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What is abstract interpretation

Definition

A theory for approximating the behavior of a discrete dynamic system.
[P. Cousot, R. Cousot 77]

Concrete Semantics

Concrete domain

〈C ,≤C 〉

Concrete semantic function

f : C → C

Concrete semantics

S = lfp f

Abstract Semantics

Abstract domain

〈A,≤A〉

Abstract semantic function

f α : A → A

Abstract semantics

Sα = lfp f α
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Concrete domain

(℘(Z),⊆)

Abstract domain

any

pos zero neg

empty

Concretization function

γ(any) = Z

γ(pos) = {x ∈ Z | x > 0}

γ(zero) = {0}

γ(neg) = {x ∈ Z | x < 0}

γ(empty) = ∅

Abstraction function

α(X ) =







bot if X = ∅

zero if X = {0}

pos if ∀x ∈ X .x > 0

neg if ∀x ∈ X .x < 0

any otherwise

Correct approximation

a ∈ A is a correct approximation of c ∈ C when α(c) ≤A a
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Semantic function

f (X ) = {x + 1 | x ∈ X}

Abstract domain and semantic function

any

pos zero neg

empty

Best correct abstraction

The abstract function f α is induced by the abstraction: f α = α ◦ f ◦ γ.

Concrete computation: f (f ({−1})) = {1}
Abstract computation: f α(f α(α({−1}))) = any

We are

correct, since α({1}) = pos ≤ any

not very precise, since pos is a better approximation of {1} than any.
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Semantic function

f (X ) = {−x | x ∈ X}

Abstract domain and semantic function

any

pos zero neg

empty

Concrete computation: f (f ({−1})) = {−1}
Abstract computation: f α(f α(α({−1}))) = neg

Definition (Completeness)

An abstract intepretation is complete when the result of any abstract
computation is the best correct abstraction of the result of the concrete
computation:

α ◦ f = f α ◦ α
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From Galois insertions to Moore families

1 an abstract domain is a set of names for particular elements in C ;
2 good for implementation, bad for theory;
3 we identify the abstract domain with its image trough the

concretization function γ.

Z

{x | x < 0} {x | x > 0}

· · · {−2} {−1} {0} {1} {2} · · ·

{}

A = {{}, {0}, {x | x < 0}, {x | x > 0},Z}
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We can ignore γ (which is just the identity for A). For example, the
abstract semantic function f α becomes

f α = α ◦ f .

Subsets of C corresponding to abstract domains are Moore families.

Definition (Moore family)

Given a complete lattice C , a Moore’s family of C is a subset of C closed
by arbitrary meets.

Theorem

The abstraction function α induces a Moore family α(C ).

The correspondence between α and α(C ) is invertible.

We use α either to denote the abstraction function or for the
corresponding Moore family.
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Observables

Let us fix a domain π which describes the properties we are interested in
(observable domain).

Problem:

We want π(lfp f ) which is either undecidable or too expensive to
compute;

We may compute lfp f π which is imprecise.

Solution:

1 Choose an intermediate computational domain

π ⊆ α ⊆ C

2 Compute π(lfp f α).
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How to choose the computational domain

Definition (Observational Completeness)

α is observationally complete (for π) when computing over α we do not
lose precision, if we are only interested in observation made over π:

π ◦ f α ◦ · · · ◦ f α
︸ ︷︷ ︸

n times

◦ α = π ◦ f ◦ · · · ◦ f
︸ ︷︷ ︸

n times

for each n ∈ N.

There are several observationally complete domains for π.

Example (Trivial)

The concrete domain C is observationally complete for any π.

We are interested in smaller domains.
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Non-trivial observationally complete domains

Example (1)

⊤

a

b

c

⊥

observable domain π computational domain α

Concrete computation: (π ◦ f ◦ f )(⊥) = a

Abstract computation: (π ◦ f α
︸︷︷︸

α◦f

◦ f α
︸︷︷︸

α◦f

◦ α)(⊥) = a
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Non-trivial observationally complete domains

Example (1)

⊤

a

b

c

⊥

Example (2)

⊤

a

b

c

⊥

observable domain π computational domain α

Supersets preserve observational completeness

We want the smallest observationally complete domain (l.o.c.)
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Continuity and least observationally complete domains

It is possible to show that, in the general case, the l.o.c. domain does not
exist. However:

Theorem

If f is continuous, the least observationally complete domain exists.

The l.o.c. domain is endowed with a constructive characterization:

α = M
(⋃

{max{x ∈ C | (f ◦ · · · ◦ f
︸ ︷︷ ︸

i times

)(x) ≤ a} | i ∈ N, a ∈ π}
)

,

where M : ℘(C ) → ℘(C ) is the Moore’s closure, i.e.

M(S) = {
∧

X | X ⊆ S} .
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Example – Building the l.o.c. domain

⊤

a

b c

d

⊥

concrete domain and
semantic function f
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Example – Building the l.o.c. domain

⊤

a

b c

d

⊥

concrete domain and
semantic function f

observable domain π
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Example – Building the l.o.c. domain

⊤

a

b c

d

⊥

concrete domain and
semantic function f

observable domain π

step 1
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Example – Building the l.o.c. domain

⊤

a

b c

d

⊥

concrete domain and
semantic function f

observable domain π

step 1

semantic function f ◦ f
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Example – Building the l.o.c. domain

⊤

a

b c

d

⊥

concrete domain and
semantic function f

observable domain π

step 1

semantic function f ◦ f

step 2 (no new points)
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Example – Building the l.o.c. domain

⊤

a

b c

d

⊥

concrete domain and
semantic function f

observable domain π

step 1

semantic function f ◦ f

step 2 (no new points)

more steps. . .
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Example – Building the l.o.c. domain

⊤

a

b c

d

⊥

concrete domain and
semantic function f

observable domain π

step 1

semantic function f ◦ f

step 2 (no new points)

more steps. . .

Moore closure
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Completeness and Observational Completeness

Compare the two definitions of completeness and observational
completeness:

Completeness
f α ◦ α = α ◦ f

which is equivalent to

f α ◦ · · · ◦ f α
︸ ︷︷ ︸

n times

◦α = α ◦ f ◦ · · · ◦ f
︸ ︷︷ ︸

n times

Observational Completeness

π ◦ f α ◦ · · · ◦ f α
︸ ︷︷ ︸

n times

◦α = π ◦ f ◦ · · · ◦ f
︸ ︷︷ ︸

n times

They are similar but, for standard completeness:

the observable domain is not fixed in advance;

the short form is equivalent to the long form.
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Completeness is not preserved by super-sets

Complete

⊤

a

b

c

⊥

(σ ◦ f ◦ σ)(⊥) = b

and

(σ ◦ f )(⊥) = b

Non-complete

⊤

a

b

c

⊥

(σ ◦ f ◦ σ)(⊥) = b

but

(σ ◦ f )(⊥) = c
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Why we prefer observational completeness

Theorem

If σ is complete, it is also observationally complete for every π ⊆ σ.

However,

completeness is a strong property;

completeness is not closed for supersets, which is very
counter-intuitive.

If we want to find a precise computational domain for observing the
properties in π, then observational completeness is the property to look for.
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Complete shell

Definition (Complete shell)

Given an observable domain π, the least complete domain which includes
π is the complete shell of π.

Theorem

If f is continuous, the complete shell of π is the least fixpoint of the

refinement

R(α) = M
(
π ∪

⋃

a∈α

max({x ∈ C | f (x) ≤ a})
)

it is easier to compute than the l.o.c. domain, since we do not need
to consider all the possible compositions of f ;

what is the relationship between the l.o.c. domain and the complete
shell?
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The complete shell is bigger then the l.o.c. domain

l.o.c. domain

⊤

a

b c

d

⊥

complete shell

⊤

a

b c

d

⊥
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L.o.c. domain and complete shell for additive functions

Theorem

If f is additive, then the l.o.c. domain and the complete shell coincide

We can use the machinery already developed to compute complete
shells for l.o.c. domains.

Completeness and observational completeness are still different: only
their least elements coincide.
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Summary of results

Results

we propose a different notion of completeness for abstract
interpretation

we argue that the new definition is the right one when we want to
find out a computational domain which does not lose precision

we show that, in general, the two notions of completeness are different

we show that, when the semantic function is additive, the l.o.c.
domain coincides with the complete shell
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How are concrete and abstract domains related

An abstract interpretation is given by:

a domain A of properties of elements of C ;

a way to relate A to C , such as a Galois insertions.

Definition (Galois insertion)

Given posets C and A, a Galois insertion 〈α, γ〉 : C ↔ A is given by

an abstraction function α : C
m
→ A which maps every concrete object

c ∈ C to the strongest property it enjoys;

a concretization function γ : A
m
→ C which maps every abstract

property a ∈ A to the biggest concrete object which enjoys the
property;

such that

γ(α(c)) ≥C c ;

α(γ(a)) = a
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Correctness and best correct abstraction

Definition (Correctness)

The abstract interpretation is correct when the result of any abstract
computation is an correct approximation of the result of the corresponding
concrete computation.

Correctness is preserved by fixpoints, i.e. the abstract semantics is a
correct approximation of the concrete semantics:

α(lfp f ) ≤ lfp f α .

A trivial correct abstract semantic function is

f α(x) = ⊤A ,

but it is very imprecise. The best correct abstraction is

f α = α ◦ f ◦ γ .
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The least o.c.d. does not always exists 1/2

⊤

a

b

ci

c4

c3

c2

c1

⊥

⊤

a

b

ci

c4

c3

c2

c1

⊥
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least o.c.d. does not always exists 2/2

⊤

a

b

ci

c4

c3

c2

c1

⊥

The intersection domain does
not contain any of the ci ’s

It is not observationally
complete

παf αc1 = παfa = πα⊤ = ⊤

while

πfc1 = πb = a
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