
Numerical static analysis with Soot

Gianluca Amato

Università “G. d’Annunzio” di Chieti–Pescara

ACM SIGPLAN International Workshop on the
State Of the Art in Java Program Analysis

SOAP 2013

(joint work with Francesca Scozzari and Simone Di Nardo Di Maio)

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 1 / 26



Jandom

JVM-based Analyzer for Numerical DOMains
forward intra-procedural analyses
numerical properties
different target languages

a simple C -style imperative language
linear transition systems
Baf, Jimple (sort of. . . )

written in Scala (JVM-based comes from here)
NEW features

inter-procedural summary-based analysis
pair sharing analyses

HELP! looking for new acronym

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 2 / 26



Jandom

JVM-based Analyzer for Numerical DOMains
forward intra-procedural analyses
numerical properties
different target languages

a simple C -style imperative language
linear transition systems
Baf, Jimple (sort of. . . )

written in Scala (JVM-based comes from here)
NEW features

inter-procedural summary-based analysis
pair sharing analyses

HELP! looking for new acronym

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 2 / 26



Jandom

JVM-based Analyzer for Numerical DOMains
forward intra-procedural analyses
numerical properties
different target languages

a simple C -style imperative language
linear transition systems
Baf, Jimple (sort of. . . )

written in Scala (JVM-based comes from here)
NEW features

inter-procedural summary-based analysis
pair sharing analyses

HELP! looking for new acronym

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 2 / 26



Jandom architecture

Basic domains
native PPL APRON

Abstract environment

ASM Jimple Baf

Basic block analyzer

Flow graph analyzer

Interprocedural analyzer

In
te

rp
re

ta
tio

n
Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 3 / 26



Jandom architecture

Basic domains
native PPL APRON

Abstract environment

ASM Jimple Baf

Basic block analyzer

Flow graph analyzer

Interprocedural analyzer

In
te

rp
re

ta
tio

n
Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 3 / 26



Basic domains

Basic domains describe general properties of program executions and are
not tied to a specific target language.

several families of basic domains
numerical domains
sharing domains

each family has its own API
all basic domains support:

lattice operations
widening (upper bound which guarantees termination)

similar to a FlowSet in Soot but
immutable
type safe
no collection-style methods such as add, iterator, etc. . .

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 4 / 26



Basic domains

Basic domains describe general properties of program executions and are
not tied to a specific target language.

several families of basic domains
numerical domains
sharing domains

each family has its own API
all basic domains support:

lattice operations
widening (upper bound which guarantees termination)

similar to a FlowSet in Soot but
immutable
type safe
no collection-style methods such as add, iterator, etc. . .

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 4 / 26



Basic domains

Basic domains describe general properties of program executions and are
not tied to a specific target language.

several families of basic domains
numerical domains
sharing domains

each family has its own API
all basic domains support:

lattice operations
widening (upper bound which guarantees termination)

similar to a FlowSet in Soot but
immutable
type safe
no collection-style methods such as add, iterator, etc. . .

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 4 / 26



Basic domains

Basic domains describe general properties of program executions and are
not tied to a specific target language.

several families of basic domains
numerical domains
sharing domains

each family has its own API
all basic domains support:

lattice operations
widening (upper bound which guarantees termination)

similar to a FlowSet in Soot but
immutable
type safe
no collection-style methods such as add, iterator, etc. . .

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 4 / 26



Basic domains

Basic domains describe general properties of program executions and are
not tied to a specific target language.

several families of basic domains
numerical domains
sharing domains

each family has its own API
all basic domains support:

lattice operations
widening (upper bound which guarantees termination)

similar to a FlowSet in Soot but
immutable
type safe
no collection-style methods such as add, iterator, etc. . .

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 4 / 26



Numerical domains

Represent the values of numerical variables.

Example (Nested loop)
for (x = 0; x < 10; x++)

for (y = x; y < 10; y++)
// do something here

Example (Invariant inside the nested loop)
y

x


0 ≤ x ≤ 9
y ≥ 9
y − x ≤ 0

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 5 / 26



Numerical domains

Represent the values of numerical variables.

Example (Nested loop)
for (x = 0; x < 10; x++)

for (y = x; y < 10; y++)
// do something here

Example (Invariant inside the nested loop)
y

x


0 ≤ x ≤ 9
y ≥ 9
y − x ≤ 0

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 5 / 26



Numerical domains

Represent the values of numerical variables.

Example (Nested loop)
for (x = 0; x < 10; x++)

for (y = x; y < 10; y++)
// do something here

Example (Invariant inside the nested loop)
y

x


0 ≤ x ≤ 9
y ≥ 9
y − x ≤ 0

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 5 / 26



Numerical domains API

The API for numerical domains is well understood:
linear assignment

x = 3*x + 2*y

non-deterministic assignment
x = ?

intersection with half-planes
if (x <= y - z) then

projection over a lower dimensional space
istore 3

embedding onto a higher dimension space
iload 3

and other. . .

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 6 / 26



Implementations of numerical domains

Three different sources for numerical domains:
1 Jandom native implementations

interval and parallelotope domains
JVM not well suited to the purpose, see

W. Kahan and Joseph D. Darcy
How Java’s Floating-Point Hurts Everyone Everywhere

2 Parma Polyehdra Library (PPL) based domains
many domains: polyehdra, octagons, congruences, etc. . .
need wrappers to expose a common interface

3 in the future. . . add support for the APRON library

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 7 / 26



Implementations of numerical domains

Three different sources for numerical domains:
1 Jandom native implementations

interval and parallelotope domains
JVM not well suited to the purpose, see

W. Kahan and Joseph D. Darcy
How Java’s Floating-Point Hurts Everyone Everywhere

2 Parma Polyehdra Library (PPL) based domains
many domains: polyehdra, octagons, congruences, etc. . .
need wrappers to expose a common interface

3 in the future. . . add support for the APRON library

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 7 / 26



Implementations of numerical domains

Three different sources for numerical domains:
1 Jandom native implementations

interval and parallelotope domains
JVM not well suited to the purpose, see

W. Kahan and Joseph D. Darcy
How Java’s Floating-Point Hurts Everyone Everywhere

2 Parma Polyehdra Library (PPL) based domains
many domains: polyehdra, octagons, congruences, etc. . .
need wrappers to expose a common interface

3 in the future. . . add support for the APRON library

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 7 / 26



Implementations of numerical domains

Three different sources for numerical domains:
1 Jandom native implementations

interval and parallelotope domains
JVM not well suited to the purpose, see

W. Kahan and Joseph D. Darcy
How Java’s Floating-Point Hurts Everyone Everywhere

2 Parma Polyehdra Library (PPL) based domains
many domains: polyehdra, octagons, congruences, etc. . .
need wrappers to expose a common interface

3 in the future. . . add support for the APRON library

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 7 / 26



Jandom architecture

Basic domains
native PPL APRON

Abstract environment

ASM Jimple Baf

Basic block analyzer

Flow graph analyzer

Interprocedural analyzer

In
te

rp
re

ta
tio

n
Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 8 / 26



Abstract environments
An abstract environment

is the glue between the basic domains and the language we want to
analyze
maps operations in the language into operations on the domains

JVM

numerical domain

this
i0 = 10
s1 = 20

locals

stack
0
1 ab

st
ra

ct
en

vi
ro

nm
en

t
x1 ≤ 100

x3 + x4 ≤ 1
x4 ≤ 2

x0
x1
x2

x3
x4

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 9 / 26



Abstract environments

Bytecode:
iadd

Translation:
x3 = x3 + x4

remove variable x4

JVM

numerical domain

this
i0 = 10
s1 = 20

locals

stack
0
1 ab

st
ra

ct
en

vi
ro

nm
en

t
x1 ≤ 100

x3 + x4 ≤ 1
x4 ≤ 2

x0
x1
x2

x3
x4

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 9 / 26



Abstract environments

Bytecode:
iadd

Translation:
x3 = x3 + x4

remove variable x4

JVM

numerical domain

this
i0 = 10
s1 = 20

locals

stack
1

ab
st

ra
ct

en
vi

ro
nm

en
t

x1 ≤ 100
x3 + x4 ≤ 1

x4 ≤ 2

x0
x1
x2

x3
x4

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 9 / 26



Abstract environments

Bytecode:
iadd

Translation:
x3 = x3 + x4

remove variable x4

JVM

numerical domain

this
i0 = 10
s1 = 20

locals

stack
1

ab
st

ra
ct

en
vi

ro
nm

en
t

x1 ≤ 100
x3 + x4 ≤ 1

x4 ≤ 2

x0
x1
x2

x3
x4

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 9 / 26



Abstract environments

Bytecode:
iadd

Translation:
x3 = x3 + x4

remove variable x4

JVM

numerical domain

this
i0 = 10
s1 = 20

locals

stack
1

ab
st

ra
ct

en
vi

ro
nm

en
t

x1 ≤ 100
x3 ≤ 1
x4 ≤ 2

x0
x1
x2

x3
x4

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 9 / 26



Abstract environments

Bytecode:
iadd

Translation:
x3 = x3 + x4

remove variable x4

JVM

numerical domain

this
i0 = 10
s1 = 20

locals

stack
1

ab
st

ra
ct

en
vi

ro
nm

en
t

x1 ≤ 100
x3 ≤ 1

x0
x1
x2

x3
x4

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 9 / 26



Jandom architecture

Basic domains
native PPL APRON

Abstract environment

ASM Jimple Baf

Basic block analyzer

Flow graph analyzer

Interprocedural analyzer

In
te

rp
re

ta
tio

n
Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 10 / 26



Basic blocks

A somewhat different definition of basic block:

Definition (Basic block)
A basic block is a sequence of instructions such that only the first one may
be the target of a jump.

Consequences:
encompass the standard definition of basic block
fewer basic blocks are needed
basic block may have many outgoing edges

Moreover
we want a return statement to begin a basic block

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 11 / 26



Basic blocks

A somewhat different definition of basic block:

Definition (Basic block)
A basic block is a sequence of instructions such that only the first one may
be the target of a jump.

Consequences:
encompass the standard definition of basic block
fewer basic blocks are needed
basic block may have many outgoing edges

Moreover
we want a return statement to begin a basic block

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 11 / 26



Basic blocks

A somewhat different definition of basic block:

Definition (Basic block)
A basic block is a sequence of instructions such that only the first one may
be the target of a jump.

Consequences:
encompass the standard definition of basic block
fewer basic blocks are needed
basic block may have many outgoing edges

Moreover
we want a return statement to begin a basic block

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 11 / 26



Basic blocks and Soot

We use the standard Block class and two new BlockGraph classes:

BigBlockGraph builds a BlockGraph according to our requirements
UnitBlockGraph build a BlockGraph where each block is composed of a

single unit (useful for debugging).

These are written in Java and could be integrated into Soot.

Implementation notes
In the case of BigBlockGraph, overriding computeLeader was not
enough, since buildBlocks method assumes that every jump instruction
is the tail of a block.

This could be changed in Soot itself.

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 12 / 26



Basic blocks and Soot

We use the standard Block class and two new BlockGraph classes:

BigBlockGraph builds a BlockGraph according to our requirements
UnitBlockGraph build a BlockGraph where each block is composed of a

single unit (useful for debugging).

These are written in Java and could be integrated into Soot.

Implementation notes
In the case of BigBlockGraph, overriding computeLeader was not
enough, since buildBlocks method assumes that every jump instruction
is the tail of a block.

This could be changed in Soot itself.

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 12 / 26



Basic block analyzer

A basic block analyzer:
takes a block
takes an input property
returns a set of target blocks and the corresponding property

Example (Analysis of a basic block)

0 ≤ x0
x0 + x1 = 0

if (x0 < 10) goto la
if (x0 < 0) goto lb
x0 = x0 + 1

〈lb , false〉

〈
la,

0 ≤ x0 ≤ 9
x0 + x1 = 0

〉

〈
fallthrough,

1 ≤ x0
x0 + x1 = 1

〉
input block

output

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 13 / 26



Baf vs Jimple vs Grimple

Generally Jimple is considered simpler to analyze than Baf. I am not
entirely sure this holds in our case:

Jimple has less instructions, but we need to interpret expressions
Jimple has no stack, but the easiest way to analyze expressions is to
evaluate them recursively, hence re-introducing a stack
if analyzing an entire assignment in one step, analysis may be faster
and more precise

Them, why do not move to Grimple?
numerical domains have API to analyze a result of complex linear
assignments and comparison
in Grimple these expression are almost ready to be fed to the abstract
domain

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 14 / 26



Baf vs Jimple vs Grimple

Generally Jimple is considered simpler to analyze than Baf. I am not
entirely sure this holds in our case:

Jimple has less instructions, but we need to interpret expressions
Jimple has no stack, but the easiest way to analyze expressions is to
evaluate them recursively, hence re-introducing a stack
if analyzing an entire assignment in one step, analysis may be faster
and more precise

Them, why do not move to Grimple?
numerical domains have API to analyze a result of complex linear
assignments and comparison
in Grimple these expression are almost ready to be fed to the abstract
domain

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 14 / 26



Example of possible benefits of Grimple

Consider
the octagon domain, which represents all conditions of the kind
±x1 ± x2 ≤ c
the assignment z = z + x + y
the precondition z = w ∧ x + y = 0
after the assignment, z = w ∧ x + y = 0 still holds
if we break the assignment in z = z + x and z = z + y we loose the
property after the first assignment.

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 15 / 26



Example of possible benefits of Grimple

Consider
the octagon domain, which represents all conditions of the kind
±x1 ± x2 ≤ c
the assignment z = z + x + y
the precondition z = w ∧ x + y = 0
after the assignment, z = w ∧ x + y = 0 still holds
if we break the assignment in z = z + x and z = z + y we loose the
property after the first assignment.

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 15 / 26



Example of possible benefits of Grimple

Consider
the octagon domain, which represents all conditions of the kind
±x1 ± x2 ≤ c
the assignment z = z + x + y
the precondition z = w ∧ x + y = 0
after the assignment, z = w ∧ x + y = 0 still holds
if we break the assignment in z = z + x and z = z + y we loose the
property after the first assignment.

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 15 / 26



Example of possible benefits of Grimple

Consider
the octagon domain, which represents all conditions of the kind
±x1 ± x2 ≤ c
the assignment z = z + x + y
the precondition z = w ∧ x + y = 0
after the assignment, z = w ∧ x + y = 0 still holds
if we break the assignment in z = z + x and z = z + y we loose the
property after the first assignment.

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 15 / 26



Example of possible benefits of Grimple

Consider
the octagon domain, which represents all conditions of the kind
±x1 ± x2 ≤ c
the assignment z = z + x + y
the precondition z = w ∧ x + y = 0
after the assignment, z = w ∧ x + y = 0 still holds
if we break the assignment in z = z + x and z = z + y we loose the
property after the first assignment.

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 15 / 26



Example of possible benefits of Grimple

Consider
the octagon domain, which represents all conditions of the kind
±x1 ± x2 ≤ c
the assignment z = z + x + y
the precondition z = w ∧ x + y = 0
after the assignment, z = w ∧ x + y = 0 still holds
if we break the assignment in z = z + x and z = z + y we loose the
property after the first assignment.

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 15 / 26



Jandom architecture

Basic domains
native PPL APRON

Abstract environment

ASM Jimple Baf

Basic block analyzer

Flow graph analyzer

Interprocedural analyzer

In
te

rp
re

ta
tio

n
Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 16 / 26



Flow graph analyzer

Similar to BranchedFlowAnalysis but
over Blocks instead of Units;
directly supports use of widening to ensure convergence of analysis;
directly support ascending and descending phases;
it will support many iterations strategies.

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 17 / 26



Flow graph analyzer

Similar to BranchedFlowAnalysis but
over Blocks instead of Units;
directly supports use of widening to ensure convergence of analysis;
directly support ascending and descending phases;
it will support many iterations strategies.

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 17 / 26



Flow graph analyzer

Similar to BranchedFlowAnalysis but
over Blocks instead of Units;
directly supports use of widening to ensure convergence of analysis;
directly support ascending and descending phases;
it will support many iterations strategies.

Widening
Widening should replace union on loops for domains with infinite
ascending chains.
Possible in BranchedFlowAnalysis but not as much as flexible.

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 17 / 26



Flow graph analyzer

Similar to BranchedFlowAnalysis but
over Blocks instead of Units;
directly supports use of widening to ensure convergence of analysis;
directly support ascending and descending phases;
it will support many iterations strategies.

Ascending and descenging phases
Widening causes loss of precision. It is possible to partially recover
precision with descending chains.
Again, something is possible with BranchedFlowAnalysis but not
as much as flexible

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 17 / 26



Flow graph analyzer

Similar to BranchedFlowAnalysis but
over Blocks instead of Units;
directly supports use of widening to ensure convergence of analysis;
directly support ascending and descending phases;
it will support many iterations strategies.

Iteration strategies
Worklist algorithms are not always the best choice:

recursive vs iterative strategies;
guided abstract interpretation.

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 17 / 26



An example of intraprocedural analysis

static void nested () {
int z = 0;

// z = 0
for (int i = 0; i < 10; i++)

// 0 ≤ z ∧ 0 ≤ i ≤ 10 ∧ i ≤ z + 1
for (int j = 0; j < i; j++)

// i ≤ 10 ∧ 0 ≤ j ∧ j ≤ i ∧ j ≤ z ∧ i − z − 2j − 1 ≤ 0
z = z + 1;

}

Actually, the result of the analyzer is much less nicer, since properties are
reported on the intermediate representation, not the Java code.

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 18 / 26



Using Soot vs extending Soot

At the moment, Jandom uses Soot to implement a completely different
framework.

Another choice would be to extend Soot to support the kind of analysis we
are interested in.

Integration would obviously be beneficial, but there are some stopovers:
implementation language: Scala vs Java

Jandom supports different target languages

Thinking about this. . .

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 19 / 26



What we like in Soot

Multiple intermediate representations

Facilities for intra-procedural analyses such as
automatic generation of control flow graphs

Facilities for inter-procedural analyses such as:
ability to browse the classes and methods in a Scene
automatic computation of call-graphs

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 20 / 26



What we do not like in Soot

Documentation
not well organized
not always complete

Not enough type safety at the IR level
for example, an AndExpr may have numeric operands
makes it difficult to check whether I have considered all possible cases
when analyzing instructions
but I am biased. . . I use Scala, after all.

Some annoying missing minor functionalities
how do I get the maximum stack size in a Baf body?

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 21 / 26



Future work

Make Jandom definitively work instead of barely work
Polishing interfaces
Polishing user interface
Speed optimization

Evaluate trade-off between mutable and immutable domains
Evaluate trade-off between functional and imperative style

Using Dava to analyze directly over the AST ?

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 22 / 26



Sharing analysis

Two variables x and y share if it is possible to reach from them a common
object.

Example (Variables x and y share)
x 12 99 37

y 67 32

Jandom implements an inter-procedural analysis for possible pair sharing,
as defined by Spoto and Secci (SAS ’05).

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 23 / 26



Possible pair sharing analysis

Given variables x , y and z the set {(x , x), (y , y), (x , y)} means:
x may share with itself (i.e., it is possibly not null);
y may share with itself (i.e., it is possibly not null);
x and y may share;
z is definitively null.

Other variants:
set sharing + class analysis
M. Mendéz-Lojo and M. Hermenegildo (VMCAI ’08)
pair sharing + linearity + aliasing
a future work of ours

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 24 / 26



Possible pair sharing analysis

Given variables x , y and z the set {(x , x), (y , y), (x , y)} means:
x may share with itself (i.e., it is possibly not null);
y may share with itself (i.e., it is possibly not null);
x and y may share;
z is definitively null.

Other variants:
set sharing + class analysis
M. Mendéz-Lojo and M. Hermenegildo (VMCAI ’08)
pair sharing + linearity + aliasing
a future work of ours

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 24 / 26



Possible pair sharing analysis

Given variables x , y and z the set {(x , x), (y , y), (x , y)} means:
x may share with itself (i.e., it is possibly not null);
y may share with itself (i.e., it is possibly not null);
x and y may share;
z is definitively null.

Other variants:
set sharing + class analysis
M. Mendéz-Lojo and M. Hermenegildo (VMCAI ’08)
pair sharing + linearity + aliasing
a future work of ours

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 24 / 26



Possible pair sharing analysis

Given variables x , y and z the set {(x , x), (y , y), (x , y)} means:
x may share with itself (i.e., it is possibly not null);
y may share with itself (i.e., it is possibly not null);
x and y may share;
z is definitively null.

Other variants:
set sharing + class analysis
M. Mendéz-Lojo and M. Hermenegildo (VMCAI ’08)
pair sharing + linearity + aliasing
a future work of ours

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 24 / 26



Possible pair sharing analysis

Given variables x , y and z the set {(x , x), (y , y), (x , y)} means:
x may share with itself (i.e., it is possibly not null);
y may share with itself (i.e., it is possibly not null);
x and y may share;
z is definitively null.

Other variants:
set sharing + class analysis
M. Mendéz-Lojo and M. Hermenegildo (VMCAI ’08)
pair sharing + linearity + aliasing
a future work of ours

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 24 / 26



Possible pair sharing analysis

Given variables x , y and z the set {(x , x), (y , y), (x , y)} means:
x may share with itself (i.e., it is possibly not null);
y may share with itself (i.e., it is possibly not null);
x and y may share;
z is definitively null.

Other variants:
set sharing + class analysis
M. Mendéz-Lojo and M. Hermenegildo (VMCAI ’08)
pair sharing + linearity + aliasing
a future work of ours

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 24 / 26



An API for sharing analysis?

Looking for a standard API for sharing analysis:
language independent;
suitable for other memory based analysis such as class or aliasing
analysis.

At the moment, modeled over standard Baf/ Jimple operations:
assignment of variables/fields to variables/fields
test for nullness
test for runtime class

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 25 / 26



An API for sharing analysis?

Looking for a standard API for sharing analysis:
language independent;
suitable for other memory based analysis such as class or aliasing
analysis.

At the moment, modeled over standard Baf/ Jimple operations:
assignment of variables/fields to variables/fields
test for nullness
test for runtime class

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 25 / 26



An example of interprocedural analysis

static int recursb (int x) {
return recursa (x + 1);

}

static int recursa (int x) {
if (x < 0)

return recursb (x);
else

return x;
}

Inteprocedural analysis proves

on call to recursa:

ret ≥ x ∧ ret ≥ 0

on call to recursb:

ret ≥ x + 1 ∧ ret ≥ 0

Gianluca Amato (Chieti–Pescara) Numerical static analysis with Soot SOAP 2013 26 / 26


	What is Jandom
	Basic domains
	Numerical domains

	Abstract environments
	Basic block analyzer
	Flow graph analyzer
	Jandom and Soot
	Conclusions
	Additional material

