ∈ D. Then αCS2(JeK) ⊆ F iff e is a program which always diverges
or always terminates with result a. If we choose φF = α21(F), which one might
think as a sensible choice in (1), we have φF (X) = {⊥, a} for any non empty X.
Therefore, if e is a program which always diverges or always terminates with
result a, we have αCS1(JeK) ≤ φF . However, the same holds for any program
which returns both outputs ⊥ and a for different inputs. Therefore, the left and
right hand-sides in (1) are not equivalent. In general, for any φF we may choose,
the condition αCS1

(JeK) ≤ φF is not able to select functions which always return
the same value.

The following proposition summarizes the previous arguments.

Proposition 29. The following holds:

• there is no Galois connection 〈α12, γ12〉 : CS1 � CS2 such that αCS2 =
α12 ◦ αCS1

• α21 has a right adjoint, which is α12

• α1str has a right adjoint which is γ1str : Str→ CS1 defined as:

γ1str (str) =λX ∈ P(D⊥).


∅ if X = ∅
{⊥} if X = {⊥}
D⊥ otherwise

γ1str (>) =λX ∈ P(D⊥).

{
∅ if X = ∅,
D⊥ otherwise

• there is no Galois connection 〈α1const , γ1const〉 : CS1 � Const such that
αconst = α1const ◦ αCS1

.

• there is no Galois connection 〈α1inv , γ1inv 〉 : CS1 � Inv such that αinv =
α1inv ◦ αCS1 . The same holds for Ide, Mon and Bou.

4. Adequacy of collecting semantics

In this section we elaborate on the concepts of adequacy for a family of
abstractions. We define a category whose objects are abstract interpretations
and whose morphisms are transformations from more precise to less precise
abstractions (see, e.g., Asperti and Longo (1991) for standard definitions in
category theory).

Definition 30 (Category of abstract interpretations). We call AI(C) the
category whose objects are abstract interpretations for C and whose morphisms
are Galois connection 〈α, γ〉 : A� B such that αB = α ◦ αA.

16

Collecting semantics are a starting point when designing new abstract inter-
pretations. If an abstract interpretation (A,αA) is designed starting from the
collecting semantics (S, αS), it means that (S, αS) should be more precise than
(A,αA), hence there should be a map from (S, αS) to (A,αA) in our category
AI(C). Moreover, it would be preferable to have an unique way of deriving
(A,αA) as a Galois connection from (S, αS), according to the concept of ade-
quacy introduced in the previous sections. In the categorical settings, this leads
to the notion of initiality: if (S, αS) is initial for a given full subcategory D of
AI(C), it means that (S, αS) is adequate for the family of abstractions in D.

Given a collecting semantics (S, αS), we are interested in characterizing the
maximal full subcategory D of AI(C) such that (S, αS) is initial for D. Such sub-
categories immediately induce a taxonomy on program analysis which precisely
characterizes the program properties suitable for a given collecting semantics.
In the rest of the section, we show that for the two collecting semantics CS1

and CS2, such a full subcategory can be constructively described.

4.1. The collecting semantics CS2

We first show that CS2 is initial for all the abstract interpretations which
have enough joins, and that this is the largest class of abstract interpretations
which enjoys this property.

Definition 31 (Having enough joins). We say that the abstract interpreta-
tion (A,αA) has enough joins when

∨
AX exists for each X which is a subset

of the image of αA.

Obviously, if A is a complete join-semilattice, than (A,αA) has enough joins.

Example 32. Let (D⊥,v) be a poset such that ⊥ v d for each d ∈ D⊥. We
say that a function f : D⊥ → D⊥ has a maximum value d ∈ D if there exists
y ∈ D⊥ such that for each x ∈ D⊥, f(x) v f(y) = d. Consider the abstract
interpretation Max= (D⊥, αmax) such that

αmax (f) =

{
f(y) if f(y) ∈ D and ∀x ∈ D⊥, f(x) v f(y)

⊥ otherwise

Note that αmax (f) = d ∈ D when d is the maximum value of f . We have that
Max has enough joins if and only if D is a complete join-semilattice. Therefore,
if D⊥ = N ∪ {⊥} with the standard ordering on natural numbers, then D⊥ has
not enough joins.

Theorem 33. The full subcategory of all the abstract interpretations which
have enough joins is the largest class of abstractions for which the collecting
semantics CS2 is initial.

17

4.2. The collecting semantics CS1

We now show that the collecting semantics CS1 is initial for a large class of
abstract interpretations, which can be constructively characterized.

Definition 34 (Mix of functions). We say that a function g : D⊥ → D⊥ is
a mix of the set of functions F ⊆ D⊥ → D⊥ iff for each x ∈ D⊥ there exists
f ∈ F such that g(x) = f(x).

Definition 35 (Mixable interpretations). Let (A,αA) be an abstract inter-
pretation such that A has enough joins. We call (A,αA) mixable if, for any set
of functions F ⊆ D⊥ → D⊥, whenever g is a mix of functions in F , we have
αA(g) ≤

∨
f∈F αA(f).

An interpretation is mixable when deciding whether α(f) ≤ a may be done
by looking at the values of f for a single element of the domain at a time. This
observation is formalized by the following lemma.

Lemma 36. Let (A,αA) be a mixable interpretation. Then αA(f) ≤ a ⇐⇒
∀x ∈ D⊥ ∃f ′ s.t. f ′(x) = f(x) ∧ αA(f ′) ≤ a.

In the previous lemma, the interesting direction is ⇐=, since for the other
direction it is enough to take f ′ = f .

Example 37. We apply the above intuitive characterization to the previously
defined abstractions.

• The strictness abstract interpretation in Definition 3 is mixable, since we
only need to check the single value of f(⊥) in order to decide whether a
function is strict.

• The constancy, involution, idempotence, monotonicity and boundness ab-
stract interpretations in Definitions 4, 8, 9, 10 and 11 are not mixable,
since we need to compare the values computed by f for different argu-
ments.

• The totality, convergence and divergence abstract interpretations in Defi-
nitions 5, 6 and 7 are mixable, since we just need to check the value of f
for (many) single arguments, without the need of comparing them.

We now show that all the mixable interpretations may be designed starting
from the collecting semantics CS1.

Theorem 38. The full subcategory of all the mixable abstract interpretations is
the largest class of abstractions for which the collecting semantics CS1 is initial.

18

5. The downward closed semantics CS3

Another commonly used collecting semantics for functional programs is the
downward closed collecting semantics defined in Cousot and Cousot (1994).

Given a poset (X,≤X) and Y ⊆ X, we denote by ↓Y the downward closure
of Y , i.e. the set

↓Y = {x ∈ X | ∃y ∈ Y, x ≤X y} .
Y is downward closed if ↓Y = Y and we denote by P↓(X) the set of downward
closed subsets of X. Note that (P↓(X)),⊆) is a complete lattice with ∅ as the
bottom element and union as the join.

In our setting the poset X is P(D⊥) with subset ordering. Therefore, given
Θ ⊆ P(D⊥), we have

↓Θ = {Y | ∃X ∈ Θ, Y ⊆ X} .

Definition 39 (Collecting semantics CS3). We introduce the abstract in-
terpretation

CS3 =
(
P(P(D⊥))

∪−→ P↓(P(D⊥)), αCS3

)
where P(P(D⊥))

∪−→ P↓(P(D⊥)) is ordered by ⊆̇, the pointwise extension of ⊆,
and

αCS3
(f) = λΘ ∈ P(P(D⊥)). ↓{f(X) | X ∈ Θ} .

Example 40. Let f : D⊥ → D⊥ given as

f(x) =

{
⊥ if x = ⊥,

a otherwise

for some a ∈ D. Then

αCS3
(f)(Θ) =



∅ if Θ = ∅,
{∅} if Θ = {∅},
{∅, {⊥}} if Θ = {∅, {⊥}} ∨Θ = {{⊥}},
{∅, {a}} if ∃X ∈ Θ, X ∩ D 6= ∅ ∧ ∀X ∈ Θ,⊥ /∈ X,
{∅, {⊥}, {a}} if Θ = {{⊥}} ∪ Ξ ∧ ∃X ∈ Ξ,

X ∩ D 6= ∅ ∧ ∀X ∈ Ξ,⊥ /∈ X,
{∅, {⊥}, {a}, {⊥, a}} if ∃X ∈ Θ, X ⊃ {⊥}.

The abstraction αCS3
is not directly suitable as a collecting semantics, since it

contains many objects which are abstraction of exactly the same set of functions
in D⊥ → D⊥.

Example 41. Let Φ = αCS3
(f) the element of CS3 from Example 40 and let

Φ′ be the following element of CS3:

Φ′(Θ) =

{
↓{{⊥, a, b}} if ∃X ∈ Θ, X ⊃ {⊥}
Φ(Θ) otherwise

19

where a and b are two distinct elements of D. Note that if f is a function in
D⊥ → D⊥ and Φ′ is a correct abstraction of f , then f(x) 6= b for each x ∈ D⊥.
This is because, according to Φ′, we have f({x}) is either {⊥} or {a}. Therefore,
the element b in the first clause of Φ′ is useless: Φ′ is a correct approximation
of f iff Φ is a correct approximation of f .

Definition 42 (Collecting semantics CS3). We introduce the abstract in-
terpretation

CS3 =

({
Φ ∈ CS3 | Φ =

⋃̇
{αCS3

(f) | αCS3
(f) ⊆̇ Φ}

}
, αCS3

)
where αCS3

= αCS3
.

Note that Φ in Example 41 is in CS3 but Φ′ is not.

Example 43. The constancy abstraction reduces to CS3. In fact, in order to
check whether a function f is constant, it is enough to verify for each X ⊆ D⊥
that f(X) is a singleton, i.e., it is an element of ↓{{d} | d ∈ D⊥}. More
precisely, the abstract interpretation problem αconst(f) ≤ const may be reduced
to αCS3

(f)⊆̇Φconst where

Φconst(Θ) =


∅ if Θ = ∅,
{∅} if Θ = {∅},
{∅} ∪ {{d} | d ∈ D⊥} otherwise.

Example 44. The boundness abstraction reduces to CS3. In fact, in order to
check whether a function f is bounded, it is enough to verify for each X ⊆ D⊥
that f(X) is bounded. More precisely, the abstract interpretation problem
αbou(f) ≤ const may be reduced to αCS3

(f)⊆̇Φbou where

Φbou(Θ) = {X ∈ P(D⊥) | ∃Y ∈ Θ, |X| ≤ |Y |,∃d ∈ D⊥,∀x ∈ X,x v d}

The condition on cardinalities is needed to ensure that Φbou is an element of
CS3. Actually, for any function g, the cardinality of g(X) cannot be greater
than the cardinality of X.

Let us compare the semantics CS3 w.r.t. CS1 and CS2. First of all, CS2

is more α-precise than CS3. Actually, we may define a monotone map α23 :
CS2 → CS3 as

α23(F) = λΘ ∈ P(P(D⊥)). ↓{f(X) | f ∈ F ∧X ∈ Θ} .

Theorem 45. CS2 is more precise than CS3.

On the other side, CS3 is more α-precise than CS1. Let us define a monotone
map α31 : CS3 → CS1 as:

α31(Φ) = λX ∈ P(D⊥).
⋃

Φ({X}) .

20

Theorem 46. CS3 is more precise than CS1.

Analogously to the previous abstraction, αCS2
= α32 ◦ αCS3

where α32 :
CS3 → CS2 is given by

α32(Φ) = {f : D⊥ → D⊥ | ∀x ∈ D⊥, {f(x)} ∈ Φ({{x}})} ,

while αCS3
= α13 ◦ αCS1

where α13 : CS1 → CS3 is given by

α13(φ) = λΘ ∈ P(P(D⊥)).{X | ∃Y ∈ Θ, X ⊆ φ(Y), |X| ≤ |Y |} .

However, neither of them has a right adjoint. Actually, the next proposition
shows that CS1 is strictly less precise than CS3, which in turn is strictly less
precise than CS2.

Proposition 47. The following holds:

• there is no Galois connection 〈α13, γ13〉 : CS1 � CS3 such that αCS3
=

α13 ◦ αCS1
;

• there is no Galois connection 〈α32, γ32〉 : CS3 � CS2 such that αCS2 =
α32 ◦ αCS3

.

5.1. Adequacy for CS3

We now try to characterize the set of abstractions which may be derived
from the CS3 semantics through a Galois connection. This characterization will
turn out to be a generalization of the concept of mixable interpretations we have
already introduced for CS1.

Definition 48 (Set-Mix of functions). We say that a function g : D⊥ →
D⊥ is a set-mix of the set of functions F ⊆ D⊥ → D⊥ iff for each X ⊆ D⊥ there
exists f ∈ F such that g(X) ⊆ f(X).

Definition 49 (Set-Mixable interpretations). Let (A,αA) be an abstract
interpretation such that A has enough joins. We call (A,αA) set-mixable if,
for any set of functions F ⊆ D⊥ → D⊥, whenever g is a set-mix of F , then
αA(g) ≤

∨
f∈F αA(f).

In other words, an interpretation A is set-mixable when deciding whether
αA(f) ≤ a may be done by looking at the values of f for a single subset X of
the elements of the domain at a time. The function f enjoys a given property
if, for any X, f(X) is an element of a downward closed set of accepted values.
This observation is formalized by the following lemma.

Lemma 50. Let (A,αA) be a set-mixable interpretation. Then αA(f) ≤ a ⇐⇒
∀X ⊆ D⊥ exists a map f ′ s.t. f(X) ⊆ f ′(X) ∧ αA(f ′) ≤ a.

21

Example 51. It is immediate to see that the constancy abstraction is set-
mixable, by exploiting the characterization in Example 43. With respect to the
previous intuitive characterization, note that, in order to decide whether f is
constant, it is enough to check that, for each set X, the image f(X) is a subset
of a singleton.

Theorem 52. The full subcategory of all the set-mixable abstract interpreta-
tions is the largest class of abstractions for which the collecting semantics CS3

is initial.

Using the characterization of set-mixable abstract interpretations, we may
show that CS3 is adequate for the boundness abstraction.

Proposition 53. The boundness abstraction is set-mixable.

Example 54 (Permutation abstraction). An example of an abstraction that
cannot be derived from CS3 through Galois connections is the domain of per-
mutations, Perm = ({perm ≤ >}, αperm) where

αperm(f) =

{
perm if f is bijective,

> otherwise.

Actually, in order to check whether f is a permutation, we could check that
f(X) has the same cardinality of X for any X and that f(D⊥) = D⊥. However,
this is not possible in set-mixable interpretations, since when examining f(X)
we may only check whether it is a subset of a given family of good results, not
that it is exactly equal to one of these results.

More formally, consider the constant map f(x) = d0 for some d0 ∈ D⊥.
Given X ⊆ D⊥ not empty, we have f(X) = {d0}. Consider a permutation
fX such that there exists x ∈ X with fX(x) = d0. Then f(X) = {d0} ⊆
fX(X) with αperm(fX) ≤ perm. Hence, if αperm were set-mixable, it would be
αperm(f) = perm.

Analogously the domains of involution, idempotent and monotone functions
cannot be derived from CS3.

Example 55 (Involution functions). Consider the constant map f(x) = d0
for some d0 ∈ D⊥. Given X ⊆ D⊥ not empty, let d1 ∈ X and consider the
involution fX such that

fX = λx ∈ D⊥.


d0 if x = d1

d1 if x = d0

x otherwise.

Note that, when d0 = d1, fX is the identity function. We have that f(X) =
{d0} ⊆ fX(X) with αinv (fX) ≤ inv . Hence, if αinv were set-mixable, it would
be αinv (f) = inv .

22

Example 56 (Idempotent functions). Let d0, d1 ∈ D⊥ with d0 6= d1 and
consider the non-idempotent function

f = λx ∈ D⊥.

{
d1 if x = d0

d0 otherwise.

Given X ⊆ D⊥ not empty, we have

f(X) =


{d1} if X = {d0}
{d0} if d0 6∈ X
{d0, d1} otherwise.

Let us consider the idempotent functions

fX =


λy ∈ D⊥.d1 if X = {d0}
λy ∈ D⊥.d0 if d0 6∈ X

λy ∈ D⊥.

{
d0 if y = d0

d1 otherwise.
otherwise.

Therefore for each X ⊆ D⊥ not empty, f(X) ⊆ fX(X) with αide(fX) ≤ ide.
Hence, if αide were set-mixable, it would be αide(f) = ide.

Example 57 (Monotone functions). Consider the non-monotone function

f = λx ∈ D⊥.

{
d1 if x v d0
d0 otherwise

where d0, d1 ∈ D⊥, d0 6= d1 and d0 v d1. Given X ⊆ D⊥ not empty, we have

f(X) =


{d1} if ∀x ∈ X, x v d0
{d0} if ∀x ∈ X, x 6v d0
{d0, d1} otherwise.

Let us consider the monotone functions

fX =


λy ∈ D⊥.d1 if ∀x ∈ X, x v d0
λy ∈ D⊥.d0 if ∀x ∈ X, x 6v d0

λy ∈ D⊥.

{
d0 if y v d0
d1 otherwise.

otherwise.

Therefore for each X ⊆ D⊥ not empty, f(X) ⊆ fX(X) with αmon(fX) ≤ mon.
Hence, if αmon were set-mixable, it would be αmon(f) = mon.

23

6. Related work

Since the very beginning of the abstract interpretation theory, there have
been work on categorical approaches to abstract interpretation, both to show
that abstract interpretation can be rephrased in category theory and to ex-
ploit category theory results in the abstract interpretation framework (see, for
instance, Abramsky (1990); Backhouse and Backhouse (2004); Panangaden P.
(1984); Venet (1996)). In this paper, we use category theory in a much more
limited way.

6.1. Other formalizations of abstract interpretation

The abstract interpretation framework presented in this paper is the same
which appears in Cousot and Cousot (1992) under the “existence of a best
abstract approximation assumption”: it is based on an abstraction function
and a partial ordering of abstract properties. However, not all the abstract
interpretations may be formalized in this way: sometimes it is necessary to
resort to a weaker framework where the relation between the concrete domain
C and the abstract domain A is given by an approximation relation .A ⊆ A×C.
When a .A c we say that a is a correct abstraction of c. Generally .A is upward
closed, i.e., if a .A c and a ≤A a′, then a′ .A c (what Cousot and Cousot (1992)
call “abstract soundness of upper approximations assumption”).

A classical example of this situation arises when using numerical abstract do-
mains (Cousot and Cousot (1976); Amato et al. (2010, 2013); Amato and Scoz-
zari (2012)) for instance in polyhedral analysis of imperative programs (Cousot
and Halbwachs, 1978). In this case, we may think that the concrete domain C is
the set of execution traces for a program, while the abstract domain P is the set
of maps from program points to finite sets of linear inequations on the program
variables. We say that an abstract object π is a correct approximation of the
trace t (i.e., π .P t) if and only if, for each program point p, every time t passes
through p the corresponding assignment of values to variables in t is a point in
the polyhedron π(p). We cannot formalize this abstract interpretation with an
abstraction function, since if t is infinite, the convex hull of all the assignments
for a given program point p might not have a least polyhedral approximation.
Another example of this phenomenon is the domain of parallelotopes (Amato
et al., 2017).

The fact that the abstraction (P, .P) cannot be formalized with an abstrac-
tion function is reflected by the fact that the relation between (P, .P) and the
standard collecting semantics is not a Galois connection. The collecting seman-
tics in this case is (S, .S) where S is the set of maps from program points to the
powerset of assignments of values to variables, and π.S t when for each program
point p, every time t passes through p, the corresponding assignment is an ele-
ment of π(p). Although (S, .S) is generally considered the reference collecting
semantics for (P, .P), the relation between the two is given by a monotonic map
γ : P → S with the property that if π .P t then γ(π).S t. However, for the same
reason given above, γ has no left adjoint.

24

We can easily adapt our presentation to this more general definition of ab-
stract interpretation, where the morphism in the category of abstract interpre-
tations now are the concretization functions, that respect the approximation
relations.

Note that, in some settings, a standard semantics is already a collecting se-
mantics, in the sense that many common abstraction may be formulated directly
as Galois connections of the standard semantics. This is often the case for (con-
straint) logic programs. The semantics of computed answers (Bossi et al., 1994)
is already a collecting semantics: many properties such as sharing, groundness,
freeness used in static analysis of logic programs may be formulated as Galois
connections from the s-semantics.

6.2. Future work

As for future work, our aim is twofold. From one side, we would like to refine
the theoretical framework to reach a clean formal definition of what a collecting
semantics is. In this paper we have been focused on the problem of examining
when a collecting semantics is adequate for a given abstraction, but we lack a
precise a priori definition of what a collecting semantics is. To this question, the
paper only gives partial answers: if we have a family of abstractions, we might
define a collecting semantics as an initial object in the appropriate subcategory,
but if the family is too small, the initial object might be something so abstract
that it should not be called a collecting semantics. Actually, it seems reasonable
to require that a collecting semantics should be more α-precise than the standard
semantics: this means it essentially contains all the information which is present
in the standard semantics, although in a form which is easier to deal with in
further abstractions.

A different line of research is applying the framework to different settings, for
example to the operational semantics of imperative languages. In this case, the
standard semantics of a program might be its execution traces (assuming the
language is deterministic) while a common collecting semantics is the map as-
sociating to each program point the set of all states when the execution reaches
that point. Although this is a common collecting semantics, it is not well suited
for analyzing the input-output behavior of programs, so different collecting se-
mantics might be proposed for this application. Particularly relevant to this line
of research is the work of Cousot and Cousot (2000) on temporal abstract inter-
pretation and the work of Cousot (1997) on abstract interpretation of transition
systems.

7. Conclusion

Any static analysis formalized in the abstract interpretation framework is
defined starting from a collecting semantics, on which the meaning of the sys-
tem is defined, and then providing a set of abstract objects which encode the
properties we are interested in. The collecting semantics is then a fundamental
choice in the design of any abstract interpretation. As pointed out in Cousot
and Cousot (2014):

25

If the collecting semantics is too abstract, it has a limited expressive
power which also limits the scope of the static analysis/verification
methods that can be formally derived by abstract interpretation
of this collecting semantics. [omissis] On the other hand, if the
collecting semantics is too precise, then further abstractions are more
complex to express.

While we can find in the literature much work on the concrete domain (the
semantic framework) and the abstract properties (the abstract domain and its
operations), a few work has been devoted to systematically study how to choose
the collecting semantics. For instance, both Cousot and Cousot (1992) and
Cousot and Cousot (1994) present many collecting semantics, without a general
method for choosing the right one.

Mostly authors simply use one of the already defined collecting semantics or,
sometime, they invent a new one for a specific abstraction. Some authors have
studied how to compute the optimal collecting semantics for a given abstract
interpretation (e.g., Giacobazzi (1996) limited to the analysis of logic program-
ming). Such an approach forces inventing new collecting semantics (and thus
describing new concrete semantics) every time we change the abstract property
to be analyzed.

On the contrary, we study three most commonly used collecting semantics
for functional programs, we precisely characterize the set of abstract interpreta-
tions which can be defined on them and derive a taxonomy on program analysis.
More generally, the definition of the sets of mixable and set-mixable abstract
interpretations provides a constructive method, applicable to all the abstract in-
terpretations of functional programs, to decide which collecting semantics should
be the starting point for the definition of the analysis.

Our formal definition of the category of abstract interpretations also allows
us to formally state the relationships between the common collecting semantics
and some standard abstract interpretation, and to spread a new light on the
significance and choice of the collecting semantics.

As far as we know, this is the first work where the set of abstract inter-
pretations reducible to a given collecting semantics is precisely characterized,
leading to the notions of mixable and set-mixable abstract interpretation, which
precisely capture these sets of functions.

Appendix - Proofs

Proof (Proposition 18). First of all, we can define a monotone map α :
A → B such that αB = α ◦ αA. Given a ∈ A, consider any c ∈ C such that
αA(c) = a and take α(a) = αB(c). In order to prove that α is well-defined, we
show that if αA(c1) ≤A αA(c2) then αB(c1) ≤B αB(c2).

By Definition 15, by αB(c2) ≤B αB(c2) we get αA(c2) ≤A γ(αB(c2)). If
αA(c1) ≤A αA(c2) then we have αA(c1) ≤A γ(αB(c2)) and again by Defini-
tion 15 we get αB(c1) ≤B αB(c2). This proves that α is well-defined and
monotone. Moreover, αB = α ◦ αA by definition.

26

At this point, Definition 15 may be rewritten as

α(αA(c)) ≤B b ⇐⇒ αA(c) ≤A γ(b) .

Since αA is surjective, this means

α(a) ≤B b ⇐⇒ a ≤A γ(b)

for each a ∈ A and b ∈ B, which is the definition of Galois connection.

Proof (Proposition 29).

• The proof is by contradiction. Assume that there exists 〈α12, γ12〉 : CS1 �
CS2 such that αCS2

= α12 ◦ αCS1
. For i ∈ {0, 1}, let fi ∈ D⊥ → D⊥ be

the function λx ∈ D⊥.di, where di ∈ D⊥ and d0 6= d1 and let

f = λx ∈ D⊥.

{
d0 if x = d0

d1 otherwise.

Then, by definition of CS1,

φi = αCS1(fi) = λX ∈ P(D⊥).

{
∅ if X = ∅
{di} otherwise

and

φ = αCS1(f) = λX ∈ P(D⊥).


∅ if X = ∅
{d0} if X = {d0}
{d1} if d0 6∈ X 6= ∅
{d0, d1} otherwise.

By definition of CS1,

φ0 ∨ φ1 = λX ∈ P(D⊥).

{
∅ if X = ∅
{d0, d1} otherwise

and φ ≤ φ0 ∨ φ1. Moreover, since 〈α12, γ12〉 is a Galois connection, it
immediately follows that α12 is a join-morphism, therefore:

α12(φ0 ∨ φ1) = α12(φ0) ∨ α12(φ1)
= α12(αCS1(f0)) ∨ α12(αCS1(f1)))
= αCS2

(f0) ∨ αCS2
(f1)

= {f0} ∪ {f1}
= {f0, f1}.

Now, we have a contradiction, since φ ≤ φ0 ∨ φ1, while

α12(φ) = α12(αCS1
(f)) = αCS2

(f) =
{f} 6⊆ {f0, f1} = α12(φ0 ∨ φ1)

and then the thesis.

27

• We prove that α21(F) ≤ φ iff F ⊆ α12(φ). Note that

α21(F) ≤ φ ⇐⇒ ∀X ⊆ D⊥.
⋃
{f(X) | f ∈ F} ⊆ φ(X)

⇐⇒ ∀X ⊆ D⊥∀f ∈ F. f(X) ⊆ φ(X) .

Since φ is a complete join-morphism, the last property holds for all X ⊆
D⊥, iff it holds for all singletons {x} with x ∈ D⊥. Then α21(F) ≤ φ is
equivalent to

∀x ∈ D⊥∀f ∈ F. f(x) ∈ φ({x}) ,

namely
∀f ∈ F ∀x ∈ D⊥. f(x) ∈ φ({x}) .

Hence we get: ∀f ∈ F. f ∈ α12(φ) and therefore F ⊆ α12(φ).

• Since P(D⊥)
∪−→ P(D⊥) is a complete lattice, it is enough to prove that

α1str is a complete join-morphism. Let S ⊆ P(D⊥)
∪−→ P(D⊥). By

definition
∨
S = λX ∈ P(D⊥).

⋃
φ∈S φ(X) and therefore

α1str

(∨
S
)

=

{
str if φ({⊥}) ⊆ {⊥} for each φ ∈ S,

> otherwise.

By definition of α1str ,

α1str

(∨
S
)

=

{
str if α1str (φ) = str for each φ ∈ S,

> otherwise

and therefore α1str (
∨
S) =

∨
φ∈S α1str (φ). The proof that γ1str is the

right adjoint of α1str is straightforward and hence it is omitted.

• The proof is by contradiction. Assume that there exists 〈α1const , γ1const〉 :
CS1 � Const such that αconst = α1const ◦ αCS1

. For i ∈ {0, 1}, let
fi ∈ D⊥ → D⊥ be the function λx ∈ D⊥.di, where di ∈ D⊥ and d0 6= d1
and let

f = λx ∈ D⊥.

{
d0 if x = ⊥
d1 otherwise.

Then, by definition of CS1,

φi = αCS1
(fi) = λX ∈ P(D⊥).

{
∅ if X = ∅
{di} otherwise

and

φ = αCS1
(f) = λX ∈ P(D⊥).


∅ if X = ∅
{d0} if X = {⊥}
{d1} if ⊥ 6∈ X 6= ∅
{d0, d1} otherwise.

28

By definition of CS1,

φ0 ∨ φ1 = λX ∈ P(D⊥).

{
∅ if X = ∅
{d0, d1} otherwise

Now, we have a contradiction, since φ ≤ φ0 ∨ φ1, while

α1const(φ) =α1const(αCS1
(f))

=αconst(f) = > 6≤ const

=αconst(f0) ∨ αconst(f1)

=α1const(αCS1(f0)) ∨ α1const(αCS1(f1))

=α1const(φ0) ∨ α1const(φ1)

=α1const(φ0 ∨ φ1)

from which the thesis.

• First, we consider the involution property. The proof is by contradiction.
Assume that there exists 〈α1inv , γ1inv 〉 : CS1 � Inv such that αinv =
α1inv ◦ αCS1

. Let f1 ∈ D⊥ → D⊥ be the function λx ∈ D⊥.x and

f2 = λx ∈ D⊥.


d0 if x = d1

d1 if x = d0

x otherwise.

where for i = 0, 1, di ∈ D⊥ and d0 6= d1 and let

f = λx ∈ D⊥.

{
d0 if x = d1

x otherwise.

Then, by definition of CS1,

φ1 = αCS1
(f1) = λX ∈ P(D⊥).X

φ2 = αCS1
(f2) = λX ∈ P(D⊥).


(X \ {d0}) ∪ {d1} if d0 ∈ X and d1 6∈ X
(X \ {d1}) ∪ {d0} if d1 ∈ X and d0 6∈ X
X otherwise

and

φ = αCS1
(f) = λX ∈ P(D⊥).

{
(X \ {d1}) ∪ {d0} if d1 ∈ X
X otherwise

By definition of CS1,

φ1 ∨ φ2 = λX ∈ P(D⊥).


X ∪ {d1} if d0 ∈ X
X ∪ {d0} if d1 ∈ X
X otherwise

29

Now, we have a contradiction, since φ ≤ φ1 ∨ φ2, while

α1inv (φ) =α1inv (αCS1(f))

=αinv (f) = > 6≤ inv

=αinv (f1) ∨ αinv (f1)

=α1inv (αCS1(f1)) ∨ α1inv (αCS1(f2))

=α1inv (φ1) ∨ α1inv (φ2)

=α1inv (φ1 ∨ φ2)

from which the thesis.

Now, we consider the idempotence property. The proof is by contradiction.
Assume that there exists 〈α1ide , γ1ide〉 : CS1 � Ide such that αide =
α1ide ◦αCS1

. For i ∈ {0, 1}, let fi ∈ D⊥ → D⊥ be the idempotent function
λx ∈ D⊥.di, where di ∈ D⊥ and d0 6= d1 and let

f = λx ∈ D⊥.

{
d0 if x = d1

d1 otherwise.

Then, by definition of CS1, for i ∈ {0, 1},

φi = αCS1
(fi) = λX ∈ P(D⊥).

{
∅ if X = ∅
{di} otherwise

and

φ = αCS1
(f) = λX ∈ P(D⊥).


∅ if X = ∅
{d0} if X = {d1}
{d1} if d1 6∈ X 6= ∅
{d0, d1} otherwise.

By definition of CS1,

φ0 ∨ φ1 = λX ∈ P(D⊥).

{
∅ if X = ∅
{d0, d1} otherwise

Now, we have a contradiction, since φ ≤ φ0 ∨ φ1, while

α1ide(φ) =α1ide(αCS1
(f))

=αide(f) = > 6≤ ide

=αide(f0) ∨ αide(f1)

=α1ide(αCS1(f0)) ∨ α1ide(αCS1(f1))

=α1ide(φ0) ∨ α1ide(φ1)

=α1ide(φ0 ∨ φ1)

from which the thesis.

30

Now, let us consider the monotonicity property. The proof is by contra-
diction. Assume that there exists 〈α1mon , γ1mon〉 : CS1 � Mon such that
αmon = α1mon ◦ αCS1

. For i ∈ {0, 1}, let fi ∈ D⊥ → D⊥ be the func-
tion λx ∈ D⊥.di, where di ∈ D⊥, d0 v d1, d1 6v d0 and let f be a the
non-monotone function

f = λx ∈ D⊥.

{
d0 if x = d1

d1 otherwise.

Now, the proof is analogous to the previous case and hence it is omitted.

Finally, let us consider the boundness property. The proof is by contra-
diction. Assume that there exists 〈α1bou , γ1bou〉 : CS1 � Bou such that
αbou = α1bou ◦αCS1

. Let g be a non-bounded function and for each d ∈ D⊥
let us consider the constant function fd = λx ∈ D⊥.g(d). Moreover let
F = {fd | d ∈ D⊥}. By construction for each d ∈ D⊥ there exists fd ∈ F
such that g(d) = fd(d) and αbou(fd) = bou. Then, by definition of CS1,

φ = αCS1
(g) = λX ∈ P(D⊥).

{
∅ if X = ∅
{g(d) | d ∈ X} otherwise

and

φd = αCS1
(fd) = λX ∈ P(D⊥).

{
∅ if X = ∅
{g(d)} otherwise

By definition of CS1,

∨
fd∈F

φd =
∨
d∈D⊥

φd = λX ∈ P(D⊥).

{
∅ if X = ∅
{g(d) | d ∈ D⊥} otherwise

Now, we have a contradiction, since φ ≤
∨
fd∈F φd, while

α1bou(φ) =α1bou(αCS1
(g))

=αbou(f) = > 6≤ bou

=
∨
fd∈F

αbou(fd)

=
∨
fd∈F

α1bou(αCS1
(fd))

=
∨
fd∈F

α1bou(φd)

=α1bou(
∨
fd∈F

φd)

from which the thesis.

31

Proof (Theorem 33). Assume (A,αA) is an abstract interpretation which
has enough joins. We first show that there exists a Galois connection 〈α, γ〉
from CS2 to (A,αA) and prove that α ◦ αCS2

= αA. We define

α(F) =
∨

A
{αA(f) | αCS2

(f) ⊆ F} .

First of all, note that α(F) =
∨
A{αA(f) | f ∈ F}. We begin by showing that

α ◦ αCS2
= αA. We have that:

α(αCS2
(f)) =

∨
A
{αA(f ′) | f ′ ∈ αCS2

(f)} =∨
A
{αA(f ′) | f ′ ∈ {f}} =

∨
A
{αA(f)} = αA(f) .

We now prove that α has a right adjoint. It is enough to show that α is a
complete join-morphism.

α

(⋃
i

Fi

)
=
∨

A

{
αA(f) | f ∈

⋃
i

Fi

}
=
∨

A

⋃
i

{αA(f) | f ∈ Fi} =

=
∨

A
i

∨
A
{αA(f) | f ∈ Fi} =

∨
A

i

α(Fi) .

We need to prove that given any 〈α′, γ′〉 : CS2 � (A,αA) such that α′ ◦
αCS2

= αA, then we have that α = α′ and γ = γ′. Since γ′ and γ are right
adjoints to α and α′ respectively, it is enough to prove that α = α′. Given
F ∈ P(D⊥ → D⊥), since α′ is a complete join-morphism, we have that

α′(F) = α′
(⋃
{{f} | f ∈ F}

)
=
∨

A
{α′({f}) | f ∈ F} =∨

A
{α′(αCS2(f)) | f ∈ F} =

∨
A
{αA(f) | f ∈ F} = α(F).

Finally, assume that there exists a Galois connection 〈α, γ〉 from CS2 to
(A,αA) with α ◦ αCS2

= αA. We want to prove that (A,αA) has enough joins.
Let F ⊆ D⊥ → D⊥, since a left adjoint preserves all joins in its domain, we
have:

α(F) =
∨
{α({f}) | f ∈ F} =

∨
{α(αCS2(f)) | f ∈ F} =

∨
{αA(f) | f ∈ F} .

Then
∨
{αA(f) | f ∈ F} exists, i.e., (A,αA) has enough joins, which concludes

the proof.

Proof (Lemma 36). The direction =⇒ is obvious, it is enough to take f ′ = f .
For the other direction, for each x ∈ D⊥ let us call fx a function such that
fx(x) = f(x) and αA(fx) ≤ a. Then, f(x) = fx(x) is obtained by mixing the
maps fx’s, and since (A,αA) is mixable, then αA(f) ≤ a.

32

Proof (Theorem 38). Assume (A,αA) is a mixable interpretation. We define
a Galois connection 〈α, γ〉 from CS1 to (A,αA) and prove that α ◦ αCS1 = αA:

α(φ) =
∨
{αA(f) | αCS1

(f) ≤ φ}

γ(a) = λX ∈ P(D⊥).
⋃
{f(X) | αA(f) ≤ a} .

First of all, we show that α ◦ αCS1 = αA. We have

α(αCS1
(f)) =

∨
{αA(f ′) | αCS1

(f ′) ≤ αCS1
(f)} .

Note that αCS1
(f ′) ≤ αCS1

(f) if and only if f = f ′. Therefore α(αCS1
(f)) =

αA(f).
We now prove that 〈α, γ〉 is a Galois connection. It is obvious that α and γ

are monotone. Note that

φ ≤ γ(a) ⇐⇒ ∀X ⊆ D⊥. φ(X) ⊆
⋃
{f(X) | αA(f) ≤ a}

⇐⇒ ∀X ⊆ D⊥∀y ∈ φ(X)∃f(αA(f) ≤ a ∧ y ∈ f(X)) .

Since φ is a complete join-morphism, the last property holds for all X ⊆ D⊥ iff
it holds for all singletons {x} with x ∈ D⊥. Then φ ≤ γ(a) is equivalent to

∀x ∈ D⊥∀y ∈ φ({x})∃f (αA(f) ≤ a ∧ y = f(x)) .

Note that quantifying over all x ∈ D⊥ and y ∈ φ({x}) is the same than quan-
tifying over all x ∈ D⊥ and f : D⊥ → D⊥ correctly abstracted by φ. Hence we
get:

∀x ∈ D⊥∀y ∈ φ({x})∃f(αA(f) ≤ a ∧ y = f(x))

⇐⇒ ∀f ′(αCS1(f ′) ≤ φ→ ∀x ∈ D⊥∃f(αA(f) ≤ a ∧ f ′(x) = f(x))

[since (A,αA) is mixable]

⇐⇒ ∀f ′(αCS1(f ′) ≤ φ→ αA(f ′) ≤ a)

⇐⇒
∨
{αA(f) | αCS1

(f) ≤ φ} ≤ a

⇐⇒ α(φ) ≤ a .

We need to prove that if 〈α′, γ′〉 : CS1 � (A,αA) is such that α′ ◦ αCS1
=

αA, then α = α′ and γ = γ′. Since γ′ and γ are right adjoints to α and α′

respectively, it is enough to prove α = α′. Given φ ∈ P(D⊥)
∪−→ P(D⊥), since φ

is a complete join-morphisms, we have:

φ =
∨
{αCS1

(f) | αCS1
(f) ≤ φ} .

Since α′ has a right adjoint, it is a complete join-morphism, hence

α′(φ) =
∨
{α′(αCS1

(f)) | αCS1
(f) ≤ φ} =

∨
{αA(f) | αCS1

(f) ≤ φ} = α(φ).

33

Finally, we show that, given any abstract interpretation (A,αA), if there is
a Galois connection 〈α, γ〉 : CS1 � A such that α ◦ αCS1 = αA, then (A,αA) is
mixable.

First of all, we prove that A has enough joins. Let F ⊆ D⊥ → D⊥, since a
left adjoint preserves all joins in its domain, we have:

α(
∨
{αCS1(f) | f ∈ F}) =

∨
{α(αCS1(f)) | f ∈ F} =

∨
{αA(f) | f ∈ F} .

Then
∨
{αA(f) | f ∈ F} exists, i.e., (A,αA) has enough joins.

Now, given a function g, assume g is a mix of the functions in F . We need
to prove that αA(g) ≤

∨
f∈F αA(f). Since ∀x ∈ D⊥∃f ∈ F s.t. g(x) = f(x),

it follows that for any x ∈ D⊥ there exists f ∈ F such that αCS1
(g)({x}) =

αCS1
(f)({x}), and thus αCS1

(g)({x}) ⊆
⋃
f∈F αCS1

(f)({x}), from which αCS1
(g) ≤∨

f∈F αCS1
(f). Since α is a join-morphism, we have that α(αCS1

(g)) ≤ α(
∨
f∈F αCS1

(f)) =∨
f∈F α(αCS1

(f)), i.e. αA(g) ≤
∨
f∈F αA(f).

Proof (Theorem 45). First of all, it is immediate to see that α23(αCS2
(f)) =

αCS3
(f). We now prove that α23 is a complete join morphism. Given a family

{Fi} ⊆ P(D⊥ → D⊥), we have

α23 (∪iFi) (Θ) = ↓{f(X) | f ∈ ∪iFi ∧X ∈ Θ}
= ↓∪i{f(X) | f ∈ Fi ∧X ∈ Θ}
= ∪i ↓{f(X) | f ∈ Fi ∧X ∈ Θ}
= ∪i (α23(Fi)(Θ))

=(∪̇iα23(Fi))(Θ) .

Proof (Theorem 46). First of all, it is immediate to see that α31(αCS3
(f)) =

αCS1(f). Actually

α31(αCS3
(f))(X) =∪αCS3

(f)({X}) = ∪↓{f(Y) | Y ∈ {X}}
=∪↓{f(X)} = f(X) = αCS1

(f)(X) .

We now prove that α31 is a complete join-morphism. Given a family {Φi} ⊆
P(P(D⊥))

∪−→ P↓(P(D⊥)), we have

α31(∪̇iΦi)(X) = ∪ ((∪̇iΦi)({X})) = ∪ (∪i(Φi({X}))) =

∪i (∪(Φi({X}))) = ∪i(α31(Φi)(X)) = (
∨
i

α31(Φi))(X) .

Proof (Proposition 47).

• The proof of the first point is by contradiction. In the following, for
i ∈ {0, 1}, let fi, f ∈ D⊥ → D⊥ and let φi = αCS1

(fi), φ = αCS1
(f) ∈

P(D⊥)
∪−→ P(D⊥) as defined in the first point of the proof of Proposi-

tion 29. We have that φ ≤ φ0 ∨ φ1. Assume that there exists 〈α13, γ13〉 :
CS1 � CS3 such that αCS3

= α13 ◦ αCS1
.

34

Since α13 is a join-morphism,

α13(φ0 ∨ φ1)({{d0, d1}}) = (α13(φ0) ∨ α13(φ1))({{d0, d1}})
= (α13(αCS1

(f0)) ∪̇α13(αCS1
(f1)))({{d0, d1}})

= αCS3(f0)({{d0, d1}}) ∪ αCS3(f1)({{d0, d1}})
= ↓{{d0}} ∪ ↓{{d1}}
= {∅, {d0}, {d1}} .

On the other hand,

α13(φ)({{d0, d1}}) =α13(αCS1(f))({{d0, d1}})
=αCS3(f)({{d0, d1}})
= ↓{{d0, d1}} = {∅, {d0}, {d1}, {d0, d1}}
6⊆{∅, {d0}, {d1}}
=α13(φ0 ∨ φ1)({{d0, d1}}) .

Therefore α13 is not monotone and then the thesis.

• The proof of the second point is again by contradiction. Let d0 and d1 be
two elements in D⊥ and assume that there exists 〈α32, γ32〉 : CS3 � CS2

such that αCS2
= α32 ◦ αCS3

. Let f be the identity on D⊥, f ′ = f [d0 →
d1, d1 → d0] and g = f [d0 7→ d1, d1 7→ d1]. Let X ⊆ D⊥ and we have
several cases:

– if d0 /∈ X and d1 /∈ X, then g(X) = f(X) = f ′(X);

– if d0 ∈ X but d1 /∈ X, then g(X) = f ′(X);

– if d1 ∈ X but d0 /∈ X, then g(X) = f(X);

– if d0, d1 ∈ X, then g(X) ⊂ f(X) = f ′(X).

Therefore, for each X ⊆ D⊥ we have either g(X) ⊆ f(X) or g(X) ⊆
f ′(X), hence {g(X)} ⊆ {f(X), f ′(X)}, i.e. ↓{g(X)} ⊆ ↓{f(X), f ′(X)} =
↓{f(X)} ∪ ↓{f ′(X)}. This means αCS3

(g) ⊆̇αCS3
(f) ∪̇αCS3

(f ′).

Since α32 is additive, we get

α32(αCS3
(g)) = αCS2

(g) = {g} and α32(αCS3
(f) ∪̇αCS3

(f ′)) = {f, f ′}.

By monotonicity it should be {g} ⊆ {f, f ′}, which is a contradiction.

Proof (Lemma 50). The direction =⇒ is obvious, it is enough to take F ′ =
{f}. For the other direction, for each X ⊆ D⊥ let us call fX a function such
that f(X) ⊆ fX(X) and αA(fX) ≤ a. Then, f(X) is obtained by mixing the
maps fX ’s, and since (A,αA) is set-mixable, then αA(f) ≤ a.

Proof (Theorem 52). Assume (A,αA) is a set-mixable interpretation. We
define a Galois connection 〈α, γ〉 from CS3 to (A,αA) and prove that α◦αCS3

=

35

αA:

α(Φ) =
∨
A

{
αA(f) | αCS3(f) ⊆̇Φ

}
γ(a) = λΘ ∈ P(P(D⊥)).

⋃
αA(f)≤A a

↓{f(X) | X ∈ Θ} .

First of all, we show that α ◦ αCS3
= αA. We have

α(αCS3
(f)) =

∨
A

{
αA(f ′) | αCS3(f ′) ⊆̇αCS3(f)

}
.

Note that αCS3
(f ′) ⊆̇αCS3

(f) if and only if f = f ′. Therefore α(αCS3
(f)) =

αA(f).
We now prove that 〈α, γ〉 is a Galois connection. It is obvious that α and γ

are monotone. Note that

Φ ⊆̇ γ(a) ⇐⇒ ∀Θ ⊆ P(D⊥).Φ(Θ) ⊆
⋃

αA(f)≤A a

↓{f(X) | X ∈ Θ}

⇐⇒ ∀Θ ⊆ P(D⊥).∀Y ∈ Φ(Θ)

∃f (αA(f) ≤A a ∧ ∃Z ∈ {f(X) | X ∈ Θ} ∧ Y ⊆ Z) .

Since Φ is a complete join-morphism, the last property holds for all Θ ⊆ P(D⊥)
iff it holds for all the singletons {X} with X ∈ P(D⊥). Then Φ ⊆̇ γ(a) is
equivalent to

∀X ∈ P(D⊥)∀Y ∈ Φ({X})∃f (αA(f) ≤A a ∧ Y ⊆ f(X)) .

Note that quantifying over all X ∈ P(D⊥) and Y ∈ Φ({X}) is the same as
quantifying over all X ∈ P(D⊥) and f ′ : D⊥ → D⊥ correctly abstracted by Φ.
Hence we get:

∀X ∈ P(D⊥)∀Y ∈ Φ({X})∃f(αA(f) ≤ a ∧ Y ⊆ f(X))

⇐⇒ ∀f ′(αCS3(f ′) ⊆̇Φ→ ∀X ∈ P(D⊥)∃f(αA(f) ≤A a ∧ f ′(X) ⊆ f(X))

[since (A,αA) is set-mixable]

⇐⇒ ∀f ′(αCS3(f ′) ≤ Φ→ αA(f ′) ≤ a)

⇐⇒
∨
A

{αA(f) | αCS3
(f) ⊆̇Φ} ≤ a

⇐⇒ α(Φ) ≤A a .

We need to prove that if 〈α′, γ′〉 : CS3 � (A,αA) is such that α′ ◦ αCS1
=

αA, then α = α′ and γ = γ′. Since γ′ and γ are right adjoints to α and α′

respectively, it is enough to prove α = α′. Given Φ ∈ P(P(D⊥))
∪−→ P↓(P(D⊥)),

by definition of CS3 we have that

Φ = ∪̇{αCS3(f) | αCS3(f) ⊆̇Φ} .

36

Since α′ has a right adjoint, it is a complete join-morphism, hence

α′(Φ) =
∨
A

{α′(αCS3(f)) | αCS3(f) ⊆̇Φ} =
∨
A

{αA(f) | αCS3(f) ⊆̇Φ} = α(Φ).

The proof of maximality is analogous to that one of Theorem 38 and hence
it is omitted.

Proof (Proposition 53). The proof is by contradiction. Assume that the
boundness abstraction is not set-mixable. Then, by definition of Bou, there
exist g : D⊥ → D⊥ and a set of functions F ⊆ D⊥ → D⊥, such that for each
X ⊆ D⊥ there exists f ∈ F such that g(X) ⊆ f(X) and > = αbou(g) 6≤∨
f∈F αbou(f) = bou. Since αbou(g) = >, we have that g is not bounded and

therefore for each d ∈ D⊥ there exists vd ∈ D⊥, g(vd) 6≤ d. Let S = {vd | d ∈
D⊥}. By hypothesis there exists f ∈ F such that g(S) ⊆ f(S). Therefore for
each vd ∈ S there exists wd ∈ S such that g(vd) = f(wd). By construction for
each d ∈ D⊥ we have that f(wd) 6≤ d. Therefore f is not bounded, αbou(f) = >
and this contradicts the assumption

∨
f∈F αbou(f) = bou.

Bibliography

References

Abramsky, S., 1990. Abstract interpretation, logical relations, and Kan exten-
sions. Journal of Logic and Computation 1, 5–40. doi:10.1093/logcom/1.1.
5.

Amato, G., Di Nardo Di Maio, S., Scozzari, F., 2013. Numerical static analysis
with Soot, in: Proceedings of the ACM SIGPLAN International Workshop
on State of the Art in Java Program analysis, ACM, New York, NY, USA.
doi:10.1145/2487568.2487571.

Amato, G., Meo, M.C., Scozzari, F., 2018. A taxonomy of program analyses, in:
Aldini, A., Bernardo, M. (Eds.), Proceedings of the 19th Italian Conference
on Theoretical Computer Science, Urbino, Italy, September 18-20, 2018., pp.
213–217. URL: http://ceur-ws.org/Vol-2243/paper21.pdf.

Amato, G., Parton, M., Scozzari, F., 2010. A tool which mines partial execu-
tion traces to improve static analysis, in: Barringer, H., et al. (Eds.), First
International Conference, RV 2010, St. Julians, Malta, November 1-4, 2010.
Proceedings. Springer, Berlin Heidelberg. volume 6418 of Lecture Notes in
Computer Science, pp. 475–479. doi:10.1007/978-3-642-16612-9.

Amato, G., Rubino, M., Scozzari, F., 2017. Inferring linear invariants with
parallelotopes. Science of Computer Programming 148, 161–188. doi:10.
1016/j.scico.2017.05.011.

Amato, G., Scozzari, F., 2011. Observational completeness on abstract interpre-
tation. Fundamenta Informaticae 106, 149–173. doi:10.3233/FI-2011-381.

37

http://dx.doi.org/10.1093/logcom/1.1.5
http://dx.doi.org/10.1093/logcom/1.1.5
http://dx.doi.org/10.1145/2487568.2487571
http://ceur-ws.org/Vol-2243/paper21.pdf
http://dx.doi.org/10.1007/978-3-642-16612-9
http://dx.doi.org/10.1016/j.scico.2017.05.011
http://dx.doi.org/10.1016/j.scico.2017.05.011
http://dx.doi.org/10.3233/FI-2011-381

Amato, G., Scozzari, F., 2012. Random: R-based analyzer for numerical do-
mains, in: Bjørner, N., Voronkov, A. (Eds.), Logic for Programming, Arti-
ficial Intelligence, and Reasoning 18th International Conference, LPAR-18,
Mérida, Venezuela, March 11-15, 2012. Proceedings. Springer, Berlin Hei-
delberg. volume 7180 of Lecture Notes in Computer Science, pp. 375–382.
doi:10.1007/978-3-642-28717-6_29.

Asperti, A., Longo, G., 1991. Categories, Types, and Structures: An Introduc-
tion to Category Theory for the Working Computer Scientist. Foundations
of Computing Series, The MIT Press.

Backhouse, K., Backhouse, R., 2004. Safety of abstract interpretations for free,
via logical relations and galois connections. Science of Computer Program-
ming 51, 153 – 196. doi:https://doi.org/10.1016/j.scico.2003.06.002.

Bossi, A., Gabbrielli, M., Levi, G., Martelli, M., 1994. The s-semantics ap-
proach: Theory and applications. The Journal of Logic Programming 19–20,
149–197.

Comini, M., Levi, G., Meo, M.C., 2001. A theory of observables for logic pro-
grams. Information and Computation 169, 23–80.

Cousot, P., 1997. Constructive design of a hierarchy of semantics of a transition
system by abstract interpretation (extended abstract). Electronic Notes in
Theoretical Computer Science 6, 77–102. doi:doi:10.1016/S1571-0661(05)
80168-9.

Cousot, P., Cousot, R., 1976. Static determination of dynamic properties of
programs, in: Proceedings of the Second International Symposium on Pro-
gramming, Dunod, Paris, France. pp. 106–130.

Cousot, P., Cousot, R., 1977. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints,
in: POPL ’77: Proceedings of the 4th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages. ACM Press, New York, NY, USA,
pp. 238–252. doi:10.1145/512950.512973.

Cousot, P., Cousot, R., 1979. Systematic design of program analysis frameworks,
in: POPL ’79: Proceedings of the 6th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages. ACM Press, New York, NY, USA,
pp. 269–282. doi:10.1145/567752.567778.

Cousot, P., Cousot, R., 1992. Abstract interpretation frameworks. Journal of
Logic and Computation 2, 511–549. doi:10.1093/logcom/2.4.511.

Cousot, P., Cousot, R., 1994. Higher-order abstract interpretation (and applica-
tion to comportment analysis generalizing strictness, termination, projection
and PER analysis of functional languages), in: Proceedings of the 1994 Inter-
national Conference on Computer Languages, IEEE Computer Society Press,

38

http://dx.doi.org/10.1007/978-3-642-28717-6_29
http://dx.doi.org/https://doi.org/10.1016/j.scico.2003.06.002
http://dx.doi.org/doi:10.1016/S1571-0661(05)80168-9
http://dx.doi.org/doi:10.1016/S1571-0661(05)80168-9
http://dx.doi.org/10.1145/512950.512973
http://dx.doi.org/10.1145/567752.567778
http://dx.doi.org/10.1093/logcom/2.4.511

Los Alamitos, CA, USA. pp. 95–112. doi:10.1109/ICCL.1994.288389. in-
vited paper.

Cousot, P., Cousot, R., 2000. Temporal abstract interpretation, in: POPL ’00:
Proceedings of the 27th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages. ACM Press, New York, NY, USA, pp. 12–25.
doi:10.1145/325694.325699.

Cousot, P., Cousot, R., 2014. Abstract interpretation: Past, present and future,
in: Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual
Conference on Computer Science Logic (CSL) and the Twenty-Ninth An-
nual ACM/IEEE Symposium on Logic in Computer Science (LICS), ACM,
New York, NY, USA. pp. 2:1–2:10. URL: http://doi.acm.org/10.1145/
2603088.2603165, doi:10.1145/2603088.2603165.

Cousot, P., Halbwachs, N., 1978. Automatic discovery of linear restraints among
variables of a program, in: POPL ’78: Proceedings of the 5th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, ACM Press,
New York, NY, USA. pp. 84–97. doi:10.1145/512760.512770.

Giacobazzi, R., 1996. “optimal” collecting semantics for analysis in a hierar-
chy of logic program semantics, in: Puech, C., Reischuk, R. (Eds.), Proc.
13th International Symposium on Theoretical Aspects of Computer Science
(STACS’96). Springer. volume 1046 of Lecture Notes in Computer Science,
pp. 503–514.

Giacobazzi, R., Ranzato, F., Scozzari, F., 2000. Making abstract interpretations
complete. Journal of the ACM 47, 361–416.

de Kruijf, M., Sankaralingam, K., 2013. Idempotent code generation: Imple-
mentation, analysis, and evaluation, in: Proceedings of the 2013 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO),
IEEE Computer Society, Washington, DC, USA. pp. 1–12. URL: https:

//doi.org/10.1109/CGO.2013.6495002, doi:10.1109/CGO.2013.6495002.

Mycroft, A., 1980. The theory and practice of transforming call-by-need into
call-by-value, in: Robinet, B. (Ed.), International Symposium on Program-
ming: Proceedings of the Fourth ‘Colloque International sur la Program-
mation’ Paris, 22–24 April 1980, Springer-Verlang, Berlin Heidelberg. pp.
269–281. doi:10.1007/3-540-09981-6_19.

Panangaden P., M.P., 1984. A Category Theoretic formalism for Abstract In-
terpretation. Technical Report UUCS-84-005. University of Utah.

Venet, A., 1996. Abstract cofibered domains: Application to the alias analysis
of untyped programs, in: Proceedings of the Third International Symposium
on Static Analysis, Springer-Verlag, London, UK. pp. 366–382.

39

http://dx.doi.org/10.1109/ICCL.1994.288389
http://dx.doi.org/10.1145/325694.325699
http://doi.acm.org/10.1145/2603088.2603165
http://doi.acm.org/10.1145/2603088.2603165
http://dx.doi.org/10.1145/2603088.2603165
http://dx.doi.org/10.1145/512760.512770
https://doi.org/10.1109/CGO.2013.6495002
https://doi.org/10.1109/CGO.2013.6495002
http://dx.doi.org/10.1109/CGO.2013.6495002
http://dx.doi.org/10.1007/3-540-09981-6_19

Wadler, P., Hughes, R.J.M., 1987. Projections for strictness analysis, in: Kahn,
G. (Ed.), Functional Programming Languages and Computer Architecture:
Portland, Oregon, USA, September 14–16, 1987 Proceedings, Springer-Verlag,
Berlin Heidelberg. pp. 385–407. doi:10.1007/3-540-18317-5_21.

40

http://dx.doi.org/10.1007/3-540-18317-5_21

	Introduction
	Plan of the paper

	Precision, derivability and collecting semantics
	Abstractions and Galois connections
	Examples of abstractions
	Comparing abstract interpretations
	Relative precision and verification
	Derivability among semantics
	Collecting semantics

	Collecting semantics for functional programs
	Collecting semantics
	Strictness and collecting semantics
	Constancy and collecting semantics
	Involution, idempotence, monotonicity and collecting semantics
	Relationships among collecting semantics

	Adequacy of collecting semantics
	The collecting semantics CS2
	The collecting semantics CS1

	The downward closed semantics CS3
	Adequacy for CS3

	Related work
	Other formalizations of abstract interpretation
	Future work

	Conclusion

