
On the Algebraic Structure of Declarative
Programming Languages

Gianluca Amato∗∗,a, James Lipton∗,b, Robert McGrailc

aDipartimento di Scienze, Università degli Studi “G. d’Annunzio”, viale Pindaro 42, 65127
Pescara, Italy

bDepartment of Mathematics, Wesleyan University, Middletown CT 06459, USA
cReem-Kayden Center 207, 31 Campus Road, Bard College, Annandale-on-Hudson, NY

12504B, USA

Abstract

We develop an algebraic framework, Logic Programming Doctrines, for the syn-
tax, proof theory, operational semantics and model theory of Horn Clause logic
programming based on indexed premonoidal categories. Our aim is to pro-
vide a uniform framework for logic programming and its extensions capable of
incorporating constraints, abstract data types, features imported from other
programming language paradigms and a mathematical description of the state
space in a declarative manner. We define a new way to embed information about
data into logic programming derivations by building a sketch-like description of
data structures directly into an indexed category of proofs. We give an alge-
braic axiomatization of bottom-up semantics in this general setting, describing
categorical models as fixed points of a continuous operator.

Key words: categorical logic, indexed categories, logic programming, abstract
data types, constraint logic programming

1. Introduction

A large number of so-called Declarative Programming Languages has been
developed over the past thirty years with one common feature. A mathematical
formalism underlies the text of any program, which must be respected by its
computational behavior. In fact, in most logic programming languages, the code
itself is taken as an executable specification that can be read and understood
independently of any notion of how the computation will proceed (so-called
declarative transparency). The paradigm has proven remarkably successful in

∗Principal corresponding author. Phone: +1 (860) 685-2188. Fax: +1 (860) 685-2571
∗∗Corresponding author. Phone: +39 085 453-7686. Fax: +39 085 4549-755

Email addresses: amato@sci.unich.it (Gianluca Amato), jlipton@wesleyan.edu
(James Lipton), mcgrail@bard.edu (Robert McGrail)

Preprint submitted to Theoretical Computer Science November 6, 2009

a number of domains. Perceived early limitations in both expressive power
and efficiency, however, have led to widespread and increasingly sophisticated
attempts to strengthen the paradigm without compromising declarative trans-
parency.

The results have included extensions of the original Horn-clause core of Pro-
log [56] to higher-order logic [66, 63, 12], or to non-classical logics [65, 35, 6]
with more connectives and proof rules, the incorporation of different mathemat-
ical formalisms and trusted foreign algorithms via constraints [40], the addition
of abstraction [63, 61], formalized metaprogramming rules [74], state-sensitive
logics [62], narrowing [33], formal theories of abstract syntax [13], etc.

As a result of this continual evolution, declarative programming languages
have seen an unprecedented amount of retooling, at the language, semantics,
static analysis, code transformation, interpreter and compiler levels, and con-
tinue to do so.

The aim of the research described in this paper is to define an algebraic
framework for uniform treatment of this changing field, ultimately with the
hope of achieving scalability to all of these levels. The idea, some components of
which have been pursued in one shape or another since 1985, is to recast syntax,
semantics, state space and operational content in a uniform categorical setting
capable of incorporating the various dimensions of present and foreseeable logic
programming extensions. In fact categorical syntax can be viewed, and is viewed
in this paper, as a generic language extension in its own right. Critical to this
undertaking, and what sets it apart from prior work by the authors and others in
the field, is the simultaneous description of syntactic, semantic, and operational
layers and their interaction, as well as the inclusion of the state space as a
mathematical component of the formalism.

On the underlying logic. As mentioned above, efforts to improve the efficiency
and expressive power of logic programming have led to various kinds of extension
to the first-order Horn Clause (FOHC) core of logic programming. One can
(very) roughly divide these into logical extensions to the underlying syntax and
proof theory, such as First-order Hereditarily Harrop (FOHH [65]), Equational
(Eqlog [31]), Linear (LoLLi [35]), Modal [6] or Higher order logic (HoHC [66],
HoHH [63], HiLog [12], Hiord [11]) and extensions of the syntactic domain, such
as constraint logic programming [40], Prolog III [14], FoHH(C) and HoHH(C)
[53] in which the syntax may refer to an underlying model (or associated theory)
that is not the Herbrand Universe, such as the domain of the reals, finite sets,
or infinite rational trees [42].

Although categorical extensions to logic programming of a more restricted
nature have been proposed for richer underlying logics (e.g. FOHH) [24, 47], here
we define a framework sufficiently strong to build state, data and constraint
information directly into the Horn Clause syntax, and leave the extension of
these methods to linear and higher-order logics for future work. Since this
framework permits the definition of datatypes, monads and modules (Section 8),
the need for extending the logic “along the vertical axis” (see below) may not
be so critical. In keeping with this somewhat oversimplified sketch of the logic

2

programming extension scenario, our work on Logic Programming Doctrines
(LPD) might be placed as follows:

6

-

logic

domain enrichment

FOHC

FOHH FOHH(C)

HOHH

CLP(X)

HoHH(C)

LPD

Categorical methods. Given the wide variety of declarative extensions to the
Prolog core, the fact that category theory has offered a general accounting of
almost every logical system known would be reason enough to undertake a
study of a categorical framework for the subject, and define (as is done here) an
extensible category-based logic programming language. Yet another reason is
the elimination of variables in categorical logic, and of much of the painstaking
attention one must give to name clashes in conventional syntax.

Even more to the point, categorical descriptions and category-directed imple-
mentations have proven of critical utility in design, specification and modeling of
other programming paradigms, especially functional programming [36, 48, 49],
data type definition [73, 80, 81, 43, 38, 32, 67], object-oriented language seman-
tics [75, 38, 30], polymorphism [5]. Notably in the case of monads [64], they
have offered guidelines for safe language extensions that have been incorpo-
rated directly into the syntax of several modern programming languages (such
as Haskell [69]) and into the structure of software itself. Building some of these
approaches into the notion of declarative program and proof offers a promising
and versatile blueprint for logic programming extensions incorporating other
language paradigms.

Categorical logic programming. Most categorical extensions of logic program-
ming start from a fundamental observation due to Goguen, Asperti and Martini
[28, 4] and a number of other researchers1 in more-or-less equivalent form:

unifiers are equalizers in a certain syntactic category.

This single fact already provides a way to capture many logic programming
extensions, namely by considering a wider class of categories than the strictly
syntactic ones associated with the Herbrand Universe.

We will use this observation as an entry point to categorical logic program-
ming, gradually developing generalizations until arriving at the fundamental
syntactic and semantic frameworks of LP doctrines.

1Burstall and Rydeheard, however, have introduced an interesting co-equalizer formulation
in [76].

3

The State Space. LP doctrines are indexed premonoidal categories, to be de-
fined below. Such categories are equipped with a base category, together with
categories associated with each object in the base, known as the fibers. Goals
and derivations between them will live in the fibers, functors between the fibers
will play the role of generalized substitutions, and the base category will con-
tain different formulations of the local state information, a new feature in logic
programming semantics. Depending on the model in question, state can include
the current type, data type information, the current substitution, the current
constraint, current bindings. The base category may also include the current
program as objects, since in Hereditarily Harrop Logic Programming [63] pro-
grams may be updated during execution. We will not explore this notion of
state here, since we restrict attention to Horn Clause programming. See [24] for
a categorical treatment of program update. In the examples considered in Sec-
tion 8 the state space will also include a functor targeted at the base category,
incorporating information about data and control.

Contents. This is the plan of the paper. In Section 2 we fix definitions and
terminology which will be used through the rest of the paper. In Section 3
we give a sketch of categorical logic. In Section 4 we motivate and introduce
our approach to categorical logic programming. Section 5 defines the general
framework of LP doctrines and three semantics: declarative, operational and
fixpoint. In Section 6 we consider in detail the important special case of Yoneda
(or correct answer) semantics. Section 7 presents a treatment of constraint logic
programming as an instance of the framework, and shows its soundness with
respect to the standard interpretation. In Section 8 an extensive discussion
of examples is given to show how the framework developed in the preceding
sections can be used to build datatype and control information into the syntax
of programs and their proofs. Section 9 is devoted to a comparison of our paper
with related works. Finally, we conclude with a summary of our results and a
discussion of future work.

2. Notation and Conventions

In this section, we fix the notation (mostly for category theory) used in the
rest of the paper. A more complete treatment of the category theory background
required can be found in [3, 8, 25].

A category C may be thought of as a collection of arrows (see e.g. [25]).
Therefore we write f ∈ C when f is an arrow in C. We denote by |C| the
corresponding collection of objects. Given an arrow f , dom(f) is the domain
(or source) of f and cod(f) the codomain (or target). For every object A, idA
is the identity arrow for A. We write f : A → B to denote that f is an arrow
with domain A and codomain B, while f : A 7−→ B means, in addition, that
f is a monic. Given f : A → B and g : B → G, the composition of f and g is
denoted by either f � g or fg in diagrammatic order. Given two objects A and
B in C, Hom(A,B) and C(A,B) denote the collection of arrows with domain
A and codomain B. A functor F from the category C to the category D is

4

denoted by F : C → D, while if F : C → D and G : C → D, then η : F → G
will mean that η is a natural transformation from F to G. Given categories
C and D, we denote with DC the category of functors from C to D and their
natural transformations. If C is category, Co is the opposite category of C. If
F : C → D is a functor, F o : Co → Do is the corresponding functor between
opposite categories.

Given objects A and B in C, we denote by A × B, when it does exist,
the cartesian product of A and B (which is unique up to iso), with projection
morphisms given by πA,B1 and πA,B2 . If f : C → A and g : C → B, we denote
by 〈f, g〉 the unique arrow from C to A × B such that 〈f, g〉 � πA,B1 = f and
〈f, g〉 � πA,B2 = g. We will write π1 and π2 when A and B are clear from
context. With 1 we denote the terminator, while !A is the only arrow from A
to 1. We call finite product category or FP category a category which has all
cartesian products and terminators. Most of the symbols above may optionally
be annotated with the category they are referring to (like in HomD(A,B) or
1C), especially when it is not clear from the context.

A category C is small when the collection of its arrows is a set (instead of a
proper class). It is locally small when Hom(A,B) is a set for any pair of objects
A, B. All the categories we use in this paper are locally small.

Set refers to the category of sets and total functions, and Cat the category
of all small categories and functors between them. N and R denote the set
of natural numbers and real numbers respectively. Given a set S, ℘(S) is the
power set of S, while ℘f (S) is the finite power set. Finally, if f : A → B is a
function and S ⊆ B, then f−1(S) is the inverse image of S under f .

3. Categories and Logic

Categories with finite products and enough pullbacks to carry out certain
required constructions can be used to give both an algebraic syntax and a se-
mantics to the logic programming fragment of first order logic, following the
general pattern described in [58]. The main idea is that objects, arrows and
monics are the categorical counterpart of sorts, terms and predicates. Pulling
back along selected arrows (terms) t of interest yields the categorical counterpart
of instantiation of a predicate p(x) to p(t).

Compound predicates are then modeled using different categorical opera-
tions on monics depending on the level of operational fidelity to computation
practice desired. For example, conjunctions of goal formulas will be captured
with intersections, products and, ultimately tensor products as we strive for a
more general and operationally-oriented interpretation.

From Tarski to Lawvere. This way of representing logic can easily be seen to
come directly from traditional first-order Tarski semantics, appropriately pre-
sented. We will briefly outline the connection first, before proceeding with the
approach developed in this paper.

5

So-called untyped first-order logic has sort structure given only by arities.
Thus all function symbols and predicate symbols have sorts which can be de-
noted by natural numbers. In many sorted logic, however, function and pred-
icate symbols may be of a specific “user-defined” sort, say int or string or
products of these.

Let us consider several sorts σ1, . . . , σn and ρ. In the categorical version
of Tarski semantics, these are interpreted as objects in the category Set, i.e.
by sets JσiK and JρK. Compound sorts ~σ = σ1 × · · · × σn are interpreted by
products of sets, i.e. J~σK = Jσ1K × · · · × JσnK. Predicate symbols p of sort ρ
are interpreted as subsets JpK of JρK, which we can identify with {x ∈ JρK |
p(x) is true in some fixed model M}. Open terms t of sort ρ with free variables
x1, . . . , xn of sort σ1, . . . , σn are interpreted as functions JtK : J~σK −→ JρK in a
way that is explained in detail below.

It may be best to consider an example. Suppose p is the unary predicate
even on natural numbers. Its sort is thus nat. In the standard interpretation we
have JnatK = N, and JevenK the even members of N. Let t be a binary function
symbol on nat × nat, whose output sort is nat and whose interpretation JtK :
Jnat× natK −→ JnatK is the right projection function π on pairs: JtK(x, y) =
π(x, y) = y. The meaning of p(t(x, y)) should be “y is even, x is any natural
number”, which corresponds precisely to

Jp(t(x, y))K = JtK−1(JpK) = {(x, y) ∈ N× N | y is even} .

We have described how atomic formulas ϕ = p(t) are modeled although we have
left the details of how compound terms are interpreted for the following para-
graph. In classical logic, Boolean combinations of formulas are interpreted using
the appropriate set-theoretic operations of union, intersection and complement
on the lattices Sub(JσK) of subsets of JσK, for a suitable sort σ.

Finding a common sort. To interpret combinations of formulas of different sorts,
we must pull their separate interpretations back (along projections) to the power
set of the product of the sorts. For example, we consider how to interpret
ϕ = even(x) ∧ length3 (y), where the sorts are: even : nat, length3 : nat∗,
and where nat∗ is the sort of strings of natural numbers with interpretation
N∗. The intended meaning Jlength3 K of the predicate symbol length3 is {y |
y is a string of natural numbers of length > 3}, a member of Sub(N∗).

To make sense of the conjunction of the two formulas even(x), length3 (y)
we need to first pull back their separate interpretations to the power set of a
common sort nat × nat∗ (the product of the sorts), that is to say, take the
inverse image of each along the left and right projections π1 : N× N∗ → N and
π2 : N×N∗ → N∗, and then take the intersection of the resulting sets, to obtain

Jeven(x) ∧ length3 (y)K = π−1
1 (JevenK) ∩ π−1

2 (Jlength3 K)
= {(x, y) | x ∈ N and x is even, and y is a string of length > 3} ,

a subset of N× N∗.

6

Set
JσK -

��� JtK−1

-∃JtK

-∀JtK

JtK

��Sub(JσK)

Jp(t)K

D
D
D
D
D
DD

�
�
�
�
�
��

JρK

��Sub(JρK)

JpK

D
D
D
D
D
DD

�
�
�
�
�
��

Figure 1: Interpreting atomic formulas and quantifiers in Set

Quantifiers. Let σ1, σ2 be sorts and π the projection of Jσ1 × σ2K to Jσ2K.
In the setting just given, quantification ∃x, ∀x of a formula ϕ with two free
variables x and y of sorts σ1 and σ2 can be captured using the operations
∃π,∀π : Sub(Jσ1 × σ2K)→ Sub(Jσ2K) given by

∃π(S) = {b ∈ Jσ2K | ∃(a, b) ∈ S, π(a, b) = b} ,
∀π(S) = {b ∈ Jσ2K | ∀(a, b) ∈ S, π(a, b) = b} .

Thus, J∃x.ϕK = ∃πJϕK and J∀x.ϕK = ∀πJϕK yield precisely the interpretation of
quantifiers given by Tarski semantics.

Lawvere [50] observed in 1969 that these operations are precisely the left
and right adjoints of the inverse image π−1 : Sub(Jσ2K) → Sub(Jσ1 × σ2K), or,
in lattice theoretic terms, that the pairs 〈∃π, π−1〉 and 〈π−1,∀π〉 each form a
Galois correspondence. See Figure 1 for an illustration, where π is generalized
to an arbitrary arrow of the form JtK : JσK→ JρK, for some term t.

3.1. Logic in FP-categories
We now examine the interpretation of logic in detail in a categorical setting,

sufficiently general so that both syntax and semantics will be captured by dif-
ferent instances of the same framework. When we describe the treatment of
predicates, we will restrict attention, however, to ∃,∧ since they are the only
connectives we will need for Horn Clause logic.

We start with the interpretation of terms. Assume given an FP category C,
a many sorted first order signature (Σ,Π) where Σ is a set of function symbols
accompanied by their sorts, Π a set of predicate symbols and their sorts, and a
set of sorted variables V . A C-structure on (Σ,Π) is a function M that maps
each sort σ to an object M(σ) ∈ |C| and each function symbol f of arity n,
input sorts σ1, . . . , σn and output sort ρ to an arrow M(f) : M(σ1) × · · · ×
M(σn)→M(ρ). Constants are functions of arity 0: for each constant c of sort
ρ, we have M(c) : 1 → M(ρ) where 1 is the terminator of C. M also maps
each predicate symbol p of sort ~σ = σ1, . . . , σn to a monic arrow 7−→ M(~σ)
targeted at the image of its sort. This is a natural categorical counterpart to
the interpretation, in Tarski semantics, as subsets of the carrier of the sort. We
sometimes abuse notation and also refer to the domain of this monic as M(p)
and write M(p) 7−→M(~σ).

7

A C-structure M induces an interpretation for all open terms over V . Given
a sequence ~x = x1, . . . , xn of variables of sorts ~σ = σ1, . . . , σn respectively, we
define M(~x) = M(~σ) as M(σ1)× · · · ×M(σn). Given a term t of sort ρ having
all the variables among ~x, we define an arrow M~x(t) : M(~x)→M(ρ) as follows:

• t = xi: M~x(xi) is the projection πi : M(~x)→M(σi). In this case ρ is σi.

• t = c: For a constant c of sort ρ, M~x(c) is defined as the following com-
position:

M(~x)
!M(~x)−−−→ 1

M(c)−−−→M(ρ) . (3.1)

• t = f(t1, . . . , tm): If each ti is of sort αi, then M~x(t) is defined as the
following composition:

M(~x)
〈M~x(t1),...,M~x(tm)〉−−−−−−−−−−−−−→M(~α)

M(f)−−−→M(ρ) . (3.2)

Given enough pullbacks, it is possible to interpret in C atomic formulas of
first order logic. Recall that for every predicate symbol p in Π with arity n
and sorts σ1, . . . , σn, we have a monic M(p) 7−→M(~σ). For an atomic formula
φ = p(t1, . . . , tm) with all the variables among ~x, we defineM~x(φ) as the pullback
of the monic M(p) 7−→M(~σ) along the arrow 〈M~x(t1), . . . ,M~x(tm)〉:

M~x(φ) //
_

��

_� M(p)
_

��
M(~x)

〈M~x(t1),...,M~x(tm)〉 // M(~σ)

The formula φ is considered true when M~x(φ) is isomorphic to M(~x). In the
category Set this coincides with the usual definition of truth in Tarski semantics,
i.e. every member of the sort of φ is in its interpretation.

In the context of FP categories, substitutions and unification have a direct
counterpart, too. Let θ = {x1/t1, . . . , xn/tn} be an idempotent substitution
and assume that all the variables in t1, . . . , tn are in the sequence ~y. Then one
can define a corresponding categorical substitution Θ~y as the morphism:

M(~y)
〈M~y(t1),...,M~y(tn)〉
−−−−−−−−−−−−→M(~x) . (3.3)

It is easy to prove by structural induction [22] that, given a term s with all the
variables among ~x, M~y(sθ) = Θ~y �M~x(s):

M(~y)
〈M~y(t1),...,M~y(tn)〉
−−−−−−−−−−−−→M(~x)

M~x(s)−−−−→M(ρ) . (3.4)

Application of the substitution θ above to a predicate φ whose sort is M(~x)
is accomplished by taking the pullback of the monic interpreting φ along the
arrow Θ~y just defined.

8

Given two terms s and t of the same sort ρ with all the variables in ~x, if θ is
a unifier then Θ~y equalizes M~x(s) and M~x(t), i.e., makes the following diagram
commute:

M(~y)
Θ~y- M(~x)

M~x(s)-
M~x(t)
- M(ρ) .

If C is the pure Lawvere Algebraic Theory [52] (see also Example 5.2 below)
for Σ, and θ is a most general unifier, then Θ~x is an equalizer, that is to say,
terminal among all equalizing arrows like the one in the preceding diagram.

Given this interpretation of classical first order languages, the successive
abstraction step is considering the FP category itself as the language, without
relying on any interpreted syntactic objects. This is common in categorical logic
and it has the great advantage of allowing us to work with syntax without having
to worry about variables and consequent name clashes. We will talk therefore
of objects as sorts, arrows as terms or substitutions, equalizers as most general
unifiers, monics as predicates, and pullbacks of predicates along terms, if they
exist, as the categorical counterpart of instantiation p(t) of predicate symbols
p.

The doctrinal approach. We move to yet a more general categorical interpre-
tation of logic, indexed categories, inspired by the diagram in Figure 1, first
introduced by Lawvere [50, 51] and often used since, see e.g. [78]. This diagram,
often called a doctrinal diagram when certain conditions are added, will become
the defining algebraic framework for our general categorical logic.

Recall that we have interpreted predicates of sort σ as monic arrows targeted
at JσK. But these correspond to objects in the subobject poset Sub(JσK) (which
correspond to subsets of JσK when C = Set). Thus, the natural generalization
to arbitrary indexed categories is to let a goal of sort σ be any object in the
fiber over JσK of a C-indexed category [34, 45].

3.2. Indexed Categories
Indexed categories and the related notion of fibration have been used ex-

tensively in categorical logic. Informally, indexed categories are collections of
categories (“fibers”) parametrized by another so-called base category in a way
that respects some of the structure of the base. They give a natural way of
passing from propositional to predicate logic. We take a given signature for
predicate logic as a base category. We then associate to each object (type or
arity) in the signature a fiber consisting of (a categorical model of) a proposi-
tional logic, such as a lattice of predicates. Substitution and quantification are
then captured by certain functors between these propositional fibers, directly
generalizing the basic framework indicated at the beginning of this section with
Tarski semantics in Set. We will use variants of this idea to give a general notion
of syntax and semantics for logic programming.

The most natural way to capture this notion of a category varying over a
base category C is to define it as a functor (usually contravariant) from C to

9

the category Cat of all small categories and functors. That is to say we view a
family of categories {Fσ : σ ∈ |C|} indexed over the objects of C as a functor
P taking each σ to Fσ. Since P is a functor it will also map arrows between
sorts to functors between the fibers, respecting composition. Note that we use
greek letters for the objects of the base category C, since they often correspond
to sorts in standard logic.

We now give the definitions. A broad treatment of these topics can be found
in [37].

Definition 3.1 A strict indexed category over a base category C is a functor
P : Co → Cat. For each object σ of C, the category P(σ) is called the fiber over
σ. If f is an arrow in the base category, P(f) is called a reindexing functor.
We will write f] instead of P(f) when this does not cause ambiguities.

The following diagram illustrates the fundamental components of an indexed
category:

C
(states, sorts)

σ -

���

f

P(f)
(substitutions)

��
Pσ

(goals,
proofs)

B
B
B
B
B

�
�
�
�
�

ρ

��
Pρ

B
B
B
B
B

�
�
�
�
�

For future reference, we have also indicated the logic programming concepts
(goals & proofs, substitutions, states & sorts) formalized by these com-
ponents.

Indexed Functors and Change of Base. Given indexed categories P and Q over
C and D respectively, an indexed functor from P to Q is given by a change of
base functor F : C→ D and a natural transformation τ : P→ (F o � Q). In the
following, when we have an indexed functor H = 〈F, τ〉 : P → Q, we will often
use f] for P(f) and f [for Q(Ff).

In a non-strict indexed category, P is only required to be a pseudo-functor
Co → Cat, meaning that P need only preserve identity and composition of
arrows up to isomorphism. This generality is often forced on us. Just consider
the following case, sometimes taken to be the defining example of the subject.
Take reindexing functors to be pullbacks between subobject lattices, which only
preserve composition up to iso. We will derive our indexed categories by other
means, which automatically give us strict indexed categories. Therefore, in the
following we will omit the prefix “strict”.

Choosing the right operations in the fibers. The algebraic structure of the fibers
of our indexed categories will determine how free we are to build extra in-
formation into the definition of predicates, and how operational we make our
categorical syntax. To this end, instead of endowing fibers with finite products

10

as in [78] and some prior work by the authors and collaborators [24, 55] we
choose to model conjunction of goals with monoidal structures below.

Our categorical syntax must allow us to represent code and execution di-
rectly, that is to say, programs, goals and sequences of proof steps. Goals will
be objects in the fibers, and sequences of proof steps will be arrows. Since
backchaining involves moving from theorems to premises, these arrows will ini-
tially be in the opposite direction of backchaining.

If we choose to model conjunctions of goals G1,G2 using products, we are
forced to allow projections such as G1 ×G2 → G1, which in turn forces us to
allow (in reverse) resolution steps of the form

G1 G1,G2.

In conventional categorical proof theory, this is just a form of weakening, hence
sound from a purely logical point of view. In fact this proof step does not spoil
soundness or completeness of Prolog, since a successful derivation G · · ·�
exists using this rule if an only if it exists without this rule (by induction on
the length of proof). But it is clearly an absurd step from a logic programming
point of view.

Modeling conjunction with intersection (of goals interpreted as sets) is even
worse in the syntax. It forces us to identify goals such as G1,G2 with G2,G1,
and with, for example, G1,G2,G1, which can have such different observable
behavior in terms of computational effects or resource consumption.

The choice of a non-commutative tensor operation makes it possible to build
models in which pairs of goals such as G1 and G1⊗G1 or G1⊗G2 and G2⊗G1

are not even isomorphic, and in which no arrows exist between G1 ⊗G2 and
G1, in general.

This use of monoidal structures is consistent with the analysis of logic pro-
grams through linear logic in e.g. [44] although we will not further pursue this
connection here. We will also need to pass to the more general premonoidal
structures, since they allow us to rule out the “parallel” resolutions of [16] (where
all goals may be reduced simultaneously) in favor of standard non-deterministic
one-goal-at-a-time resolution, as further discussed below.

3.3. Monoidal and Premonoidal Categories
A monoidal category is a category endowed with a formal product operation

on objects and arrows often denoted⊗, with some associativity properties. They
arise naturally in algebra and linear logic semantics. For a detailed discussion
and historical motivation the reader should consult [57].

Their main use here will be to formalize concatenation of goals and certain
kinds of proof steps between them. In order to rule out proof steps that are
not computationally meaningful we will need to consider some variants and
generalizations defined below.

Definition 3.2 A strict monoidal category is a category C together with a func-
tor ⊗ : C × C → C, called tensor product, and an identity element > ∈ |C|

11

such that, given arrows f, g and h, the following identities hold: f ⊗ (g ⊗ h) =
(f ⊗ g)⊗ h, f ⊗> = f , >⊗ f = f .

By restricting the properties of the tensor product we may obtain a pre-
monoidal category , which has been introduced in [71] as a tool for analyzing
side effects in the denotational semantics of programming languages. It is used
here to control which transitions between goals count as legal resolution steps.

It is easier to present premonoidal categories as a particular case of binoidal
categories. We remind the reader that if C is a category then |C|, the class
of objects of C, can be viewed as a discrete category: the only arrows are the
identities.

Definition 3.3 A binoidal category is a category C with a pair of functors
⊗l : C× |C| → C and ⊗r : |C| ×C→ C such that idA⊗lB = A⊗r idB for each
pair of objects in C.

The main interest for logic programming applications is to ensure that the
tensor product can only act on one coordinate at a time. Arrows between
objects in the free binoidal category will be of the form A ⊗l B → A′ ⊗l B,
which corresponds, in logic programming to selecting the goal A′ (resolutions
are in the reverse direction) and reducing it to A while leaving B fixed.

Since there are no ambiguities, we can denote both functors with ⊗, writing
things such as A⊗B, A⊗g or f⊗B. In general, it does not make sense to write
f ⊗ g. A morhpism f : A → A′ in a binoidal category is called central if, for
every morphism g : B → B′, the following equalities hold: (g ⊗A) � (B′ ⊗ f) =
(B ⊗ f) � (g ⊗A′) and (A⊗ g) � (f ⊗B′) = (f ⊗B) � (A′ ⊗ g). In this case, we
may use the notations f ⊗ g or g ⊗ f .

Definition 3.4 A strict premonoidal category is a binoidal category C with an
identity element > ∈ |C| such that, for every f : C → C ′, the following identities
hold: >⊗f = f , f⊗> = f , f⊗(A⊗B) = (f⊗A)⊗B, A⊗(f⊗B) = (A⊗f)⊗B
and A⊗ (B ⊗ f) = (A⊗B)⊗ f .

Observe that if C is a strict premonoidal category where all morphisms are
central, then C is a strict monoidal category.

In the following, we will never use the non-strict variants of monoidal and
premonoidal categories, hence we will also omit the prefix “strict”. Given two
premonoidal categories C and D, a premonoidal functor F : C→ D is a functor
which sends central maps to central maps and preserves identity element and
tensor product on the nose. Finally, given two premonoidal functors F,G : C→
D, a premonoidal natural transformation η : F → G is a natural transformation
such that all the arrows ηA are central, ηA⊗CB = ηA ⊗D ηB and η>C = id>D .

3.4. On some Standard Categorical Constructions
A number of standard definitions and results in category theory are repeat-

edly used in this paper. They are noted here for future reference. The reader
should consult e.g. [57, 49, 25] for the details.

12

Freely generated objects and universal mapping properties. An object A in a
category C is initial or free if for any object B in C there is a unique arrow
from A to B. It is terminal if the dual property holds (the arrow goes the other
way).

Such objects are easily seen unique up to isomorphism. We can relativize
these definitions, thus obtaining (from terminal objects, for example) such no-
tions as pullbacks, products and limits. For example, a product in C of two
objects A and B in C is a span A � C - B such that for any other span
A � C ′ - B there is a unique arrow from C ′ to C making the resulting
diagram commute. We can define a category Sp(C, A,B) of spans into A and B
in C. Then the product of A and B is simply a terminal object in Sp(C, A,B).

Given two categories S and C, and a functor U : C → S, we say that an
object A of C is freely generated by the object X in S if there is an arrow
X → U(A) in S such that for every B in C and every arrow X → U(B) there
is a unique arrow ϕ : A- B such that the following diagram commutes

X - U(A)

U(B)

U(ϕ)
?

........-

Often there is a functor F : S→ C which associates to each object of S a freely
generated object of C. In this case F and U form a pair of adjoint functors
[57, 49, 25]. Examples are the free group generated by a set and the free algebra
(over a signature) generated by a set of variables. Of particular interest is the
free category generated by a graph. Taking the functor U : Cat → Graph to be
the one that maps every (small) category to its underlying graph, one shows
the existence of F by constructing, for any graph G the desired category F (G)
with the same objects as G, and with arrows from, say, A to B in F (G) made
up of sequences of arcs in G connecting A to B. See [57, 49] for details.

Using this construction one may freely adjoin an arrow, a collection of arrows,
or a diagram (between existing objects) to a category C, by first adding the
arrows as arcs to U(C), then constructing the category freely generated by this
augmented graph, and then taking a suitable quotient to identify arrows that
were equal in the original category. Freely adding a single arrow to a category
is discussed in detail, from several perspectives (Kleisli categories, slices) in
[49, 25].

The Yoneda embedding. We can define the functor

Y : C→ SetCo (3.5)

from any category C into the category of contravariant functors from C to Set, by
mapping each object A to the functor HomC(, A) and each arrow f : A→ B to
the natural transformation f̂ : HomC(, A)→ HomC(, B) that acts as follows:
for each object X in A, f̂X : HomC(X,A)→ HomC(X,B) sends α : X → A to
αf : X → B. An analysis of this important functor Y shows that every category

13

C can be fully and faithfully embedded in the presheaf topos SetCo , in such a way
that the images of the objects in C, called the representable functors in SetCo , are
indecomposable projectives. Furthermore every object of the presheaf category
is a colimit of representables. These results and the associated Yoneda Lemma,
are presented succinctly in [49, 57]. They play a central role in this paper, since
a large class of logic programming models considered here are constructed by
first taking the Yoneda embedding of a syntactic category C into its associated
presheaf category, and then extending the mapping from predicates, i.e. fibers
over C, to subfunctors of the representables.

4. Logic Programming with Categories

Categorical approaches to logic programming appeared with the categorical
treatment of unification given by Rydeheard and Burstall in [76]. Asperti and
Martini [4] formalize the syntax of conventional Horn clause logic using cate-
gorical tools, and a topos-theoretic semantics is given. Corradini and Asperti in
[16], following some basic ideas already developed by Corradini and Montanari
in [17], give a categorical analysis of logic program transitions and models us-
ing indexed monoidal categories (where the base category is always the natural
numbers). Kinoshita and Power [45] give a fibrational semantics for logic pro-
grams which is very similar to [16], but more general since the algebra of terms
is not assumed to be freely generated.

Finkelstein, Freyd and Lipton [24] propose a different framework for the syn-
tax and semantics of logic programs. They do not use indexed categories, but
freely adjoin generic predicates to the category C of sorts and terms, adhering
to the interpretation of logic in finite product categories we introduced in Sec-
tion 3.1. We think that indexed categories are easier to deal with, since they
separate the logic part (in the fibers) from the functional part (in the base)
of the languages. On the other hand, [16] and [45] focus on the operational
and model theoretic side of the matter. However they lack any bottom-up de-
notational semantics such as that provided by the TP operator of van Emden
and Kowalski [79]. This immediate consequence operator and the characteri-
zation of models in terms of its fixed points seems to be a cornerstone of logic
programming, since it appears, in one form or another, across most semantic
treatments of logic programs [7, 15]. The bottom up description of program
models is indispensable for recent work in static analysis and abstract interpre-
tation and its application to compilation, built into every Prolog system in use
today. For these reasons, the categorical framework in [24] includes an analogue
of the TP operator, a definition of minimal model as its least fixed point, and
its bottom-up representation. Instead of using a term model, it uses the Yoneda
embedding of the signature category C into the presheaf category SetCo , and
interprets goals as subfunctors of their types in this category, as in Section 3.4.
This roughly corresponds to the semantics of correct answers.

The first contribution of our paper is the integration of the indexed frame-
work in [16, 45] with the fixed point semantics in [24]. At the same time, the
two frameworks are significantly extended to include:

14

• The use of premonoidal structures to model conjunctions of goals instead
of monoidal [16] or finite product [45, 24] structures. This gives a better
operational fidelity, as already discussed in Section 3.2.

• A more general syntax which admits non-freely generated goals (i.e. two
goals p(t1) and p(t2) for t1 6= t2 may be equal, or may be related by some
built-in proof). In turn, this allows:

– The incorporation of data structures, along the lines of Lipton and
McGrail work [55]. However, we argue that our presentation in terms
of premonoidal indexed categories and display structures is at the
same time simpler than the original work and better, thanks to the
greater operational fidelity.

– The incorporation of constraint logic programming, which is proved
to be sound w.r.t. the standard treatments in [40, 53].

• A more general fixed point semantic operator, allowing the replacement of
the presheaf category SetCo with other semantic domains (such as those
for ground answers, correct partial answers, etc.).

For a detailed comparison of our approach with [16, 45, 55, 24] and other papers,
the reader may consult Section 9.

A different point of view is adopted by Diaconescu [21], which gives a cat-
egorical semantics of equational logic programming using an approach derived
from the the theory of institutions [29]. This allows to consider equational logic
programming over non-conventional structures, recovering both standard logic
programming and constraint logic programming.

4.1. First Example
We will begin by rephrasing logic programming in terms of indexed monoidal

categories, also called IMCs. In later sections, after we present the general the-
ory, we will build on this framework to add data type information and con-
straints.

Towards indexed categories of goals and proofs. To build the indexed category
we want for logic programming, we start with a base category C with finite
products defining local logical state. Initially this will just mean types and
terms (a categorical signature). The fiber over each object will be a category of
goals.

As seen in the preceding section, each arrow in the base category induces a
reindexing functor between the fibers, generalizing the notion of substitution,
which may now include arbitrary state transitions. Unification will now just
mean applying reindexing to program and goal that identify the head of a clause
with the goal in question.

15

The display category J. The base category C supplies the signature for logic
programming, but information about the predicate symbols that may appear
in programs, goals and proofs must be given in a so-called display category
J together with a functor δ : J → C that maps each predicate name to its
associated sort.

We can think of J as a categorical analogue of the list of predicate letters in
a first order language, containing the predicate names, with δ providing their
type or sort assignment. In this initial example, J is just a discrete category.

Thus if program P , for example, has predicate symbols p1, p2, p3 of types
nat, nat and nat x nat, then J is the discrete category {p1, p2, p3}, with only
identity arrows. Assuming C = Set, then δ : J→C may be given by δ(p1) =
N, δ(p2) = N, δ(p3) = N× N.

In Section 8 we will consider non-discrete categories J where there may be
arrows other than the identities. We will also add diagrams and cones to the
display category J allowing us to build-in new relations, modules and data types
to the Horn Clause framework.

The Indexed Monoidal Category of goals. We now build the free IMC PJ of
goals generated by the predicate symbols designated by J. The basic idea is to
represent a goal p(t) as a tagged arrow, that is to say a pair (p, t) where the
predicate symbol p is an object in J and t is an arrow in C whose target is the
sort associated with p. Compound goals p1(t1), . . . , pn(tn) will be sequences of
these tagged arrows.

We now formally define PJ : Co→ Cat to be the functor which maps each
object σ of C to the discrete category whose objects are sequences of pairs (p, t)
where p ∈ |J| and t : σ → δ(p). If p and p′ are different objects in J mapped to
the same object of C, that is to say δ(p) = δ(p′), the two objects (p, t), (p′, t) are
well-defined and distinct in PJ(σ). We will write the goal (p, t) also as p(t) when
we want to stress the analogy with standard logic programming. PJ is endowed
with a simple monoidal structure: the tensor ⊗σ is given by concatenation of
sequences, while >σ is the empty sequence.

We must now define the action of P on arrows r : ρ → σ in C, which must
be to produce reindexing functors between the fibers. It acts by composition:
P(r) : P(σ)→ P(ρ) maps the goal

G = (p1, t1), . . . , (pn, tn) ∈ P(σ)

to
G′ = (p1, rt1), . . . , (pn, rtn) ∈ P(ρ) ,

and the identity idG to idG′ .

On the sorts of goals, clauses and programs. We say that a goal G has sort σ
when G is an object in Pσ. Consider an atomic goal p(t), where t : σ → δ(p) is
an arrow in the base category C. The sort of p(t) is the source of the arrow t,
i.e. σ. By convention, we also say that the sort of the predicate letter p is δ(p),
i.e. the sort of the goal p(id).

16

A goal p1(t1), . . . , pn(tn) can only exist if each pi(ti) has the same sort α,
since the monoidal operation ⊗ used to combine goals is only defined within
each fiber. In this case the entire goal has sort α.

The fact that in the case of the compound goal just cited all the literals pi(ti)
have the same sort is not limiting in any way, since any attempt to construct a
goal p1(t1), p2(t2) where p1(t1) is of sort σ1 and p2(t2) is of sort σ2 can be done
by reindexing both goals to a common fiber, namely the one over σ1 × σ2 , and
taking π1

](p1(t1))⊗ π2
](p2(t2)), where the πi : σ1 × σ2 → σi are projections.

Categorical derivations. Given the IMC PJ, we define a clause cl to be a pair

〈p(t), p1(t1)⊗ · · · ⊗ pn(tn)〉

of goals in the same fiber P(σ), whose first component is an atomic goal (i.e.,
it is a sequence of length one). The object σ in the base category is the sort of
the clause, which we prefer to write as follows:

p(t) cl←− p1(t1), p2(t2), . . . , pn(tn) . (4.1)

In Section 5.1 a more general definition of clause is given.
A notion of resolution may be introduced, in analogy with [24]. Given a

clause cl like (4.1) of sort ρ ∈ |C| and a goal G1 of sort σ ∈ |C|, we have a
resolution step

G1
r,s,i,cl−−−− G2

when

1. G1 = q1(t′1), . . . , qi(t′i), . . . , ql(t
′
l),

2. For some α ∈ |C|, r : α→ σ, s : α→ ρ and r]qi(t′i) = s]p(t),
3. G2 = r]q1(t′1), . . . , r]qi−1(t′i−1), s]p1(t1), . . . , s]pn(tn), r]qi+1(t′i+1) . . . , r]ql(t

′
l).

In the case of PJ, the definition above gives rise to the same derivations of [24].
However, there is the potential for a greater generality, since r] and s] now
depend on the definition of the reindexing functors in the category of goals.
This extra generality will allow us, later in the paper, to treat constraint logic
programming languages in a natural way.

Given a derivation d = G1
r1,s1,i1,cl1−−−−−−− · · · rm,sm,im,clm−−−−−−−−− Gm+1, the answer of d

is defined as the composition rm � · · ·�r1. A successful derivation is a derivation
which ends with the empty goal. A correct answer is the answer corresponding
to a successful derivation.

The Indexed Premonoidal Category of proofs. The resolution step is the fun-
damental notion of computation in logic programming, but we do not wish to
lose sight of the fact that it is a highly controlled form of proof search, and
that proofs and proof construction underlie the whole discipline. Thus, we take
arrows to denote proofs, which run in the opposite direction to resolution.

A category of proofs FP may be obtained by freely adding clauses in P to
the corresponding fibers in PJ. This means that FP (σ) will contain, together

17

with all the arrows in PJ(σ), also arrows p(t) cl←− p1(t1), p2(t2), . . . , pn(tn) for
each clause cl of sort σ. In turn, this will generate many new proofs, given
by formal reindexing of cl along arrows in the base category and by closure
w.r.t. the premonoidal structure.

Actually, the extended notion of resolution defined above is also bound to an
extended categorical notion of proof. A derivation G1 − ∗ G2 logically corre-
sponds to a proof of G1 from G2. In order to expose this correspondence more
clearly we restrict our focus to flat derivations, i.e. derivations where in each
step G1

r,s,i,cl−−−− G2 we only allow r = idσ, with σ the type of G1. Once we fix a
sort σ, we may define a proof-theoretic category FP (σ) whose objects are goals
of sort σ and arrows G1 ← G2 are derivations from G1 to G2. Composition of
arrows is given by concatenation of derivations, while the identity is the empty
derivation. Moreover, we may turn FP into an indexed category. If t : ρ → σ
and d is a derivation of type σ, then FP (t)(d) is the derivation obtained by

replacing in d every step G1
idσ,s,i,cl−−−−−− G2 with t]G1

idρ,ts,i,cl−−−−−− t]G2.
In Section 5 we will show that FP is an indexed premonoidal category (see

also Example 5.16). It is the free premonoidal category obtained by adding to
PJ new arrows which correspond to the clauses in P .

Example 4.1 Let the base category C be the Lawvere Algebraic Theory for the
natural numbers N. That is to say, we take as objects a copy of the natural numbers
{nk|k ∈ N} representing powers of N, i.e. arities, (but not representing the natural
numbers), and as arrows, the closure under composition of all the countably many

constants n0
0,1,2,...−−−−−→ n1, the arrows +,× : n2 → n1, as well as all arrows imposed by

the finite product structure. We then take the quotient of this category with respect
to the equational theory of + and ×, so that, e.g. the arrows +〈1, 3〉 and ×〈2, 2〉 will
be identified. We consider the following program

fact(0,1).

fact(X+1,(X+1)*Y) :- fact(X,Y).

The first clause has type n0 and the second one type n2 (that is to say, N×N) because of

the two free variables. The variables X,Y are represented by the projections n2
l−→ n1

and n2
r−→ n1, and the pair t = (X + 1, (X + 1) ∗ Y) by

M{X,Y }(t) = n2

〈+〈l,!n11〉,×〈+〈l,!n11〉,r〉〉
−−−−−−−−−−−−−−−−→ n2 .

Recall that e.g !k3 means, for any object k, the composition k
!k−→ n0

3−→n1. Below,
to simplify notation we will drop the !k and leave implicit the source and target of
identity arrows.

Since we have only one predicate symbol fact of type n2, the display category J
will just be the set {fact}, with δ(fact) = n2. The indexed monoidal category PJ has,

in the fiber PJ(n2) all sequences of pairs (fact , t) where n2
t→ n2, representing fact(t).

The predicate symbol fact itself is represented by (fact , idn2).

18

The program clauses. are given by

fact(〈0, 1〉) cl1←− > ,

fact(〈+〈l, !n11〉,×〈+〈l, !n11〉, r〉〉) cl2←− fact(idn2) .

Consider the goal fact(〈3, idn1〉) : n1, corresponding to the query fact(3,A). A com-

mon reindexing of the arrows M{X,Y }(X+1, (X+1)∗Y) = n2

〈+〈l,!n11〉,×〈+〈l,!n11〉,r〉〉
−−−−−−−−−−−−−−−−→

n2 and M{A}(3, A) = 〈3, idn1〉 : n1 → n1 is the pair (r1, s1) where

r1 : n1 → n1 = ×〈3, idn1〉 s1 : n1 → n2 = 〈2, idn1〉 ,

representing the substitutions {X/2, A/3 × Y }. This corresponds to the derivation
step

fact(〈3, idn1〉)
r1,s1,1,cl2−−−−−−− fact(〈2, idn1〉) .

Continuing this way, we have

fact(〈2, idn1〉)
r2,s2,1,cl2−−−−−−− fact(〈1, idn1〉)

r3,s3,1,cl2−−−−−−− fact(〈0, idn1〉)
r4,s4,1,cl1−−−−−−− > ,

where r2 = ×〈2, idn1〉 : n1 → n1, r3 = ×〈1, idn1〉 = idn1 : n1 → n1 and r4 = 1 : n0 →
n1. This gives a derivation of fact(〈3, idn1〉) with answer 6 : n0 → n1.

In the category of proofs FP , we have a corresponding proof of fact(〈3, 6〉) in
FP (n0), given by

> cl1−→ fact(〈0, 1〉) 〈0,1〉
]cl2−−−−−→ fact(〈1, 1〉) 〈1,1〉

]cl2−−−−−→ fact(〈2, 2〉) 〈2,2〉
]cl2−−−−−→ fact(〈3, 6〉) ,

where cl1 and cl2 denote the derivation steps
idn0 ,idn0 ,1,cl1−−−−−−−−−− and

idn2 ,idn2 ,1,cl2−−−−−−−−−− respec-
tively.

We briefly sketch a simple semantics for the preceding example, to illustrate
one of the categorical semantics treated in the next section.

Example 4.2 Taking C to be the Lawvere Algebraic Theory of the preced-
ing example, we now interpret types and terms (the objects and arrows of
C) by applying the Yoneda embedding (see Equation 3.5). Goals G in a
fiber over the type nk are mapped to a subfunctor of Hom(, nk). In par-
ticular, since the predicate fact lives in the fiber over n2, we have JfactK ⊆
Hom(, n2). As with Herbrand models [56] there is a least Yoneda interpre-
tation which is a model of the program, in which, for example, JfactK(n0) =
{〈0, 1〉, 〈1, 1〉, 〈0, 1〉, 〈2, 2〉〈3, 6〉, 〈4, 24〉, . . .}. This interpretation is also the least
fixed point of a suitably defined operator. The details are discussed in Sections
5 and 6.

5. The New Framework

In the previous section, we have given a detailed example of how an indexed
premonoidal category can be constructed, according to specified signatures and
data type information. Now we pass to the general foundation that this example
suggests and give an axiomatic presentation of the semantics of a program P
which lives in an ambient indexed category P.

19

5.1. Syntax
In the following we introduce several kinds of indexed categories we call

doctrines [46]. This is a bit of an abuse of language, since a doctrine is gener-
ally understood to be an indexed category where reindexing functors have left
adjoints, and this property does not always hold for our doctrines. However,
we have chosen this terminology to emphasize the relationship between indexed
categories used for the syntax and the semantics, where we make use of true
doctrines.

Definition 5.1 (Logic programming doctrine) An LP doctrine (logic pro-
gramming doctrine) is an indexed category P over a base category C each fiber
Pσ of which has a strict premonoidal structure (⊗σ,>σ) which is preserved on
the nose by reindexing functors.

For each σ ∈ |C|, objects and arrows in Pσ are called goals and proofs (of
sort σ) respectively. Given a goal G of sort σ and t : ρ → σ in C, t]G is an
instance of G. The premonoidal tensor ⊗σ builds conjunctions of goals of sort
σ, while >σ corresponds to the empty goal.

We write G : σ and f : σ as a short form for G ∈ |Pσ| and f ∈ Pσ. Given
an LP doctrine P, a clause (of sort σ) is a tuple (cl , σ,Hd,Tl) where σ ∈ |C|,
Tl : σ, Hd : σ and cl is a label which uniquely identifies the clause2. In the
following we will write this clause as Hd cl:σ←− Tl, and we will omit σ when it is
clear from the context. A set of clauses is called program.

The idea underlying the framework is that the base category represents the
world of all possible states to which program execution can lead. At each state,
the corresponding fiber represents a set of deductions that can be performed.
These local deductions do not depend on the program we want to execute.
This corresponds to so-called built-in predicates with built-in deduction steps.
Program clauses yield new deductions in addition to the proofs in the fibers.

What we mean by state here is quite broad: it can be the value of some
global storage, a local constraint, or just the current tuple of free variables (as
in the standard hyperdoctrinal semantics for logic).

Example 5.2 (Pure logic programs) Assume given a first order signature
(Σ,Π). We build the category SΣ, which is the free Lawvere Algebraic Theory
[52] generated by Σ. We also assume fixed a denumerable sequence v1, . . . , vn, . . .
of variables.

Objects of SΣ are natural numbers (with zero), while arrows from n to m are
substitutions {v1/t1, . . . , vm/tm} where t1, . . . , tm are terms built from the set
of variables {v1, . . . , vn}. Arrows compose according to the standard notion of
composition of substitutions: if θ : n → n′ and θ′ : n′ → n′′, then θθ′ : n → n′′

is given by (θ � θ′)(vi) = viθ
′θ for each i ∈ {1, . . . , n′′}.

Then, we build an LP doctrine PΣ : SΣ
o → Cat such that

2Labels make it possible to have two different clauses which have the same body and tail.

20

• for each n ∈ N, PΣ(n) is the discrete category of syntactic goals (i.e.
possibly empty sequences of atoms) built from the variables v1, . . . , vn
and symbols in Σ and Π;

• for each θ : n→ m, PΣ(θ) is the functor mapping a goal G to Gθ;

• the premonoidal structure in PΣ(n) is given by (⊗n,>n) where ⊗n is
concatenation of sequences and >n is the empty sequence. The structure
is in fact monoidal.

It is evident that PΣ is a functor and that PΣ(θ) preserves the monoidal struc-
ture.

Alternatively, we may define a display category J with the elements of Π as
discrete objects, and δ : J → SΣ which maps every predicate symbol p to its
arity. Then PΣ would be isomorphic to PJ.

A clause in PΣ is a pair of goals. This is a straightforward generalization of
the standard notion of clause in logic programming, since we also admit clauses
whose head is not atomic. It is also quite easy to extend these definitions to
work with a many-sorted signature Σ.

When we define the concept of model for a program, below, it will be clear
that thus far we have not imposed any conditions on the possible meaning of
predicates. However, we can choose categories with more structure for fibers in
general, allowing us to constrain permissible interpretations. A simple instance
is considered in the following example.

Example 5.3 (Symmetric predicates) Given a discrete display structure J
over the FP category C, assume we have a p ∈ |J| of sort ρ × ρ, and we want
to encode in the syntactic doctrine the property that p is symmetric. Then, we
freely adjoin to PJ the following arrow in the fiber ρ× ρ:

refp : p(idρ×ρ)→ p(〈π2, π1〉) .

We call P
refp
J the new LP doctrine we obtain. The intuitive meaning of the

adjoined arrow is evident. We will see in the following sections how it formally
affects the semantics of a program in P

refp
J . A more formal definition of P

refp
J is

given in Section 8.1.

A particular case of LP doctrine, and arguably the most important one, is
when goals are essentially sequences of atomic goals, and the only meaningful
arrows are those whose targets are atomic goals.

Definition 5.4 (Atomic LP doctrines) An LP doctrine P : Co → Cat is
atomic when, for each σ in the base category, there is a set Aσ ⊆ |Pσ| of
objects, in the following called atomic goals, such that:

1. reindexing functors preserve atomic goals (i.e. if r : σ → ρ and A ∈ Aρ,
then r]A ∈ Aσ);

21

2. for every goal G ∈ Pσ there is an unique (possibly empty) sequence
A1, . . . , An of atomic goals of sort σ such that G = A1 ⊗σ · · · ⊗σ An,
with the proviso that if n = 0, then G = >σ;

3. for every arrow f : G′ → G1 ⊗ G2 there are arrows f1 : G′1 → G1

and f2 : G′2 → G2 such that either f = (f1 ⊗ G′2) � (G1 ⊗ f2) or f =
(G′1 ⊗ f2) � (f1 ⊗G2);

4. for every arrow f : G′ → >, f is the identity id>.

A program P over P is atomic when P is an atomic LP doctrine and all the
heads of clauses in P are atomic goals.

Note that in an atomic LP doctrine, > is never considered to be an atomic
goal, since this would violate the second condition in Definition 5.4. In fact, we
could write > as >, >⊗>, >⊗>⊗> and so on.

Example 5.5 PΣ and PJ are atomic LP doctrines, with obvious definitions for
the set of atomic goals. In PΣ it is enough to let Aσ be the set of atomic goals,
according to the standard definition. Moreover, all standard logic programs are
atomic programs. In PJ, we let Aσ be the set of all goals of the form p(t) where
p ∈ |J| and cod(t) = δ(p).

Example 5.6 (Generic predicates) Another atomic LP doctrine is intro-
duced in [23, 24]. Given a FP category C and ~σ = σ1, . . . , σn a sequence of
objects of C, the indexed monoidal category Π~σ : Co → Cat of generic predi-
cates of sort ~σ is defined as follows. Each fiber Π~σ(ρ) has objects the members
of ℘f (Hom(ρ, σ1))× · · · ×℘f (Hom(ρ, σn)), i.e. sequences S = S1, . . . , Sn where
each Si is a finite set of arrows from ρ to σi, further endowed with the poset
operation of pointwise containment: S ≤ T iff Si ⊆ Ti for each i ∈ {1, . . . , n}.

The monoidal operator S1⊗ρS2 is the pointwise union of the two sequences.
Note that ⊗ρ is actually a strict product in the fiber Π~σ(ρ), hence the ordering
of atoms in a goal is lost. The same happens to the multiplicity of atoms.

The action of Π~σ on the arrow r : ρ1 → ρ2 is given by Πb(r)(S) = rS where
rS is obtained by replacing each t : ρ2 → σi in S with rt.

The idea underlying the definition of Π~σ is that if ~σ has length n, there are
n generic predicates of sorts σ1, . . . , σn. Adopting the notation we used for the
LP doctrine PJ, we would call p1, . . . , pn such generic predicates. Each sequence
S = S1, . . . , Sn represents a goal G such that, for each t : ρ → σi ∈ Si, G has
a corresponding conjunct pi(t). This idea may be made precise by defining
an indexed monoidal functor 〈idC, τ〉 from PJ to Π~σ, where J is the discrete
category whose objects are the natural numbers 1, . . . , n and δ : J → C maps
each i to σi.

5.2. Operational Semantics
The operational semantics of logic programs is traditionally based on goal

rewriting induced by program clauses. This is also how ours is defined, but we
need to make allowances for the fact that, in our case, goals are not syntactic
entities, but objects that live in an LP doctrine P. Moreover, we also want to

22

use arrows in the fibers of P to rewrite goals, not just clauses: rewriting with
respect to an arrow corresponds to applying a built-in definition of a predicate
and a built-in deduction rule.

First consider the case where the goal is G : σ and f : G ← G′ ∈ Pσ an
arrow in P. Then we just treat f as a clause in a standard logic program, and
rewrite G to G′. Now, suppose f : r]G← G′ ∈ Pρ. Although the head of the
clause is not exactly the same as the current goal, we still want to rewrite G
to G′. This is because goals in logic programs are implicitly existential, hence
when we look for a proof for G, we are actually looking for a proof of any
instance of G. Therefore, the general form of rewriting rule could be stated as
follows: if G : σ and f : r]G← G′ ∈ Pρ for some r : ρ→ σ, then rewrite G to
G′.

This is enough when we want to rewrite a goal w.r.t. an arrow. Note that,
if we have a goal s]G ∈ Pσ and an arrow f : r]G ← G′ ∈ Pρ it may be
the case that r]G is not an instance of s]G. Then we need to find a pair
of arrows 〈r′ : α→ ρ, s′ : α→ σ〉 such that r′]r]G = s′

]
s]G. The pair 〈r′, s′〉

is the counterpart in our framework of a unifier of r]G and s]G. Since P is
an indexed category, there is an arrow r′

]
f : r′]r]G ← r′

]G′ where r′
]
r]G

is an instance of s]G, hence we may rewrite s]G to r′
]G′ according to the

rewriting rule above. Moreover, given the goal G1 ⊗G⊗G2 : σ and the arrow
f : r]G ← G′, thanks to the premonoidal structure on the fiber, we also have
an arrow r]G1 ⊗ f ⊗ r]G2 : r](G1 ⊗G⊗G2)← r]G1 ⊗G′ ⊗ r]G2, hence we
may rewrite the original goal to r]G1 ⊗G′ ⊗ r]G2. In the case of conjunctive
goals, the rewriting rule behaves as expected from standard logic programming.

When we consider rewriting w.r.t. a clause, we are tempted to say: if G : σ
and r]G

cl:ρ←− Tl ∈ P for some r : ρ → σ, then rewrite G to Tl. However,
this does not work very well. For example, we would like to rewrite the goal
r′
]
r]G ⊗ G′ w.r.t. the clause cl above in order to obtain r′

]Tl ⊗ G′ (just as
p1(a), p2(b) is rewritten via the clause p1(x)← q(x) into q(a), p2(b) in pure logic
programs). With the definition above we would need a clause r′]r]G⊗G′ ←−
r′
]Tl ⊗G′, which is not guaranteed to exist. Therefore, we need to consider

not only the clauses in the program, but also all the other clauses which may
be obtained from the former by applying reindexing and premonoidal tensor.

Definition 5.7 (Formal clauses) A formal clause of sort σ is a tuple fcl =
〈Ga, t, cl ,Gb〉 where Ga : σ, Gb : σ, t : σ → ρ and cl : Hd← Tl is a clause of
sort ρ. We write fcl : G′ ← G iff G = Ga⊗t]Tl⊗Gb and G′ = Ga⊗t]Hd⊗Gb.

Given s : ρ → σ, we define a reindexing operator s] which maps a formal
clause 〈Ga, t, cl ,Gb〉 : G′ ← G of sort σ to 〈s]Ga, s � t, cl , s]Gb〉 : s]G′ ← s]G.
Moreover, for each goal G1 : σ we define a tensor product G1 ⊗σ which maps
〈Ga, t, cl ,Gb〉 : G′ ← G of sort σ to 〈G1⊗σGa, t, cl ,Gb〉 : G1⊗σG′ ← G1⊗σG.
An analogous tensor product may be defined for conjunction on the right, i.e.
⊗σ G1. It is easy to check that formal clauses with reindexing and tensor

products form an indexed premonoidal graph.

23

When we use a clause cl : σ in a context where a formal clause would be
expected, cl should be understood as 〈>σ, idσ, cl ,>σ〉.

The informal rewrite rule “if G : σ and cl : r]G ← Tl ∈ P for some
r : ρ→ σ, then rewrite G to Tl” may be changed to “if G : σ and fcl : r]G← Tl
is a formal clause for some r : ρ → σ, then rewrite G to Tl”, and everything
works in the same way as for rewriting w.r.t. an arrow.

Definition 5.8 (Categorical derivations) Given a program P over P, we
define a labeled transition system (

⊎
σ∈|C| |Pσ|,−) with goals as objects, accord-

ing to the following backchain rule:

G : σ
〈r,f〉−−− Tl : ρ ⇐⇒ r : ρ→ σ ∈ C, and f : r]G← Tl , (5.1)

where f is either an arrow in Pρ or a formal clause of sort ρ. A categorical
derivation is a (possibly empty) derivation in this transition system.

The pairs 〈r, f〉 which label the transitions are called reduction pairs and they
uniquely identify a single step. If we want to distinguish between steps 〈r, f〉
where f is an arrow or a formal clause, we speak of arrow reduction pairs and
clause reduction pairs respectively.

If there are goals G0, . . . ,Gi and labels l0, . . . , li−1 with i ≥ 0 such that

G0
l0− G1

l1− · · · li−2−− Gi−1
li−1−− Gi , (5.2)

we write G0
d− ∗ Gi where d = l0 · · · li−1 is the string obtained concatenating

all the labels. Note that d 6= ε (the empty sequence) uniquely identifies the
corresponding sequence of goals. We will write εG for the empty derivation
starting from the goal G. A derivation d : G − ∗ > is a successful derivation.

Given a derivation d, we call answer of d (and we write answer(d)) the arrow
in C defined by induction on the length of d as follows

answer(εG) = idσ , [if G : σ]
answer(〈r, f〉 · d) = answer(d) � r .

The correct answers for a goal G are all the arrows answer(d) for some successful
derivation d of G.

We want to point out that categorical derivations correspond to standard
SLD derivations where a generic unifier, instead of the most general one, is
chosen at each step. Therefore, our definition of correct answers corresponds
to correct answers for standard logic programming, not to computed answers.
More on these correspondences may be found in Example 5.17.

5.2.1. Most General Derivations
Some derivations are more general than others. Consider in PΣ the goal

p(v1, v2) and assume there is an arrow f : p(2, v2)← q(v2) ∈ PΣ(2). Obviously
we also have an arrow f ′ : p(2, 3)← q(3) where f ′ = θ]f and θ = {v2/3}. There-

fore both d1 = p(v1, v2)
〈{v1/2},f〉−−−−−−− q(v2) and d2 = p(v1, v2)

〈{v1/2,v2/3},f ′〉−−−−−−−−−− q(3) are

24

valid transitions. However, the first one is more general, since d2 factors through

d1 as p(v1, v2)
〈{v1/2},f〉−−−−−−− q(v2)

〈{v2/3},id〉−−−−−−− q(3), but d1 does not factor through d2.
Note that if we consider the reduction pairs used in d1 and d2, the fact that d1 is
more general that d2 is reflected by the existence of the substitution θ = {v2/3}
such that 〈{v1/2, v2/3}, f ′〉 = 〈{v1/2}θ, θ]f ′〉.

Definition 5.9 (Category of reduction pairs) Reduction pairs for a goal
G form a category RedG. An arrow from 〈r1, f1〉 to 〈r2, f2〉 is an arrow t ∈ C
such that r1 = t � r2 and f1 = t]f2. Arrows compose as they do in C.

Among reduction pairs, we are interested to those which are maximal, ac-
cording to the following definition. A maximal object in category C is an object
A such that, for each f : A → B, there exists an unique g : B → A such that
fg = idA.

Proposition 5.10 If C has terminal objects, they are the only maximal objects.

Proof. First we prove that 1 is maximal. If f : 1→ B, there exists an unique
!B : B → 1 and f !B = id1. Now assume A is maximal, i.e. there exists an
arrow f : 1→ A such that !Af = idA. But f !A = id1, hence f is an iso.

A most general reduction pair for G is a maximal object in RedG. Note
that the use of the term “most general”, here and in the rest of the paper, is
improper. In the general case, RedG has no terminators, and a most general
reduction pair is not unique, not even up to iso.

Example 5.11 (Arrow reduction pairs) In the categories PΣ and PJ the
only arrows in the fibers are identities. This means that the only arrow reduction
pairs for G : σ are the tuples 〈r, idr]G〉 for any r with cod(r) = σ. Moreover,
the reduction pair 〈idσ, idG〉 is maximal in RedG, hence it is a most general
reduction pair. If we consider the category P

refp
J , other reduction pairs are

generated by the arrow refp, such as 〈r, r](refp)〉 for any r such that cod(r) =
σ × σ.

Remark 5.12 (Maximal objects and IPOs) Maximality (better, the dual
notion of maximality) is related to the concept of idem pushout introduced in
[54]. Idem pushouts are used with reaction systems in order to give a precise
categorical definition of the notion of “just large enough”. There, the aim was
to characterize, given an agent a, the minimal contexts F [] such that F [a] may
react. Here, we look for the “least instantiated” reduction pair for a goal G.

An object A ∈ |C| is minimal when, for each arrow f : B → A, there exists
an unique arrow g : B → A such that gf = idB . Given a span S = 〈t1 : A →
B1, t2 : A → B2〉, let CSp(S) be the category of cospans 〈r1 : B1 → C, r2 :
B2 → C〉 such that t1r1 = t2r2. It is possible to prove that the commuting

25

diagram

A
t1 //

t2

��

B1

r1

��
B2 r2

// C

is an idem pushout (IPO) iff 〈r1, r2〉 is minimal in CSp(〈t1, t2〉).

If we restrict the backchain rule to most general reduction pairs, we get a
new transition system (

⊎
σ∈|C| |Pσ|,− g) and a corresponding notion of most

general (m.g.) categorical derivation. In the following, when not otherwise
stated, everything we say about categorical derivations can be applied to m.g.
ones. In particular, if d is a most general successful derivation of the goal G,
then answer(d) is called a computed answer of G.

5.2.2. Formal Clauses and Unifiers
Here we want to show that, for pure logic programs, categorical SLD deriva-

tion is faithful w.r.t. standard SLD derivation. We begin to show the relation-
ship which holds between the concepts of unifier, which is used in the standard
definition of SLD derivation, and reduction pair, which is used in our framework.

First of all, we introduce a categorical generalization of the notion of unifier,
along the lines of [76].

Definition 5.13 (Unifier) A unifier for goals G1 : σ1 and G2 : σ2 in an LP
doctrine P is a span 〈t1, t2〉 of arrows on the base category such that t1 : α→ σ1,
t2 : α→ σ2 and t1]G1 = t2

]G2.

Like reduction pairs, unifiers for a pair of goals form a category UnifG1,G2

where arrows from 〈t1, t2〉 to 〈r1, r2〉 are given by the common notion of arrow
between spans, i.e. a morphism f : dom(t1) → dom(r1) such that f � r1 = t1
and f � r2 = t2. An mgu (most general unifier) for goals G1 : σ1 and G2 : σ2

in an LP doctrine P is a maximal object in UnifG1,G2 .

Example 5.14 (Standard mgu) Consider the indexed categories PΣ and PJ.
Given a predicate symbol p of sort σ and atomic goals p(t1) : σ1 and p(t2) : σ2,
a unifier is a pair of arrows r1 : α→ σ1 and r2 : α→ σ2 such that the following
diagram commutes:

α
r1 //

r2

��

σ1

t1

��
σ2

t2
// σ

(5.3)

This is exactly the definition of unifier for renamed apart terms t1 and t2 given
in [4], which corresponds to unifiers in the standard syntactical sense. Moreover,
the span 〈r1, r2〉 is terminal, hence maximal, when (5.3) is a pullback diagram.

26

Theorem 5.15 If G = A1, . . . , An and P is atomic, a clause reduction pair of
G has the form 〈r, fcl〉 where fcl = 〈r]A1⊗· · ·⊗r]Ai−1, s, cl , r]Ai+1⊗· · ·⊗r]An〉
and 〈r, s〉 is an unifier of Ai and Hd, the head of cl . It is maximal iff 〈r, s〉 is
maximal.

Proof. The proof of this theorem may be found in the Appendix.

Note that, in the hypothesis of Theorem 5.15, if 〈r, s〉 is a terminal element
in UnifAi,Hd the corresponding reduction pair does not need to be terminal in
RedG. For example, if there exists an index j 6= i and an unifier 〈r′, s′〉 of Aj
and the head of the clause cl , we get another reduction pair 〈r′, fcl ′〉 with

fcl ′ = 〈r′]A1 ⊗ · · · ⊗ r′
]
Aj−1, s

′, cl , r′]Aj+1 ⊗ · · · ⊗ r′
]
An〉 . (5.4)

It is obvious that there are no arrows from 〈r′, fcl ′〉 to 〈r, fcl〉. Only maximality
is preserved.

Example 5.16 (SLD derivations for atomic programs) If P is an atomic
program over the LP doctrine P, it is possible to adopt a simpler notation for

SLD derivations, which is the one used in Section 4.1. An SLD step G
〈r,fcl〉−−−− G′

where r : ρ→ σ1 and G = A1 ⊗ · · · ⊗ An of sort σ1, is uniquely determined by
a choice of an atom Ai to reduce, a clause cl (or arrow f in the fibers) of sort
σ2, and an arrow s : ρ→ σ2 such that 〈r, s〉 is an unifier of Ai and the head of

cl (or the codomain of f). Therefore, we may write G
〈r,s,i,cl〉−−−−− G′ to actually

mean G
〈r,fcl〉−−−− G′ and fcl = 〈r]A1⊗· · ·⊗r]Ai−1, s, cl , r]Ai+1⊗· · ·⊗r]An〉.

Example 5.17 (Standard SLD derivations) Consider an atomic program
P in the syntactic doctrine PΣ, a goal p1(~t1), . . . , pn(~tm) and a clause pi(~t)

cl← G.
The most general unifier 〈r, s〉 of pi(~t) and pi(~ti) corresponds to a most general
(i.e. maximal) reduction pair which yields the following derivation step:

p1(~t1), . . . , pi−1(~ti−1), pi(~ti), pi+1(~ti+1), . . . , pn(~tn)
〈r,fcl〉−−−− g

r]p1(~t1), . . . , r]pi−1(~ti−1), s]G, r]pi+1(~ti+1), . . . , r]pm(~tm) . (5.5)

In the doctrine PΣ, this strictly corresponds to a step of the standard SLD
derivation procedure. However, in our categorical framework, it is possible to
reduce w.r.t. one of the identity arrows in the fibers. Therefore, if G is a goal
of arity n,

G
〈idn,idG〉−−−−−− g G (5.6)

is an identity step which does not have a counterpart in the standard resolution
procedure. However, these steps have an identity answer. Therefore, fixing a
goal G, the set

answer{d | d : G − g
∗ >} (5.7)

is exactly the set of computed answers for the goal G returned by standard SLD
resolution.

27

If we consider a derivation in − instead of − g, at every step we may perform
an arbitrary instantiation of the goal we are resolving. It is like having a variant
of SLD resolution which selects generic unifiers instead of mgus. Then

answer{d | d : G − ∗ >} (5.8)

is the set of correct answers for the goal G.
If the program P is not atomic, things are different. A clause p1(~t1), p2(~t2) cl←

G does not have a counterpart in standard logic programs. It is not equivalent to
the pair of clauses p1(~t1) cl← G and p2(~t2) cl← G. If we had chosen finite products
as the structure for managing conjunction, then we would have projection arrows
πi : p1(~t1), p2(~t2) → pi(~ti) and we could resolve a goal p1(~t1) with π1 and later
with cl to obtain G. With a premonoidal structure we do not get projection
arrows. Therefore, we cannot rewrite p1(~t1) using the clause p1(~t1), p2(~t2) cl← G.

5.3. Declarative Semantics
One of the main aims of this treatment is to consider extensions to definite

logic programs without losing the declarative point of view. To this end, we
define a straightforward declarative notion of model for a program, and show
that there is a strict correspondence between models and categorical derivations.

Definition 5.18 (Interpretations) An interpretation of the LP doctrine P

in the LP doctrine Q is a premonoidal indexed functor 〈F, τ〉 from P to Q.

If J K = 〈F, τ〉 is an interpretation from P to Q, we write F (e) as JeK for
every object e or arrow e in C. Moreover, if x is either a goal or an arrow in the
fiber Pσ, we write τσ(x) as JxKσ. We also use JxK when the fiber is clear from
the context. Finally, we will denote with t] and t[the reindexing functors P(t)
and Q(Ft) respectively.

Definition 5.19 (Models) Given a program P over the LP doctrine P, a
model of P is a pair (J K , ι) where J K : P → Q is an interpretation and ι is
a map from clauses (of sort σ) to arrows in Q (over the fiber JσK).

In the following, a model M = (J K , ι) will be used as an alias for its con-
stituent parts. Hence, M(cl) will be the same as ι(cl) and Mσ(G) the same as
JGKσ. Moreover, we define the composition of M with an interpretation N as
the model (J K �N, ι �N), where ι �N is the function which maps the clause cl
of sort σ to NJσK(ι(cl)).

Models M : P→ Q for a program P give an and -compositional semantics of
goals provided P is atomic: M(G1 ⊗σ G2) = M(G1)⊗M(σ) M(G2). However,
compositionality fails in general if non-atomic heads are allowed in clauses. A
good example is the correct answer semantics, which maps a goal G to the set
{answer(d) | d : G − ∗ >}, in the case of the LP doctrine PJ and the program
P = {p(t1), p(t2)← >}. The goal p(t1), p(t2) has a successful derivation, while

28

neither p(t1) nor p(t2) do. On the other hand, given the program P = ∅, the
goal p(t1), p(t2) has no successful derivations. This means that we cannot obtain
the correct answers for p(t1), p(t2) from the correct answers for p(t1) and p(t2).

Example 5.20 (Correct ground answers) Given a category C with termi-
nators, define the semantic LP doctrine GC over C as follows.

• for each σ ∈ |C|, GC(σ) = ℘(Hom(1, σ)), which is an ordered set viewed
as a category;

• for each t ∈ HomC(σ, ρ), GC(t)(X) = {t′ ∈ Hom(1, σ) | t′t ∈ X};

• the premonoidal structure on GC(σ) is given by set intersection as tensor
product and Hom(1, σ) is the premonoidal unit.

If P is an LP doctrine over C, an interpretation J K : P→ GC (with an identity
change of base functor) maps a goal of sort σ to a set of arrows from the terminal
object of C to σ. These arrows are indeed the categorical counterpart of ground
substitutions.

A curious trivial model for every program is given by the interpretation
which maps every goal G : σ to JGKσ = Hom(1, σ). Since the fibers are posets,
this assignment induces an unique model, mapping every clause cl : Hd ← Tl
of sort σ and every arrow f : Hd ← Tl of sort σ to the identity idHom(1,σ),
which is the unique arrow from JTlKσ = Hom(1, σ) to JHdKσ = Hom(1, σ).
Intuitively, this means that every goal is true.

If P is atomic, we may define a much more interesting model, which maps a
goal G to its set of correct ground answers:

JGKσ = {answer(d) | d = G − ∗ > is a ground derivation} , (5.9)

where a ground derivation is a derivation whose last goal is in the fiber P(1).
This assignment induces an unique interpretation. Moreover, for each clause
cl : Hd← Tl of sort σ, if d is a ground derivation of Tl, then d′ = 〈idσ, cl〉·d is a
ground derivation for Hd with answer(d′) = answer(d). Therefore, JHdK ⊇ JTlK
and this gives an obvious mapping ι from clauses to arrows in the fibers of GC.
It turns out that (J K , ι) is a model for P .

When P is discrete, as in the previous example, an interpretation from P

to Q can map every object in P to every object in Q, provided this mapping is
well-behaved w.r.t. reindexing and preserves premonoidal structures. However,
in the general case, other restrictions are imposed.

Example 5.21 Assume the hypotheses of Example 5.3. Consider the LP doc-
trine GC as defined in Example 5.20. An interpretation J K from P

refp
J to GC is

forced to map the arrow refp to an arrow in GC. In symbols: Jp(〈π2, π1〉)Kσ×σ ⊇
Jp(id)Kσ×σ, i.e. 〈π2, π1〉] Jp(id)K ⊇ Jp(id)K. This means that if f ∈ Jp(id)K then
〈π2, π1〉 � f ∈ Jp(id)K, i.e. Jp(id)K is symmetric.

29

Models and categorical derivations are strictly related, almost in the same
way as proof systems and models are related in first order logic. A derivation
d : G − ∗ G′, with answer(d) = t, may be viewed as a proof that t]G ← G′,
while the existence of an arrow M(t]G) ← M(G′) in a model M says that
t]G ← G′ is true in the model M . Then, the following theorem essentially
states that everything which is true is also provable and vice versa.

Theorem 5.22 (Soundness and completeness) Given a program P over
the LP doctrine P, goals G′ : σ, G : ρ and an arrow t : σ → ρ in the base
category of P, the following conditions are equivalent:

• there is a categorical derivation d : G − ∗ G′ with answer t : σ → ρ;

• in all models M of P , there is an arrow M(t]G) ← M(G′) in the fiber
M(σ).

The proof of the theorem is long but straightforward. We follow the standard
idea of building a “syntactical” model FP : P→ FP of P starting from categor-
ical derivations. Every arrow in the fiber σ of FP corresponds to a normal flat
derivation of sort σ, i.e., a derivation d such that

• for all steps 〈r, f〉 in d, it is the case that r = idσ;

• there are no two consecutive steps with an arrow reduction pair;

• there are no steps with an arrow reduction pair 〈r, f〉 where f is an identity
arrow.

Definition 5.23 (The LP doctrine FP) Given a program P over P, we de-
fine the LP doctrine FP : Co → Cat as follows:

• FP (σ) is the category of normal flat derivations of sort σ. More in detail:

– |FP (σ)| = |Pσ|;
– FP (σ)(G,G′) is the set of normal flat derivations from G′ to G;

– idG = εG;

– dd′ = normalize(d′ · d) where normalize collapses consecutive arrow
reduction pair steps in order to get a normal derivation from d′ · d;

• given t : σ → ρ in C, FP (t) is defined as follows:

– on objects, FP (t)(G) = t]G;

– on arrows, FP (t)(d) = normalize(t]d), where t]d is obtained by re-
placing each step 〈idρ, f〉 with 〈idσ, t]f〉;

• for each σ ∈ |C|, there is a strict premonoidal structure (⊗F
σ ,>F

σ) such
that

– >F
σ = >P

σ ;

30

– G ⊗F
σ d = normalize(G ⊗ d) and d ⊗F

σ G = normalize(d ⊗G), where
G ⊗ d replaces each step 〈idσ, f〉 with 〈idσ,G ⊗ f〉 (analogously for
d⊗G).

The model FP : P → FP is obtained by mapping each arrow f in the fiber
σ to the derivation 〈idσ, f〉 and each clause cl ∈ P of sort σ to 〈idσ, cl〉. In
formulas, FP = (J K , ι) where J K = 〈idC, τ〉, τσ(f) = normalize(〈idσ, f〉) and
ι(cl) = 〈idσ, cl〉.

The LP doctrine FP may be described, without resorting to derivations, as
the free indexed premonoidal category obtained from P by freely adjoining the
clauses in P . This is formalized by the following universal mapping property:

Theorem 5.24 (Universal mapping property of FP) For each model M :
P → Q for the program P , there exists an unique interpretation N : FP → Q

such that M = FP �N .

In other words, FP is the category of proofs induced by the primitive proofs in
P and the added proofs given by clauses in P . The universal mapping property
immediately gives soundness and completeness results. The detailed proof may
be found in Section A.2.

5.4. Fixed Point Semantics
As promised, we now look for a fixed point semantic construction, similar in

spirit to the characterization of least models as fixed points of the immediate
consequence operator TP of van Emden and Kowalski [79]. We start by exam-
ining the particular case of programs defined on the LP doctrine PΣ. Later,
we will generalize the construction to work for different semantic and syntactic
doctrines.

First of all, in the standard semantics for logic programs, the term inter-
pretation is used to denote a subset I of all the ground atoms (the so called
Herbrand base). This induces an interpretation in the style of Tarski, where
term symbols denote term-building operators, and (overloading the symbol I),
we define the following map from predicate symbols to sets of tuples of terms:

I(p) = {〈t1, . . . , tn〉 | p(t1, . . . , tn) ∈ I} . (5.10)

As shown in Section 3, this corresponds to an indexed monoidal functor (which
is our notion of interpretation), from PΣ to the LP doctrine GSσ (see Exam-
ple 5.20), whose definition we restate for the reader’s convenience:

• GSσ (n) is the power set of ground substitutions {v1/t1, . . . , vn/tn};

• GSσ (γ : m→ n)(X) = {θ ∈ GSσ (m) | θγ ∈ X}.

The fiber over n contains all the possible meanings for goals with n free variables.
Reindexing along γ is the operator which returns the semantics of p(~t)γ from
the semantics of p(~t). It is the preimage of composition of substitutions. We
may build J K from I as:

Jp(v1, . . . , vn)Kn = {θ ∈ GSσ (n) | p(v1, . . . , vn)θ ∈ I} , (5.11)

31

Jp(v1, . . . , vn)θKm = θ] Jp(v1, . . . , vn)Kn for any θ : m→ n , (5.12)
q
p1(~t1), . . . , pn(~tn)

y
m

=
q
p1(~t1)

y
m
∩ . . . ∩

q
pn(~tn)

y
m

. (5.13)

Since each atom p(t1, . . . , tn) is equal to p(v1, . . . , vn){v1/tn, . . . , vn/tn}, the
clauses above give semantics to every goal in PΣ.

Now, we come back to the problem of defining a fixed point semantics in the
categorical framework. The standard TP operator for logic programs is defined
as

TP (I) = {Aθ | A cl← A1, . . . , An ∈ P, clθ is ground, {A1θ, . . . , Anθ} ⊆ I} .
(5.14)

According to the above correspondence, we may rewrite TP to work on indexed
monoidal functors. We define J K′ = TP (J K) as

Jp(v1, . . . , vn)K′n =
{
θ � {~v/~t} | p(~t) cl:m←−−− p1(~t1), . . . , pl(~tl) ∈ P, θ : 1→ m,

θ � {~v/~ti} ∈ Jpi(v1, . . . , vki)Kki for each i ∈ {1, . . . , n}
}
, (5.15)

where ki is the arity of the predicate pi and {~v/~s} = {v1/s1, . . . , vn/sn}, pro-
vided that ~s = 〈s1, . . . , sn〉. The value of J K′ for the other goals is completely
determined by its value on pure atomic goals.

Interpretations from PΣ to GSσ are endowed with a partial order given by
J K ≤ J K′ iff JGKn ⊆ JGK′n for each sort n and goal G : n. TP is continuous
w.r.t. ≤, hence it has a least fixpoint which maps each goal to the set of its
correct ground answers. This would be enough if we only wanted to give fixpoint
semantics concerning ground answers of pure logic programs. However, this is
hardly interesting, since we would just rewrite in a more complex form what
has already been well-understood for decades [56]. In order to generalize this
construction, we need to replace some operations, like set comprehension and
substitution application, with something else with a more categorical flavor.

By properties of indexed premonoidal functors and definition of GSσ , we have
that if θ : 1→ m then

θ � {~v/~ti} ∈ Jpi(v1, . . . , vki)Kki iff θ ∈ {~v/~ti}
]
Jpi(v1, . . . , vki)Kki =

q
pi(~ti)

y
m

.

This means that we may rewrite Jp(v1, . . . , vn)K′n in (5.15) as

{θ � {~v/~t} | p(~t) cl:m←−−− G ∈ P ∧ θ ∈ JGKm}

={θ � γ | γ : m→ n ∧ p(v1, . . . , vn)γ cl:m←−−− G ∈ P ∧ θ ∈ JGKm}

=
⋃
{{θ � γ | θ ∈ JGKm} | γ : m→ n ∧ p(v1, . . . , vn)γ cl:m←−−− G ∈ P}

=
⋃
{=γ JGKm | γ : m→ n ∧ p(v1, . . . , vn)γ cl:m←−−− G ∈ P}

=
⋃
{=γ JGKm | A

cl:m←−−− G ∈ P ∧ γ]p(v1, . . . , vn) = A} ,

(5.16)

where =γ is the direct image of composition along γ. It is not difficult to check
that =γ is the left adjoint to the reindexing map γ].

32

The idea is now to generalize (5.16) to work with other logic programming
doctrines. However, while there are no problems in replacing PΣ with a generic
LP doctrine, the role of GSσ may only be taken by doctrines which have at least
coproducts (unions) and right adjoints to reindexing functors (direct images).
Moreover, other properties will be required in order to ensure that the fixpoint
operator is continuous. Therefore, we introduce the notion of semantic LP
doctrine.

Definition 5.25 (Semantic LP doctrine) A semantic LP doctrine Q is an
LP doctrine where

• fibers are complete lattices;

• each premonoidal tensor ⊗σ is a join-complete functor (i.e. it is com-
pletely additive). In symbols: (

∨
i∈I Gi) ⊗σ G =

∨
i∈I(Gi ⊗σ G) and the

same for the second argument of ⊗σ;

• each reindexing functor t] is join complete (i.e. it is completely additive);

• each reindexing functor t] has a left-adjoint ∃t;

• (extended Beck-Chevalley condition) given r : ρ → α, s : σ → α and
X : σ, then r]∃sX =

∨
{∃r1s1

]X | r1r = s1s};

• (Frobenius reciprocity) given r : ρ → σ, X1 : ρ and X2 : σ, then X2 ⊗σ
∃rX1 = ∃r(r]X2 ⊗ρ X1).

We have chosen to restrict our study to fibers which are partial orders, instead
of allowing more general categories, mainly with the aim of simplifying proofs
and presentation.

Something should be said about the extended Beck-Chevalley condition.
Note that, given the commutative diagram

·
t

��======= s2

r2

��

· s1 //

r1

��

·
s

��
·

r
// ·

(5.17)

we always3 have ∃r1s1
]X ≤ r]∃sX, and therefore ∨{∃r′s′]X | r′r = s′s} ≤

r]∃sX. The extended Beck-Chevalley condition only implies that this is actually
an equality. Moreover, we may easily prove 4 that ∃r2s2

]X ≤ ∃r1s1
]X. This

means that, if the square s1, r1, s, r is a pullback diagram, then ∃r1s1
] ≥ ∃r′s′]

3From s1]s] = r1]r], it follows that ∃r1s1] ≤ ∃r1s1]s]∃s = ∃r1r1]r]∃s ≤ r]∃s.
4We have that ∃r2s2] = ∃r1∃tt]s1] ≤ ∃r1s1].

33

for each r′, s′ such that r′r = s′s, i.e. ∃r1s1
]X = ∨{∃r′s′]X | r′r = s′s}. Hence,

the extended Beck-Chevalley condition implies ∃r1s1
]X = r]∃sX, which is the

standard Beck-Chevalley condition [46].
The Beck-Chevalley condition and Frobenius reciprocity always appear, in

one form or another, in standard treatments of first-order categorical logic.
Frobenius reciprocity is the categorical counterpart of the logical equivalence
∃x.P ∧ Q ⇔ P ∧ ∃x.Q when x does not occur free in Q. The Beck-Chevalley
condition is needed if want to give a logical interpretation to the object ∃tA. It
allows us to prove that ∃tA may be faithfully interpreted as ∃y.(t(y) = x∧A(y))
(see [78] for further details).

Example 5.26 (Ground answers) Given a finite product category C, con-
sider the indexed category GC as defined in Example 5.20. It is possible to turn
GC into a semantic LP doctrine. Actually:

• Each fiber is a complete distributive lattice.

• ⊗ is the meet of the lattice, hence it is additive.

• GC(t) is a complete join-morphism for each t.

• We can define ∃t, with t : σ → ρ as the function which maps an X ⊆
HomC(1, σ) to

{rt | r ∈ X} ,
which is a subset of HomC(1, ρ). ∃t is the left adjoint of GC(t), since

(GC(t) � ∃t)(X) = {r ∈ X | r factors trough t} ⊆ X ,

(∃t � GC(t))(X) = {r | ∃r′ ∈ X. r′t = rt} ⊇ X .

• The extended Beck-Chevalley condition holds. Given t ∈ r]∃sX, we have
that t � r ∈ ∃sX, hence tr = t′s for some t′ ∈ X. Therefore id1 ∈ t′]X
and t ∈ ∃tt′]X.

• The Frobenius reciprocity holds. Given r : ρ → σ, X2 ⊆ Hom(1, σ) and
X1 ⊆ Hom(1, ρ), we have ∃r(r]X2 ∩ X1) = ∃r{t | tr ∈ X2 ∧ t ∈ X1} =
{tr | tr ∈ X2 ∧ t ∈ X1} = {t′ | t′ ∈ X2 ∧ t′ = tr ∧ t ∈ X1} = X2 ∩ ∃rX1.

Since fibers in the semantic LP doctrines are posets, the notion of model is
simplified.

Proposition 5.27 If Q is a semantic LP doctrine and J K : P → Q is an
interpretation, then J K may be extended to a model for a program P iff for each
clause cl : Hd← Tl, we have JHdK ≥ JTlK.

Proof. Let ι(cl) be the unique arrow from JTlK to JHdK, where uniqueness
comes from the fact that the fiber is a partial order. Then M = (J K , ι) is the
only model which extends J K. On the other side, if (J K , ι) is a model, then
ι(cl : Hd← Tl) : JHdK← JTlK, i.e. JHdK ≥ JTlK.

34

Since the extension is unique, in the following we will just say that J K is a model
when it satisfies the condition of Proposition 5.27.

Interpretations from P to Q with a fixed change of base functor F are en-
dowed with a straightforward pointwise partial order. Namely,

〈F, τ〉 ≤ 〈F, τ ′〉 ⇐⇒ ∀G : σ. τσ(G) ≤ τ ′σ(G) . (5.18)

Given a collection {J Ki}i∈I of interpretations, its least upper bound may be
defined as:

(∨i∈I J K)σ(G) = ∨i∈I JGKσ . (5.19)

Now, assume we have an interpretation J K = 〈F, τ〉 from P to Q, where Q is
a semantic LP doctrine. We want to incrementally build a new interpretation
which is also a model of P. At the end, we want to define an operator EP
on interpretations such that the colimit of the chain EiP (J K) for i ∈ N may be
extended to a model for P . EP essentially works by using clauses to augment the
interpretation J K. If there is a clause cl : Hd ← Tl, then EP (J K)(Hd) should
contain both the original semantics of Hd, namely JHdK, and the semantics of
Tl, namely JTlK. However, we need to be careful if we want to ensure EP (J K)
is actually an interpretation. In particular, in order to guarantee that EP (J K)
preserves composition of arrows, we introduce the concept of reducer.

Definition 5.28 (Reducers) A reducer of the goal G : σ into Tl : ρ is a
triple 〈r, f, fcl〉 where r : ρ→ σ, fcl : Hd← Tl is a formal clause of type ρ and
f : r]G← Hd is an arrow in Pρ. Note that 〈r, f〉 is a reduction pair for G.

A reducer 〈r, f, fcl〉 corresponds to the categorical derivation 〈r, f〉 · 〈id , fcl〉. EP
implicitly builds categorical derivations bottom-up, using reducers as the basic
building blocks.

Example 5.29 Consider the factorial program in Example 4.1. Let G be
the goal fact(〈4, idn1〉) of sort n1, (corresponding to the query fact(4, A)). If
r = ×〈4, idn1〉 (corresponding to the substitution {A/4 ∗ A}), f = idG and
fcl = 〈>n1 , 〈3, idn1〉, cl2,>n1〉 (corresponding to fact(4, 4 ∗ A) : −fact(3, A), an
instance of the second clause), then 〈r, f, fcl〉 is a reducer of G into fact(〈3, idn1〉)
(corresponding to fact(3, A)). Actually, it is the case that r � 〈4, idn1〉 =
〈4,×〈4, idn1〉〉 = 〈3, idn1〉 � 〈+〈l, 1〉,×〈+〈l, 1〉, r〉〉.

In the case of non-atomic logic programs, we have the same problem we
already encountered for standard semantics such as ground correct answers. The
existence of derivations of G1⊗G2 which are not related to derivations of G1 and
G2, makes it difficult, if not impossible, to define a valid immediate consequence
operator. In particular, it seems that EP may be forced to either preserve the
premonoidal structure, or to preserve arrows between interpretations, but not
both. Therefore, we restrict attention to atomic programs, where all these
problems disappear. Whenever the operator EP is used, we always implicitly
assume that P is atomic.

Here and in the following, given an interpretation J K = 〈F, τ〉 : P → Q, we
will write ∃t as a short form of ∃Q

Ft.

35

Definition 5.30 (Successive consequences operator EP) Given an inter-
pretation J K, we define EP (J K) = 〈F, τ ′〉 according to the following equations:

τ ′σ(A) = JAKσ ∨
∨
{∃r JTlK) | 〈r, f, fcl〉 is a reducer of A into Tl} ,

τ ′σ(>P
σ) = >Q

Fσ ,

τ ′σ(A1 ⊗σ · · · ⊗σ An) = τ ′σ(A1)⊗Q
Fσ · · · ⊗Q

Fσ τ
′
σ(An) ,

(5.20)

where A, A1, . . . , An denote atomic goals. Since the fibers in Q are partial orders,
the definition of τ ′ on arrows is forced by its definition on objects.

Note that the first equation in the previous definition is essentially the gen-
eralization of (5.15), while the other two equations are generalizations of (5.12)
and (5.13) respectively. The two main differences are: 1) τ ′σ(A) always includes
τσ(A), which means that EP is extensive (i.e., EP (J K) ≥ J K); 2) we use reducers
to deal with arrows in P, in particular in order to ensure that τ ′ may be extended
to arrows. The latter is explained in detail in the following Proposition.

Proposition 5.31 If J K : P → Q is an interpretation, then EP (J K) is an
interpretation.

Proof. If EP (J K) = 〈F, τ ′〉, we need to check that

• τ ′σ may be defined on arrows, i.e. if there is an arrow G1 → G2 in Pσ,
then τ ′σ(G1) ⊆ τ ′σ(G2);

• τ ′ is natural in σ, i.e. for each arrow s : ρ→ σ, s[τ ′σ(G) = τ ′ρ(s
]G);

• τ ′ preserves the premonoidal structure.

First of all, we prove that τ ′ preserves the premonoidal structure. Obviously
it maps identities to identities, hence we only need to prove that, given G =
G1 ⊗ G2, we have τ ′(G) = τ ′(G1) ⊗ τ ′(G2). If G is atomic, then either
G1 = > or G2 = >, and the property follows immediately. If G = ⊗ni=1Ai then
G1 = ⊗ji=1Ai and G2 = ⊗ni=j+1Ai, hence τ ′(G) = ⊗ni=1τ

′(Ai) = (⊗ji=1τ
′(Ai))⊗

(⊗ni=j+1τ
′(Ai)) = τ ′(G1)⊗ τ ′(G2) by associativity of ⊗.

Now we come back to the first property. Assume there is an arrow f :
G1 → G2 over the fiber σ. The proof is by induction on the number of atoms
n in the decomposition of G2. If n = 0 then G1 = G2 = >σ, hence trivially
τ ′σ(>) ≤ τ ′σ(>). If n = 1 then G2 is an atom. Since J K is an interpretation,
then JG1K ≤ JG2K. If 〈r, f ′, fcl〉 is a reducer of G1 into Tl, then fcl : Hd← Tl
and f ′ : Hd→ r]G1. If we define f ′′ = f ′ � r]f , we have that f ′′ : Hd→ r]G2.
Therefore 〈r, f ′′, fcl〉 is a reducer of G2 into Tl. Hence, all the components
of τ ′(G1) in (5.20) also appear in τ ′(G2). If n > 1 then G2 = ⊗ni=1Ai and
τ ′(G2) = ⊗ni=1τ

′(Ai). Since P is atomic, there are arrows fi : G′i → Ai such
that G1 = G′1 ⊗ · · · ⊗ G′n. By inductive hypothesis, τ ′(Ai) ≥ τ ′(G′i), hence
τ ′(G2) = ⊗ni=1τ

′(Ai) ≥ ⊗ni=1τ
′(G′i) = τ ′(G1).

36

Now we check the second condition. If G = A is an atom, since s[is additive
and J K is an interpretation,

s[τ ′σ(A) =
q
s]A

y
ρ
∨
∨
{s[∃r JTlKσ′ | 〈r, f, fcl〉 is a reducer of A : σ into Tl : σ′}

(5.21)
while

τ ′ρ(s
]A) =

q
s]A

y
ρ
∨
∨
{∃r JTlKσ′ | 〈r, f, fcl〉 reducer of s]A : ρ into Tl : σ′} .

(5.22)
Consider one of the components s[∃r JTlKσ′ in (5.21). By the extended Beck
condition we know that

s[∃r JTlKσ′ =
∨
{∃s′r′

[JTlKσ′ | r
′r = s′s}

=
∨
{∃s′

r
r′
]Tl

z

dom(r′)
| r′r = s′s} .

(5.23)

The relation between r, r′, s and s′ is pictured below

· r′ //

s′

��

σ′

r

��
ρ

s
// ·

Note that, since 〈r, f, fcl〉 is a reducer of A into Tl, then f : r]A← Hd and
fcl : Hd← Tl. If r′r = s′s then r′]r]A = s′

]
s]A and therefore r′](f) : s′]s]A←

r′
]Hd. This means that 〈s′, r′](f), r′]fcl〉 is a reducer of s]A : ρ into r′]Tl, and

therefore (5.23) is included in (5.22).
For the opposite containment, assume 〈r, f, fcl〉 is a reducer of s]A into Tl.

This means that 〈rs, f, fcl〉 is a reducer of A into Tl. Therefore, s[τ ′σ(A) ≥
s[∃r�s JTlKσ′ = s[∃s∃r JTlKσ′ ≥ ∃r JTlKσ′ . This proves that (5.22) is included
in (5.21).

If G = >, the property follows since τ ′(>σ) = >Fσ for each σ and since
reindexing functors preserve the identity elements. If G = A1, . . . , An, then
s[τ ′σ(G) = s[(τ ′σ(A1) ⊗Fσ · · · ⊗Fσ τ ′σ(An)) = s[τ ′σ(A1) ⊗Fρ · · · ⊗Fρ s[τ ′σ(An) =
τ ′ρ(s

](A1) ⊗ρ · · · ⊗ρ s](An)) = τ ′ρ(s
]G), since reindexing functors preserve the

premonoidal structures.

Given an interpretation J K, we are also interested in computing the least
fixed point of EP greater than J K. We need to be sure that such an object
exists. Hence, we need to prove that EP is extensive and monotone. Actually,
a stronger property may be proved.

Proposition 5.32 EP is completely additive and extensive.

Proof. Additivity immediately follows by additivity of ∃f and ⊗. Extensivity
follows by extensivity on atoms.

37

The reason we are interested in the fixed points of EP is their connection to
models of P , as the following theorem clarifies.

Theorem 5.33 An interpretation J K : P→ Q is a model for the program P iff
it is a fixed point of EP .

Proof. We will separately prove the two implications. Let us assume that J K is
a fixed point of EP . This means that, for each clause Hd cl:σ←− Tl, JHdK ≥ JTlK,
since 〈idσ, idHd, cl〉 is a reducer of Hd into Tl. By Proposition 5.27, J K is a
model.

Now assume J K is a model. Consider an atomic goal A and a reducer
〈r, f, fcl〉 of A into Tl such that fcl = 〈G1, s, cl ,G2〉 and cl : Hd′ ← Tl′.
Hence fcl : G1 ⊗ s]Hd′ ⊗G2 ← G1 ⊗ s]Tl′ ⊗G2 and f : r]A← G1 ⊗ s]Hd′ ⊗
G2. Since J K is a model, then

q
Hd′

y
≥

q
Tl′

y
. Since both monoidal tensor

and reindexing are monotone (by functoriality), then
q
G1 ⊗ s]Hd′ ⊗G2

y
≥q

G1 ⊗ s]Tl′ ⊗G2

y
= JTlK, while the existence of the arrow f implies

q
r]A

y
≥q

G1 ⊗ s]Hd′ ⊗G2

y
≥ JTlK. Therefore JAK ≥ ∃rr[JAK = ∃r

q
r]A

y
≥ ∃r JTlK.

Thus EP (J K)(A) = JAK. This equality immediately extends to EP (J K)(G) =
JGK for every goal G, since interpretations of goals uniquely depend from the
interpretations of atomic goals.

We have now all the pieces to build a model starting from an interpretation
J K. We repeatedly apply EP to J K, and take the least upper bound of all the
interpretations we obtain. Since EP is additive and extensive, the least upper
bound is the least fixed point of EP greater than J K.

Theorem 5.34 Given a program P over P, a semantic LP doctrine Q and an
interpretation J K : P→ Q, EωP (J K) is the least model of P greater than J K.

Proof. It is a standard result of lattice theory.

To ease notation, in the following we will write EnP (J K) as J Kn. In particular,
this means J K0 = J K and J Kω = EωP (J K).

Remark 5.35 (Free-goal programs) Let P : Co → Cat be an atomic LP
doctrine with the following additional properties:

• there exists a family of atoms {Ai : σi}i∈I such that, for each atom A,
there is an unique choice of i ∈ I and t ∈ C such that A = t]Ai;

• the only arrows in the fibers are the identities.

This is a very special notion of LP doctrine, which we will call free-goal LP
doctrine. An atomic program P over P is called a free-goal program when P is
free-goal. A free-goal program is the counterpart in our framework of programs
as defined in [24], i.e. programs which do not admit logical proofs at the level
of predicates. If we work with free-goal LP doctrines, we will denote a goal t]Ai
also as Ai(t), in order to stress the similarities with standard logic programs.

38

If P is free-goal, then EP may be rewritten in a simpler form. Namely,
EP (〈F, τ〉) = 〈F, τ ′〉 with

τ ′σi(Ai) = JAiKσi ∨
∨
{∃r JTlK | cl : Ai(r)← Tl ∈ P} ,

τ ′σ(>P
σ) = >Q

Fσ ,

τ ′σ(Ai(r)) = r[(τ ′σi(Ai)) if r : σ → σi ,

τ ′σ(A1(r1), . . . , An(rn)) = τ ′σ(A1(r1))⊗Q
Fσ · · · ⊗Q

Fσ τ
′
σ(An(rn)) .

(5.24)

This fixed point construction was actually the only one provided in a previous
version of this work [2, 1]. This is more similar to the standard TP operator
than (5.20), since it essentially computes the semantics only for pure atomic
goals (the Ai’s), while other goals are obtained by reindexing.

Note that the syntactic doctrines PΣ and PJ are free-goal.

Example 5.36 If we write the definition of J K′ = EP (J K) in all the details for
the syntactic doctrine PΣ in the Example 5.26 and the semantic doctrine GSΣ ,
following Remark 5.35 we have that:

JAiK
′
σi

= JAiKσi ∪
⋃
{tr | t ∈ JTlK , cl : Ai(r)

cl← Tl ∈ P} ,

JAi(r)K
′
σ = {t | tr ∈ JAiKσi} if r : σ → σi ,

JA1(r1), . . . , An(rn)K′σ = JA1(r1)Kσ ∩ . . . ∩ JAn(rn)Kσ .

(5.25)

If we work within the LP doctrine PΣ, then EP (J K) becomes equivalent to TP
semantics for pure logic programs given by (5.16) and (5.15), with the only
exception that the inclusion of JAiKσi in JAiK

′
σi

makes EP extensive.
In the example which follows, assume to work in the LP doctrine PJ with base

category Set and a single predicate symbol p : N. The program P is composed
of two clauses p(succ � succ) cl1←− p(idN) and p(0) cl2←− >. Let J K be the unique
interpretation which maps p to ∅. Then, we may compute successive steps of
the EP operator starting from J K. We obtain Jp(idN)Kn = {0, 2, . . . , 2(n − 1)},
where a number i denotes the arrow f : 1 → N which picks out i. If we take
the upper bound of this chain, we get Jp(idN)Kω = {2n | n ∈ N}, which is what
we would expect from the intuitive meaning of the program P .

Before we consider the problem of completeness of fixed point semantics,
we want to briefly come back to the problem of non-atomic programs. We
think that, in order to give a good fixed point semantics for them, the semantic
doctrine should be endowed with left adjoints to the tensor products. Actually,
it is ∃t, the left adjoint to reindexing, which allows us to compute the semantics
of the goal G using the clauses whose head is t]G. If ∃t did not exist, we
would be forced to only consider clauses whose head were a pure atomic goal.
Therefore, we think that having a left adjoint of ⊗, would allow us to determine
the effect of a clause G1⊗G2 ← Tl with respect to the goal G1, in such a way
that, later, the semantics of G1⊗G2 may be derived uniquely by the semantics
of G1 and G2. We leave the details needed to exploit this idea to future work.

39

5.5. Completeness of Fixed Point Semantics
In the previous section we have given a fixed point construction that builds

a model of a program given a starting interpretation for the syntactic doctrine.
What is the relationship between this model and the operational semantics?

First of all, consider that, in general, we do not want a full completeness
result. This means that, if J K is the fixed point semantics and there is an arrow
from JGK to JG′K, we do not expect to find an SLD derivation from G′ to G.
For example, consider the following pure logic program in the LP doctrine PΣ

for an appropriate signature Σ:

div2(0)← > div4(0)
div2(s(s(v1)))← div2(v1) div4(s(s(s(s(v1)))))← div4(v1)

With the ground answer semantic doctrine introduced in the Example 5.26, EP
becomes equivalent to the standard TP operator. If J K is the least fixpoint
of EP , Jdiv2(v1))K1 and Jdiv4(v1)K1 are the set of ground answers for the goals
div2(v1) and div4(v1) respectively. Since the fibers in the semantic doctrine are
partial orders, there is an arrow Jdiv4(v1)K1 → Jdiv2(v1)K1. However, there is no

SLD derivation of the kind div2(v1) θ− ∗ div4(v1), and we did not expect any.
However, assume we have an arrow from > to JGK. Under appropriate

conditions, we would expect to find a successful derivation for the goal G.

Definition 5.37 (Weak completeness) Given a program P over P and an
interpretation J K = 〈F, τ〉 : P → Q, we say J K is weakly complete when,
for each arrow >Q

Fσ → JGKσ, there is an SLD derivation d : G − ∗ >P
σ with

answer(d) = idσ.

We would like to prove that J Kω is weakly complete when J K is weakly
complete. We require additional properties on the semantic doctrine.

Definition 5.38 (Well-behaved units) A semantic LP doctrine Q has well-
behaved units when the following properties hold:

1. (coprimality) if >σ ≤
∨
i∈I Xi in the fiber Qσ, there exists j ∈ I such

that >σ ≤ Xj;
2. if t : σ → ρ and >ρ ≤ ∃tX, there is s : ρ → σ such that st = idρ and
>ρ ≤ s]X.

Although these conditions may appear rather obscure, they have a precise
meaning from the logical point of view: they correspond to the disjunctive and
existential properties of intuitionistic logic.

Example 5.39 Consider the ground answers semantic doctrine GC in Exam-
ple 5.26. In general, units in GC are not well-behaved. Assume C is the full
subcategory of Set made of the sets Nn for all n ∈ N. In the fiber N, let
A = {λx : 1. n | n = 1} ⊆ Hom(1,N) and B = {λx : 1. n | n > 1} ⊆ Hom(1,N).
Then >N = Hom(1,N) = A ∨B, but neither >N ⊆ A nor >N ⊆ B. We will see
later an example of a semantic doctrine with well-behaved units.

40

Theorem 5.40 Given a weakly complete interpretation J K of an LP doctrine
P in a semantic LP doctrine with well-behaved units Q and a program P over
P, then JGKω is weakly complete.

Proof. The proof of this theorem may be found in the Appendix.

6. Yoneda Semantics

We have shown it is possible to define several kinds of fixed point semantics
for our programs, according to the chosen semantic doctrine. Now we will
focus our attention on the Yoneda semantics, so called since it is related to
the Yoneda embedding. We will show it has particularly strong completeness
properties w.r.t. declarative semantics.

Note that it is possible to define a notion of canonical subobject in SetCo
,

where H
m7−→ F is canonical when mσ is set inclusion for each σ ∈ |C|. In

particular, a canonical subobject of Hom(, σ) in SetCo
can be thought of as a

sieve: left-closed set of arrows targeted at σ. We will often use implicitly such
a correspondence.

Definition 6.1 (Yoneda doctrine) Given a category C, the Yoneda doctrine
over C is the premonoidal indexed category YC : Co → Cat, such that

• YC(σ) is the complete lattice of canonical subobjects of Hom(, σ);

• YC(r : ρ → σ) takes the left-closed span X ⊆ Hom(, σ) to the set of
arrows {t ∈ C | tr ∈ X};

• for each σ ∈ C, the strict premonoidal structure (⊗σ,>σ) is given by
defining >σ = Hom(, σ) and X1 ⊗σ X2 = X1 ∩X2.

Theorem 6.2 The doctrine YC is a semantic LP doctrine.

Proof. It is similar to the proof that GC is a semantic LP doctrine. Full details
may be found in the Appendix.

Given an LP doctrine P on the base category C, consider J K∗ = 〈idC, τ〉 :
P→ YC such that

JGK∗σ = {r : ρ→ σ | there exists r]G← >ρ in P(ρ)} . (6.1)

It is the case that G is true according to the model J K∗ (i.e., JGK∗σ = >σ) when
it has a proof which only involves a priori information built-in on the syntactic
doctrine, without even specifying a program.

Proposition 6.3 If P is atomic, J K∗ is a weakly complete interpretation.

Proof. We first show that it is an indexed functor:

41

1. Given an arrow g : G1 → G2 ∈ Pσ, we need to prove JG2K
∗
σ ⊇ JG1K

∗
σ. If

r : ρ → σ ∈ JG1K
∗
σ, it means there exists an arrow f : r]G1 ← >ρ in Pρ.

Hence, f � r](g) : r]G2 ← >ρ is an arrow in Pρ, hence r ∈ JG2K
∗
σ.

2. Given an arrow t : α → σ in C, we prove that t[JGK∗σ =
q
t]G

y∗
α

. In factq
t]G

y∗
α

= {r : ρ → α | r]t]G ← >α ∈ Pα} = {r : ρ → α | rt ∈ JGK∗σ} =
t[JGK∗σ.

Moreover J K∗ preserves the unit of the premonoidal structure: J>σK∗ = {r :
ρ→ σ | r]>σ ← >ρ ∈ Pρ} = {r : ρ→ σ | >ρ ← >ρ ∈ Pρ} = Hom(, σ).

If P is atomic, J K∗ also preserves the premonoidal tensor. We have that
JG1 ⊗σ G2K

∗
σ = {r : ρ → σ | r]G1 ⊗ρ r]G2 ← >ρ}. Since P is atomic, if

f : r]G1 ⊗ρ r]G2 ← >ρ, we may assume without loss of generality there are
f1 : r]G1 ← >ρ and f2 : r]G2 ← >ρ such that f = (>ρ ⊗ f2) � (f1 ⊗ r]G2).
Therefore r ∈ JG1K

∗
σ ∩ JG2K

∗
σ. For the converse, if r : ρ → σ ∈ JG1K

∗
σ ∩ JG2K

∗
σ,

there are arrows f1 : r]G1 ← >ρ and f2 : r]G2 ← >ρ, therefore there is an
arrow (f1⊗>ρ)�(r]G1⊗f2) : r](G1⊗G2)← >ρ. This proves r ∈ JG1 ⊗G2K

∗
σ.

Now we prove it is weakly complete. Assume Hom(, σ) ⊆ JGK∗. This means
idσ ∈ JGK∗, hence there is an arrow f : G ← >σ ∈ Pσ. Therefore 〈idσ, f〉 is a

reduction pair of G into >σ and d : G
〈id,f〉−−−− >σ is a successful derivation of G

with answer idσ.

We apply the results of Theorem 5.34 to obtain the so called Yoneda model
of P , namely YP = EωP (J K∗). Since J K∗ is weakly complete, we only need to
prove that YC has well-behaved units, in order to show that YP is a weakly
complete model.

Theorem 6.4 The semantic doctrine YC has well-behaved units.

Proof. Let us start with coprimality. If >σ ⊆
⋃
j∈J Xj , there is i ∈ J such

that idσ ∈ Xi. Since Xi is left-closed, then >σ ⊆ Xi.
Now, assume >ρ ⊆ ∃tX. This means there is s : ρ → σ ∈ X such that

st = idρ. By definition of s] we also have s]X = idρ and since objects are
left-closed, we have >ρ ⊆ s]X.

Note that YP has strong completeness properties w.r.t. categorical deriva-
tions, which are not direct consequences of Theorem 5.34. In particular, we may
prove that YP (G) is the set of correct answers for the goal G.

Theorem 6.5 For every LP doctrine P and program P over P, we have that

YP (G) = {r | r is a correct answer for G} .

Proof. Since YP (G) is left-closed, it is obvious that r ∈ YP (G) iff r[YP (G) =
YP (r]G) = Hom(, ρ) = >ρ. By Theorem 5.40, the model YP is weakly com-
plete, hence YP (r]G) = >ρ iff there is a derivation d = r]G − ∗ >ρ, with
answer(d) = idρ.

Now, note that it is possible to define an operator flatten (see the Appendix
for more details) such that, given a derivation d : G − ∗ G′ with answer(d) =

42

r : ρ → σ, flatten(d) is a derivation d′ = r]G − ∗ G′ with empty answer. On
the converse, given a derivation d′ = r]G − ∗ G′ with answer(d′) = idρ and
r : ρ → σ, we have that 〈r, idρ〉 · d is a derivation of d : G − ∗ G′ with answer
r. Therefore r is a correct answer for G iff id is a correct answer for r]G. This
concludes the proof.

Remark 6.6 (Abstract interpretation) In [15] a theory of observables is
presented, using abstract interpretation [19, 20] to relate different semantics for
logic programs. The same idea may be applied to our framework. Although
a detailed discussion of abstraction in categorical logic programming is beyond
the scope of the paper, we want to show an example which relates two of the
semantics we have introduced so far. Namely, the Yoneda semantics and the
ground answer semantics.

Consider a finite product category C, and the two semantic LP doctrines GC
and YC. We may define a pair of adjoint indexed functors A = 〈idC, α〉 : YC →
GC and Γ = 〈idC, γ〉 : GC → YC as follows:

ασ(X) = X∩Hom(1, σ) γσ(X) = {t : ρ→ σ | ∀t′ : 1→ ρ, t′t ∈ X} . (6.2)

The model YP �A is the semantics of correct ground answers for the program P .
It maps the G : σ to the set {r : 1→ G | r is a correct ground answer for G}.
Moreover, the EP operator for ground answer semantics

(
EGC
P

)
may be obtained

from the EP operator for Yoneda semantics
(
EYC
P

)
, as

EGC
P (J K) = EY

P (J K � Γ) �A . (6.3)

We may prove that (EGC
P)ω(J K∗ � A) = YP � A. This states that the ground

answer semantics YP �A may be computed alternatively as the least fixpoint of
EGC
P , starting from the interpretation J K∗ �A.

Adjunctions may be used to relate YP with other semantics of logic programs
or with semantic domains used for static analysis, such as groundness [18] or
sharing [39]. In the latter case, if A is the abstraction which maps the Yoneda
doctrine YC to the semantic doctrine Q of the observable property of interest, it
is possible to prove that (EQ

P)ω(J K∗ � A) ≥ YP � A. In other words, a fixpoint
computation within Q gives a correct approximation of the real property of
interest.

7. An Example: Constraint Logic Programming

One of the most common extensions to pure logic programming is constraint
logic programming (CLP) [40]. In CLP, terms and built-in predicates are not
interpreted in the Herbrand universe but in a fixed algebra, which depends on
the particular CLP language in use. CLP(R) [41] is the particular instance
of CLP where the symbols +, -, *, / <= and the numeric literals 0, 1, . . . are
interpreted over the algebra of real numbers. This means that, for example, the
goal X+1 <= X+2 is vacuously true. The following is a program in CLP(R) to
compute the factorial of a natural number:

43

fact(0,1).
fact(N,N*Y) :- N > 0, fact(N-1, Y).

This kind of improvement comes for free when we adopt our categorical
framework: it is enough to choose as base category the algebraic category of
interest. For example, for CLP(R) we could work in the base category given
by the Lawvere Algebraic Theory for the real numbers (see Example 4.1 for the
analogous construction for natural numbers).

However, CLP is more than just computing in a particular algebraic domain.
It is also about computing with partial information, since constraints, and not
just values, may be input, or returned by a computation. In CLP(R), for
example, an answer for the goal p(X) may not be representable by a finite set
of substitutions like {X/4} or {X/Y ∗ Z}. Answers may be constraints, such as
X > Y which has an infinite number of solutions, or X ∗ X ∗ X ≈ 6 (using ≈ to
represent equality constraints, as distinct from equality in the metalanguage)
which cannot be represented in the form {X/t}, since the cube root is a not a
symbol of the signature.

Abstracting from the particular CLP language in use, a constraint logic
program is a set of clauses of the form

p(~t)← c, p1(~t1), . . . , pn(~tn) ,

where c is a constraint in an appropriate constraint system. Sometimes � is used
to separate the constraint from the rest of the body in the clause. Execution
proceeds as for standard logic programming, but the constraints in the clauses
are accumulated, and possibly modified in a constraint store, and then returned
as the result of the computation. If the constraint store reach an inconsistent
state, computation is halted, and failure is returned.

Example 7.1 Consider the following circuit example in CLP(R) adapted by
[40]:

circuit(resistor(R), V, I) :- V = R I.

circuit(diode(V, 10 V + 1000) :- V < -100.

circuit(diode(V, 0.001 V) :- -100 ≤ V, V ≤ 0.6.

circuit(diode(V, 100 V - 60) :- V > 0.6.

circuit(series(N1, N2), V, I) :- V = V1 + V2, circuit(N1, V1, I),

circuit(N2, V2, I).

The goal G = R ≥ 0, circuit(series(resistor(R), diode), 5, I) is imme-
diately rewritten into G′ = circuit(resistor(R), V1, I), circuit(diode, V2, I)
with the constraint store R ≥ 0, V1 + V2 = 5. Later G′ is rewritten into G′′ =
circuit(diode, V2, I) with the constraint R ≥ 0, V1 + V2 = 5, V1 = RI. Using
the first clause for diodes, we reach the empty goal with the constraint store
R ≥ 0, V1 + V2 = 5, V1 = RI, I = 10V2 + 1000, V2 < −100. This set of equations
and inequations is inconsistent, hence the CLP interpreter backtracks and tries
to solve G′ using the second clauses for diodes, obtaining the empty goal with

44

R ≥ 0, V1 + V2 = 5, V1 = RI, I = 0.001V2,−100 ≤ V2 ≤ 0.6, which may be simpli-
fied into 0 ≤ R ≤ 7333.3̄, V1 + V2 = 5, V1 = RI, I = 5/(1000 + R). Later, compu-
tation proceeds by looking for a solution using the third clause for diodes.

We will show that CLP may be viewed as a simple instance of our framework.
First of all, note that the constraint store plays the role of local logical state for
CLP systems, hence it is a perfect candidate for embedding in the base category.

In the doctrine PΣ (see Example 5.2), which is the categorical counterpart of
pure logic programming, states (objects in the base category) represent sets of
allowed free variables and state transitions are substitutions, which change the
current set of free variables and instantiate the goals in the fibers. Now we also
add constraints in the base category, whose objects become pairs 〈n, c〉 where
n is the number of free variables allowed in the goal and c is the constraint.
The idea is that goals and arrows which live above 〈n, c〉 in a fiber depend on
the constraint in the corresponding base object. For example, the two goals
p(v1 ∗ v1) and p(2) should be isomorphic if the constraint in the base entails
v1 ∗ v1 ≈ 2.

In this way, constraints need never appear explicitly in the goals: they are
just “types” which annotate goals and clauses. How can we encode the clause
p(~t) ← c, p1(~t1), . . . , pn(~tn) if c does not appear explicitly in the fibers? The
idea is that, from the logical point of view

p(~t)← c, p1(~t1), . . . , pn(~tn) ⇐⇒ (p(~t)← p1(~t1), . . . , pn(~tn))← c . (7.1)

Therefore c may be factored out: when c holds, the entire clause is true. The
CLP clause (7.1) becomes a clause p(~t)← p1(~t1), . . . , pn(~tn) above 〈m, c〉, where
m is the number of free variables.

An arrow θ from 〈m, c〉 to 〈m′, c′〉 is an arrow θ in SΣ, with the additional
condition that c implies c′θ. For example, given ρ = 〈1, v1 ∗ v1 ≈ 2〉 and
σ = 〈1, v1 > 0〉, then θ = {v1/v1 ∗ v1} is an arrow from ρ to σ since v1 ∗ v1 ≈ 2
implies (v1 > 0)θ, i.e. v1 ∗ v1 > 0.

According to the definition of categorical derivation, if we want to solve the
goal p(~t) : 〈m′, c′〉 with the clause cl : 〈m, c〉 given in (7.1), we need to find two
arrows θ1 : 〈l, c′′〉 → 〈m′, c′〉 and θ2 : 〈l, c′′〉 → 〈m, c〉 such that p(~tθ1) = p(~t′θ2).
This means we need to find a unifier of ~t and ~t′ but, at the same time, we need
to move to a fiber where cθ2 is true. In other words, we need to add c (or one
of its instances) to the constraint store.

7.1. General Results
We now present a theory which realizes and generalizes the ideas we intro-

duced above. It is evident that we need a categorical counterpart of a constraint
system. We use the definition in [68].

Definition 7.2 (Constraint system) A constraint system over the category
C with finite products is an indexed category D over C such that each fiber is a
bounded meet preorder (i.e. a preorder with terminal elements and finite prod-
ucts) and reindexing functors have left adjoints. We denote by r] the reindexing

45

functor D(r) and with ∃r its left adjoint. We also require the following two
conditions:

• Beck-Chevalley condition: If the following diagram is a pullback

· s1 //

r1

��

σ

s

��
ρ

r
// α

and c ∈ D(σ), then ∃r1s1
]c = r]∃sc.

• Frobenius reciprocity: For each r : ρ → σ in C, c1 ∈ D(ρ) and c2 ∈
D(σ), we have c2 ∧ ∃rc1 = ∃r(r]c2 ∧ c1).

The idea is the same we use in our framework: the base category represents
terms and types, and for each type we have a fiber which contains all the con-
straints over that type. Reindexing is instantiation of constraints, while left
adjoints to reindexing functors represent the existential quantification of con-
straints.

Example 7.3 (The constraint system R) Let C be the full subcategory of
Set made of all the objects of the form Rn for n ∈ N. We define a constraint
system R for real numbers as follows. For each n ∈ N, the fiber over Rn, is the
power set ℘(Rn). For n = 0, we let R0 be a set with only one element.

Given X ⊆ Rn, reindexing along the function t : Rm → Rn is given by the
preimage, i.e. t]X = t−1(X), while the right adjoint is given by direct image,
i.e. ∃tX = t(X). It is easy to check that R defined in this way is a constraint
system. The proof may be found in Proposition A.12.

Traditionally, constraints for the language of real numbers are given as for-
mulas in some fragment of first order logic. There is a direct correspondence
between a constraint in syntactic form and in the form presented here. For ex-
ample, the constraint x ≤ y becomes {(u, v) ∈ R2 | u ≤ v}. Obviously, we may
express constraints which do not have a syntactic counterpart, at least with the
standard set of term and predicate symbols.

We could stick more strictly to the practice by defining a syntactical variant
of R, where the base category is the Lawvere Algebraic Theory for the real
numbers, and fibers over n are given by formulas with n free variables built from
a fixed set of predicate symbols over reals (such as “=” and “<”). However,
giving the full details of this construction would be quite long, hence we prefer
the semantic approach which has a straightforward presentation.

Let us call trueσ the greatest element in the fiber σ. We will drop σ from
the subscript when it is not relevant or when it is clear from the context. For
each σ ∈ |C|, there is a diagonal arrow ∆σ = 〈idσ, idσ〉 and ∃∆σ

trueσ of type
σ × σ is a constraint which behaves like x ≈ y where x, y are variables over σ
(proofs may be found in [78]). Therefore, although not explicitly stated, all our

46

constraint systems have equality: given t1 : ρ→ σ and t2 : ρ→ σ, consider the
following diagram on the base category:

ρ
〈t1,t2〉 // σ × σ σ

∆σoo .

We write t1 ≈ t2 as a short form for 〈t1, t2〉](∃∆σ
trueσ), which is the constraint

enforcing equality of the terms t1 and t2.

Example 7.4 Consider the constraint system R shown above, and two arrows
t1, t2 : R → R such that t1(x) = 2x and t2(x) = x + 2. The map ∆R :
R → R2 is ∆R(x) = 〈x, x〉, while trueR = R. Therefore 〈t1, t2〉](∃∆R trueR) =
〈t1, t2〉]{(x, x) | x ∈ R} = {y | (t1(y), t2(y)) ∈ {(x, x) | x ∈ R}} = {y | t1(y) =
t2(y)} = {y | 2y = y + 2} = {2}, which is exactly what we would expect by the
semantics of the equality constraint t1 ≈ t2, i.e. the set of values v such that
t1(v) = t2(v).

Now, given a constraint system D over C, let us denote by D the corre-
sponding category we obtain by the Grothendieck construction [37]. To be
more precise

Definition 7.5 (Grothendieck construction) Given a constraint system D

over C, we denote by D the category obtained as follows:

• objects of D are pairs 〈σ, c〉 where σ ∈ |C| and c ∈ |D(σ)|;

• arrows in D from 〈σ1, c1〉 to 〈σ2, c2〉 are given by arrows t : σ1 → σ2 in C
such that c1 ≤ t]c2.

The category D will be the base category for our syntactic doctrine P. For
each pair 〈σ, c〉, the fiber P(〈σ, c〉) will contain the goals of type σ. These goals
should be well-behaved w.r.t. the constraint c. In the standard setting this
means that p(X ∗ X) and p(2) should be isomorphic when c implies X ∗ X ≈ 2.
Otherwise, if the square root is not in the signature of the language, the goal
X ∗ X ≈ 2, p(X ∗ X) has no successful derivation, even in the presence of the clause
p(2). In the general settings, the following regularity condition should hold:

∀G : 〈σ, c〉, t1 : 〈ρ, c′〉 → 〈σ, c〉, t2 : 〈ρ, c′〉 → 〈σ, c〉,
c′ ≤ t1 ≈ t2 ⇒ t1

](G) and t2
](G) are isomorphic. (7.2)

If (7.2) does not hold, nothing prevent us from applying the results of Sec-
tion 5, but we argue that the resulting language cannot be considered an instance
of CLP, since constraints and reindexing do not agree. Since there is no prior
presentation of CLP in so much general terms, we cannot made this statement
more precise.

Definition 7.6 A CLP program over the constraint system D is a logic program
P over P such that the base category of P is D, the fibration corresponding to
D by Grothendieck construction, and the fibers respect the regularity condition
in (7.2).

47

To our CLP programs we may apply all the results in Section 5 about models
and derivations. In particular, note that given a goal G in the fiber 〈σ, true〉
and a derivation d : G − ∗ >, then answer(d) : 〈ρ, c〉 r−→ 〈σ, true〉 contains both
an answer term r and an answer constraint c for the goal G. We may also apply
the EP operator to build least fixed point semantics for atomic programs.

7.1.1. Inconsistent states
In general, constraint systems also have an inconsistent state falseσ for each

fiber σ, which is the bottom of the meet-semilattice. In this case, we require
false to be preserved by reindexing functors. This means that, once we reach a
state 〈σ, falseσ〉 during a derivation, we are doomed to remain in a state with an
inconsistent constraint. Generally, CLP interpreters stop the current derivation
when they reach an inconsistent state, but from the logical point of view, there
is nothing wrong in continuing.

On the contrary, if we want the behavior of our programs to be closer to
standard CLP languages, we may change the way we build D from D. The
second point in Definition 7.5 is replaced by:

• arrows in D from 〈σ1, c1〉 to 〈σ2, c2〉 are given by arrows t : σ1 → σ2 in C
such that c1 ≤ t]c2 and c1 � falseσ1 .

In this way, inconsistent constraints may never be reached during execution of
the program.

Another way to handle inconsistency of constraints is to use the standard
Grothendieck construction, but to add the following complementary regularity
condition:

∀σ ∈ C, all objects in P(〈σ, falseσ〉) are isomorphic. (7.3)

Intuitively, this means that, in an inconsistent state, everything is true. There-
fore, upon reaching the goal G in an inconsistent state 〈σ, falseσ〉, we may obtain
a successful derivation with the single step 〈id 〈σ,falseσ〉, i〉 where i : > → G is
the appropriate isomorphism.

7.2. Logic Programs with Constraints
As an example of CLP language, we now present a simple extension of PJ

which incorporates constraints. If D is the constraint system, the new LP
doctrine will be called PJ,D. Atomic programs over PJ,D correspond to standard
(syntactic) CLP programs in the constraint system D. This correspondence is
not only syntactical, but extends to derivations in both realms, hence to models
and fixed point operators, too.

Let D be a constraint system over C and J a discrete display category,
endowed with a functor δ : J → C. We define the atomic LP doctrine PJ,D,
similar to PJ but with the addition of constraints:

1. the base category is D, obtained from D via the Grothendieck construction;

48

2. PJ,D(〈σ, c〉) is the discrete category whose objects are possibly empty se-
quences of atomic goals. An atomic goal is an equivalence class of pairs
〈p, t〉 such that p ∈ |J| and t : σ → δ(p) is an arrow in C, modulo the
following equivalence relation:

〈p, t1〉 � 〈p, t2〉 ⇐⇒ c ≤ t1 ≈ t2 . (7.4)

To ease notation, we write p(t) instead of [〈p, t〉]� ;
3. PJ,D(r) where r : 〈ρ, c′〉 → 〈σ, c〉 maps the goal p1(t1), . . . , pn(tn) ∈
|PJ(〈σ, c〉)| to p1(rt1), . . . , pn(rtn);

4. the premonoidal structure in PJ,D(〈σ, c〉) is (⊗σ,c ,>σ,c) where ⊗σ,c is
given by concatenation of sequences and >σ,c is the empty sequence. It is
actually a monoidal structure.

Note that � is an equivalence relation, thanks to the properties of ≈. Moreover,
reindexing functors are well-defined. Assume r : 〈ρ, c′〉 → 〈σ, c〉. If 〈p, t1〉 �
〈p, t2〉 in 〈σ, c〉, then c ≤ t1 ≈ t2 in D(σ), hence c′ ≤ r](c) ≤ r](t1 ≈ t2) =
(rt1 ≈ rt2) in D(ρ). Finally, Equation 7.2 holds, since given the atomic goal
〈p, t〉� over the sort 〈σ, c〉 and two arrows r1, r2 : 〈ρ, c′〉 → 〈σ, c〉, we have
that r1

]〈p, t〉� = 〈p, r1t〉� and r2
]〈p, t〉� = 〈p, r2t〉�. If c′ ≤ r1 ≈ r2 then

c′ ≤ r1t ≈ r2t for any t such that dom(t) = cod(r1) (see proof in the Appendix),
hence 〈p, r1t〉� and 〈p, r2t〉� are isomorphic (actually equal).

In the general case, PJ,D is an atomic LP doctrine but it is not free-goal.
For example, let J be the discrete category with a single object p and δ(p) = R.
Moreover, let us consider the constraint system R from Example 7.3. The
only sensible choice of pure atoms is the singleton {A}, where A = 〈p, idR〉 :
〈R, trueR〉. Actually, every atomic goal may be obtained by reindexing A, but
not in an unique way. Given the arrows t = idR : 〈R, 2 ≈ idR〉 → 〈R, trueR〉 and
r = 2 : 〈R, 2 ≈ idR〉 → 〈R, trueR〉, it is the case that s]A = t]A = 〈p, idR〉� ∈
P(〈R, 2 ≈ idR〉). Hence, PJ,D cannot be handled by previous frameworks of the
same authors [24, 2], which only deal with free-goal programs.

We want to analyze the derivation steps which are available in our frame-
work. In particular, we want to check whether categorical derivations corre-
spond to SLD derivations in standard CLP languages. Hence we will restrict
our attention to atomic programs. It is easy to check that these are the only
possible derivation steps:

• using a clause reduction pair, we have

G1, p(t),G2
〈r,〈G1,s,cl,G2〉〉−−−−−−−−−− r]G1, s

]Tl, r]G2 , (7.5)

when cl : p(t′)← Tl of sort 〈σ′, c′〉, r : 〈ρ, d〉 → 〈σ, c〉, s : 〈ρ, d〉 → 〈σ′, c′〉
and 〈r, s〉 is a unifier of p(t) and p(t′);

• using an arrow reduction pair, we have

G
〈r,id

r]G
〉

−−−−−− r]G , (7.6)

where r : 〈ρ, d〉 → 〈σ, c〉.

49

The latter does not correspond to any step in standard CLP languages: it is
an arbitrary instantiation of the goal with the simultaneous addition of c′ to
the constraint store. If we consider only maximal reduction pairs, then r = id
and the step is harmless since it does not change the current goal and has an
identity answer.

We want to give more attention to the case of clause reduction pairs, by
analyzing the structure of the unifiers of p(t1) : 〈σ1, c1〉 and p(t2) : 〈σ2, c2〉.
Assume there is a span 〈r1 : α → σ1, r2 : α → σ2〉 in C. If this span is a
unifier of p(t1) and p(t2) in PJ, i.e. r1t1 = r2t2, then it yields an obvious
unifier in PJ,D, namely 〈r1, r2〉 where r1 : 〈α, r1

]c1 ∧ r2
]c2〉 → 〈σ1, c1〉 and

r2 : 〈α, r1
]c1 ∧ r2

]c2〉 → 〈σ2, c2〉. However, also when r1t1 6= r2t2 in C, 〈r1, r2〉
is still a unifier in PJ,D, if r1 : 〈α, r1

]c1 ∧ r2
]c2 ∧ (r1t1 ≈ r2t2)〉 → 〈σ1, c1〉 and

r2 : 〈α, r1
]c1 ∧ r2

]c2 ∧ (r1t1 ≈ r2t2)〉 → 〈σ2, c2〉. More generally:

Proposition 7.7 A unifier of p(t1) : 〈σ1, c1〉 and p(t2) : 〈σ2, c2〉 is a span
〈r1, r2〉 with domain 〈α, d〉 such that d ≤ r1

]c1 ∧ r2
]c2 ∧ r1t1 ≈ r2t2.

For example, let us consider PJ,R, and assume given goals p(id) : 〈R, true〉
and p(λx.3) : 〈R, true〉. Among the many unifiers, there are the following pairs:

r1 : 〈R, true〉 λx.3−−−→ 〈R, true〉 r2 : 〈R, true〉 id−→ 〈R, true〉 ,

r′1 : 〈R, id ≈ λx.3〉 id−→ 〈R, true〉 r′2 : 〈R, id ≈ λx.3〉 id−→ 〈R, true〉 .

The first is a unifier since r1
]p(id) = p(λx.3) = r2

]p(λx.3) in PJ. The second is
a unifier since, although r′1

]
p(id) = p(id) and r′2

]
p(λx.3) = p(λx.3) are different

in PJ, in the fiber corresponding to the domain of r′1 the constraint id ≈ λx.3
is true, hence the two goals are in the same equivalence class.

In particular, if D has inconsistent states, then false ≤ t1 ≈ t2 for each
equational constraint t1 ≈ t2. Therefore, if we want to unify p(t1) and p(t2), it
is enough to move to the fiber 〈σ1×σ2, false〉, since there p(t1) and p(t2) are in the
same equivalence class. For example, with the clause p(3)← > of type 〈1, true〉,
the goal p(2) : 〈1, true〉 succeeds with answer id : 〈1, false〉 → 〈1, true〉. Although
this behavior is logically faithful, we could dislike it from an operational point
of view. In this case, we should change the definition of D, according to the
Section 7.1.1.

The good point is that unifiers in PJ,D have terminal elements, also when
unifiers in PJ do not. We have the following:

Proposition 7.8 Given p(t1) : 〈σ1, c1〉 and p(t2) : 〈σ2, c2〉, if π1 and π2 denote
the projections in C from σ1×σ2 to σ1 and σ2 respectively, then the span 〈π1, π2〉
with domain 〈σ1 × σ2, π1

]c1 ∧ π2
]c2 ∧ π1t1 ≈ π2t2〉 is a terminal unifier.

Proof. The span 〈π1, π2〉 is a unifier thanks to Proposition 7.7. We need to
prove it is terminal. Assume 〈r1, r2〉 with domain 〈α, d〉 is another unifier of
p(t1) and p(t2). In C, there is a unique h : α → σ1 × σ2 such that hπ1 = r1

and hπ2 = r2 which is given by the universal property of σ1 × σ2. Therefore,

50

Γ `C c (CR)
∆; Γ ` c

Γ `C A ∼ A′ (Atom)
∆, A; Γ ` A′

∆; Γ ` G1 ∆; Γ ` G2
(∧R)

∆; Γ ` G1 ∧G2

∆; Γ ` G1 ∆, A; Γ ` G
(⇒L)

∆, G1 ⇒ A; Γ ` G
∆; Γ, c ` G[x/y] Γ `C ∃yc

(∃R)
∆; Γ ` ∃xG

∆, D[x/y]; Γ, c ` G Γ `C ∃yc
(∀L)

∆, ∀xD; Γ ` G

in both, y does not appear free in the sequent of the conclusion.

Figure 2: Inference rules for IC. Here ∆ is a set of clauses, Γ is a set of constraints, G,G1, G2

are goals, A,A′ are atoms, D is a clause.

we only need to check that h is an arrow from the unifier 〈r1, r2〉 to 〈π1, π2〉, i.e
that

d ≤ h](π1
]c1 ∧ π2

]c2 ∧ π1t1 ≈ π2t2) . (7.7)

It is the case that

h](π1
]c1 ∧ π2

]c2 ∧ π1t1 ≈ π2t2) = r]1c1 ∧ r
]
2c2 ∧ r1t1 ≈ r2t2 . (7.8)

Then d ≤ r]1c1 ∧ r
]
2c2 ∧ r1t1 ≈ r2t2 by Proposition 7.7.

For an atomic program, most general unifiers strictly correspond to most general
reducers. If we consider most general derivations, they give an operational
semantics which is almost equivalent to standard CLP operational semantics,
like the one which appears in [40]. The biggest difference is that we do not
distinguish between active and passive constraints.

The theory in Section 5 automatically gives us also denotational and fixpoint
semantics for CLP. Doing a detailed comparison of these semantics with the
standard ones known in the literature would be quite time-consuming, and we
think we have already shown that our reformulation of CLP is faithful. We
only want to point out that, while [40] presents two fixpoint semantics, which
correspond to ground answer and computed answer semantics of pure logic
programs, the Yoneda semantics in Section 6 corresponds to correct answer
semantics. Actually, if G : 〈σ, c〉, then YP (G) is the set of arrows r : 〈ρ, d〉 →
〈σ, c〉 such that d and P imply r]G.

7.3. Logical Interpretation
We have already shown that categorical derivation in our CLP framework

captures derivation in standard CLP languages. However, we can make the
internal logic more precise. Our formalization is faithful to the IC sequent cal-
culus for constraints defined in [53], restricted to the first-order Horn fragment,
shown in Figure 2.

Since [53] is based on syntactic constructions and not on category theory,
we need to do some preliminary work to reconcile its notation with ours. In
particular, the constraint systems in [53], due to Saraswat [77] are entailment
systems in first order logic with equality, conjunction and existential quantifiers,

51

and possibly other connectives. The correspondence between syntactically pre-
sented constraint systems and the categorical presentation of constraint systems
we use is fully developed in [68]. However, in order to make this section more
self-contained, we give a sketch of this correspondence without proofs.

Given a first order signature (Σ,Π), a syntactically presented constraint sys-
tem is a pair C = (LC ,`C) where

• LC is a set of first order formulas including true, all equations of the form
t ∼ t′ and closed by conjunction and existential quantifier;

• `C is an entailment relation which extends entailment in first order intu-
itionistic logic.

We may turn C into a constraint system C over the base category SΣ such that

• for each object n ∈ SΣ, the fiber C(n) is given as follows:

– constraints in C(n) are equivalence classes of formulas whose free vari-
ables are among {v1, . . . , vn}, modulo renaming of bound variables;
in the following we use formulas instead of equivalence classes, since
renaming of bound variables is a congruence w.r.t. all the operations
we are going to define;

– φ ≤ ψ iff φ `C ψ;

– the meet of φ and ψ is the constraint φ ∧ ψ;

– the upper element is true;

• for each substitution θ : n → m, the reindexing functor C(θ) maps the
constraint φ to φθ, after renaming bound variables in φ in order to avoid
variable clashes;

• for each substitution θ : n → m = {v1/t1, . . . , vm/tm}, the left adjoint to
C(θ) is ∃C

θ and maps the constraint φ to

∃C
θ φ = ∃w1, . . . , wn.v1 ∼ t1η ∧ . . . ∧ vm ∼ tmη ∧ φη ,

where η = {v1/w1, . . . , vn/wn} and {w1, . . . , wn} are fresh variables dif-
ferent from the vi’s.

If we take a discrete display category J and related functor δ : J → SΣ, we
obtain the LP doctrine PJ,C. We show how to map goals and program in the
fibers of PJ,C to formulas in IC. Remember that an atom 〈pi, θ〉� ∈ PJ,C(n)
is an (equivalence class of) pairs made of a predicate symbol pi of arity n (i.e.
δ(pi) = n) and a substitution θ : m → n. We denote with θ the tuple of
terms 〈θ(v1), . . . , θ(vn)〉, and with 〈pi, θ〉� the syntactic atom pi(θ). Note that
the mapping for atomic goals is not uniquely defined, since different choices
of the representative for 〈pi, θ〉� yield different syntactic atoms. However, this
ambiguity does not affect the correspondence with IC, formalized below.

The goal G = A1, . . . , An is mapped to G = A1 ∧ . . . ∧ An if n ≥ 1 and
to G = true if n = 0. A program P is mapped to P = {~∀(c ∧ Tl) ⇒ Hd |

52

Hd
cl:〈n,c〉←−−−−− Tl ∈ P}, where ~∀φ is the universal closure of the formula φ. We

may finally state the correspondence theorem:

Theorem 7.9 Given an atomic program P in PJ,C, if there is a categorical
derivation

G : 〈σ, c〉 d− ∗ >ρ : 〈ρ, c′〉 ,

and θ = answer(d), then there exists a proof in IC of the sequent

P ;∃C
θ c
′ ` G .

The proof may be found in the Appendix.

8. An Example: Enriching the Display Category

Now we will illustrate the scope of the categorical structure introduced in
section Section 5 by enriching the structure of the display category J so as to
build-in relations, functions, data types, modules and exceptions directly into
Horn Clause syntax.

We proceed in three steps. First we consider non-discrete display categories
J. We show how these display categories may be used to construct syntactic
LP doctrines with built-in proofs between goals. Later we define simple display
structures and then functorial display structures, which are used to model logic
programs which are sensitive to data types in the base category. It should
be understood that this information affects the way the program clauses and
predicates will be represented in the indexed category of proofs. It will generate
new predicates, with new relations between them and new proofs, i.e. arrows in
the fibers. It has no impact, however, on the structure of the base category C,
which is defined in advance.

8.1. Non-discrete Display Categories
Consider a display category J and a functor δ : J→ C as in Section 4.1, but

without requiring J to be discrete. We want to extend the definition of PJ in
such a way that arrows in the category J are mapped to built-in proofs for the
goals.

The idea is the following. Assume we have an arrow between predicate
symbols f : p1 → p2 in J, and their sorts are σ1, σ2 respectively, that is to say
δ(p1) = σ1 and δ(p2) = σ2. Then, we want this data in J to force the existence
of an arrow p1(idσ1) → p2(δ(f)) in the fiber P(σ1). Obviously, this arrow will
generate many other arrows in its own fiber and others due to reindexing and
the premonoidal structure.

To make sure this kind of display category forces the creation of the right
goals and proof-arrows in the resulting indexed category of proofs we need to
carry out the construction sketched in Section 4.1, defining an indexed category
(↓ δ) by combining two operations, here given a bit more systematically.

53

Op. 1: Atomic goals and arrows are generated by the comma-category functor.
Given two functors A F- B �G C the comma category (F ↓ G) is a well-
known general device for building new categories from old [57] of which many
often used constructions (e.g. the slice) are a special case. We will be interested
in the case (A ↓ δ) where δ : J - C and where A is an object of C (which
can be viewed as a functor A : 1 - C). If A is an object of C, the comma
category (A ↓ δ) is defined as follows:

• Objects: pairs (p, t) where p ∈ |J| and A
t−→ δ(p). These are the same

objects we get in the case of discrete display structures.

• Arrows (p, t)
f- (p′, t′) are arrows f : δ(p) → δ(p′) in C such that

f = δ(f) for some f ∈ J and the following diagram in C commutes:

A

δ(p)
δ(f) -

�

t

δ(p′)

t ′

-

Arrows compose as in C. This gives us a category of atomic predicates
p(t) of sort A represented as arrows A

t- δ(p), with new arrows between
them imposed by the now non-discrete structure of J.

Now we will allow the first argument of this comma category to range over
all objects in C, treating the resulting variable comma category (↓ δ) as an
indexed category, i.e. a contravariant functor from C to Cat. We must now
define its action on arrows B r−→ A in C, which must be to produce reindexing
functors (r ↓ δ) between the fibers. It acts by composition. (r ↓ δ) : (A ↓ δ)→
(B ↓ δ) maps objects (p, t) to (p, rt), and the arrows δ(f) that form the base
of the commuting triangle above, are sent to themselves, now the base of the

commuting triangle formed by B rt−→ δ(p) and B
rt′−−→ δ(p′).

Op. 2: Compound goals and arrows are generated by placing premonoidal struc-
ture on the fibers. Since the indexed category created by “leaving a parame-
ter blank” in the comma category would only have simple atomic goals, we
need to allow sequences of goals and the corresponding new arrows between
them. This would be easily achieved by replacing each fiber F with the cate-
gory F ′ of finite sequences of objects of F , and arrows by finite sequences of
arrows from F , which, in fact, gives the free monoidal category over F , with
A1, . . . , An ⊗ B1, . . . , Bm = A1, . . . , An, B1, . . . , Bm. But as the reader may re-
call from the discussion in Section 3.2 and Section 3.3 such a category would be
too liberal, always allowing parallel resolutions G1⊗ · · ·⊗Gn G′1⊗ · · ·⊗G′n
in which all goals are reduced at once. In order to allow finer control of allowed
resolutions we need to build the free premonoidal category A∗ generated by a
category A. The objects of A∗ are sequences A1, . . . , An of objects in A, while

54

the arrows from A1, . . . , An to B1, . . . , Bn are sequences ξ of pairs (i, f) where
i ∈ {1, . . . , n} and f ∈ A is not an identity arrow. Moreover, ξ has to satisfy
the following conditions:

1. If ξ = (i1, f1), . . . , (il, fl), for each j ∈ {1, . . . , n} consider the subsequence
(ik1 , fk1), . . . , (ikm , fkm) of ξ made of all the pairs whose first component
is j. Then either
(a) m = 0 and Aj = Bj , or
(b) m ≥ 1, fk1 � · · · � fkm does exist and it is an arrow Aj → Bj .

2. There are no consecutive pairs with the same first component.

Arrows compose by juxtaposition. Subsequences such as (i, f1)(i, f2),which may
originate from juxtaposition, are replaced with the empty sequence when f1f2 =
id , with (i, f1f2) otherwise. The identity over A1, . . . , An is the empty sequence.

A premonoidal structure may be defined over A∗. > is the empty sequence
of goals. If G = A1, . . . , An and ξ = (i1, f1) . . . (il, fl), then G ⊗ ξ = (i1 +
n, f1) . . . (il + n, fl), while ξ ⊗G = (i1, f1) . . . (il, fl), i.e. the same sequence of
pairs, with respect to different domain and codomain.

It really is a free construction: given any functor F : A −→ Q with Q pre-
monoidal, there is a unique premonoidal functor from A∗ to Q making the
diagram

A
⊆- A∗

Q
?

..................

F
-

commute. The ()∗ operation may be easily turned into a functor ()∗ : Cat →
Cat. If F : A → B is a functor, then F ∗ : A∗ → B∗ maps each object
A1, . . . , An to F (A1), . . . , F (An) and each arrow (i1, fi) . . . (in, fn) to the ar-
row (i1, F (f1)) . . . (in, F (fn)).

Putting it all together. Now, define PJ : Co → Cat to be the functor (↓ δ)∗
which maps each object A of C to the free premonoidal category generated by
the comma category (A ↓ δ). We sum up what has been achieved by reminding
the reader of the universal mapping property satisfied by the whole construction.
The proof is straightforward.

Theorem 8.1 Suppose J is a display category with associated functor δ : J →
C, PJ the C-indexed category it generates, and Q a C-indexed premonoidal in-
dexed category satisfying the following conditions:

• for each j ∈ |J|, there is a distinguished object ζ(j) in the fiber Q(δ(j));

• for each arrow j
a−→ k in J, there is a distinguished arrow ζ(j) ma−→

Q(δ(a))(ζ(k)).

55

Then there is a unique indexed premonoidal functor PJ
Ψ−→ Q such that Ψ(a) =

ma for every arrow j
a→ k in J.

Example 8.2 Consider an FP category C and a display category J, such that
the only non-identity arrow in J is a map refp : p → p for some p ∈ |J|.
Let us assume δ maps refp to the arrow 〈π2, π1〉, where π1, π2 are the two
projections from δ(p)× δ(p) to δ(p). Then PJ is isomorphic to the LP doctrine
with symmetric predicate defined in the Example 5.3.

8.2. Data Types in the Display Category
The display category will now be replaced by a structure called the simple

display structure similar in spirit to the FP and limit sketches defined in [9].

Definition 8.3 A simple display structure J = (J, C,K, δ), is composed of

• a category J, a set C of distinguished diagrams from J, and a set K of
distinguished cones from J;

• a functor δ : J → C that must send all diagrams in C to commutative
diagrams and all cones in K to cones in C.

Now we need to modify the definition of PJ given in Section 4.1 to obtain a
new LP doctrine PJ where cones distinguished in the display structure J are
reflected in a certain way by predicates and proofs. This is accomplished by a
process called K-closure, defined below.

Definition 8.4 The C-indexed monoidal category generated by a display struc-
ture J denoted by PJ is defined to be the premonoidal indexed category obtained
from PJ by the following K-closure condition in PJ.
For every cone κ in K

p

· · ·

�

j 1

D(p1, . . . , pn)

jn

-

over a diagram D(p1, . . . , pn) with the object pi of D the target of ji, the following
arrow should be freely added to the fiber PJ(δ(p)):

(p1, δ(j1))⊗ · · · ⊗ (pn, δ(jn)) κ−→ (p, idδ(p)) . (8.1)

Freely adjoining an arrow in a fiber will generate in turn many new proofs,
given by formal reindexing along arrows in the base category and by closure
w.r.t. the premonoidal structure. We may build PJ constructively from PJ in
the same way we build the free model FP of a program P starting from an LP
doctrine P: PJ plays the role of P, and the set of arrows added by K-closure
plays the role of the program P .

56

A special case of interest is when κ ∈ K is a single isolated object p, the cone
over the empty diagram. Then, since there can be no arrows into the empty
diagram, the premise of K-closure is vacuously satisfied. Thus >α −→ (p, idα)
is always in PJ (α).

Another special case of interest is when δ maps all cones in K to limiting
cones. If p is the vertex of a cone over a diagram D in K, the cone is mapped
by δ to a cone δ(D) in C, and δ(p) is its limit. Thus given any other cone over
δ(D) with vertex α, and arrows t1, . . . , tn from α into D there is a unique arrow
in C from α to δ(p) making all diagrams commute. This arrow will be called
limD(t1, . . . , tn).

In this case, the effect of the closure condition is that, for every object α ∈ C
and every cone {α ti−→ δ(pi) : 1 ≤ i ≤ n} over δ(D(p1, . . . , pn)) in PJ (α), there
is an arrow

(p1, t1)⊗ · · · ⊗ (pn, tn)
limD(t1,...,tn)]κ−−−−−−−−−−−→ (p, limD(t1, . . . , tn)) ,

as can be seen by reindexing the arrow (8.1) in PJ (δ(p)) along α
limD(t1,...,tn)−−−−−−−−−→

δ(p). If the cone κ is a binary span

1 l←− 3 r−→ 2 ,

then δ(κ) is a product diagram in C, and the K-closure condition just reads as
follows: If α t1−→ δ(1) and α

t2−→ δ(2) are arrows in C, then the arrow

(1, t1)⊗ (2, t2) −→ (3, 〈t1, t2〉)

must exist in PJ (α), where 〈t1, t2〉 is the canonical product arrow in C from α
to δ(3) = δ(1)× δ(2).

We sum up what has been achieved by reminding the reader of the universal
mapping property satisfied by the whole construction. The proof is straightfor-
ward.

Theorem 8.5 Suppose J is a simple display structure, PJ the C-indexed cat-
egory it generates, and Q a C-indexed premonoidal indexed category satisfying
the following conditions:

• for each j ∈ |J|, there is a distinguished object ζ(j) in the fiber Q(δ(j));

• for each arrow j
a−→ k in J, there is a distinguished arrow ζ(j) ma−→

Q(δ(a))(ζ(k));

• (K-closure) for each cone κ over a diagram D in K with vertex p and

arrows {p ji−→ pi | 1 ≤ i ≤ n}, there is a distinguished arrow

Q(δ(j1))(ζ(p1))⊗ · · · ⊗ Q(δ(jn))(ζ(pn)) mκ−→ ζ(p) .

57

Then there is a unique indexed premonoidal functor PJ
Ψ−→ Q such that Ψ(a) =

ma for every arrow j
a→ k in J, and Ψ(κ) = mκ for every arrow κ induced by

κ-closure.

Before describing how to use display structures to add polynomial data types
to an indexed logic programming category, we work through an example.

Example 8.6 (Integer Lists) This example illustrates how a suitable choice of dis-
play structure will give rise to atomic predicates that respect the nat list data type

datatype nat list = nil | cons of nat * nat list

in the following sense: corresponding to a chosen predicate symbol p of type nat

occurring in the program, a new predicate symbol list(p) of type nat list will be
created with the following properties.

• list(p)(nil) has a successful derivation.

• Whenever p(t) and list(p)(l) have a successful derivation, so does the goal
list(p)(cons(t, l)).

Assume that the base category of types C has all finite products, a terminal object,
the natural numbers N and an object N∗ (isomorphic to) the set of lists of natural
numbers, together with the arrows

cons : N× N∗ −→ N∗ nil : 1 −→ N∗

as usually defined. C might also contain enough arrows into and out of N and N∗ to
ensure availability of needed operations, and arrows to interpret all function symbols
in the signature of the programs of interest, e.g. all 1

n−→ N for natural numbers n,
and all ground integer lists 1 −→ N∗, and possibly + and × : N× N −→ N.

In addition to the predicate symbol p on natural numbers, we assume the program
or programs of interest contain predicate symbols q1, q2, . . . of types σ1, σ2, . . ., which
are objects of C. All uninterpreted or built-in function symbols and constant symbols
occurring in the program, as always, are assumed to be represented by arrows in C.

Let the display structure J = (J, C,K, δ) be as follows:

• J is the category shown (with identity arrows omitted):

p �
l

X
r-

cns
- list(p) �

nl
1

q1 q2 q3 · · ·

• C = ∅.
• The set of distinguished cones K is

1, p �
l

X
r- list(p)

ff
.

Note that the object 1 is the cone over the empty diagram.

58

• The functor δ : J→C is defined as follows:

δ(X
l−→ p) = N× N∗ π1−→ N δ(X

r−→ list(p)) = N× N∗ π2−→ N∗

δ(X
cns−→ list(p)) = N× N∗ cons−−−→ N∗ δ(1

nl−→ list(p)) = 1
nil−→ N∗

δ(q1) = σ1 δ(q2) = σ2 . . .

Thus δ sends the diagrams in K to the respective limiting cones 1 (the terminal
object of C) and the product diagram for N× N∗.

The proofs generated by J . The indexed premonoidal category of goals P = PJ ,P will
include:

• In the fiber over σi, the object qi(idσi) representing the predicate symbol qi.

For any arrow ρ
t−→ σi, the instance qi(t) in the fiber P(ρ). In the fiber P(N)

the object p(idN).

• In the fiber P(δ(list(p))) = P(N∗) we have an object list(p)(idN∗) representing
the predicate list(p).

• In the fiber P(δ(X)) = P(N × N∗) we have objects X(idN×N∗) representing a
new predicate we will call p · list(p). Since π1 : N×N∗ → N and δ(p) = N, in the
fiber P(N × N∗) we also find p(π1), the reindexed predicate p now treated as a
predicate of type N× N∗ with a hidden variable of type N∗. Finally, for similar
reasons we find list(p)(π2) and list(p)(cons).

• In the fiber P(δ(1)) = P(1) the predicate list(p)(nil).

• In every fiber P(σ) the arrows resulting from K-closure. In particular, there is
an arrow > −→ (1, !σ) because of the presence of a cone mapped to the terminal

object of C, and, if σ
t−→ δ(1) and σ

l−→ δ(list(p)) are arrows in C, then the
arrow

p(t)⊗ list(p)(l) −→ p · list(p)(〈t, l〉)
exists in P(σ). This means that if p(t) and list(p)(l) have successful derivations,
then so does p(t)⊗ list(p)(l) by the premonoidal structures of derivations, hence
p · list(p)(〈t, l〉) has a successful derivation too.

• Finally, the presence of the arrowsX
cns−→ list(p) and 1

nl−→ list(p) (with δ(cns) =
cons and δ(nl) = nil) in J and the functoriality of (↓ δ) force the existence
of the arrows p · list(p)(〈t, l〉) cons−−−→ list(p)(cons〈t, l〉) and > −→ list(p)(nil). If
p(t) and list(p)(l) have successful derivations, then

list(p)(cons〈t, l〉) cons−−− p · list(p)(〈t, l〉)− p(t)⊗ list(p)(l) − ∗ > .

Thus list(p)(nil) and list(p)(cons〈t, l〉) have successful derivations.

Example 8.7 We can add a function t to the list data type with a slight modi-
fication of the display category and automatically generate the appropriate new
proofs in the fibers incorporating it into resolution. We do so in the spirit of
logic programming rather than functional programming, by generating a func-
tional predicate pred[t] corresponding to the introduced function. In this way,
we are able to encapsulate data types and capture modules in display structures.
We illustrate with an example. Consider the module

59

begin module natlist
datatype nat list = nil | cons of nat * nat list
fun length nil = 0
| length (cons(a,x)) = 1 + length x;

end module

To the display structure of the preceding example we now add

• to J a couple of new objects Z and pred[length], as well as a new arrow
Z

z- pred[length]; we also define

δ(Z
z- pred[length]) = N∗ 〈id,length〉- N∗ × N ;

• to K the cone (over the empty diagram) given by single object Z.

We will have the following commutative diagram in C, where length is assumed
to be defined as an arrow N∗ → N satisfying the equations in the definition of
the module given above:

N∗
〈id,length〉

xxqqqqqqqqqqq
idN∗

$$JJJJJJJJJ

δ(pred[length]) N∗ = δ(Z)
δ(z)=〈id,length〉oo

which yields a new arrow Z
z- pred[length](〈id, length〉) in the fiber P(N∗).

Note that δ does not send the cone Z over the empty diagram to a limit
cone (otherwise its image would have to be 1) but the K closure condition adds
to the fiber over N∗ the arrow

>N∗ - Z.

Hence we have an arrow >N∗ - Z
z- pred[length](id, length), which

corresponds to a derivation

pred[length](X, length(X))− ∗>N .

The examples were chosen because of their simplicity, but with some addi-
tional display parameters, the method can be applied to all polynomial poly-
morphic data types, and a variety of interesting monads and module definitions
that are not easily coded into a first-order language, with, of course, the added
generality of a categorical notion of unification.

In Section 8.3 we will show briefly how to add generic data types, such as
list, to P. The idea is that we do not want to add just the type nat list, but
all the types of the form X list for any data type X. This means also iterated
applications of the list constructor, such as nat list list. Moreover, the
predicate list(p) should be defined for each predicate p in the display structure.

60

8.3. Functorial Display Structures
We first illustrate with the polymorphic list type what we will then do with

the generic definition of a polymorphic polynomial data type T . We will only
consider the case of polymorphic data types that are definable via a collection
of product diagrams in the display category, although related techniques have
been shown to work for arbitrary monads in [60].

The idea is to use a new display structure which is not mapped to objects
and arrows in C, but to functors and natural transformations in CC. In the
case of the polymorphic list type, the new display structure would be the tuple
(F, ∅,F , η) where F is the following category (with identity arrows omitted)

1 �
l

3
r -

cns
- 2 �

nl
0

with distinguished cones 0 and 1 π1←− 3 π2−→ 2. The functor η : F→ CC is defined
as follows:

η(3
l−→ 1) = id× list π1−→ id η(3

r−→ 2) = id × list π2−→ list

η(3
cns−→ 2) = id× list cons−−−→ list η(0

nl−→ 2) = 1
nil−−→ list ,

where id : C→ C is the identity functor, list : C→ C is the functor that, given
a type σ, returns the type list(σ) and which sends arrow f : σ → ρ to the map
list(f) which is the pointwise extension of f to lists.

This new kind of display structure may be coupled with a simple display
structure which gives names to predicates and optionally defines other non-
polymorphic data types. The complete structure obtained so far is called func-
torial display structure. For technical reasons, we only consider functorial dis-
play structures over a small category, so that all our definitions are within the
realm of locally small categories.

Definition 8.8 A functorial display structure G = (J, C,K, δ,F,F , η) over a
small category C is a pair of display structures, the first, (J, C,K, δ), over C,
and the second, (F, ∅,F , η), over CC, that is to say, η is a functor from F to
the category of endofunctors and natural transformations on C. This display
structure is assumed to have only n-ary spans in its set of cones F and an
empty set of distinguished diagrams.

Given a functorial display structure G we define the LP doctrine PG it in-
duces by constructing a simple display structure having the same effect. This
definition can be extended to the case where the second display structure has a
distinguished set of commutative diagrams and arbitrary functorial cones. Also,
the resulting indexed category of proofs can be defined by working directly with
the functor category CC, but the techniques are beyond the scope of the paper.

Definition 8.9 J (G) = (H, CH ,KH , δ̂), the simple display structure associated
with the functorial display structure G is defined as follows.

61

1. The category H consists of the smallest class of arrows containing those
of J and closed under the following conditions.
(a) For each arrow (i.e. natural transformation) F λ−→ G in F and each

j ∈ |H| there is an arrow (F, j)
(λ,j)−−−→ (G, j) in H. Composition is

given by (λ, j)(ν, j) = (λν, j).

(b) For each j
f−→ h in H and F ∈ |F| there is an arrow (F, j)

(F,f)−−−→
(F, h) in H. (F, f1)(F, f2) = (F, f1f2).

2. CH is the least set of diagrams containing C and closed under the follow-
ing condition. For each j

f−→ h in H and F
λ−→ G in F the following

naturality diagram is in CH .

(F, j)
(λ, j)- (G, j)

(F, h)

(F, f)

?
(λ, j)- (G, h)

(G, f)

?

3. KH is the least set containing K and closed under the following condition.
For each span in F

F

· · ·

G1

�

j1

· · · Gn

jn

-

and every j ∈ |H| the following diagram

(F, j)

· · ·

(G1, j)
�

(j1
, j

)

· · · (Gn, j)

(jn , j)
-

is in KH .
4. The functor δ̂ acts as follows: δ̂|J = δ, δ̂(F, j) = η(F)(δ̂(j)), and δ̂(λ, j) =
η(λ)δ̂(j).

8.3.1. Polynomial Data Types
We will now show how to construct the functorial display structure G that

will guarantee, for a polymorphic polynomial data type T , such as the polymor-
phic list type, the existence, in PJ (G), of predicates T (p), T (T (p)), etc. for
all predicate symbols p of any type, and the corresponding “built-in” proofs as
illustrated for predicates p and list(p) of type nat and nat list above.

Assume that T is given by the following grammar, in sml-style syntax

datatype ’a T = k0 | k1 · · · | t1 of E1 |· · · | tn of En (8.2)

62

where the Ei are products of type terms of the form R1 * · · · * Rm, all of whose
factors are terms built up using T or predefined data type functors over ’a, basic
types (built-in or predefined types) or ’a T.

In the category C, (8.2) corresponds to a functor T : C→ C and a natural iso
η : 1+ . . .+1+E1 + . . .+En → T , where 1 is the constant functor, and the Ei’s
denote functors which are products E1

i ×. . .×E
ni
i built from the endofunctors id,

T or constant functors. By properties of coproducts, η = [k1, . . . , kn, t1, . . . , tn]
where ki : 1 → T and ti : Ei → T . The functor T is the abstract data type
corresponding to the definition (8.2) (see [10] for full details). T, 1, Ei, E

j
i, ki

and ti will be objects and arrow in the display category, mapped by η to the
corresponding entities in C.

Example 8.10 The polymorphic tree data type

datatype ’a tree = leaf of ’a | node of ’a * ’a tree * ’a tree

has no constant symbols. The expressions Ei in this case are: E1 = id and
E2 = id× tree× tree.

We will suppose that a program P has been given, with predicates p1, . . . , pn
of types σ1, . . . , σn, respectively. The functorial display structure for T is
GT = (J, C,K, δ,F,F , η) where J is the discrete category containing the pro-
gram predicates p1, . . . , pn, mapped to their types in C by δ, with C and K
empty and where

• F must contain the arrows

1
k0−→ T 1

k1−→ T · · · 1
km−→ T

and for each component Ei of the data type definition for T

Ei
ti - T

E
n1
i

�

pr
j
E i

1

. . . E
ni
i

prj E
in

i

-

where the same object T is common to all the diagrams, and the prj’s are
arrows which will be mapped to projections (see the F component of the
functorial display structure).

• F contains the ni-ary spans obtained by removing the arrows Ei
ti−→ T

from the preceding diagram.

• η maps each of T, 1, Ei, E
j
i, ki and ti to the corresponding functor or natural

transformation in C.

63

As with the list example, there will now be, for every predicate symbol pi in
the program, not only the object (pi, idσi) in the fiber P(σi) of the indexed
premonoidal category induced by GT , but also objects ((T, pi), idT (σi)) repre-
senting the induced predicate symbol T(pi), ((T, (T, pi)), idT (T (σi))), representing
T(T(pi)), etc. As with p · list(p) above, the products Ei will induce the corre-
sponding product predicates, which, to avoid cumbersome notation, we will call
Ei(p).

For every induced predicate symbol of the form T(Q), where Q is either
a program predicate symbol pi or iterates of T applied to one, we will have
successful derivations of the form

T(Q)(〈u1, . . . , unj 〉 � δ̂(tj , Q))
〈δ̂(tj ,Q),ι〉
−−−−−−− Ej(Q)(〈u1, . . . , unj 〉)

〈id,κ〉−−−−
E
1
j(Q)(u1)⊗ · · · ⊗ E

nj
j (Q)(unj) −

∗ >

whenever all of E1j(Q)(u1), . . . , Enjj (Q)(unj) have successful derivations. In the
derivation, ι is the arrow from Ej(Q)(〈u1, . . . , unj 〉) to T(Q)(〈u1, . . . , unj 〉 �
δ̂(tj , Q)) introduced in PJ (G) by the existence of the arrow (ti, Q) in J (G),
while κ is created by K closure.

Example 8.11 (Exceptions) We illustrate how these techniques can be used
to formalize exceptions in logic programming. We consider the definition

monad ’a exception = exc of int*string | safe of ’a (8.3)

We will omit discussion of how the monadic structure (map, unit, join) associ-
ated with this data type can be enforced in a functional display structure Gexc .
The interested reader should consult [60] where techniques for enforcing monad
laws in the display structure and the associated syntactic category are studied
in a related setting.

Just by formalizing the data type definition as done above in a functorial
display structure G we obtain that for each program predicate symbol p of type
σ, any integer n and string s, exception(p)(excσ(n, s)) is derivable, and if p(t)
is derivable, then so is exception(p)(safeσ(t)).

9. Related Work

This paper builds upon ideas developed in [23, 55, 2, 24, 16, 17]. We integrate
and generalize these different proposals, in order to obtain a new algebraic
framework which is simpler yet more expressive, in some specific ways we will
briefly discuss here.

The foundation for logic programming introduced by Finkelstein, Freyd,
Lipton in [23] is a special case of our syntactic LP doctrines PJ for a discrete
display category J, but with some components of the indexed category structure
not made explicit, and with conjunction of goals only modeled with intersections
(i.e. idempotent products). As we already explained in Section 3.2, this severely
limits the level of operational fidelity it is possible to reach with logic program-
ming practice. It may be considered the principal ancestor of our paper, since it

64

shares with ours the focus on both operational and fixpoint semantics, although
the latter is limited to what is called the Yoneda semantics in our paper.

We find the premonoidal indexed categories approach to categorical logic
more appropriate for logic programming analysis, both operationally and se-
mantically. Indexed categories are easier to deal with, since they separate the
predicate logic component (in the fibers) from the term, constraint and state
components (in the base). This is what allowed us to easily formulate CLP and
languages with abstract data types as instances of our framework.

In [24, 47] Finkelstein, Freyd, Lipton and Krishnan extend the categorical
approach of [23] to First Order Hereditarily Harrop Formulas, taking advantage
of the indexed category structure to model the changing ambient program in
the base. Extending the logic itself is outside the scope of the current treatment
for reasons discussed in the introduction, but that is probably the next natural
step in our research.

Other key precursors of the ideas in this paper, especially as regards display
structures, modules and data types are found in [55, 60] which extend [23] by
introducing modules and abstract data types. This is what this paper does using
simple and functorial display structures, with a far more general treatment of
proofs and models, and with premonoidal categories used to model conjunctions.
In [60] McGrail also extends [23] with monads, which are automatically lifted
from the category of terms to the logic level. These results need to be extended
to the premonoidal framework given in this paper.

Along a different line of research, Corradini and Asperti [16] and Kinoshita
and Power [45] give categorical semantics for logic programs based on indexed
monoidal categories and indexed finite product categories respectively. These
papers have a similar approach at the operational level, but do not consider any
fixpoint semantics. Moreover, the use of monoidal and finite product structures,
instead of premonoidal ones, reduces the operational fidelity to real-world logic
programming, since their notions of proof allow parallel resolution instead of
standard one-goal-at-a-time resolution. Also, they only consider the special
case of generic predicates with a base category of sorts, corresponding to discrete
display categories in our settings.

Note that [16] is based on some ideas already developed by Corradini and
Montanari [17]. In the latter, the focus was on a generic algebraic method-
ology to derive structured transition systems and models for a large class of
formalisms. Logic programming was the main example. Given a logic program
P , the paper shows how to build a structured transition system (correspond-
ing to − in our framework) and a class of models for P . The paper does not
deal with fixpoint semantics and only considers pure (syntactic) logic programs.
Products are used to model conjunctions. Moreover, the paper does not use in-
dexed categories, but a sort of layering between terms and predicates, obtained
with the use of double categories.

Finally, [1, 2] may be viewed as preliminary steps towards our use of pre-
monoidal structures. They are the first papers to integrate the indexed approach
of [16, 45] with the fixpoint semantics in [23], and to show CLP as an instance
of a standard categorical framework. Moreover, [1] also introduces the use of

65

premonoidal structures to model conjunctive goals. However, the fixpoint se-
mantics construction in [1, 2] was quite limited compared with the present paper,
since it only worked with free-goal logic programs. In order to overcome this
limitation, the CLP presentations in these papers did not impose the regularity
condition introduced in Equation 7.2, which makes dubious whether they are
faithful interpretations of standard constraint logic programming. Moreover,
[1, 2] did not give any practical means to build the syntactic LP doctrine from
a finite specification, such as the display structures in our paper.

10. Conclusions

We have introduced a unified framework for declarative extensions to the
syntax and semantics of Horn clause logic programming encompassing categor-
ical logic, generalized unification, data types, constraints and state transforma-
tion using categories indexed over a finite product category. This framework
builds a generic syntax, in which we can define terms, predicates, proofs and
derivations over a general indexed premonoidal category. The framework also
allows us to define an operational semantics as well as a categorical model the-
ory, via doctrines, with respect to which the proof theory is sound and complete.
Our formulation extends the so-called bottom-up approach to semantics defined
by Kowalski and van Emden, which characterizes models as fixed points of a
certain continuous operator, to our categorical setting.

Special cases of these language extensions are CLP [40], and in particular
constraint logic programming using Saraswat’s formulation [77], hyperdoctri-
nal constraints [68], and the sequent-based Nieva-Leach-Rodŕıguez Artalejo [53]
approach, as well as logic programs with built-in data types [55]. Our frame-
work has been able to naturally encompass these extensions. Their integration
into an unique language with both constraints and abstract data types would
be of great interest, as the resulting language would be very expressive, while
remaining faithful to the declarative nature of logic programming.

A related framework has been used to include monad definitions [60], as
well as First Order Hereditarily Harrop programs [24, 47] but without the full
generality of the premonoidal doctrines defined in this paper. The next nat-
ural step is to broaden the current framework to include these extensions as
well as to further develop static analysis tools [59] and abstract interpretation
[19, 20, 15] in this setting, exploiting the bottom-up semantics we have given
above. The internal logic of the categories in this paper is closer to linear than
intuitionistic logic. It seems a natural step to flesh out the connections with logic
programming using linear and other substructural logics [26, 27, 35, 62, 72] as
well.

A fundamental development with such a general theory is to investigate
how implementations of logic languages may be derived by descriptions of the
syntactic LP doctrines. In other words, it would be of great interest to develop
a skeletal interpreter and an abstract machine which, coupled with a description
of P (such as, an actual algorithm to compute most general reduction pairs),
yields a full interpreter for the corresponding language.

66

References

[1] G. Amato. Sequent Calculi and Indexed Categories as a Foundation for
Logic Programming. PhD thesis, Università di Pisa, Dipartimento di Infor-
matica, Mar. 2001.

[2] G. Amato and J. Lipton. Indexed categories and bottom-up semantics of
logic programs. In R. Nieuwenhuis and A. Voronkov, editors, Logic for Pro-
gramming, Artificial Intelligence, and Reasoning, 8th International Confer-
ence, LPAR 2001 Havana, Cuba, December 3–7, 2001 Proceedings, volume
2250 of Lecture Notes in Artificial Intelligence, pages 438–454. Springer,
2001.

[3] A. Asperti and G. Longo. Categories, Types, and Structures: An Introduc-
tion to Category Theory for the Working Computer Scientist. Foundations
of Computing Series. The MIT Press, 1991.

[4] A. Asperti and S. Martini. Projections instead of variables. In G. Levi and
M. Martelli, editors, Logic Programming, Proceedings of the Sixth Interna-
tional Conference, Lisbon, Portugal, June 19-23, 1989, pages 337–352. The
MIT Press, 1989.

[5] E. S. Bainbridge, A. Scedrov, P. J. Freyd, and P. J. Scott. Functorial
polymorphism. In G. P. Huet, editor, Logical Foundations of Functional
Programming, chapter 14, pages 315–327. Addison Wesley, 1990.

[6] M. Baldoni, L. Giordano, and A. Martelli. A modal extension of logic
programming: Modularity, beliefs and hypothetical reasoning. Journal of
Logic and Computation, 8(5):597–635, 1998.

[7] R. Barbuti, R. Giacobazzi, and G. Levi. A general framework for semantics-
based bottom-up abstract interpretation of logic programs. ACM Transac-
tions on Programming Languages and Systems, 15(1):133–181, 1993.

[8] M. Barr and C. Wells. Category Theory for Computing Science. Prentice
Hall, 1990.

[9] M. Barr and C. Wells. Toposes, theories and triples. Reprints in Theory
and Applications of Categories, 12:1–287, 2005. Originally published by
Springer-Verlag, 1985.

[10] R. Bird and O. de Moor. Algebra of programming. Prentice Hall, 1997.

[11] D. Cabeza, M. V. Hermenegildo, and J. Lipton. Hiord: A type-free higher-
order logic programming language with predicate abstraction. In M. J.
Maher, editor, Advances in Computer Science - ASIAN 2004, Higher-Level
Decision Making, 9th Asian Computing Science Conference, Chiang Mai,
Thailand, December 8-10, 2004, Proceedings, volume 3321 of Lecture Notes
in Computer Science, pages 93–108. Springer, 2005.

67

[12] W. Chen, M. Kifer, and D. S. Warren. HiLog: A foundation for higher-
order logic programming. The Journal of Logic Programming, 15(3):187–
230, 1993.

[13] J. Cheney and C. Urban. α-Prolog: A logic programming language with
names, binding and α-equivalence. In B. Demoen and V. Lifschitz, editors,
Logic Programming, 20th International Conference, ICLP 2004, Saint-
Malo, France, September 6-10, 2004. Proceedings, volume 3132 of Lecture
Notes in Computer Science, pages 269–283. Springer, 2004.

[14] A. Colmerauer. An introduction to Prolog III. Communications of the
ACM, 33(7):69–90, 1990.

[15] M. Comini, G. Levi, and M. C. Meo. A theory of observables for logic
programs. Information and Computation, 169(1):23–80, 2001.

[16] A. Corradini and A. Asperti. A categorical model for logic programs: In-
dexed monoidal categories. In J. W. de Bakker, W. P. de Roever, and
G. Rozenberg, editors, Sematics: Foundations and Applications, REX
Workshop, Beekbergen, The Netherlands, June 1-4, 1992, Proceedings, vol-
ume 666 of Lecture Notes in Computer Science, pages 110–137. Springer,
1992.

[17] A. Corradini and U. Montanari. An algebraic semantics for structured tran-
sition systems and its application to logic programs. Theoretical Computer
Science, 103(1):51–106, Aug. 1992.

[18] A. Cortesi, G. Filé, and W. W. Winsborough. Prop revisited: Propositional
formula as abstract domain for groundness analysis. In Proceedings of the
Sixth Annual IEEE Symposium on Logic in Computer Science, pages 322–
327. IEEE Computer Society Press, 1991.

[19] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fix-
points. In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, pages 238–252. ACM Press, Jan.
1977.

[20] P. Cousot and R. Cousot. Systematic design of program analysis frame-
works. In Proceedings of the 6th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, pages 269–282. ACM Press, Jan.
1979.

[21] R. Diaconescu. Category-based Semantics for Equational and Constraint
Logic Programming. PhD thesis, Oxford University, 1994.

[22] S. E. Finkelstein. Tau Categories and Logic Programming. PhD thesis,
University of Pennsylvania, 1994.

68

[23] S. E. Finkelstein, P. J. Freyd, and J. Lipton. Logic programming in tau cat-
egories. In L. Pacholski and J. Tiuryn, editors, Computer Science Logic 8th
Workshop, CSL ’94 Kazimierz, Poland, September 25–30, 1994. Selected
Papers, volume 933 of Lecture Notes in Computer Science, pages 249–263.
Springer, 1995.

[24] S. E. Finkelstein, P. J. Freyd, and J. Lipton. A new framework for declar-
ative programming. Theoretical Computer Science, 300(1–3):91–160, May
2003.

[25] P. J. Freyd and A. Scedrov. Categories, Allegories. North Holland, 1990.

[26] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1–101,
1987.

[27] J.-Y. Girard. On the unity of of logic. Annals of Pure and Applied Logic,
59(3):201–217, 1993.

[28] J. A. Goguen. What is unification? A categorical view of substitution,
equation and solution. In M. Nivat and H. Aı̈t-Kaci, editors, Resolution of
Equations in Algebraic Structures, Volume 1: Algebraic Techniques, pages
217–261. Academic Press, 1989.

[29] J. A. Goguen and R. M. Burstall. Institutions: abstract model theory for
specification and programming. Journal of the ACM, 39(1):95–146, 1992.

[30] J. A. Goguen and G. Malcolm. Hidden coinduction: behavioural correctness
proofs for objects. Mathematical Structures in Computer Science, 9(3):287–
319, 1999.

[31] J. A. Goguen and J. Meseguer. EqLog: Equality, types, and generic mod-
ules for logic programming. In D. DeGroot and G. Lindstrom, editors,
Logic Programming: Functions, Relations, and Equations, pages 295–363.
Prentice Hall, 1986.

[32] T. Hagino. A typed lambda calculus with categorical type constructors. In
D. E. R. David H. Pitt, Axel Poign, editor, Category Theory and Computer
Science Edinburgh, U.K., September 7–9, 1987 Proceedings, volume 283 of
Lecture Notes in Computer Science, pages 140–157. Springer, 1987.

[33] M. Hanus. The integration of functions into logic programming: From
theory to practice. The Journal of Logic Programming, 19 & 20:583–628,
1994.

[34] C. Hermida. Fibrations, logical predicates and related topics. PhD thesis,
University of Edinburgh, 1993.

[35] J. S. Hodas and D. Miller. Logic programming in a fragment of intuitionistic
linear logic. Information and Computation, 110(2):327–365, May 1994.

69

[36] G. Huet, editor. Logical foundations of functional programming. Addison-
Wesley Longman Publishing, 1990.

[37] B. Jacobs. Categorical Logic and Type Theory, volume 141 of Studies in
Logic and the Foundations of Mathematics. Elsevier, 1999.

[38] B. Jacobs. Exercises in coalgebraic specification. In Algebraic and Coalge-
braic Methods in the Mathematics of Program Construction International
Summer School and Workshop Oxford, UK, April 10–14, 2000 Revised Lec-
tures, volume 2297 of Lecture Notes in Computer Science, pages 241–265.
Springer, 2002.

[39] D. Jacobs and A. Langen. Accurate and efficient approximation of variable
aliasing in logic programs. In E. L. Lusk and R. A. Overbeek, editors, Logic
Programming: The 1989 North American Conference, pages 154–165. The
MIT Press, 1989.

[40] J. Jaffar and M. J. Maher. Constraint logic programming: A survey. The
Journal of Logic Programming, 19 & 20:503–581, 1994.

[41] J. Jaffar, S. Michaylov, P. J. Stuckey, and R. H. C. Yap. The CLP(R)
language and system. ACM Transactions on Programming Languages and
Systems, 14(3):339–395, 1992.

[42] J. Jaffar and P. J. Stuckey. Semantics of infinite tree logic programming.
Theoretical Computer Science, 46(2-3):141–158, 1986.

[43] E. G. W. James W. Thatcher and J. B. Wright. Data type specification:
Parameterization and the power of specification techniques. ACM Trans-
actions on Programming Languages and Systems, 4(4):711–732, 1982.

[44] J. S. Jeavons. An alternative linear semantics for allowed logic programs.
Annals of Pure and Applied Logic, 84(1):3–16, 1997.

[45] Y. Kinoshita and J. Power. A fibrational semantics for logic programs.
In R. Dyckhoff, H. Herre, and P. Schroeder-Heister, editors, Extensions
of Logic Programming 5th International Workshop, ELP ’96 Leipzig, Ger-
many, March 28–30, 1996 Proceedings, volume 1050 of Lecture Notes in
Artificial Intelligence, pages 177–192. Springer, 1996.

[46] A. Kock and G. E. Reyes. Doctrines in categorical logic. In J. Barwise, edi-
tor, Handbook of Mathematical Logic, Studies in Logic and the Foundations
of Mathematics, pages 283–313. North Holland, 1977.

[47] A. Krishnan. Universal Quantifiers in Logic Programming via Indexed Cat-
egories. PhD thesis, Wesleyan University, 2005.

[48] J. Lambek. From lambda calculus to cartesian closed categories. In J. P.
Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory
Logic, Lambda Calculus and Formalism, pages 376–402. Academic Press,
1980.

70

[49] J. Lambek and P. J. Scott. Introduction to Higher-Order Categorical Logic,
volume 7 of Cambridge Studies in Advanced Mathematics. Cambridge Uni-
versity Press, 1986.

[50] F. W. Lawvere. Adjointness in foundations. Dialectica, 23(3–4):281–296,
1969.

[51] F. W. Lawvere. Equality in hyperdoctrines and comprehension schema
as an adjoint functor. In A. Heller, editor, Proceedings of the New York
Symposium on Applications of Categorical Algebra, pages 1–14. American
Mathematical Society, 1970.

[52] F. W. Lawvere. Functorial semantics of algebraic theories and some alge-
braic problems in the context of functorial semantics of algebraic theories.
Reprints in Theory and Applications of Categories, 5:1–121, 2004. Reprint
of Columbia University 1963 dissertation and Reports of the Midwest Cat-
egory Seminar II, 1968, 41-61, Springer-Verlag, with new comments by the
author added in 2004.

[53] J. Leach, S. Nieva, and M. Rodŕıguez-Artalejo. Constraint logic program-
ming with hereditary Harrop formulas. Theory and Practice of Logic Pro-
gramming, 1(4):409–445, 2001.

[54] J. J. Leifer and R. Milner. Deriving bisimulation congruences for reactive
systems. In C. Palamidessi, editor, CONCUR 2000 Concurrency Theory,
11th International Conference University Park, PA, USA, August 22–25,
2000 Proceedings, volume 1877 of Lecture Notes in Computer Science, pages
243–258. Springer, 2000.

[55] J. Lipton and R. W. McGrail. Encapsulating data in logic programming
via categorical constraints. In C. Palamidessi, H. Glaser, and K. Meinke,
editors, Principles of Declarative Programming, 10th International Sympo-
sium, PLILP98 Held Jointly with the 6th International Conference, ALP98
Pisa, Italy, September 16–18, 1998 Proceedings, volume 1490 of Lecture
Notes in Computer Science, pages 391–410. Springer, 1998.

[56] J. W. Lloyd. Foundations of Logic Programming. Springer, second edition,
1987.

[57] S. Mac Lane. Categories for the Working Mathematician, volume 5 of
Graduate Texts in Mathematics. Springer, 1971.

[58] M. Makkai and G. E. Reyes. First Order Categorical Logic, Model-
Theoretical Methods in the Theory of Topoi and Related Categories, volume
611 of Lecture Notes in Mathematics. Springer, 1977.

[59] K. Marriott, H. Søndergaard, and N. D. Jones. Denotational abstract inter-
pretation of logic programs. ACM Transactions on Programming Languages
and Systems, 16(3):607–648, 1994.

71

[60] R. W. McGrail. Monads, Predicates and Categorical Logic Programming.
PhD thesis, Wesleyan University, 1999.

[61] D. Miller. A logic programming language with lambda-abstraction, func-
tion variables, and simple unification. Journal of Logic and Computation,
1(4):497–536, 1991.

[62] D. Miller. FORUM: a multiple-conclusion specification logic. Theoretical
Computer Science, 165(1):201–232, 1996.

[63] D. Miller, F. Pfenning, G. Nadathur, and A. Scedrov. Uniform proofs as
a foundation for logic programming. Annals of Pure and Applied Logic,
51(1–2):125–157, 1991.

[64] E. Moggi. Notions of computation and monads. Information and Compu-
tation, 93:55–92, 1991.

[65] G. Nadathur. A proof procedure for the logic of hereditary Harrop formulas.
Journal of Automated Reasoning, 11(1):115–145, Feb. 1993.

[66] G. Nadathur and D. Miller. Higher-order Horn clauses. Journal of the
ACM, 37(4):777–814, Oct. 1990.

[67] F. Orejas, M. Navarro, and A. Sánchez. Algebraic implementation of ab-
stract data types: A survey of concepts and new compositionality results.
Mathematical Structures in Computer Science, 6(1):33–67, Feb. 1996.

[68] P. Panangaden, V. A. Saraswat, P. J. Scott, and R. A. G. Seely. A hyper-
doctrinal view of concurrent constraint programming. In J. W. de Bakker,
W. P. de Roever, and G. Rozenberg, editors, Semantics: Foundations
and Applications, REX Workshop Beekbergen, The Netherlands, June 1–4,
1992 Proceedings, volume 666 of Lecture Notes in Computer Science, pages
457–476. Springer, 1993.

[69] S. L. Peyton Jones et al. The Haskell 98 Language and Libraries: The Re-
vised Report, volume 13 of Journal of Functional Programming. Cambridge
University Press, Jan 2003.

[70] D. H. Pitt, S. Abramsky, A. Poign, and D. E. Rydeheard, editors. Category
Theory and Computer Programming, Tutorial and Workshop, Guildford,
U.K. September 16–20, 1985 Proceedings, volume 240 of Lecture Notes in
Computer Science. Springer, 1986.

[71] J. Power and E. Robinson. Premonoidal categories and notions of compu-
tation. Mathematical Structures in Computer Science, 7(5):453–468, Oct.
1997.

[72] D. J. Pym and J. Harland. A uniform proof-theoretic investigation of linear
logic programming. Journal of Logic and Computation, 4(2):175–207, April
1994.

72

[73] H. Reichel. Initial computability, algebraic specifications, and partial alge-
bras. Oxford International Series Of Monographs On Computer Science.
Oxford University Press, 1987.

[74] M. H. Rogers and H. Abramson, editors. Meta-programming in logic pro-
gramming. Logic Programming Series. The MIT Press, Oct. 1989.

[75] J. Rothe, H. Tews, and B. Jacobs. The coalgebraic class specification
language CCSL. Journal of Universal Computer Science, 7(2):175–193,
2002.

[76] D. E. Rydeheard and R. M. Burstall. A categorical unification algorithm.
In Pitt et al. [70], pages 493–505.

[77] V. A. Saraswat. The category of constraint systems is cartesian-closed. In
Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer
Science, pages 341–345. IEEE Computer Society Press, June 1992.

[78] R. A. G. Seely. Hyperdoctrines, natural deduction and the Beck condition.
Mathematical Logic Quarterly, 29(10):505–542, 1983.

[79] M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as
a programming language. Journal of the ACM, 23(4):733–742, 1976.

[80] E. G. Wagner. Categories, data types and imperative languages. In Pitt
et al. [70], pages 143–162.

[81] E. G. Wagner. Algebraic specifications: Some old history and new thoughts.
Nordic Journal of Computing, 9(4):373–404, 2002. Selected papers of the
Thirteenth Nordic Workshop on Programming Theory (NWPT’01), Octo-
ber 10–12, 2001.

73

A. Proofs

A.1. Reduction Pairs and Unifiers
Proof of Theorem 5.15. Given a clause reduction pair 〈r, fcl〉 of G = A1 ⊗
· · ·⊗An, with the formal clause fcl = 〈Ga, s, cl ,Gb〉 and cl : Hd← Tl, we have
that Ga⊗s]Hd⊗Gb = r]G. Since r]G, Ga and Gb have unique decompositions
as atomic goals and since reindexing preserves atomic goals, this is only possible
if there is an i ∈ {1, . . . , n} such that s]Hd = r]Ai, Ga = r]A1 ⊗ · · · ⊗ r]Ai−1

and Gb = r]Ai+1 ⊗ · · · ⊗ r]An. Therefore 〈r, s〉 is an unifier of Ai and Hd.
Now assume 〈r, s〉 is maximal, and consider an arrow t : 〈r, fcl〉 → 〈r′, fcl ′〉 ∈

RedG. We have that fcl = 〈G′a, s′, cl ,G′b〉 where G′a = r′
]
A1 ⊗ · · · ⊗ r′]Ai−1,

G′b = r′
]
Ai+1 ⊗ · · · ⊗ r′]An and ts′ = s. This means that t is also an arrow

〈r, s〉 → 〈r′, s′〉 ∈ UnifA,Hd. By maximality of 〈r, s〉, there is an unique arrow
t′ : 〈r′, s′〉 → 〈r, s〉 in UnifA,Hd such that tt′ = id . But then, t′ is also an arrow
〈r′, fcl ′〉 → 〈r, fcl〉. The proof that maximality of 〈r, fcl〉 implies maximality of
〈r, s〉 is similar.

A.2. Building the Free Model
We want to relate the operational semantics based on categorical derivations

and the model-theoretic semantics. We follow a standard methodology and we
look for particular models of P , called free models, which enjoys a fundamental
universal mapping property.

Definition A.1 (Free models) Given a program P over P, a model M : P→
Q is free iff for every other model M ′ : P→ Q′ there exists an unique interpre-
tation N : Q→ Q′ such that M ′ = M �N .

It is easy to prove by universality properties that, if M and M ′ are both free
models for a program P in two different logic doctrines Q and R, there is an
isomorphism of indexed premonoidal categories i : Q→ R such that i(M(cl)) =
N(cl). For these reason, we also speak of the free model.

We build from the LP doctrine P and the program P a particular free model
FP which is obtained by freely adjoining the clauses of P to the fibers of P.
In fact, categorical derivations are already obtained by adding clauses in P to
arrows in P, but in order to get a free model we need to get rid of redundant
derivations and give them an indexed structure.

Definition A.2 (Flat derivations) A categorical derivation d is called flat
(on the fiber σ) when, for all steps 〈r, f〉 in d, it is the case that r = idσ.

If d : G − ∗ G′ is a flat derivation on the fiber σ and k : ρ→ σ an arrow in
C, we define a new flat derivation k]d : k]G − ∗ k]G′ on the fiber ρ as follows:

k](εG) = εk]G ,

k](d · 〈idσ, f〉) = k](d) · 〈idρ, k]f〉 .

74

It is easy to check that k1
]k2

](d) = (k1k2)](d). Moreover, given a flat derivation
G1

d− ∗ G2 on the fiber σ, and a goal G : σ, it is possible to define a derivation
G ⊗̄ d : G⊗G1 − ∗ G⊗G2, by induction on the length of d:

G ⊗̄ εG1 = εG⊗G1 ,

G ⊗̄ (d′ · 〈id , f〉) = (G ⊗̄ d′) · 〈id ,G⊗ f〉 .

There is a similar operator d ⊗̄G whose definition is symmetrical. Note that
> ⊗̄ d = d ⊗̄ > = d. We also define an operator “flatten” on derivations which,
from d : G − ∗ G′ with computed answer r, gives as a result a flat derivation
flatten(d) : r]G − ∗ G′:

flatten(εG) = εG ,

flatten(d · 〈r, f〉) = r](flatten(d)) · 〈id , f〉 .

The operators f] and ⊗̄ seem the building blocks of an indexed premonoidal
category of flat derivations. However, we still need to remove some redundant
derivations we obtain by the unrestricted application of the backchain rule.

Definition A.3 (Normal derivations) A derivation is called normal when

1. there are no two consecutive steps with an arrow reduction pair;
2. there are no steps with an arrow reduction pair 〈r, f〉 where f is an identity

arrow.

We define an operator normalize that, from a derivation d : G − ∗ G′, builds
a normal derivation normalize(d) : G − ∗ G′. The operator is based on the
following rewriting system on derivations:

〈r1, f1〉 · 〈r2, f2〉 =⇒ 〈r2r1, f2 � r]2f1〉 [when f1, f2 are arrows] ,
〈idσ, idG〉 =⇒ εG .

Proposition A.4 The rewriting system =⇒ is terminating and confluent.

Proof. Termination is obvious, since each rewriting strictly reduces the length
of the derivation. In order to prove confluence, consider all the subderivations
where these rules overlap. We have the following cases:

• 〈idσ, idG〉 · 〈r, f〉: we may apply either the first or the second rule, but in
both case we obtain 〈r, f〉;

• 〈r, f〉 · 〈idσ, idG〉: same as above;

• 〈r1, f1〉 · 〈r2, f2〉 · 〈r3, f3〉: we may apply the first rule in two different ways,
but in both cases another use of the same rule yields 〈r3r2r1, f3 � r3

]f2 �
r3
]r2

]f1〉.

This concludes the proof.

75

Since =⇒ is terminating and confluent, we may define the operator normalize
as follows:

normalize(d) = d′ such that d =⇒∗ d′ 6=⇒ . (A.1)

It enjoys some properties which will be useful later in the proofs:

• normalize is idempotent;

• if d is flat, normalize(d) is flat;

• if d is flat, normalize(t](normalize(d))) = normalize(t]d).

We are now able to build the free model FP for a program P over P, by
indexing normal flat derivations over their sort σ. We recall here Definition 5.23,
so that this section is more self-contained.

Definition A.5 (The LP doctrine FP) Given a program P over P, we de-
fine the LP doctrine FP : Co → Cat as follows:

• FP (σ) is the category of normal flat derivation of sort σ. More in detail:

– |FP (σ)| = |Pσ|;
– FP (σ)(G,G′) is the set of normal flat derivations from G′ to G;

– idG = εG;

– dd′ = normalize(d′ · d);

• given t : σ → ρ in C, FP (t) is defined as follows:

– on objects, FP (t)(G) = t]G;

– on arrows, FP (t)(d) = normalize(t]d);

• for each σ ∈ |C|, there is a strict premonoidal structure (⊗F
σ ,>F

σ) such
that

– >F
σ = >P

σ ;

– G⊗F
σ d = normalize(G ⊗̄ d) and d⊗F

σ G = normalize(d ⊗̄G).

The proof that composition in FP (σ) is associative and that εG is the identity
is trivial, given the confluence of =⇒. Moreover, if t : ρ → σ, then FP (t) is a
functor from FP (σ) to FP (ρ), since

• FP (t)(εG) = normalize(t]εG) = normalize(εt]G) = εt]G;

• FP (t)(d1 � d2) = FP (t)(normalize(d2 · d1)) = normalize(t](d2 · d1)) =
normalize(t]d2 · t]d1). Since =⇒ is confluent, we have that normalize(t]d2 ·
t]d1) = normalize(normalize(t]d2) · normalize(t]d1)) = normalize(FP (t)(d2) ·
FP (t)(d1)) = FP (t)(d1) � FP (t)(d2).

Moreover, FP is a functor, since

76

• FP (id)(d) = normalize(id](d)) = normalize(d) = d when d is normal;

• FP (t1)(FP (t2)(d)) = normalize(t1](normalize(t2]d)) = normalize(t1]t2]d) =

= normalize((t1t2)](d)) = FP (t1t2)(d).

For each σ, G ⊗̄σ and ⊗̄σ G are functors. We just need to check that
FP (t) preserves the premonoidal structure. By induction on the length of d, we
prove that t](G ⊗̄σ d) = t]G ⊗̄ρ t]d:

• if d = εG′ , then t](G ⊗̄ εG′) = t](εG⊗G′) = εt]G⊗t]G′ = t]G ⊗̄ t]εG′ ;

• if d = d′ · 〈id , f〉, then t](G ⊗̄ d′ · 〈id , f〉) = t]((G ⊗̄ d′) · 〈id ,G ⊗̄ f〉) =
(t]G ⊗̄ t]d′) · 〈id , t]G ⊗̄ t]f〉 = (t]G) ⊗̄ t](d′ · 〈id , f〉).

Definition A.6 (The model FP) We define the model FP = (J K , ι) of the
program P over P into the LP doctrine FP as follows:

• ι(Hd cl:σ←− Tl) = Hd
〈idσ,cl〉−−−−− Tl;

• J K = 〈idC, τ〉;

where τ is defined as follows:

• τσ(G) = G;

• τσ(f : G→ G′) = normalize(G′
〈idσ,f〉−−−− G).

The normalize function in the definition above is needed for the case when f =
idG. We need to check that FP actually defines an interpretation. It is easy
to check that τσ is a functor, and that it preserves the premonoidal structure.
Moreover, it is a natural transformation, since

τρ(FP (t)(G
f→ G′)) = τρ(t]G

t]f→ t]G′) = normalize(〈idρ, t]f〉)

and

FP (t)(τσ(f)) = normalize(t](normalize(〈idσ, f〉))) =

normalize(t](〈idσ, f〉)) = normalize(〈idρ, t]f〉) .

Theorem A.7 (The free model FP) FP is a free model of P .

Proof. Assume M = (J K′ , ι′) is another model of P in the doctrine Q. If
J K′ = 〈F, τ ′〉,we try to define an interpretation N = (H, τ ′′) from FP to Q such
that J K �N = J K′ and ι �N = ι′. Since J K = (idC, τ), it must be H = F . For
the same reason τ ′′σ (G) = τ ′σ(G) for each σ ∈ |C| and G ∈ |Pσ|.

It remains to define τ ′′σ on arrows. It is obvious that τ ′′ must satisfy the
following constraints:

77

• τ ′′σ (normalize(G′
〈idσ,f〉−−−− G)) = τ ′σ(f) for any f ∈ Pσ;

• τ ′′σ (Hd
〈idσ,cl〉−−−−− Tl) = ι′(cl) for any cl : Hd← Tl.

Now, consider a single derivation step 〈idσ, fcl〉 where fcl = 〈Ga, s, cl ,Gb〉,
s : σ → ρ and Hd

cl:ρ←− Tl. It is equivalent to

Ga ⊗F
σ F(s)(〈idρ, cl〉)⊗F

σ Gb . (A.2)

Since τ ′′σ should preserve reindexing and premonoidal structure, the value of
τ ′′σ (〈idσ, fcl〉) is forced by the definition of τ ′′σ for the two cases above. Since all
the arrows in FP (σ) are obtained as composition of steps of the form 〈idσ, f〉
and 〈idσ, fcl〉, then τ ′′σ is uniquely determined.

Note that uniqueness of τ ′′ is a consequence of the fact that FP only contains
normal flat derivations. Otherwise, given arrows f1 : G1 → G2 and f2 : G2 →
G3 in the fiber Pσ, with f1 6= id 6= f2, the fiber FP (σ) would contain two

different derivations d = G3
〈id,f2〉−−−− G2

〈id,f1〉−−−− G1 and d′ = G3
〈id,f1f2〉−−−−−− G1. The

latter should be equal to the composition of G2
〈id,f1〉−−−− G1 and G3

〈id,f2〉−−−− G2

since J K should preserve composition of arrows, and mapped by τ ′′ to τ ′(f1f2).
The value of τ ′′(d), however, may be chosen freely.

We should check that 〈F, τ ′′〉 is indeed an interpretation of LP doctrines.
It preserves composition and identities by construction. Moreover τ ′′σ preserves
premonoidal structures: for arrow reduction pairs it is a consequence of the fact
that τ ′σ preserves premonoidal structures, while for clause reduction pairs preser-
vation is given by construction. For the same reason, it commutes w.r.t. rein-
dexing, i.e. τ ′′σ (FP (t)(d)) = QFt(τ ′′ρ (d)) for any t : σ → ρ.

From the fact that FP is a free model, the following soundness and com-
pleteness results may be easily obtained.

Corollary A.8 (Soundness theorem) Assume given a program P in P, a
goal G and a model M = (J K , ι) : P→ Q. If d is a derivation of G to G′ with
answer t, there exists an arrow

q
t]G

y
← JG′K in Q.

Proof. By Theorem A.7, there exists N : FP → Q such that M = FP � N .
Consider the normal flat derivation d′ = normalize(flatten(d)) : t]G − ∗ G′. We
know that d′ is an arrow from G′ to t]G in FP (σ), where σ is the sort of G′.
Hence Nσ(d) is an arrow from N(FP (G′)) = JG′K to N(FP (t]G)) =

q
t]G

y
.

Corollary A.9 (Completeness theorem) Assume given a program P in P

and goals G, G′ of sort σ. If M : P → Q is a free model of P and there is
an arrow f : M(G′) → M(G) in the fiber M(σ), then there is a normal flat
derivation G d− ∗ G′.

78

Proof. Since M is a free model, we can write FP = M � N for some inter-
pretation N : Q → FP . Hence, N(f) is an arrow from N(M(G′)) = G′ to
N(M(G)) = G. By definition of FP , we have that N(f) is a normal flat deriva-
tion d : G′ − ∗ G.

In particular, these results imply Theorem 5.22.

Proof of Theorem 5.22. In the hypotheses of the theorem, assume there is
a categorical derivation d : G − ∗ G′ with answer t : σ → ρ. By Corollary A.8,
for every model M of P there in an arrow M(t]G)←M(G′) in M(σ). For the
converse, assume that for every model M of P there in an arrow f : M(t]G)←
M(G′) in M(σ). Then, the arrow also exists when M = FP . By Corollary A.9
there is a normal flat derivation d : t]G − ∗ G′, hence 〈t, idσ〉 · d is a derivation
G − ∗ G′ with answer t.

A.3. Weak Completeness
In order to prove weak completeness of J Kω, we introduce the following

lemma, which may be viewed as a generalization of one of the conditions in the
definition of well-behaved units.

Lemma A.10 Assume given a semantic LP doctrine Q with well-behaved units,
I = {1, . . . , n}, J ⊆ I and, for each j ∈ J , an arrow tj in the base category of
Q. Moreover, assume given a family of objects B1, . . . , Bn in the fiber Qσ such
that, for each j ∈ J , Bj = ∃tjXj. Then if > ≤ ⊗i∈IBi, there is a family of
arrows {sj}j∈J such that sjtj = id and > ≤ ⊗i∈ICi where Ci = Bi if i /∈ J and
Bi = si

]Xi if i ∈ J .

Proof. The proof proceeds by induction on n. If n = 0 there is nothing to prove.
If n > 0, take a j ∈ J , and by Frobenius reciprocity we get > ≤ ∃tj⊗i∈IDi where
Di = t]jBi if i 6= j and Di = Xj if i = j. Since Q has well-behaved units, then
> ≤ sj

] ⊗i∈I Di = ⊗i∈Isj]Di = ⊗i∈IEi where Ei = sj
]tj

]Bi = Bi if i 6= j and
Ej = sj

]Xj . Then, consider J ′ = J \ {j}, and by inductive hypothesis we have
that > ≤ ⊗i∈ICi where Ci = Ei = Bi if i /∈ J , Ci = si

]Xi if i ∈ J ′ = J \ {j}
and Cj = sj

]Xj . But this is exactly what we were looking for, hence the lemma
is proved.

Lemma A.11 Given a weakly complete interpretation J K of an LP doctrine P

into a semantic LP doctrine with well-behaved units Q and a program P over P,
then EP (J K) is weakly complete.

Proof. Let us denote EP (J K) with J K′ and assume > ≤ JGK′. If G = >,
then ε> is a trivial successful derivation of > with identity answer. Otherwise
G = A1 ⊗ · · · ⊗ An, possibly with n = 1, and > ≤ JGK′ actually means > ≤
JA1K

′ ⊗ · · · ⊗ JAnK
′. By additivity of ⊗ and since Q has well-behaved units, it

means that there are J ⊆ {1, . . . , n} and, for each j ∈ J , a reducer 〈tj , fj , fcl j〉
of Aj into Tlj such that > ≤ ⊗ni=1Bi, where Bi = ∃ti JTliK if i ∈ J , while

79

Bi = JAiK otherwise. Without loss of generality, assume J = {j, . . . , n} for
some j ∈ I. Then

> ≤ JA1K⊗ · · · ⊗ JAj−1K⊗ ∃tj JTljK⊗ · · · ⊗ ∃tn JTlnK .

By Lemma A.10, we have that for each j there exists sj such that sjtj = id and

> ≤
q
A1 ⊗ · · · ⊗Aj−1 ⊗ sj]Tlj ⊗ · · · ⊗ sn]Tln

y
.

Since J K is weakly complete, A1 ⊗ · · · ⊗ Aj−1 ⊗ sj]Tlj ⊗ · · · ⊗ sn]Tln has a
successful derivation d′ with identity answer. Moreover, there are derivations
d′j for each j such that

d′j = Gj ⊗Aj ⊗G′j
〈sjtj ,Gj⊗sj](fj)⊗G′j ,Gj⊗sj](fclj)⊗G′j〉−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊗Gj ⊗ sj]Tlj ⊗G′j ,

(A.3)
where Gj = A1 ⊗ · · · ⊗Aj−1 and G′j = sj+1

]Tlj+1 ⊗ · · · ⊗ sn]Tln. Note that,
by the choice of sj , answer(d′j) = sjtj = id . We may concatenate all these
derivations to obtain

d = d′n · d′n−1 · . . . · d′j · d′ ,

which is a successful derivation of G with identity answer.

Finally, the proof of the main theorem is just a simple application of the
previous Lemma.

Proof of Theorem 5.40. If > ≤ JGKω, since units in Q are well-behaved,
there exists n ∈ N such that > ≤ JGKn. By the previous lemma we have that
JGKn is weakly complete, hence there exists a derivation d : G − ∗ > with
answer(d) = id .

A.4. Yoneda Semantics
Proof of Theorem 6.2. Let us check all the properties which characterize the
semantic LP doctrines:

1. YC(σ) is a complete lattice.
2. YC(t) is a complete join-morphism. Given t : ρ→ σ and {Xi}i∈I a family

of canonical subobjects of Hom(, σ), we have

YC(t)

(⋃
i∈I

Xi

)
= {r ∈ C | rt ∈

⋃
i∈I

Xi} = {r ∈ C | ∃i ∈ I.rt ∈ Xi}

=
⋃
i∈I
{r ∈ C | rt ∈ Xi} =

⋃
i∈I

YC(t)(Xi) . (A.4)

3. ⊗σ is a complete join-morphism, since YC(σ) is distributive and ⊗σ is the
meet of the lattice.

4. YC(t) has a well-known left adjoint ∃t such that, if t : ρ → σ and X ⊆
Hom(, ρ), then ∃tX = {rt | r ∈ X}.

80

5. The extended Beck condition is satisfied. Assuming r1 ∈ r]∃sX, we have
r1r ∈ ∃sX and r1r = s1s for some s1 ∈ X. Therefore id ∈ s1

]X and
r1 ∈ ∃r1s1

]X.
6. Frobenius reciprocity holds. Given r : ρ → σ, X2 ⊆ Hom(, σ) and
X1 ⊆ Hom(, ρ), we have ∃r(r]X2 ∩ X1) = ∃r{t | tr ∈ X2 ∧ t ∈ X1} =
{tr | tr ∈ X2 ∧ t ∈ X1} = {t′ | t′ ∈ X2 ∧ t′ = tr ∧ t ∈ X1} = X2 ∩ ∃rX1.

This concludes the proof of the theorem.

A.5. Constraint Systems
Proposition A.12 R is a constraint system.

Proof. We check the several conditions in the definition of constraint system:

• ℘(Rn) is a complete lattice, hence a bounded meet-preorder.

• ∃t is left adjoint to t], since ∃tt]X = t(t−1(X)) ⊆ X and t−1(t(X)) ⊇ X.

• If the following diagram is a pullback

A
r1 //

s1

��

Rn1

r

��
Rn2

s
// Rm

and X ∈ R(Rn1), we already know that ∃s1r1
]X ⊆ s]∃rX. We need to

prove the converse inequality. Given v ∈ s]∃r(X), there is x ∈ X such that
s(v) = r(x). We want to prove that there is z ∈ A such that r1(z) = x and
s1(z) = v, since this would immediately imply s1(r−1

1 (X)) 3 s1(z) = v.
Assume this is not true, and take A = R0 = 1, r2(·) = x and s2(·) = v.
Then we have the following commutative diagram:

1
r2

$$
s2

��

A
r1 //

s1

��

Rn1

r

��
Rn2

s
// Rm

However, the cone (1, r2, s2) does not factor trough (A, r1, s1), hence
(A, r1, s1) is not a pullback.

• Frobenius Reciprocity holds since r(r−1X∩Y) = {r(y) | y ∈ r−1(X)∧y ∈
Y } = {r(y) | r(y) ∈ X ∧ y ∈ Y } = {x | x ∈ X ∧ x = r(y) ∧ y ∈ Y } =
X ∩ r(Y).

81

This concludes the proof. Note that we have not used any special property of
the set R, so the proof is essentially the same for any other indexed category
built in the same way by an appropriate subcategory of Set.

Theorem A.13 Given a constraint system C, a constraint c over ρ, r1, r2 :
ρ→ σ and t : σ → σ′, if c ≤ r1 ≈ r2 then c ≤ r1t ≈ r2t.

Proof. Consider the following commutative diagram:

σ

∆σ

��

t // σ′

∆σ′

��
σ × σ

t×t
// σ × σ′

(A.5)

We have already shown that ∃∆σ t
] ≤ (t× t)]∃∆σ′ . By hypothesis we know

that c ≤ (r1 ≈ r2) = 〈r1, r2〉]∃∆σ
trueσ = 〈r1, r2〉]∃∆σ

t]trueσ′ . By the previous
inequality we have c ≤ 〈r1, r2〉](t× t)]∃∆σ′ trueσ′ = (r1t ≈ r2t).

A.6. Correspondence between CLP and the sequent calculus for constraints
In the following, given a constraint c : C(n) and a substitution θ : m→ n, we

will write θ](c) in categorical derivations, where we want to stress the fact that a
constraint is an object in a specific fiber, while we will use the more conventional
notation cθ in proof trees, when the fibered structure of the constraints is not
important. We will generally drop the superscript C from ∃C

θ , since there is no
confusion between the symbol ∃ and the operator ∃θ.

Note that, given substitutions θ, θ′ : n→ m, there are two constraints which
represent their equality. One is the constraint θ ∼ θ′, which is a short form for
θ(v1) ∼ θ′(v1) ∧ . . . θ(vm) ∼ θ′(vm), and the other is θ ≈ θ′, according to the
definition of ≈ given in Section 7.1, both in the fiber D(n). It is possible to
show that they are isomorphic.

To prove correspondence between CLP and IC we use the concept of derived
inference rule. We say that

∆1; Γ1 ` G1 ∆2; Γ2 ` G2

∆; Γ ` G

is a derived inference rule in IC if there is a proof tree Π for the sequent ∆; Γ ` G
such that, for each leaf ∆′; Γ′ ` G′ in Π,there is i ∈ {1, 2} and a renaming ρ
such that ∆′ = ∆iρ, G′ = Giρ and Γ′ `C Γiρ. This means that, if Πi is a proof
of ∆i; Γi ` Gi, this may be turned into a proof of ∆′; Γ′ ` G′ by renaming free
variables and replacing Γiρ with Γ′.5 The definition extends immediately to
rules with different number of premises.

5This is not true in the presence of the rule (∀R), which is only used for Hereditary Harrop
formulas.

82

If Π is a tree built from standard and derived inference rules, there is a
derived inference rule with the same root and leafs of Π. Moreover, if Π has no
leafs, there is a proof tree with no leafs for the root sequent of Π. This means
that we can use derived inference rules as they were standard inference rules,
without compromising the logical meaning of proof trees.

Given a sequence ~x = x1, . . . , xn of variables, we denote with ∀~xD the for-
mula ∀x1 · · · ∀xnD. The same notation is used for existential quantification.

Lemma A.14 The following is a derived inference rule in IC:

∆, D[~x/~y]; Γ, c ` G Γ `C ∃~yc
(~∀L)∆,∀~xD; Γ ` G

where none of the variable in ~y appears free in the sequent of the conclusion.

Proof. Assume Γ `C ∃~yc. If ~x = x1, . . . , xn and ~y = y1, . . . , yn, consider the
following proof tree, obtained by repeated applications of the (∀L) and (CR)
inference rules:

∆, D[~x/~y]; Γn+1 ` G Γn `C ∃ync
... Γ2 `C ∃y2,...,ync

∆, ∀x2,...,xnD[x1/y1]; Γ2 ` G Γ1 `C ∃y1,...,ync

∆,∀x1,...,xnD; Γ1 ` G

where Γ1 = Γ and Γi+1 = Γi ∪ {∃yi+1,...,ync}. This is a valid proof tree since
Γ1 `C ∃y1,...,ync by hypothesis, and ∃yi,...,ync ∈ Γi for each i ≥ 2. Note that
c ∈ Γn+1, hence Γn+1 `C Γ, c. This proves that (~∀L) is a derived inference rule.

Lemma A.15 Given an atomic program P in PJ,C, with δ : J → SΣ, assume
there is a backchain step with a clause reduction pair

G : 〈n, c〉 〈θ,θ
]Ga⊗θ′]cl⊗θ]Gb〉−−−−−−−−−−−−−− θ]Ga, θ

′]Tl, θ]Gb : 〈m, c′′〉 ,

such that G = A1, . . . , Ak, Ga = A1, . . . , Ai−1, Gb = Ai+1, . . . , Ak and

Hd
cl:〈n′,c′〉←−−−−−− Tl. Then, the following is a derived rule in IC:

{P ;∃θc′′ ` Aj}j∈{1,...,i−1} P ;∃θ′c′′ ` Tl {P ;∃θc′′ ` Aj}j∈{i+1,...,k}

P ;∃θc′′ ` G

Proof. Let π1 : n + n′ → n = {v1/v1, . . . , vn/vn} and π2 : n + n′ → n′ =
{v1/vn+1, . . . , vn′/vn+n′} be the projections from n + n′ to n and n′ respec-
tively, while 〈θ, θ′〉 is the unique substitution θ′′ = {v1/θ(v1), . . . , vn/θ(v2),
vn+1/θ

′(v1), . . . , vn+n′/θ
′(vn′)} : m→ n+n′ such that θ′′ �π1 = θ and θ′′ �π2 =

θ′. Note that, if we look at substitutions and constraints as syntactic objects,
then ηπ1 = η for any η : m′ → n + n′ and cπ1 = c for any c ∈ C(n). However,

83

from the categorical point of view, η � π1 has a different target w.r.t. η, while
π1
]c and c are constraints in different fibers. Moreover, assume without loss of

generality that A = p(t) and Hd = p(t′).
Let us denote with Π1 the following proof tree:

Γ `C c′π2 CR
P ; Γ ` c′π2 P ; Γ ` Tlπ2 (∧R)

P ; Γ ` (c′ ∧Tl)π2

Γ `C t ∼ t′π2 Atom
P ,Hdπ2; Γ ` p(t)

(⇒L)
P , ((c′ ∧Tl)⇒ Hd)π2; Γ ` p(t)

where Γ = {∃θc′′,∃〈θ,θ′〉c′′}. We need to show that Γ `C t ≈ t′π2 and Γ `C c′π2.
By definition of the backchain step, we know that

c′′ ≤ (θ � t) ≈ (θ′ � t′) = 〈θ � t, θ′ � t′〉]∃∆true =

〈θ, θ′〉]〈π1 � t, π2 � t′〉
]∃∆true = 〈θ, θ′〉]((π1 � t) ≈ (π2 � t′)) , (A.6)

hence ∃〈θ,θ′〉c′′ ≤ (π1 � t) ≈ (π2 � t′). Therefore, Γ `C tπ1 ∼ t′π2 and since
syntactically tπ1 = t, then Γ `C t ∼ t′π2. Moreover, we know c′′ ≤ θ′

]
c′ =

(〈θ, θ′〉 � π2)]c′ = 〈θ, θ′〉]π2
]c′. Therefore, ∃〈θ,θ′〉c′′ ≤ π2

]c′, hence Γ `C c′π2.
Given ~V = v1, . . . , vn′ , let us denote with Π2 the following proof tree, where

we use the derived inference rule introduced in Lemma A.14:

Π1

P , ((c′ ∧Tl)⇒ Hd)π2; Γ ` p(t) ∃θc′′ `C ∃~V ∃〈θ,θ′〉c
′′

(~∀L)
P ,∀~V ((c′ ∧Tl)⇒ Hd);∃θc′′ ` p(t)

We need to prove ∃θc′′ ≤ ∃~V ∃〈θ,θ′〉c
′′. We know that, when c ∈ C(n + n′),

then ∃~V c is isomorphic to ∃π1c. Therefore, it is enough to prove that ∃θc′′ ≤
∃π1∃〈θ,θ′〉c′′ = ∃θc′′ which is trivially true.

Finally, by using Π2 and repeated applications of the (∧R) rule, we get a
proof tree with root P ;∃θc′′ ` G and leafs P ;∃θc′′ ` Ai for i = {1, . . . , j −
1} ∪ {j + 1, . . . , k} and P ; Γ ` Tlπ2. If we consider the renaming ρ = π2 ∪
{vn′+1/v1,vn′+n/vn}, we have that Pρ = P , Tlρ = Tlπ2. Moreover,
(∃θ′c′′)ρ = π2

]∃θ′c′′ ≥ ∃〈θ,θ′〉c′′, hence Γ `C ∃θ′c′′ρ. Therefore, we have a
derived inference rule.

Proof of Theorem 7.9. We prove a slightly more general statement, namely
that if there is a categorical derivation

Gη : 〈σ, c1〉
d− ∗ >ρ : 〈ρ, c2〉 ,

and θ = answer(d), then there exists an proof in IC of the sequent

. P ;∃θ�ηc2 ` G

84

The proof is by induction on the number n of steps in the derivation d. If n = 0
then G = >ρ, i.e. the empty sequence, answer(d) = idρ and the proof follows
by axiom (CR) since G = true. Otherwise, assuming a clause reduction pair is
used in the first step of d, we have:

d = Gη : 〈n, c1〉
〈θ1,θ1]Ga⊗θ′1

]cl⊗θ1]Gb〉−−−−−−−−−−−−−−−− G′ : 〈m, c′′〉 · d′ ,

where G = A1, . . . , Ak, Ga = A1η, . . . , Ai−1η, Gb = Ai+1η, . . . , Akη, cl : Hd←
Tl, G′ = A1ηθ1, . . . , Ai−1ηθ1,Tlθ′1, Ai+1ηθ1, . . . , Akηθ1 and

d′ = G′ : 〈m, c′′〉 − ∗ >ρ : 〈ρ, c2〉 ,

with answer(d′) = θ2 and θ2 � θ1 = θ. We may prove that it is possible to
extract from d′ proofs di : Aiηθ1 : 〈m, c′′〉 − ∗ >ρ : 〈ρ, c2〉 with answer(di) = θ2

for each i ∈ {1, . . . , i− 1} ∪ {i+ 1, . . . , k} and a proof d∗ : Tlθ′1 − ∗ >ρ : 〈ρ, c2〉
with answer(d∗) = θ2. By inductive hypothesis, there are proof trees Πi for the
sequent P ;∃θ�ηc2 ` Ai for each i ∈ {1, . . . , i− 1}∪ {i+ 1, . . . , k} and Π∗ for the
sequent P ;∃θ2�θ′1c2 ` Tl.

Consider the first backchain step in d, and note that the following is also a
valid backchain step:

G : 〈n, c1〉
〈θ2�θ1�η,θ2](θ1]Ga⊗θ′1

]cl⊗θ1]Gb)〉−−−−−−−−−−−−−−−−−−−−−−− θ2
]G′ : 〈ρ, c2〉 .

Therefore, by Lemma A.15, there is a derived inference rule for P ;∃θ�ηc2 ` G
from the premises P ;∃θ�ηc2 ` Ai for i ∈ {1, . . . , i − 1} ∪ {i + 1, . . . , k} and
P ;∃θ2�θ′1c2 ` Tl. By composing this inference rule with the proof trees Π∗ and
all the Πi’s, we obtain a proof of P ;∃θ�ηc2 ` G.

If the first step of d is obtained by an arrow reduction pair, we have:

d = Gη : 〈n, c1〉
〈θ1,idθ1]G〉−−−−−−− Gηθ1 : 〈m, c′〉 · d′ ,

with answer(d′) = θ2 and θ2 � θ1 = θ. By inductive hypothesis, we have a proof
of the sequent P ;∃θ2�θ1�η ` G, which is exactly what we were looking for.

85

	Introduction
	Notation and Conventions
	Categories and Logic
	Logic in FP-categories
	Indexed Categories
	Monoidal and Premonoidal Categories
	On some Standard Categorical Constructions

	Logic Programming with Categories
	First Example

	The New Framework
	Syntax
	Operational Semantics
	Most General Derivations
	Formal Clauses and Unifiers

	Declarative Semantics
	Fixed Point Semantics
	Completeness of Fixed Point Semantics

	Yoneda Semantics
	An Example: Constraint Logic Programming
	General Results
	Inconsistent states

	Logic Programs with Constraints
	Logical Interpretation

	An Example: Enriching the Display Category
	Non-discrete Display Categories
	Data Types in the Display Category
	Functorial Display Structures
	Polynomial Data Types

	Related Work
	Conclusions
	Proofs
	Reduction Pairs and Unifiers
	Building the Free Model
	Weak Completeness
	Yoneda Semantics
	Constraint Systems
	Correspondence between CLP and the sequent calculus for constraints

