
Exploiting linearity in sharing analysis of object-oriented
programs

Gianluca Amato

Università di Chieti–Pescara
Pescara, Italy

16th Italian Conference on Theoretical Computer Science
ICTCS 2015, 9-11 September 2015, Firenze

(joint work with M. C. Meo and F. Scozzari)

Gianluca Amato Sharing and linearity ICTCS 2015 1 / 27



Overview

Context
Data-flow analysis
Abstract interpretation
Pointer analysis

Plan of the talk
1 Sharing analysis
2 Adding linearity
3 Adding information for fields
4 The domain of ALPs-graphs
5 Conclusion

Gianluca Amato Sharing and linearity ICTCS 2015 2 / 27



Overview

Context
Data-flow analysis
Abstract interpretation
Pointer analysis

Plan of the talk
1 Sharing analysis
2 Adding linearity
3 Adding information for fields
4 The domain of ALPs-graphs
5 Conclusion

Gianluca Amato Sharing and linearity ICTCS 2015 3 / 27



Sharing analysis

Sharing analysis aims to determine variables which are be bound to
overlapping data structures at execution time.

Example

class Tree {
Tree left;
Tree right

}

T a = new Tree ();
T b = new Tree ();
a.right = new Tree ();
b.right = a.right;

Heap
a b

At the end of this program,
variables a and b share.

Gianluca Amato Sharing and linearity ICTCS 2015 4 / 27



Possible pair-sharing analysis

We represent sharing information with a set of unordered pairs of variables
in scope. A pair (a,b) means that a and b may share during execution.

Formalized by Spoto & Secci, SAS 2005.

Example

{}
Tree a = new Tree ();

{(a,a)} a may be not null

Tree b = new Tree ();

{(a,a),(b,b)} a and b may be not null

a.right = new Tree ();

{(a,a),(b,b)} a and b may be not null

b.right = a.right;

{(a,a),(b,b),(a,b)} a and b may be not null, a and b may share

Gianluca Amato Sharing and linearity ICTCS 2015 5 / 27



Possible pair-sharing analysis

We represent sharing information with a set of unordered pairs of variables
in scope. A pair (a,b) means that a and b may share during execution.

Formalized by Spoto & Secci, SAS 2005.

Example

{}
Tree a = new Tree ();
{(a,a)} a may be not null
Tree b = new Tree ();

{(a,a),(b,b)} a and b may be not null

a.right = new Tree ();

{(a,a),(b,b)} a and b may be not null

b.right = a.right;

{(a,a),(b,b),(a,b)} a and b may be not null, a and b may share

Gianluca Amato Sharing and linearity ICTCS 2015 5 / 27



Possible pair-sharing analysis

We represent sharing information with a set of unordered pairs of variables
in scope. A pair (a,b) means that a and b may share during execution.

Formalized by Spoto & Secci, SAS 2005.

Example

{}
Tree a = new Tree ();
{(a,a)} a may be not null
Tree b = new Tree ();
{(a,a),(b,b)} a and b may be not null
a.right = new Tree ();

{(a,a),(b,b)} a and b may be not null

b.right = a.right;

{(a,a),(b,b),(a,b)} a and b may be not null, a and b may share

Gianluca Amato Sharing and linearity ICTCS 2015 5 / 27



Possible pair-sharing analysis

We represent sharing information with a set of unordered pairs of variables
in scope. A pair (a,b) means that a and b may share during execution.

Formalized by Spoto & Secci, SAS 2005.

Example

{}
Tree a = new Tree ();
{(a,a)} a may be not null
Tree b = new Tree ();
{(a,a),(b,b)} a and b may be not null
a.right = new Tree ();
{(a,a),(b,b)} a and b may be not null
b.right = a.right;

{(a,a),(b,b),(a,b)} a and b may be not null, a and b may share

Gianluca Amato Sharing and linearity ICTCS 2015 5 / 27



Possible pair-sharing analysis

We represent sharing information with a set of unordered pairs of variables
in scope. A pair (a,b) means that a and b may share during execution.

Formalized by Spoto & Secci, SAS 2005.

Example

{}
Tree a = new Tree ();
{(a,a)} a may be not null
Tree b = new Tree ();
{(a,a),(b,b)} a and b may be not null
a.right = new Tree ();
{(a,a),(b,b)} a and b may be not null
b.right = a.right;
{(a,a),(b,b),(a,b)} a and b may be not null, a and b may share

Gianluca Amato Sharing and linearity ICTCS 2015 5 / 27



Other kind of pointer analysis

Points-to analysis
Relates a variable with the possible locations it may points. Locations are
generally identified by occurrences of a new instruction.
If two variables may point to the same location they may share.

Alias analysis
Determines whether two variable points to the same location.
If two variables are aliases they share.

Reachability anaysis
Determines whether from a variable a it is possible to reach the location
pointed to by variable b.
If a → b, then and b share

Gianluca Amato Sharing and linearity ICTCS 2015 6 / 27



Overview

Context
Data-flow analysis
Abstract interpretation
Pointer analysis

Plan of the talk
1 Sharing analysis
2 Adding linearity
3 Adding information for fields
4 The domain of ALPs-graphs
5 Conclusion

Gianluca Amato Sharing and linearity ICTCS 2015 7 / 27



The need for linearity

Example (Creating List)

// create a list of length n>0
Tree create_list (int n) {

Tree head = new Tree ();
Tree current = head;
while (n >0) {

current .left = new Tree ();
current .right = new Tree ();
current = current .right;
n = n -1;

}
return head;

}

Heap
head current

Gianluca Amato Sharing and linearity ICTCS 2015 8 / 27



The need for linearity (2)

We would like to prove that a1, a2 and a3 do not share.
It is obvious reasoning on the concrete heap.

Example (Using List)

// extract first 3 elements
Tree list = create_list (5);
Tree a1 = list.left
list = list.right
Tree a2 = list.left
list = list.right
Tree a3 = list.left

Heap
lista1a2a3

Gianluca Amato Sharing and linearity ICTCS 2015 9 / 27



The need for linearity (2)

We would like to prove that a1, a2 and a3 do not share.
It is obvious reasoning on the concrete heap.

Example (Using List)

// extract first 3 elements
Tree list = create_list (5);
Tree a1 = list.left
list = list.right
Tree a2 = list.left
list = list.right
Tree a3 = list.left

Heap
lista1a2a3

Gianluca Amato Sharing and linearity ICTCS 2015 9 / 27



The need for linearity (2)

We would like to prove that a1, a2 and a3 do not share.
It is obvious reasoning on the concrete heap.

Example (Using List)

// extract first 3 elements
Tree list = create_list (5);
Tree a1 = list.left
list = list.right
Tree a2 = list.left
list = list.right
Tree a3 = list.left

Heap
lista1a2a3

Gianluca Amato Sharing and linearity ICTCS 2015 9 / 27



The need for linearity (2)

We would like to prove that a1, a2 and a3 do not share.
It is obvious reasoning on the concrete heap.

Example (Using List)

// extract first 3 elements
Tree list = create_list (5);
Tree a1 = list.left
list = list.right
Tree a2 = list.left
list = list.right
Tree a3 = list.left

Heap
lista1a2a3

Gianluca Amato Sharing and linearity ICTCS 2015 9 / 27



The need for linearity (3)

Only sharing information at the level of variables.

Example (Analysis of the main program)

{}
Tree list = create_list (5);

{(list, list)}

Possile concretization
list

Possile (bad) concretization
list

Gianluca Amato Sharing and linearity ICTCS 2015 10 / 27



The need for linearity (3)

Only sharing information at the level of variables.

Example (Analysis of the main program)

{}
Tree list = create_list (5);
{(list, list)}

Possile concretization
list

Possile (bad) concretization
list

Gianluca Amato Sharing and linearity ICTCS 2015 10 / 27



The need for linearity (3)

Only sharing information at the level of variables.

Example (Analysis of the main program)

{}
Tree list = create_list (5);
{(list, list)}

Possile concretization
list

Possile (bad) concretization
list

Gianluca Amato Sharing and linearity ICTCS 2015 10 / 27



The need for linearity (3)

Only sharing information at the level of variables.

Example (Analysis of the main program)

{}
Tree list = create_list (5);
{(list, list)}

Possile concretization
list

Possile (bad) concretization
list

Gianluca Amato Sharing and linearity ICTCS 2015 10 / 27



Linearity

Definition (Linearity)
A variable v is non-linear if there is a location which is reachable from v
following two different chains of field.

Linear heap
list

Non-linear heap
list

Complex heap
a b

Gianluca Amato Sharing and linearity ICTCS 2015 11 / 27



Analysis with linearity

sh ? lin: sh is the sharing information and lin a set of linear variables.

Example (Analysis of the main program)

{}
Tree list = create_list (5);

{(list, list)} ? {list}

Possile concretization
list

Possile (bad) concretization
list

Gianluca Amato Sharing and linearity ICTCS 2015 12 / 27



Analysis with linearity

sh ? lin: sh is the sharing information and lin a set of linear variables.

Example (Analysis of the main program)

{}
Tree list = create_list (5);
{(list, list)} ? {list}

Possile concretization
list

Possile (bad) concretization
list

Gianluca Amato Sharing and linearity ICTCS 2015 12 / 27



Analysis with linearity

sh ? lin: sh is the sharing information and lin a set of linear variables.

Example (Analysis of the main program)

{}
Tree list = create_list (5);
{(list, list)} ? {list}

Possile concretization
list

Possile (bad) concretization
list

Gianluca Amato Sharing and linearity ICTCS 2015 12 / 27



Overview

Context
Data-flow analysis
Abstract interpretation
Pointer analysis

Plan of the talk
1 Sharing analysis
2 Adding linearity
3 Adding information for fields
4 The domain of ALPs-graphs
5 Conclusion

Gianluca Amato Sharing and linearity ICTCS 2015 13 / 27



The need for fields (1)

Example (Analysis with fields)

{}
Tree list = create_list (5);
{(list, list)} ? {list}
Tree a1 = list.left

{(a1, a1), (list, list), (a1, list)} ? {list, a1}

Good concretization
lista1

Bad concretization
lista1

Gianluca Amato Sharing and linearity ICTCS 2015 14 / 27



The need for fields (1)

Example (Analysis with fields)

{}
Tree list = create_list (5);
{(list, list)} ? {list}
Tree a1 = list.left
{(a1, a1), (list, list), (a1, list)} ? {list, a1}

Good concretization
lista1

Bad concretization
lista1

Gianluca Amato Sharing and linearity ICTCS 2015 14 / 27



The need for fields (1)

Example (Analysis with fields)

{}
Tree list = create_list (5);
{(list, list)} ? {list}
Tree a1 = list.left
{(a1, a1), (list, list), (a1, list)} ? {list, a1}

Good concretization
lista1

Bad concretization
lista1

Gianluca Amato Sharing and linearity ICTCS 2015 14 / 27



The need for fields (2)
Example

{}
Tree list = create_list (5);

{(list, list), (list.left, list.left), (list.right, list.right)} ? {list}

Tree a1 = list.left

{(a1, a1), (list.left, a1), (list, a1), (list, list), (list.left, list.left),
(list.right, list.right)} ? {list, a1}

Good concretization
lista1

Bad concretization
lista1

Gianluca Amato Sharing and linearity ICTCS 2015 15 / 27



The need for fields (2)
Example

{}
Tree list = create_list (5);
{(list, list), (list.left, list.left), (list.right, list.right)} ? {list}
Tree a1 = list.left

{(a1, a1), (list.left, a1), (list, a1), (list, list), (list.left, list.left),
(list.right, list.right)} ? {list, a1}

Good concretization
lista1

Bad concretization
lista1

Gianluca Amato Sharing and linearity ICTCS 2015 15 / 27



The need for fields (2)
Example

{}
Tree list = create_list (5);
{(list, list), (list.left, list.left), (list.right, list.right)} ? {list}
Tree a1 = list.left
{(a1, a1), (list.left, a1), (list, a1), (list, list), (list.left, list.left),
(list.right, list.right)} ? {list, a1}

Good concretization
lista1

Bad concretization
lista1

Gianluca Amato Sharing and linearity ICTCS 2015 15 / 27



The need for fields (3)
Example

{}
Tree list = create_list (5);
{(list, list), (list.left, list.left), (list.right, list.right)} ? {list}
Tree a1 = list.left
{(a1,a1), (list.left, a1), (list, a1), (list, list), (list.left, list.left),
(list.right, list.right)} ? {list, a1}
list = list. right

{(a1, a1), (list, list), (list.left, list.left), (list.right, list.right)} ?

{list, a1}

We have done it!
list.left and list.right do not share because list is linear.
same abstract information we had after create list. . .
we can iterate without losing information

Gianluca Amato Sharing and linearity ICTCS 2015 16 / 27



The need for fields (3)
Example

{}
Tree list = create_list (5);
{(list, list), (list.left, list.left), (list.right, list.right)} ? {list}
Tree a1 = list.left
{(a1,a1), (list.left, a1), (list, a1), (list, list), (list.left, list.left),
(list.right, list.right)} ? {list, a1}
list = list. right
{(a1, a1), (list, list), (list.left, list.left), (list.right, list.right)} ?

{list, a1}

We have done it!
list.left and list.right do not share because list is linear.
same abstract information we had after create list. . .
we can iterate without losing information

Gianluca Amato Sharing and linearity ICTCS 2015 16 / 27



Overview

Context
Data-flow analysis
Abstract interpretation
Pointer analysis

Plan of the talk
1 Sharing analysis
2 Adding linearity
3 Adding information for fields
4 The domain of ALPs-graphs
5 Conclusion

Gianluca Amato Sharing and linearity ICTCS 2015 17 / 27



The domain of ALPs-graphs

Instead of keeping aliasing, sharing and linearity information as separate
entities, we encode them in an ALPs-graph.

Heap
a b c

Abstraction

a bc

left right right

Gianluca Amato Sharing and linearity ICTCS 2015 18 / 27



Operators

An extract from the definition of abstract operators:

SCI
τ Jv :=expK(G) = prune((N′ ? E ′ ? `′[v 7→ `′(res), res 7→ ⊥]) ? sh′ ? nl ′)

SCI
τ Jv .f:=expK(G) =



⊥ if `′(v) = ⊥
cl(prune((N′ ∪ Nnew ? E ′ \ Edel ∪ Enew ? `′[res 7→ ⊥])?

sh′ ∪ shnew ? nl ′ ∪ {n`′(x) | n`′(x) ∈ Nnew , `′(x .f) ∈ nl ′}))
if `′(v) 6= ⊥ and `′(res) = ⊥

cl(prune((N′ ∪ Nnew ? E ′ \ Edel ∪ E ′
new ? `′[res 7→ ⊥])?

sh′ ∪ sh′
new ? nl ′ ∪ nl ′

new ∪ {n`′(x) | n`′(x) ∈ Nnew , `′(x .f) ∈ nl ′}))
otherwise

SCI
τ

[[
if v = null
then com1 else com2

]]
(G) =

{
SCI

τ Jcom1K(G) if `(v) = ⊥
SCI

τ Jcom1K(G|v=null) g SCI
τ Jcom2K(G) otherwise

SCI
τ

[[
if v = w
then com1 else com2

]]
(G) =

{
SCI

τ Jcom1K(G) if `(v) = `(w)
SCI

τ Jcom1K(G|v=w ) g SCI
τ Jcom2K(G) otherwise

SCI
τ J{com1; . . . ; comp}K = (λs ∈ ALPsτ .s) ◦ SCI

τ JcompK ◦ · · · ◦ SCI
τ Jcom1K

Gianluca Amato Sharing and linearity ICTCS 2015 19 / 27



Restriction to null

Program code
// G1
if (v == null) {
// G2
cmd

Question: How do we obtain G2 from G1?
Answer: We delete the node labeled by v and

all its descendants.

Example (G1)

a b v

left right right

left
Example (G2)

a

left right

Gianluca Amato Sharing and linearity ICTCS 2015 20 / 27



Restriction to null

Program code
// G1
if (v == null) {
// G2
cmd

Question: How do we obtain G2 from G1?
Answer: We delete the node labeled by v and

all its descendants.

Example (G1)

a b v

left right right

left
Example (G2)

a

left right

Gianluca Amato Sharing and linearity ICTCS 2015 20 / 27



Field Assignment

Program code
// G1
v.right = null
// G2

Question: How do we obtain G2 from G1?
Answer: Delete arrow from v labeled by

right... but consider possible aliases
of v

Example (G1)

a v

left right right
left

Example (G2 incorrect)

a v

left right
left

Gianluca Amato Sharing and linearity ICTCS 2015 21 / 27



Field Assignment

Program code
// G1
v.right = null
// G2

Question: How do we obtain G2 from G1?
Answer: Delete arrow from v labeled by

right... but consider possible aliases
of v

Example (G1)

a v

left right right
left

Example (G2 incorrect)

a v

left right
left

Gianluca Amato Sharing and linearity ICTCS 2015 21 / 27



Field Assignment

Program code
// G1
v.right = null
// G2

Question: How do we obtain G2 from G1?
Answer: Delete arrow from v labeled by

right... but consider possible aliases
of v

Example (G1)

a v

left right right
left

Example (G2 correct)

a v

left right
left

Gianluca Amato Sharing and linearity ICTCS 2015 21 / 27



Overview

Context
Data-flow analysis
Abstract interpretation
Pointer analysis

Plan of the talk
1 Sharing analysis
2 Adding linearity
3 Adding information for fields
4 The domain of ALPs-graphs
5 Conclusion

Gianluca Amato Sharing and linearity ICTCS 2015 22 / 27



What we have done

Formally define ALPs graphs
a Galois connection with the powerset of concrete heaps
using concrete heap as formalized in [Secci & Spoto 05]

Define abstract operators needed to analyze Java code
on the concrete semantics defined in [Secci & Spoto 05]

Prove correctness of these operators

Gianluca Amato Sharing and linearity ICTCS 2015 23 / 27



What we have done

Formally define ALPs graphs
a Galois connection with the powerset of concrete heaps
using concrete heap as formalized in [Secci & Spoto 05]

Define abstract operators needed to analyze Java code
on the concrete semantics defined in [Secci & Spoto 05]

Prove correctness of these operators

Gianluca Amato Sharing and linearity ICTCS 2015 23 / 27



What we have done

Formally define ALPs graphs
a Galois connection with the powerset of concrete heaps
using concrete heap as formalized in [Secci & Spoto 05]

Define abstract operators needed to analyze Java code
on the concrete semantics defined in [Secci & Spoto 05]

Prove correctness of these operators

Gianluca Amato Sharing and linearity ICTCS 2015 23 / 27



Todo

Experimental evaluation
developing an implementation in our static analyzer Jandom
https://github.com/jandom-devel/Jandom

Determine computational complexity of operators
easy
all operators in PTIME

Optimality of the semantic operators
are the abstract operators as precise as possible?
hard and not very rewarding

Many possible tricks and variations
possible aliasing (helps assignment)
variable depths of ALPs graphs

Gianluca Amato Sharing and linearity ICTCS 2015 24 / 27

https://github.com/jandom-devel/Jandom


Todo

Experimental evaluation
developing an implementation in our static analyzer Jandom
https://github.com/jandom-devel/Jandom

Determine computational complexity of operators
easy
all operators in PTIME

Optimality of the semantic operators
are the abstract operators as precise as possible?
hard and not very rewarding

Many possible tricks and variations
possible aliasing (helps assignment)
variable depths of ALPs graphs

Gianluca Amato Sharing and linearity ICTCS 2015 24 / 27

https://github.com/jandom-devel/Jandom


Todo

Experimental evaluation
developing an implementation in our static analyzer Jandom
https://github.com/jandom-devel/Jandom

Determine computational complexity of operators
easy
all operators in PTIME

Optimality of the semantic operators
are the abstract operators as precise as possible?
hard and not very rewarding

Many possible tricks and variations
possible aliasing (helps assignment)
variable depths of ALPs graphs

Gianluca Amato Sharing and linearity ICTCS 2015 24 / 27

https://github.com/jandom-devel/Jandom


Todo

Experimental evaluation
developing an implementation in our static analyzer Jandom
https://github.com/jandom-devel/Jandom

Determine computational complexity of operators
easy
all operators in PTIME

Optimality of the semantic operators
are the abstract operators as precise as possible?
hard and not very rewarding

Many possible tricks and variations
possible aliasing (helps assignment)
variable depths of ALPs graphs

Gianluca Amato Sharing and linearity ICTCS 2015 24 / 27

https://github.com/jandom-devel/Jandom


Thanks

Gianluca Amato Sharing and linearity ICTCS 2015 25 / 27



Variants of sharing analysis

Pair sharing and set sharing
Pair sharing Only pair of variables are considered.
Set sharing Sets of variables are considered.

{a, b, c} means that there is an object which is reachable
from a, b and c. This is different from (a, b), (b, c), (a, c).

May/must sharing
May sharing (a, b) means that variables a and b might share. Also called

possible sharing and definite non-sharing.
Must sharing (a, b) means that variables a and b must share. Also called

definite sharing and possible non-sharing.

Gianluca Amato Sharing and linearity ICTCS 2015 26 / 27



History

Possible sharing has been thoroughly investigated for logic programs.
Pair sharing analysis for Java:

S. Secci and F. Spoto
“Pair-Sharing. Analysis of Object-Oriented Programs”
SAS 2005

Set sharing analysis for Java:
M. Méndez-Lozo, M. V. Hermenegildo
“Precise set-sharing analysis for Java-style programs”
VMCAI 2008

Gianluca Amato Sharing and linearity ICTCS 2015 27 / 27


	Sharing analysis and relatives
	Linearity
	The need for fields
	The domain of ALPs-graphs
	Conclusion

