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Sharing analysis

Sharing analysis aims to determine variables which are be bound to
overlapping data structures at execution time.

Example

class Tree {
Tree left;
Tree right

}

T a = new Tree ();
T b = new Tree ();
a.right = new Tree ();
b.right = a.right;

Heap
a b

At the end of this program,
variables a and b share.
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Possible pair-sharing analysis

We represent sharing information with a set of unordered pairs of variables
in scope. A pair (a,b) means that a and b may share during execution.

Formalized by Spoto & Secci, SAS 2005.

Example

{}
Tree a = new Tree ();

{(a,a)} a may be not null

Tree b = new Tree ();

{(a,a),(b,b)} a and b may be not null

a.right = new Tree ();

{(a,a),(b,b)} a and b may be not null

b.right = a.right;

{(a,a),(b,b),(a,b)} a and b may be not null, a and b may share
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Other kind of pointer analysis

Points-to analysis
Relates a variable with the possible locations it may points. Locations are
generally identified by occurrences of a new instruction.
If two variables may point to the same location they may share.

Alias analysis
Determines whether two variable points to the same location.
If two variables are aliases they share.

Reachability anaysis
Determines whether from a variable a it is possible to reach the location
pointed to by variable b.
If a → b, then and b share
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The need for linearity

Example (Creating List)

// create a list of length n>0
Tree create_list (int n) {

Tree head = new Tree ();
Tree current = head;
while (n >0) {

current .left = new Tree ();
current .right = new Tree ();
current = current .right;
n = n -1;

}
return head;

}

Heap
head current
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The need for linearity (2)

We would like to prove that a1, a2 and a3 do not share.
It is obvious reasoning on the concrete heap.

Example (Using List)

// extract first 3 elements
Tree list = create_list (5);
Tree a1 = list.left
list = list.right
Tree a2 = list.left
list = list.right
Tree a3 = list.left

Heap
lista1a2a3
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The need for linearity (3)

Only sharing information at the level of variables.

Example (Analysis of the main program)

{}
Tree list = create_list (5);

{(list, list)}

Possile concretization
list

Possile (bad) concretization
list
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Linearity

Definition (Linearity)
A variable v is non-linear if there is a location which is reachable from v
following two different chains of field.

Linear heap
list

Non-linear heap
list

Complex heap
a b
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Analysis with linearity

sh ? lin: sh is the sharing information and lin a set of linear variables.

Example (Analysis of the main program)

{}
Tree list = create_list (5);

{(list, list)} ? {list}

Possile concretization
list

Possile (bad) concretization
list
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The need for fields (1)

Example (Analysis with fields)

{}
Tree list = create_list (5);
{(list, list)} ? {list}
Tree a1 = list.left

{(a1, a1), (list, list), (a1, list)} ? {list, a1}

Good concretization
lista1

Bad concretization
lista1
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The need for fields (2)
Example

{}
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The need for fields (3)
Example

{}
Tree list = create_list (5);
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{(a1, a1), (list, list), (list.left, list.left), (list.right, list.right)} ?

{list, a1}

We have done it!
list.left and list.right do not share because list is linear.
same abstract information we had after create list. . .
we can iterate without losing information
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The domain of ALPs-graphs

Instead of keeping aliasing, sharing and linearity information as separate
entities, we encode them in an ALPs-graph.

Heap
a b c

Abstraction

a bc

left right right
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Operators

An extract from the definition of abstract operators:

SCI
τ Jv :=expK(G) = prune((N′ ? E ′ ? `′[v 7→ `′(res), res 7→ ⊥]) ? sh′ ? nl ′)

SCI
τ Jv .f:=expK(G) =



⊥ if `′(v) = ⊥
cl(prune((N′ ∪ Nnew ? E ′ \ Edel ∪ Enew ? `′[res 7→ ⊥])?

sh′ ∪ shnew ? nl ′ ∪ {n`′(x) | n`′(x) ∈ Nnew , `′(x .f) ∈ nl ′}))
if `′(v) 6= ⊥ and `′(res) = ⊥

cl(prune((N′ ∪ Nnew ? E ′ \ Edel ∪ E ′
new ? `′[res 7→ ⊥])?

sh′ ∪ sh′
new ? nl ′ ∪ nl ′

new ∪ {n`′(x) | n`′(x) ∈ Nnew , `′(x .f) ∈ nl ′}))
otherwise

SCI
τ

[[
if v = null
then com1 else com2

]]
(G) =

{
SCI

τ Jcom1K(G) if `(v) = ⊥
SCI

τ Jcom1K(G|v=null) g SCI
τ Jcom2K(G) otherwise

SCI
τ

[[
if v = w
then com1 else com2

]]
(G) =

{
SCI

τ Jcom1K(G) if `(v) = `(w)
SCI

τ Jcom1K(G|v=w ) g SCI
τ Jcom2K(G) otherwise

SCI
τ J{com1; . . . ; comp}K = (λs ∈ ALPsτ .s) ◦ SCI

τ JcompK ◦ · · · ◦ SCI
τ Jcom1K
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Restriction to null

Program code
// G1
if (v == null) {
// G2
cmd

Question: How do we obtain G2 from G1?
Answer: We delete the node labeled by v and

all its descendants.

Example (G1)

a b v

left right right

left
Example (G2)

a

left right
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Field Assignment

Program code
// G1
v.right = null
// G2

Question: How do we obtain G2 from G1?
Answer: Delete arrow from v labeled by

right... but consider possible aliases
of v

Example (G1)

a v

left right right
left

Example (G2 incorrect)

a v

left right
left
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What we have done

Formally define ALPs graphs
a Galois connection with the powerset of concrete heaps
using concrete heap as formalized in [Secci & Spoto 05]

Define abstract operators needed to analyze Java code
on the concrete semantics defined in [Secci & Spoto 05]

Prove correctness of these operators
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Todo

Experimental evaluation
developing an implementation in our static analyzer Jandom
https://github.com/jandom-devel/Jandom

Determine computational complexity of operators
easy
all operators in PTIME

Optimality of the semantic operators
are the abstract operators as precise as possible?
hard and not very rewarding

Many possible tricks and variations
possible aliasing (helps assignment)
variable depths of ALPs graphs
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Thanks
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Variants of sharing analysis

Pair sharing and set sharing
Pair sharing Only pair of variables are considered.
Set sharing Sets of variables are considered.

{a, b, c} means that there is an object which is reachable
from a, b and c. This is different from (a, b), (b, c), (a, c).

May/must sharing
May sharing (a, b) means that variables a and b might share. Also called

possible sharing and definite non-sharing.
Must sharing (a, b) means that variables a and b must share. Also called

definite sharing and possible non-sharing.
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History

Possible sharing has been thoroughly investigated for logic programs.
Pair sharing analysis for Java:

S. Secci and F. Spoto
“Pair-Sharing. Analysis of Object-Oriented Programs”
SAS 2005

Set sharing analysis for Java:
M. Méndez-Lozo, M. V. Hermenegildo
“Precise set-sharing analysis for Java-style programs”
VMCAI 2008
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