Indexed Categories and Bottom-Up Semantics of Logic Programs

Gianluca Amato Università di Udine

James Lipton Wesleyan University

The World of Logic Programming

Several extensions of logic programs

- CLP
- abstract data types
- λ -Prolog

and different semantics

- correct answers
- resultants

Goal

An unique framework for all of them in order to

- compare different features
- suggest further extensions
- provide a clean variable-free semantics
- extend results from static analysis

Therefore, we need a three-side semantics

- operational
- declarative
- fixpoint

Previous Approaches

- Rydeheard, Burstall '85 Categorical Unification
- Asperti, Martini '89
 Categorical Syntax
 Topos-theoretic Semantics
- Asperti, Corradini, Montanari '92 Kinoshita, Power '96 Indexed Categories as Models
- Finkelstein, Freyd, Lipton '95
 Fixpoint Semantics
 Yoneda embedding

Terms and Categories

A many-sorted first order language $T_V(\Sigma)$ is a finite product category $\mathbb C$ according to the correspondence

- objects as types
- arrows as terms (and substitutions)
- equalizers as m.g.u's
- pullbacks as m.g.u's of renamed apart terms

In general, we can forget syntax by using a category $\mathbb C$ as the domain of terms.

Logic Programming in a Topos

Categorical Syntax: atomic formulas are pairs (A, f) where A is a predicate symbol of sort σ , $f \in Hom_{\mathbb{C}}(-, \sigma)$

Interpretation in a Topos Ω : an interpretation is given by

- a finite product functor $I:\mathbb{C}\to\Omega$
- a subobject of $I(\sigma)$ for each predicate symbol $A:\sigma$

Semantics: the interpretation I is extended to

- \bullet atomic formulas: I(A,f) as the pullback of $I(\mathfrak{a})$ along I(f)
- \bullet goals: $I((A_1,f_1)(A_2,f_2))$ is the meet of $I(A_1,f_1)$ and $I(A_2,f_2)$

Logic Programming in an Indexed Category

Categorical Syntax: atomic formulas are pairs (A, f) where A is a predicate symbol of sort σ , $f \in Hom_{\mathbb{C}}(-, \sigma)$

Interpretation in $\mathcal{P}: \mathbb{D} \to \mathsf{Cat}$:

- \bullet a finite product functor $I:\mathbb{C}\rightarrow\mathbb{D}$
- an object I(A) of $\mathfrak{P}(I(\sigma))$ for each predicate symbol $A:\sigma$

Semantics: the interpretation I is extended to

- atomic formulas: $I(A, f) = \mathcal{P}(f)(I(A))$
- goals: $I((A_1, f_1)(A_2, f_2))$ is the product of $I(A_1, f_1)$ and $I(A_2, f_2)$

We can use an indexed category as the language for formulas.

Categorical Syntax

Syntax is given by an indexed category $\mathcal P$: $\mathbb C \to \mathsf{Cat}$ where

- $\bullet \ \mathbb{C}$ is the category of terms and types, as before
- \bullet objects of $\mathfrak{P}(\sigma)$ are goals of type σ
- \bullet arrows in $\mathfrak{P}(\sigma)$ are constraints between goals

Note that

- in principle, there are no concepts of *predicate symbol* or *atomic formulas*,
- given \mathbb{C} and a set of predicate symbols, we can build $\mathcal{P}: \mathbb{C} \to \text{Cat}$ where $\mathcal{P}(\sigma)$ is the discrete category of objects (A, t). (Power and Kinoshita)

Indexed Categories

- $\mathsf{Objects} \text{ of } \mathbb{C} \hspace{0.2cm} \Longleftrightarrow \hspace{0.2cm} \mathsf{Sorts}$
 - Arrows in $\mathbb{C} \iff \mathsf{Terms}$
- Obects in $\mathfrak{P}\sigma \iff$ Goals of sort σ
- Arrows in $\mathfrak{P}\sigma \iff \mathsf{Proofs} \text{ of sort } \sigma$
- Reindexing functors \iff Instantiations

A Syntactic Category

Given $\mathbb C$ and a signature $\Pi,$ we define $\mathcal P_\Pi$ as

- $\mathcal{P}_{\Pi}(\sigma)$ the discrete category with objects (A, t) with $A : \rho \in Pi$, $t :\in Hom_{\mathbb{C}}(\sigma, \rho)$
- $\mathfrak{P}_{\Pi}(f: \sigma \to \rho)$ maps (A, t) in $(A, t \circ f)$.

for binary logic programs.

Arrows on the Fibers

They are used to force properties of predicates at the the level of syntax.

If p and symp are goals, then

 $r_1: p \rightarrow symp$ $r_2: p \rightarrow symp(\langle \pi_2, \pi_1 \rangle)$

force symp to the symmetric closure of p.

We plan to use constraint to treat

- abstract data type
- monads

Programs and Models

clause: pair of goals in $\ensuremath{\mathcal{P}}$ on the same fiber

program: set of clauses

model: is given by

- $Q: \mathbb{D} \to Cat$,
- an indexed functor $\tau: \mathfrak{P} \to \mathfrak{Q}$,
- an assignment ι from clauses $G_1 \leftarrow G_2$: σ to arrows in $\Omega(F\sigma)$.

There is a *free* model.

An Example of Model

Given a category $\mathbb{C}.$ we define \mathbb{Q} as

- $Q(\sigma) = \wp(Hom_{\mathbb{C}}(1, \sigma))$
- $Q(f: \sigma \to \rho)(X) = \{r \in Hom_{\mathbb{C}}(1, \sigma) \mid f \circ r \in X\}$

Two (non) significant models for a program in \mathcal{P}_{Π} :

- $\tau(G:\sigma) = \emptyset$ (everything false)
- $\tau(G:\sigma) = Hom(1,\sigma)$ (everything true)

Categorical Derivation

SLD step

$$\mathbf{G} \xrightarrow{\langle \mathbf{r}, \mathbf{t}, \mathbf{a} \rangle} \mathbf{t}^{\sharp} \mathbf{T} \mathbf{I}$$

Computed answer

ans
$$(\mathbf{G}_1 \xrightarrow{\langle \mathbf{r}_1, \mathbf{t}_1, \mathbf{a}_1 \rangle} \dots \xrightarrow{\langle \mathbf{r}_n, \mathbf{t}_n, \mathbf{a}_n \rangle} \mathbf{G}_{n+1}) =$$

= $\mathbf{r}_1 \circ \dots \circ \mathbf{r}_n$

Correctness and Completeness

Correctness. If there is a derivation $\mathbf{G}_1 \rightsquigarrow \mathbf{G}_2$ with answer θ , then $\theta^{\sharp} \tau(\mathbf{G}_1) \leftarrow \tau(\mathbf{G}_2)$ is an arrow in every model.

Completeness. If $\tau(\mathbf{G}_1) \leftarrow \tau(\mathbf{G}_2)$ is an arrow, then $\mathbf{G}_1 \rightsquigarrow \mathbf{G}_2$.

Herbrand Model

A new model of P in \mathcal{P}_{Π} on Q is $\tau(\mathbf{G}:\sigma) = \{f \in \text{Hom}_{\mathbb{C}}(1,\sigma) \mid f^{\sharp}(\mathbf{G}) \rightsquigarrow \top\}$ where $\top : 1$ is a goal which represents true. This is the standard Herbrand model.

We want a fixpoint construction!

Fixpoint Semantics

We use $\ensuremath{\textit{semantic}}$ indexed categories $\ensuremath{\mathbb{Q}}$ such that

- fibers have coproducts and colimits of $\omega\text{-}$ chains,
- reindexing functors have left adjoints $\exists_t^{\mathbb{Q}}$,
- $\exists^{\mathbb{Q}}_t$ preserves colimits of $\omega\text{-chains}$ on the nose

We use *goal free* syntactic indexed categories, i.e. generated by a base category \mathbb{C} and a predicate signature.

The T_P operator

 $\begin{array}{l} \mathcal{P}:\mathbb{C}\to\mathsf{Cat} \text{ a goal-free syntactic category} \\ \mathbb{Q}:\mathbb{C}\to\mathsf{Cat} \text{ a semantic category} \\ \tau \text{ an interpretation} \end{array}$

Define
$$\tau' = T_P(\tau)$$
 as
 $\tau'(A) = \tau(A) \lor \bigvee_{A(t) \leftarrow \mathsf{TI} \in P} \exists_t^Q \tau(\mathsf{TI})$
 $\tau'(A(t)) = t^{\sharp}(\tau'(A))$

There an indexed natural transformation

$$\nu_A: \tau(A) \xrightarrow{inj} \tau'(A) = \tau(A) \lor \dots$$

Fixpoint

We have the ω -chain

$$\tau \to T_P(\tau) \to T_P^2(\tau) \to \dots$$

We can find the colimit $T_P^{\boldsymbol{\omega}}$ of the chain.

The interpretation $T_P^{\boldsymbol{\omega}}$ can be extended to a model of P.

A Semantic Indexed Category

We extend $\ensuremath{\mathfrak{Q}}$ to a semantic indexed category with

- colimits given by unions
- if $t: \rho \to \sigma$, $\exists_t(X) = \{t \circ f \in f \in Hom_{\mathbb{C}}(1, \rho)\}$

We obtain the standard T_{P} of van Emden and Kowalski.

CLP

A constraint system is an indexed category $\mathcal{P}:\mathbb{C}\to\mathsf{Cat}$ such that

- each fiber is a meet semilattice,
- reindexing functors have left adjoints

We define ${\mathfrak Q}:{\mathbb D}\to {\text{Cat}}$ where

- object of $\mathbb D$ are pairs $\langle \sigma, c \rangle, \ c$ constraint of sort $\sigma.$
- $f: \langle \sigma_1, c_1 \rangle \to \langle \sigma_2, c_2 \rangle$ if $c_1 \leq f^{\sharp}c_2$.
- objects in $\mathbb{Q}(\langle\sigma,c\rangle)$ are pairs $\langle A,t\rangle$ with $A:\rho\in\Pi,\ t:\sigma\to\rho$

Results

- we have the three semantics of logic programs
- we can treat several different languages
- we can treat several different semantics
- we can treat selection rules (with pseudomonoidal structures)
- syntax is categorical (as long as no fixpoint semantics is considered)

Future Works

- abstract data types and monads
- alternative approaches to CLP
- a more liberal fixpoint construction
- extensions to hereditary Harrop formulas